linux/include/linux/dmaengine.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
   4 */
   5#ifndef LINUX_DMAENGINE_H
   6#define LINUX_DMAENGINE_H
   7
   8#include <linux/device.h>
   9#include <linux/err.h>
  10#include <linux/uio.h>
  11#include <linux/bug.h>
  12#include <linux/scatterlist.h>
  13#include <linux/bitmap.h>
  14#include <linux/types.h>
  15#include <asm/page.h>
  16
  17/**
  18 * typedef dma_cookie_t - an opaque DMA cookie
  19 *
  20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  21 */
  22typedef s32 dma_cookie_t;
  23#define DMA_MIN_COOKIE  1
  24
  25static inline int dma_submit_error(dma_cookie_t cookie)
  26{
  27        return cookie < 0 ? cookie : 0;
  28}
  29
  30/**
  31 * enum dma_status - DMA transaction status
  32 * @DMA_COMPLETE: transaction completed
  33 * @DMA_IN_PROGRESS: transaction not yet processed
  34 * @DMA_PAUSED: transaction is paused
  35 * @DMA_ERROR: transaction failed
  36 */
  37enum dma_status {
  38        DMA_COMPLETE,
  39        DMA_IN_PROGRESS,
  40        DMA_PAUSED,
  41        DMA_ERROR,
  42        DMA_OUT_OF_ORDER,
  43};
  44
  45/**
  46 * enum dma_transaction_type - DMA transaction types/indexes
  47 *
  48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
  49 * automatically set as dma devices are registered.
  50 */
  51enum dma_transaction_type {
  52        DMA_MEMCPY,
  53        DMA_XOR,
  54        DMA_PQ,
  55        DMA_XOR_VAL,
  56        DMA_PQ_VAL,
  57        DMA_MEMSET,
  58        DMA_MEMSET_SG,
  59        DMA_INTERRUPT,
  60        DMA_PRIVATE,
  61        DMA_ASYNC_TX,
  62        DMA_SLAVE,
  63        DMA_CYCLIC,
  64        DMA_INTERLEAVE,
  65        DMA_COMPLETION_NO_ORDER,
  66        DMA_REPEAT,
  67        DMA_LOAD_EOT,
  68/* last transaction type for creation of the capabilities mask */
  69        DMA_TX_TYPE_END,
  70};
  71
  72/**
  73 * enum dma_transfer_direction - dma transfer mode and direction indicator
  74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
  75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  78 */
  79enum dma_transfer_direction {
  80        DMA_MEM_TO_MEM,
  81        DMA_MEM_TO_DEV,
  82        DMA_DEV_TO_MEM,
  83        DMA_DEV_TO_DEV,
  84        DMA_TRANS_NONE,
  85};
  86
  87/**
  88 * Interleaved Transfer Request
  89 * ----------------------------
  90 * A chunk is collection of contiguous bytes to be transferred.
  91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  92 * ICGs may or may not change between chunks.
  93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  94 *  that when repeated an integral number of times, specifies the transfer.
  95 * A transfer template is specification of a Frame, the number of times
  96 *  it is to be repeated and other per-transfer attributes.
  97 *
  98 * Practically, a client driver would have ready a template for each
  99 *  type of transfer it is going to need during its lifetime and
 100 *  set only 'src_start' and 'dst_start' before submitting the requests.
 101 *
 102 *
 103 *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
 104 *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
 105 *
 106 *    ==  Chunk size
 107 *    ... ICG
 108 */
 109
 110/**
 111 * struct data_chunk - Element of scatter-gather list that makes a frame.
 112 * @size: Number of bytes to read from source.
 113 *        size_dst := fn(op, size_src), so doesn't mean much for destination.
 114 * @icg: Number of bytes to jump after last src/dst address of this
 115 *       chunk and before first src/dst address for next chunk.
 116 *       Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
 117 *       Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
 118 * @dst_icg: Number of bytes to jump after last dst address of this
 119 *       chunk and before the first dst address for next chunk.
 120 *       Ignored if dst_inc is true and dst_sgl is false.
 121 * @src_icg: Number of bytes to jump after last src address of this
 122 *       chunk and before the first src address for next chunk.
 123 *       Ignored if src_inc is true and src_sgl is false.
 124 */
 125struct data_chunk {
 126        size_t size;
 127        size_t icg;
 128        size_t dst_icg;
 129        size_t src_icg;
 130};
 131
 132/**
 133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
 134 *       and attributes.
 135 * @src_start: Bus address of source for the first chunk.
 136 * @dst_start: Bus address of destination for the first chunk.
 137 * @dir: Specifies the type of Source and Destination.
 138 * @src_inc: If the source address increments after reading from it.
 139 * @dst_inc: If the destination address increments after writing to it.
 140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
 141 *              Otherwise, source is read contiguously (icg ignored).
 142 *              Ignored if src_inc is false.
 143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
 144 *              Otherwise, destination is filled contiguously (icg ignored).
 145 *              Ignored if dst_inc is false.
 146 * @numf: Number of frames in this template.
 147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
 148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
 149 */
 150struct dma_interleaved_template {
 151        dma_addr_t src_start;
 152        dma_addr_t dst_start;
 153        enum dma_transfer_direction dir;
 154        bool src_inc;
 155        bool dst_inc;
 156        bool src_sgl;
 157        bool dst_sgl;
 158        size_t numf;
 159        size_t frame_size;
 160        struct data_chunk sgl[];
 161};
 162
 163/**
 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
 165 *  control completion, and communicate status.
 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
 167 *  this transaction
 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
 169 *  acknowledges receipt, i.e. has a chance to establish any dependency
 170 *  chains
 171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
 172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
 173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
 174 *  sources that were the result of a previous operation, in the case of a PQ
 175 *  operation it continues the calculation with new sources
 176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
 177 *  on the result of this operation
 178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
 179 *  cleared or freed
 180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
 181 *  data and the descriptor should be in different format from normal
 182 *  data descriptors.
 183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
 184 *  repeated when it ends until a transaction is issued on the same channel
 185 *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
 186 *  interleaved transactions and is ignored for all other transaction types.
 187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
 188 *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
 189 *  repeated transaction ends. Not setting this flag when the previously queued
 190 *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
 191 *  to never be processed and stay in the issued queue forever. The flag is
 192 *  ignored if the previous transaction is not a repeated transaction.
 193 */
 194enum dma_ctrl_flags {
 195        DMA_PREP_INTERRUPT = (1 << 0),
 196        DMA_CTRL_ACK = (1 << 1),
 197        DMA_PREP_PQ_DISABLE_P = (1 << 2),
 198        DMA_PREP_PQ_DISABLE_Q = (1 << 3),
 199        DMA_PREP_CONTINUE = (1 << 4),
 200        DMA_PREP_FENCE = (1 << 5),
 201        DMA_CTRL_REUSE = (1 << 6),
 202        DMA_PREP_CMD = (1 << 7),
 203        DMA_PREP_REPEAT = (1 << 8),
 204        DMA_PREP_LOAD_EOT = (1 << 9),
 205};
 206
 207/**
 208 * enum sum_check_bits - bit position of pq_check_flags
 209 */
 210enum sum_check_bits {
 211        SUM_CHECK_P = 0,
 212        SUM_CHECK_Q = 1,
 213};
 214
 215/**
 216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
 217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
 218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
 219 */
 220enum sum_check_flags {
 221        SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
 222        SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
 223};
 224
 225
 226/**
 227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
 228 * See linux/cpumask.h
 229 */
 230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
 231
 232/**
 233 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
 234 * @memcpy_count: transaction counter
 235 * @bytes_transferred: byte counter
 236 */
 237
 238/**
 239 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
 240 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
 241 *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
 242 *  helper) to the descriptor.
 243 *
 244 * Client drivers interested to use this mode can follow:
 245 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
 246 *   1. prepare the descriptor (dmaengine_prep_*)
 247 *      construct the metadata in the client's buffer
 248 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
 249 *      descriptor
 250 *   3. submit the transfer
 251 * - DMA_DEV_TO_MEM:
 252 *   1. prepare the descriptor (dmaengine_prep_*)
 253 *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
 254 *      descriptor
 255 *   3. submit the transfer
 256 *   4. when the transfer is completed, the metadata should be available in the
 257 *      attached buffer
 258 *
 259 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
 260 *  driver. The client driver can ask for the pointer, maximum size and the
 261 *  currently used size of the metadata and can directly update or read it.
 262 *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
 263 *  provided as helper functions.
 264 *
 265 *  Note: the metadata area for the descriptor is no longer valid after the
 266 *  transfer has been completed (valid up to the point when the completion
 267 *  callback returns if used).
 268 *
 269 * Client drivers interested to use this mode can follow:
 270 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
 271 *   1. prepare the descriptor (dmaengine_prep_*)
 272 *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
 273 *      metadata area
 274 *   3. update the metadata at the pointer
 275 *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
 276 *      of data the client has placed into the metadata buffer
 277 *   5. submit the transfer
 278 * - DMA_DEV_TO_MEM:
 279 *   1. prepare the descriptor (dmaengine_prep_*)
 280 *   2. submit the transfer
 281 *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
 282 *      pointer to the engine's metadata area
 283 *   4. Read out the metadata from the pointer
 284 *
 285 * Note: the two mode is not compatible and clients must use one mode for a
 286 * descriptor.
 287 */
 288enum dma_desc_metadata_mode {
 289        DESC_METADATA_NONE = 0,
 290        DESC_METADATA_CLIENT = BIT(0),
 291        DESC_METADATA_ENGINE = BIT(1),
 292};
 293
 294struct dma_chan_percpu {
 295        /* stats */
 296        unsigned long memcpy_count;
 297        unsigned long bytes_transferred;
 298};
 299
 300/**
 301 * struct dma_router - DMA router structure
 302 * @dev: pointer to the DMA router device
 303 * @route_free: function to be called when the route can be disconnected
 304 */
 305struct dma_router {
 306        struct device *dev;
 307        void (*route_free)(struct device *dev, void *route_data);
 308};
 309
 310/**
 311 * struct dma_chan - devices supply DMA channels, clients use them
 312 * @device: ptr to the dma device who supplies this channel, always !%NULL
 313 * @slave: ptr to the device using this channel
 314 * @cookie: last cookie value returned to client
 315 * @completed_cookie: last completed cookie for this channel
 316 * @chan_id: channel ID for sysfs
 317 * @dev: class device for sysfs
 318 * @name: backlink name for sysfs
 319 * @dbg_client_name: slave name for debugfs in format:
 320 *      dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
 321 * @device_node: used to add this to the device chan list
 322 * @local: per-cpu pointer to a struct dma_chan_percpu
 323 * @client_count: how many clients are using this channel
 324 * @table_count: number of appearances in the mem-to-mem allocation table
 325 * @router: pointer to the DMA router structure
 326 * @route_data: channel specific data for the router
 327 * @private: private data for certain client-channel associations
 328 */
 329struct dma_chan {
 330        struct dma_device *device;
 331        struct device *slave;
 332        dma_cookie_t cookie;
 333        dma_cookie_t completed_cookie;
 334
 335        /* sysfs */
 336        int chan_id;
 337        struct dma_chan_dev *dev;
 338        const char *name;
 339#ifdef CONFIG_DEBUG_FS
 340        char *dbg_client_name;
 341#endif
 342
 343        struct list_head device_node;
 344        struct dma_chan_percpu __percpu *local;
 345        int client_count;
 346        int table_count;
 347
 348        /* DMA router */
 349        struct dma_router *router;
 350        void *route_data;
 351
 352        void *private;
 353};
 354
 355/**
 356 * struct dma_chan_dev - relate sysfs device node to backing channel device
 357 * @chan: driver channel device
 358 * @device: sysfs device
 359 * @dev_id: parent dma_device dev_id
 360 */
 361struct dma_chan_dev {
 362        struct dma_chan *chan;
 363        struct device device;
 364        int dev_id;
 365};
 366
 367/**
 368 * enum dma_slave_buswidth - defines bus width of the DMA slave
 369 * device, source or target buses
 370 */
 371enum dma_slave_buswidth {
 372        DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
 373        DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
 374        DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
 375        DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
 376        DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
 377        DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
 378        DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
 379        DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
 380        DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
 381};
 382
 383/**
 384 * struct dma_slave_config - dma slave channel runtime config
 385 * @direction: whether the data shall go in or out on this slave
 386 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
 387 * legal values. DEPRECATED, drivers should use the direction argument
 388 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
 389 * the dir field in the dma_interleaved_template structure.
 390 * @src_addr: this is the physical address where DMA slave data
 391 * should be read (RX), if the source is memory this argument is
 392 * ignored.
 393 * @dst_addr: this is the physical address where DMA slave data
 394 * should be written (TX), if the source is memory this argument
 395 * is ignored.
 396 * @src_addr_width: this is the width in bytes of the source (RX)
 397 * register where DMA data shall be read. If the source
 398 * is memory this may be ignored depending on architecture.
 399 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
 400 * @dst_addr_width: same as src_addr_width but for destination
 401 * target (TX) mutatis mutandis.
 402 * @src_maxburst: the maximum number of words (note: words, as in
 403 * units of the src_addr_width member, not bytes) that can be sent
 404 * in one burst to the device. Typically something like half the
 405 * FIFO depth on I/O peripherals so you don't overflow it. This
 406 * may or may not be applicable on memory sources.
 407 * @dst_maxburst: same as src_maxburst but for destination target
 408 * mutatis mutandis.
 409 * @src_port_window_size: The length of the register area in words the data need
 410 * to be accessed on the device side. It is only used for devices which is using
 411 * an area instead of a single register to receive the data. Typically the DMA
 412 * loops in this area in order to transfer the data.
 413 * @dst_port_window_size: same as src_port_window_size but for the destination
 414 * port.
 415 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
 416 * with 'true' if peripheral should be flow controller. Direction will be
 417 * selected at Runtime.
 418 * @slave_id: Slave requester id. Only valid for slave channels. The dma
 419 * slave peripheral will have unique id as dma requester which need to be
 420 * pass as slave config.
 421 *
 422 * This struct is passed in as configuration data to a DMA engine
 423 * in order to set up a certain channel for DMA transport at runtime.
 424 * The DMA device/engine has to provide support for an additional
 425 * callback in the dma_device structure, device_config and this struct
 426 * will then be passed in as an argument to the function.
 427 *
 428 * The rationale for adding configuration information to this struct is as
 429 * follows: if it is likely that more than one DMA slave controllers in
 430 * the world will support the configuration option, then make it generic.
 431 * If not: if it is fixed so that it be sent in static from the platform
 432 * data, then prefer to do that.
 433 */
 434struct dma_slave_config {
 435        enum dma_transfer_direction direction;
 436        phys_addr_t src_addr;
 437        phys_addr_t dst_addr;
 438        enum dma_slave_buswidth src_addr_width;
 439        enum dma_slave_buswidth dst_addr_width;
 440        u32 src_maxburst;
 441        u32 dst_maxburst;
 442        u32 src_port_window_size;
 443        u32 dst_port_window_size;
 444        bool device_fc;
 445        unsigned int slave_id;
 446};
 447
 448/**
 449 * enum dma_residue_granularity - Granularity of the reported transfer residue
 450 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
 451 *  DMA channel is only able to tell whether a descriptor has been completed or
 452 *  not, which means residue reporting is not supported by this channel. The
 453 *  residue field of the dma_tx_state field will always be 0.
 454 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
 455 *  completed segment of the transfer (For cyclic transfers this is after each
 456 *  period). This is typically implemented by having the hardware generate an
 457 *  interrupt after each transferred segment and then the drivers updates the
 458 *  outstanding residue by the size of the segment. Another possibility is if
 459 *  the hardware supports scatter-gather and the segment descriptor has a field
 460 *  which gets set after the segment has been completed. The driver then counts
 461 *  the number of segments without the flag set to compute the residue.
 462 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
 463 *  burst. This is typically only supported if the hardware has a progress
 464 *  register of some sort (E.g. a register with the current read/write address
 465 *  or a register with the amount of bursts/beats/bytes that have been
 466 *  transferred or still need to be transferred).
 467 */
 468enum dma_residue_granularity {
 469        DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
 470        DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
 471        DMA_RESIDUE_GRANULARITY_BURST = 2,
 472};
 473
 474/**
 475 * struct dma_slave_caps - expose capabilities of a slave channel only
 476 * @src_addr_widths: bit mask of src addr widths the channel supports.
 477 *      Width is specified in bytes, e.g. for a channel supporting
 478 *      a width of 4 the mask should have BIT(4) set.
 479 * @dst_addr_widths: bit mask of dst addr widths the channel supports
 480 * @directions: bit mask of slave directions the channel supports.
 481 *      Since the enum dma_transfer_direction is not defined as bit flag for
 482 *      each type, the dma controller should set BIT(<TYPE>) and same
 483 *      should be checked by controller as well
 484 * @min_burst: min burst capability per-transfer
 485 * @max_burst: max burst capability per-transfer
 486 * @max_sg_burst: max number of SG list entries executed in a single burst
 487 *      DMA tansaction with no software intervention for reinitialization.
 488 *      Zero value means unlimited number of entries.
 489 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
 490 *             for resume later)
 491 * @cmd_resume: true, if resume is supported
 492 * @cmd_terminate: true, if terminate cmd is supported
 493 * @residue_granularity: granularity of the reported transfer residue
 494 * @descriptor_reuse: if a descriptor can be reused by client and
 495 * resubmitted multiple times
 496 */
 497struct dma_slave_caps {
 498        u32 src_addr_widths;
 499        u32 dst_addr_widths;
 500        u32 directions;
 501        u32 min_burst;
 502        u32 max_burst;
 503        u32 max_sg_burst;
 504        bool cmd_pause;
 505        bool cmd_resume;
 506        bool cmd_terminate;
 507        enum dma_residue_granularity residue_granularity;
 508        bool descriptor_reuse;
 509};
 510
 511static inline const char *dma_chan_name(struct dma_chan *chan)
 512{
 513        return dev_name(&chan->dev->device);
 514}
 515
 516void dma_chan_cleanup(struct kref *kref);
 517
 518/**
 519 * typedef dma_filter_fn - callback filter for dma_request_channel
 520 * @chan: channel to be reviewed
 521 * @filter_param: opaque parameter passed through dma_request_channel
 522 *
 523 * When this optional parameter is specified in a call to dma_request_channel a
 524 * suitable channel is passed to this routine for further dispositioning before
 525 * being returned.  Where 'suitable' indicates a non-busy channel that
 526 * satisfies the given capability mask.  It returns 'true' to indicate that the
 527 * channel is suitable.
 528 */
 529typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
 530
 531typedef void (*dma_async_tx_callback)(void *dma_async_param);
 532
 533enum dmaengine_tx_result {
 534        DMA_TRANS_NOERROR = 0,          /* SUCCESS */
 535        DMA_TRANS_READ_FAILED,          /* Source DMA read failed */
 536        DMA_TRANS_WRITE_FAILED,         /* Destination DMA write failed */
 537        DMA_TRANS_ABORTED,              /* Op never submitted / aborted */
 538};
 539
 540struct dmaengine_result {
 541        enum dmaengine_tx_result result;
 542        u32 residue;
 543};
 544
 545typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
 546                                const struct dmaengine_result *result);
 547
 548struct dmaengine_unmap_data {
 549#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
 550        u16 map_cnt;
 551#else
 552        u8 map_cnt;
 553#endif
 554        u8 to_cnt;
 555        u8 from_cnt;
 556        u8 bidi_cnt;
 557        struct device *dev;
 558        struct kref kref;
 559        size_t len;
 560        dma_addr_t addr[];
 561};
 562
 563struct dma_async_tx_descriptor;
 564
 565struct dma_descriptor_metadata_ops {
 566        int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
 567                      size_t len);
 568
 569        void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
 570                         size_t *payload_len, size_t *max_len);
 571        int (*set_len)(struct dma_async_tx_descriptor *desc,
 572                       size_t payload_len);
 573};
 574
 575/**
 576 * struct dma_async_tx_descriptor - async transaction descriptor
 577 * ---dma generic offload fields---
 578 * @cookie: tracking cookie for this transaction, set to -EBUSY if
 579 *      this tx is sitting on a dependency list
 580 * @flags: flags to augment operation preparation, control completion, and
 581 *      communicate status
 582 * @phys: physical address of the descriptor
 583 * @chan: target channel for this operation
 584 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
 585 * descriptor pending. To be pushed on .issue_pending() call
 586 * @callback: routine to call after this operation is complete
 587 * @callback_param: general parameter to pass to the callback routine
 588 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
 589 *      DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
 590 *      DESC_METADATA_NONE
 591 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
 592 *      DMA driver if metadata mode is supported with the descriptor
 593 * ---async_tx api specific fields---
 594 * @next: at completion submit this descriptor
 595 * @parent: pointer to the next level up in the dependency chain
 596 * @lock: protect the parent and next pointers
 597 */
 598struct dma_async_tx_descriptor {
 599        dma_cookie_t cookie;
 600        enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
 601        dma_addr_t phys;
 602        struct dma_chan *chan;
 603        dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
 604        int (*desc_free)(struct dma_async_tx_descriptor *tx);
 605        dma_async_tx_callback callback;
 606        dma_async_tx_callback_result callback_result;
 607        void *callback_param;
 608        struct dmaengine_unmap_data *unmap;
 609        enum dma_desc_metadata_mode desc_metadata_mode;
 610        struct dma_descriptor_metadata_ops *metadata_ops;
 611#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 612        struct dma_async_tx_descriptor *next;
 613        struct dma_async_tx_descriptor *parent;
 614        spinlock_t lock;
 615#endif
 616};
 617
 618#ifdef CONFIG_DMA_ENGINE
 619static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 620                                 struct dmaengine_unmap_data *unmap)
 621{
 622        kref_get(&unmap->kref);
 623        tx->unmap = unmap;
 624}
 625
 626struct dmaengine_unmap_data *
 627dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
 628void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
 629#else
 630static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
 631                                 struct dmaengine_unmap_data *unmap)
 632{
 633}
 634static inline struct dmaengine_unmap_data *
 635dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
 636{
 637        return NULL;
 638}
 639static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
 640{
 641}
 642#endif
 643
 644static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
 645{
 646        if (!tx->unmap)
 647                return;
 648
 649        dmaengine_unmap_put(tx->unmap);
 650        tx->unmap = NULL;
 651}
 652
 653#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
 654static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 655{
 656}
 657static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 658{
 659}
 660static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 661{
 662        BUG();
 663}
 664static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 665{
 666}
 667static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 668{
 669}
 670static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 671{
 672        return NULL;
 673}
 674static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 675{
 676        return NULL;
 677}
 678
 679#else
 680static inline void txd_lock(struct dma_async_tx_descriptor *txd)
 681{
 682        spin_lock_bh(&txd->lock);
 683}
 684static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
 685{
 686        spin_unlock_bh(&txd->lock);
 687}
 688static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
 689{
 690        txd->next = next;
 691        next->parent = txd;
 692}
 693static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
 694{
 695        txd->parent = NULL;
 696}
 697static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
 698{
 699        txd->next = NULL;
 700}
 701static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
 702{
 703        return txd->parent;
 704}
 705static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
 706{
 707        return txd->next;
 708}
 709#endif
 710
 711/**
 712 * struct dma_tx_state - filled in to report the status of
 713 * a transfer.
 714 * @last: last completed DMA cookie
 715 * @used: last issued DMA cookie (i.e. the one in progress)
 716 * @residue: the remaining number of bytes left to transmit
 717 *      on the selected transfer for states DMA_IN_PROGRESS and
 718 *      DMA_PAUSED if this is implemented in the driver, else 0
 719 * @in_flight_bytes: amount of data in bytes cached by the DMA.
 720 */
 721struct dma_tx_state {
 722        dma_cookie_t last;
 723        dma_cookie_t used;
 724        u32 residue;
 725        u32 in_flight_bytes;
 726};
 727
 728/**
 729 * enum dmaengine_alignment - defines alignment of the DMA async tx
 730 * buffers
 731 */
 732enum dmaengine_alignment {
 733        DMAENGINE_ALIGN_1_BYTE = 0,
 734        DMAENGINE_ALIGN_2_BYTES = 1,
 735        DMAENGINE_ALIGN_4_BYTES = 2,
 736        DMAENGINE_ALIGN_8_BYTES = 3,
 737        DMAENGINE_ALIGN_16_BYTES = 4,
 738        DMAENGINE_ALIGN_32_BYTES = 5,
 739        DMAENGINE_ALIGN_64_BYTES = 6,
 740};
 741
 742/**
 743 * struct dma_slave_map - associates slave device and it's slave channel with
 744 * parameter to be used by a filter function
 745 * @devname: name of the device
 746 * @slave: slave channel name
 747 * @param: opaque parameter to pass to struct dma_filter.fn
 748 */
 749struct dma_slave_map {
 750        const char *devname;
 751        const char *slave;
 752        void *param;
 753};
 754
 755/**
 756 * struct dma_filter - information for slave device/channel to filter_fn/param
 757 * mapping
 758 * @fn: filter function callback
 759 * @mapcnt: number of slave device/channel in the map
 760 * @map: array of channel to filter mapping data
 761 */
 762struct dma_filter {
 763        dma_filter_fn fn;
 764        int mapcnt;
 765        const struct dma_slave_map *map;
 766};
 767
 768/**
 769 * struct dma_device - info on the entity supplying DMA services
 770 * @chancnt: how many DMA channels are supported
 771 * @privatecnt: how many DMA channels are requested by dma_request_channel
 772 * @channels: the list of struct dma_chan
 773 * @global_node: list_head for global dma_device_list
 774 * @filter: information for device/slave to filter function/param mapping
 775 * @cap_mask: one or more dma_capability flags
 776 * @desc_metadata_modes: supported metadata modes by the DMA device
 777 * @max_xor: maximum number of xor sources, 0 if no capability
 778 * @max_pq: maximum number of PQ sources and PQ-continue capability
 779 * @copy_align: alignment shift for memcpy operations
 780 * @xor_align: alignment shift for xor operations
 781 * @pq_align: alignment shift for pq operations
 782 * @fill_align: alignment shift for memset operations
 783 * @dev_id: unique device ID
 784 * @dev: struct device reference for dma mapping api
 785 * @owner: owner module (automatically set based on the provided dev)
 786 * @src_addr_widths: bit mask of src addr widths the device supports
 787 *      Width is specified in bytes, e.g. for a device supporting
 788 *      a width of 4 the mask should have BIT(4) set.
 789 * @dst_addr_widths: bit mask of dst addr widths the device supports
 790 * @directions: bit mask of slave directions the device supports.
 791 *      Since the enum dma_transfer_direction is not defined as bit flag for
 792 *      each type, the dma controller should set BIT(<TYPE>) and same
 793 *      should be checked by controller as well
 794 * @min_burst: min burst capability per-transfer
 795 * @max_burst: max burst capability per-transfer
 796 * @max_sg_burst: max number of SG list entries executed in a single burst
 797 *      DMA tansaction with no software intervention for reinitialization.
 798 *      Zero value means unlimited number of entries.
 799 * @residue_granularity: granularity of the transfer residue reported
 800 *      by tx_status
 801 * @device_alloc_chan_resources: allocate resources and return the
 802 *      number of allocated descriptors
 803 * @device_free_chan_resources: release DMA channel's resources
 804 * @device_prep_dma_memcpy: prepares a memcpy operation
 805 * @device_prep_dma_xor: prepares a xor operation
 806 * @device_prep_dma_xor_val: prepares a xor validation operation
 807 * @device_prep_dma_pq: prepares a pq operation
 808 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
 809 * @device_prep_dma_memset: prepares a memset operation
 810 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
 811 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
 812 * @device_prep_slave_sg: prepares a slave dma operation
 813 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
 814 *      The function takes a buffer of size buf_len. The callback function will
 815 *      be called after period_len bytes have been transferred.
 816 * @device_prep_interleaved_dma: Transfer expression in a generic way.
 817 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
 818 * @device_caps: May be used to override the generic DMA slave capabilities
 819 *      with per-channel specific ones
 820 * @device_config: Pushes a new configuration to a channel, return 0 or an error
 821 *      code
 822 * @device_pause: Pauses any transfer happening on a channel. Returns
 823 *      0 or an error code
 824 * @device_resume: Resumes any transfer on a channel previously
 825 *      paused. Returns 0 or an error code
 826 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
 827 *      or an error code
 828 * @device_synchronize: Synchronizes the termination of a transfers to the
 829 *  current context.
 830 * @device_tx_status: poll for transaction completion, the optional
 831 *      txstate parameter can be supplied with a pointer to get a
 832 *      struct with auxiliary transfer status information, otherwise the call
 833 *      will just return a simple status code
 834 * @device_issue_pending: push pending transactions to hardware
 835 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
 836 * @device_release: called sometime atfer dma_async_device_unregister() is
 837 *     called and there are no further references to this structure. This
 838 *     must be implemented to free resources however many existing drivers
 839 *     do not and are therefore not safe to unbind while in use.
 840 * @dbg_summary_show: optional routine to show contents in debugfs; default code
 841 *     will be used when this is omitted, but custom code can show extra,
 842 *     controller specific information.
 843 */
 844struct dma_device {
 845        struct kref ref;
 846        unsigned int chancnt;
 847        unsigned int privatecnt;
 848        struct list_head channels;
 849        struct list_head global_node;
 850        struct dma_filter filter;
 851        dma_cap_mask_t  cap_mask;
 852        enum dma_desc_metadata_mode desc_metadata_modes;
 853        unsigned short max_xor;
 854        unsigned short max_pq;
 855        enum dmaengine_alignment copy_align;
 856        enum dmaengine_alignment xor_align;
 857        enum dmaengine_alignment pq_align;
 858        enum dmaengine_alignment fill_align;
 859        #define DMA_HAS_PQ_CONTINUE (1 << 15)
 860
 861        int dev_id;
 862        struct device *dev;
 863        struct module *owner;
 864        struct ida chan_ida;
 865        struct mutex chan_mutex;        /* to protect chan_ida */
 866
 867        u32 src_addr_widths;
 868        u32 dst_addr_widths;
 869        u32 directions;
 870        u32 min_burst;
 871        u32 max_burst;
 872        u32 max_sg_burst;
 873        bool descriptor_reuse;
 874        enum dma_residue_granularity residue_granularity;
 875
 876        int (*device_alloc_chan_resources)(struct dma_chan *chan);
 877        void (*device_free_chan_resources)(struct dma_chan *chan);
 878
 879        struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
 880                struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
 881                size_t len, unsigned long flags);
 882        struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
 883                struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
 884                unsigned int src_cnt, size_t len, unsigned long flags);
 885        struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
 886                struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
 887                size_t len, enum sum_check_flags *result, unsigned long flags);
 888        struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
 889                struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
 890                unsigned int src_cnt, const unsigned char *scf,
 891                size_t len, unsigned long flags);
 892        struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
 893                struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
 894                unsigned int src_cnt, const unsigned char *scf, size_t len,
 895                enum sum_check_flags *pqres, unsigned long flags);
 896        struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
 897                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
 898                unsigned long flags);
 899        struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
 900                struct dma_chan *chan, struct scatterlist *sg,
 901                unsigned int nents, int value, unsigned long flags);
 902        struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
 903                struct dma_chan *chan, unsigned long flags);
 904
 905        struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
 906                struct dma_chan *chan, struct scatterlist *sgl,
 907                unsigned int sg_len, enum dma_transfer_direction direction,
 908                unsigned long flags, void *context);
 909        struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
 910                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 911                size_t period_len, enum dma_transfer_direction direction,
 912                unsigned long flags);
 913        struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
 914                struct dma_chan *chan, struct dma_interleaved_template *xt,
 915                unsigned long flags);
 916        struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
 917                struct dma_chan *chan, dma_addr_t dst, u64 data,
 918                unsigned long flags);
 919
 920        void (*device_caps)(struct dma_chan *chan,
 921                            struct dma_slave_caps *caps);
 922        int (*device_config)(struct dma_chan *chan,
 923                             struct dma_slave_config *config);
 924        int (*device_pause)(struct dma_chan *chan);
 925        int (*device_resume)(struct dma_chan *chan);
 926        int (*device_terminate_all)(struct dma_chan *chan);
 927        void (*device_synchronize)(struct dma_chan *chan);
 928
 929        enum dma_status (*device_tx_status)(struct dma_chan *chan,
 930                                            dma_cookie_t cookie,
 931                                            struct dma_tx_state *txstate);
 932        void (*device_issue_pending)(struct dma_chan *chan);
 933        void (*device_release)(struct dma_device *dev);
 934        /* debugfs support */
 935#ifdef CONFIG_DEBUG_FS
 936        void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
 937        struct dentry *dbg_dev_root;
 938#endif
 939};
 940
 941static inline int dmaengine_slave_config(struct dma_chan *chan,
 942                                          struct dma_slave_config *config)
 943{
 944        if (chan->device->device_config)
 945                return chan->device->device_config(chan, config);
 946
 947        return -ENOSYS;
 948}
 949
 950static inline bool is_slave_direction(enum dma_transfer_direction direction)
 951{
 952        return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
 953}
 954
 955static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
 956        struct dma_chan *chan, dma_addr_t buf, size_t len,
 957        enum dma_transfer_direction dir, unsigned long flags)
 958{
 959        struct scatterlist sg;
 960        sg_init_table(&sg, 1);
 961        sg_dma_address(&sg) = buf;
 962        sg_dma_len(&sg) = len;
 963
 964        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 965                return NULL;
 966
 967        return chan->device->device_prep_slave_sg(chan, &sg, 1,
 968                                                  dir, flags, NULL);
 969}
 970
 971static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
 972        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 973        enum dma_transfer_direction dir, unsigned long flags)
 974{
 975        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 976                return NULL;
 977
 978        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 979                                                  dir, flags, NULL);
 980}
 981
 982#ifdef CONFIG_RAPIDIO_DMA_ENGINE
 983struct rio_dma_ext;
 984static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
 985        struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
 986        enum dma_transfer_direction dir, unsigned long flags,
 987        struct rio_dma_ext *rio_ext)
 988{
 989        if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
 990                return NULL;
 991
 992        return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
 993                                                  dir, flags, rio_ext);
 994}
 995#endif
 996
 997static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
 998                struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
 999                size_t period_len, enum dma_transfer_direction dir,
1000                unsigned long flags)
1001{
1002        if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1003                return NULL;
1004
1005        return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1006                                                period_len, dir, flags);
1007}
1008
1009static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1010                struct dma_chan *chan, struct dma_interleaved_template *xt,
1011                unsigned long flags)
1012{
1013        if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1014                return NULL;
1015        if (flags & DMA_PREP_REPEAT &&
1016            !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1017                return NULL;
1018
1019        return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1020}
1021
1022static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1023                struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1024                unsigned long flags)
1025{
1026        if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1027                return NULL;
1028
1029        return chan->device->device_prep_dma_memset(chan, dest, value,
1030                                                    len, flags);
1031}
1032
1033static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1034                struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1035                size_t len, unsigned long flags)
1036{
1037        if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1038                return NULL;
1039
1040        return chan->device->device_prep_dma_memcpy(chan, dest, src,
1041                                                    len, flags);
1042}
1043
1044static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1045                enum dma_desc_metadata_mode mode)
1046{
1047        if (!chan)
1048                return false;
1049
1050        return !!(chan->device->desc_metadata_modes & mode);
1051}
1052
1053#ifdef CONFIG_DMA_ENGINE
1054int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1055                                   void *data, size_t len);
1056void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1057                                      size_t *payload_len, size_t *max_len);
1058int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1059                                    size_t payload_len);
1060#else /* CONFIG_DMA_ENGINE */
1061static inline int dmaengine_desc_attach_metadata(
1062                struct dma_async_tx_descriptor *desc, void *data, size_t len)
1063{
1064        return -EINVAL;
1065}
1066static inline void *dmaengine_desc_get_metadata_ptr(
1067                struct dma_async_tx_descriptor *desc, size_t *payload_len,
1068                size_t *max_len)
1069{
1070        return NULL;
1071}
1072static inline int dmaengine_desc_set_metadata_len(
1073                struct dma_async_tx_descriptor *desc, size_t payload_len)
1074{
1075        return -EINVAL;
1076}
1077#endif /* CONFIG_DMA_ENGINE */
1078
1079/**
1080 * dmaengine_terminate_all() - Terminate all active DMA transfers
1081 * @chan: The channel for which to terminate the transfers
1082 *
1083 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1084 * dmaengine_terminate_async() instead.
1085 */
1086static inline int dmaengine_terminate_all(struct dma_chan *chan)
1087{
1088        if (chan->device->device_terminate_all)
1089                return chan->device->device_terminate_all(chan);
1090
1091        return -ENOSYS;
1092}
1093
1094/**
1095 * dmaengine_terminate_async() - Terminate all active DMA transfers
1096 * @chan: The channel for which to terminate the transfers
1097 *
1098 * Calling this function will terminate all active and pending descriptors
1099 * that have previously been submitted to the channel. It is not guaranteed
1100 * though that the transfer for the active descriptor has stopped when the
1101 * function returns. Furthermore it is possible the complete callback of a
1102 * submitted transfer is still running when this function returns.
1103 *
1104 * dmaengine_synchronize() needs to be called before it is safe to free
1105 * any memory that is accessed by previously submitted descriptors or before
1106 * freeing any resources accessed from within the completion callback of any
1107 * previously submitted descriptors.
1108 *
1109 * This function can be called from atomic context as well as from within a
1110 * complete callback of a descriptor submitted on the same channel.
1111 *
1112 * If none of the two conditions above apply consider using
1113 * dmaengine_terminate_sync() instead.
1114 */
1115static inline int dmaengine_terminate_async(struct dma_chan *chan)
1116{
1117        if (chan->device->device_terminate_all)
1118                return chan->device->device_terminate_all(chan);
1119
1120        return -EINVAL;
1121}
1122
1123/**
1124 * dmaengine_synchronize() - Synchronize DMA channel termination
1125 * @chan: The channel to synchronize
1126 *
1127 * Synchronizes to the DMA channel termination to the current context. When this
1128 * function returns it is guaranteed that all transfers for previously issued
1129 * descriptors have stopped and it is safe to free the memory associated
1130 * with them. Furthermore it is guaranteed that all complete callback functions
1131 * for a previously submitted descriptor have finished running and it is safe to
1132 * free resources accessed from within the complete callbacks.
1133 *
1134 * The behavior of this function is undefined if dma_async_issue_pending() has
1135 * been called between dmaengine_terminate_async() and this function.
1136 *
1137 * This function must only be called from non-atomic context and must not be
1138 * called from within a complete callback of a descriptor submitted on the same
1139 * channel.
1140 */
1141static inline void dmaengine_synchronize(struct dma_chan *chan)
1142{
1143        might_sleep();
1144
1145        if (chan->device->device_synchronize)
1146                chan->device->device_synchronize(chan);
1147}
1148
1149/**
1150 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1151 * @chan: The channel for which to terminate the transfers
1152 *
1153 * Calling this function will terminate all active and pending transfers
1154 * that have previously been submitted to the channel. It is similar to
1155 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1156 * stopped and that all complete callbacks have finished running when the
1157 * function returns.
1158 *
1159 * This function must only be called from non-atomic context and must not be
1160 * called from within a complete callback of a descriptor submitted on the same
1161 * channel.
1162 */
1163static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1164{
1165        int ret;
1166
1167        ret = dmaengine_terminate_async(chan);
1168        if (ret)
1169                return ret;
1170
1171        dmaengine_synchronize(chan);
1172
1173        return 0;
1174}
1175
1176static inline int dmaengine_pause(struct dma_chan *chan)
1177{
1178        if (chan->device->device_pause)
1179                return chan->device->device_pause(chan);
1180
1181        return -ENOSYS;
1182}
1183
1184static inline int dmaengine_resume(struct dma_chan *chan)
1185{
1186        if (chan->device->device_resume)
1187                return chan->device->device_resume(chan);
1188
1189        return -ENOSYS;
1190}
1191
1192static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1193        dma_cookie_t cookie, struct dma_tx_state *state)
1194{
1195        return chan->device->device_tx_status(chan, cookie, state);
1196}
1197
1198static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1199{
1200        return desc->tx_submit(desc);
1201}
1202
1203static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1204                                         size_t off1, size_t off2, size_t len)
1205{
1206        return !(((1 << align) - 1) & (off1 | off2 | len));
1207}
1208
1209static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1210                                       size_t off2, size_t len)
1211{
1212        return dmaengine_check_align(dev->copy_align, off1, off2, len);
1213}
1214
1215static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1216                                      size_t off2, size_t len)
1217{
1218        return dmaengine_check_align(dev->xor_align, off1, off2, len);
1219}
1220
1221static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1222                                     size_t off2, size_t len)
1223{
1224        return dmaengine_check_align(dev->pq_align, off1, off2, len);
1225}
1226
1227static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1228                                       size_t off2, size_t len)
1229{
1230        return dmaengine_check_align(dev->fill_align, off1, off2, len);
1231}
1232
1233static inline void
1234dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1235{
1236        dma->max_pq = maxpq;
1237        if (has_pq_continue)
1238                dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1239}
1240
1241static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1242{
1243        return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1244}
1245
1246static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1247{
1248        enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1249
1250        return (flags & mask) == mask;
1251}
1252
1253static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1254{
1255        return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1256}
1257
1258static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1259{
1260        return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1261}
1262
1263/* dma_maxpq - reduce maxpq in the face of continued operations
1264 * @dma - dma device with PQ capability
1265 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1266 *
1267 * When an engine does not support native continuation we need 3 extra
1268 * source slots to reuse P and Q with the following coefficients:
1269 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1270 * 2/ {01} * Q : use Q to continue Q' calculation
1271 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1272 *
1273 * In the case where P is disabled we only need 1 extra source:
1274 * 1/ {01} * Q : use Q to continue Q' calculation
1275 */
1276static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1277{
1278        if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1279                return dma_dev_to_maxpq(dma);
1280        if (dmaf_p_disabled_continue(flags))
1281                return dma_dev_to_maxpq(dma) - 1;
1282        if (dmaf_continue(flags))
1283                return dma_dev_to_maxpq(dma) - 3;
1284        BUG();
1285}
1286
1287static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1288                                      size_t dir_icg)
1289{
1290        if (inc) {
1291                if (dir_icg)
1292                        return dir_icg;
1293                if (sgl)
1294                        return icg;
1295        }
1296
1297        return 0;
1298}
1299
1300static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1301                                           struct data_chunk *chunk)
1302{
1303        return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1304                                 chunk->icg, chunk->dst_icg);
1305}
1306
1307static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1308                                           struct data_chunk *chunk)
1309{
1310        return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1311                                 chunk->icg, chunk->src_icg);
1312}
1313
1314/* --- public DMA engine API --- */
1315
1316#ifdef CONFIG_DMA_ENGINE
1317void dmaengine_get(void);
1318void dmaengine_put(void);
1319#else
1320static inline void dmaengine_get(void)
1321{
1322}
1323static inline void dmaengine_put(void)
1324{
1325}
1326#endif
1327
1328#ifdef CONFIG_ASYNC_TX_DMA
1329#define async_dmaengine_get()   dmaengine_get()
1330#define async_dmaengine_put()   dmaengine_put()
1331#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1332#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1333#else
1334#define async_dma_find_channel(type) dma_find_channel(type)
1335#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1336#else
1337static inline void async_dmaengine_get(void)
1338{
1339}
1340static inline void async_dmaengine_put(void)
1341{
1342}
1343static inline struct dma_chan *
1344async_dma_find_channel(enum dma_transaction_type type)
1345{
1346        return NULL;
1347}
1348#endif /* CONFIG_ASYNC_TX_DMA */
1349void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1350                                  struct dma_chan *chan);
1351
1352static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1353{
1354        tx->flags |= DMA_CTRL_ACK;
1355}
1356
1357static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1358{
1359        tx->flags &= ~DMA_CTRL_ACK;
1360}
1361
1362static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1363{
1364        return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1365}
1366
1367#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1368static inline void
1369__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1370{
1371        set_bit(tx_type, dstp->bits);
1372}
1373
1374#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1375static inline void
1376__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1377{
1378        clear_bit(tx_type, dstp->bits);
1379}
1380
1381#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1382static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1383{
1384        bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1385}
1386
1387#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1388static inline int
1389__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1390{
1391        return test_bit(tx_type, srcp->bits);
1392}
1393
1394#define for_each_dma_cap_mask(cap, mask) \
1395        for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1396
1397/**
1398 * dma_async_issue_pending - flush pending transactions to HW
1399 * @chan: target DMA channel
1400 *
1401 * This allows drivers to push copies to HW in batches,
1402 * reducing MMIO writes where possible.
1403 */
1404static inline void dma_async_issue_pending(struct dma_chan *chan)
1405{
1406        chan->device->device_issue_pending(chan);
1407}
1408
1409/**
1410 * dma_async_is_tx_complete - poll for transaction completion
1411 * @chan: DMA channel
1412 * @cookie: transaction identifier to check status of
1413 * @last: returns last completed cookie, can be NULL
1414 * @used: returns last issued cookie, can be NULL
1415 *
1416 * If @last and @used are passed in, upon return they reflect the driver
1417 * internal state and can be used with dma_async_is_complete() to check
1418 * the status of multiple cookies without re-checking hardware state.
1419 */
1420static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1421        dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1422{
1423        struct dma_tx_state state;
1424        enum dma_status status;
1425
1426        status = chan->device->device_tx_status(chan, cookie, &state);
1427        if (last)
1428                *last = state.last;
1429        if (used)
1430                *used = state.used;
1431        return status;
1432}
1433
1434/**
1435 * dma_async_is_complete - test a cookie against chan state
1436 * @cookie: transaction identifier to test status of
1437 * @last_complete: last know completed transaction
1438 * @last_used: last cookie value handed out
1439 *
1440 * dma_async_is_complete() is used in dma_async_is_tx_complete()
1441 * the test logic is separated for lightweight testing of multiple cookies
1442 */
1443static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1444                        dma_cookie_t last_complete, dma_cookie_t last_used)
1445{
1446        if (last_complete <= last_used) {
1447                if ((cookie <= last_complete) || (cookie > last_used))
1448                        return DMA_COMPLETE;
1449        } else {
1450                if ((cookie <= last_complete) && (cookie > last_used))
1451                        return DMA_COMPLETE;
1452        }
1453        return DMA_IN_PROGRESS;
1454}
1455
1456static inline void
1457dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1458{
1459        if (!st)
1460                return;
1461
1462        st->last = last;
1463        st->used = used;
1464        st->residue = residue;
1465}
1466
1467#ifdef CONFIG_DMA_ENGINE
1468struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1469enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1470enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1471void dma_issue_pending_all(void);
1472struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1473                                       dma_filter_fn fn, void *fn_param,
1474                                       struct device_node *np);
1475
1476struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1477struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1478
1479void dma_release_channel(struct dma_chan *chan);
1480int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1481#else
1482static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1483{
1484        return NULL;
1485}
1486static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1487{
1488        return DMA_COMPLETE;
1489}
1490static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1491{
1492        return DMA_COMPLETE;
1493}
1494static inline void dma_issue_pending_all(void)
1495{
1496}
1497static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1498                                                     dma_filter_fn fn,
1499                                                     void *fn_param,
1500                                                     struct device_node *np)
1501{
1502        return NULL;
1503}
1504static inline struct dma_chan *dma_request_chan(struct device *dev,
1505                                                const char *name)
1506{
1507        return ERR_PTR(-ENODEV);
1508}
1509static inline struct dma_chan *dma_request_chan_by_mask(
1510                                                const dma_cap_mask_t *mask)
1511{
1512        return ERR_PTR(-ENODEV);
1513}
1514static inline void dma_release_channel(struct dma_chan *chan)
1515{
1516}
1517static inline int dma_get_slave_caps(struct dma_chan *chan,
1518                                     struct dma_slave_caps *caps)
1519{
1520        return -ENXIO;
1521}
1522#endif
1523
1524static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1525{
1526        struct dma_slave_caps caps;
1527        int ret;
1528
1529        ret = dma_get_slave_caps(tx->chan, &caps);
1530        if (ret)
1531                return ret;
1532
1533        if (!caps.descriptor_reuse)
1534                return -EPERM;
1535
1536        tx->flags |= DMA_CTRL_REUSE;
1537        return 0;
1538}
1539
1540static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1541{
1542        tx->flags &= ~DMA_CTRL_REUSE;
1543}
1544
1545static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1546{
1547        return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1548}
1549
1550static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1551{
1552        /* this is supported for reusable desc, so check that */
1553        if (!dmaengine_desc_test_reuse(desc))
1554                return -EPERM;
1555
1556        return desc->desc_free(desc);
1557}
1558
1559/* --- DMA device --- */
1560
1561int dma_async_device_register(struct dma_device *device);
1562int dmaenginem_async_device_register(struct dma_device *device);
1563void dma_async_device_unregister(struct dma_device *device);
1564int dma_async_device_channel_register(struct dma_device *device,
1565                                      struct dma_chan *chan);
1566void dma_async_device_channel_unregister(struct dma_device *device,
1567                                         struct dma_chan *chan);
1568void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1569#define dma_request_channel(mask, x, y) \
1570        __dma_request_channel(&(mask), x, y, NULL)
1571
1572/* Deprecated, please use dma_request_chan() directly */
1573static inline struct dma_chan * __deprecated
1574dma_request_slave_channel(struct device *dev, const char *name)
1575{
1576        struct dma_chan *ch = dma_request_chan(dev, name);
1577
1578        return IS_ERR(ch) ? NULL : ch;
1579}
1580
1581static inline struct dma_chan
1582*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1583                                  dma_filter_fn fn, void *fn_param,
1584                                  struct device *dev, const char *name)
1585{
1586        struct dma_chan *chan;
1587
1588        chan = dma_request_slave_channel(dev, name);
1589        if (chan)
1590                return chan;
1591
1592        if (!fn || !fn_param)
1593                return NULL;
1594
1595        return __dma_request_channel(&mask, fn, fn_param, NULL);
1596}
1597
1598static inline char *
1599dmaengine_get_direction_text(enum dma_transfer_direction dir)
1600{
1601        switch (dir) {
1602        case DMA_DEV_TO_MEM:
1603                return "DEV_TO_MEM";
1604        case DMA_MEM_TO_DEV:
1605                return "MEM_TO_DEV";
1606        case DMA_MEM_TO_MEM:
1607                return "MEM_TO_MEM";
1608        case DMA_DEV_TO_DEV:
1609                return "DEV_TO_DEV";
1610        default:
1611                return "invalid";
1612        }
1613}
1614#endif /* DMAENGINE_H */
1615