1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef __LINUX_GFP_H 3#define __LINUX_GFP_H 4 5#include <linux/mmdebug.h> 6#include <linux/mmzone.h> 7#include <linux/stddef.h> 8#include <linux/linkage.h> 9#include <linux/topology.h> 10 11struct vm_area_struct; 12 13/* 14 * In case of changes, please don't forget to update 15 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c 16 */ 17 18/* Plain integer GFP bitmasks. Do not use this directly. */ 19#define ___GFP_DMA 0x01u 20#define ___GFP_HIGHMEM 0x02u 21#define ___GFP_DMA32 0x04u 22#define ___GFP_MOVABLE 0x08u 23#define ___GFP_RECLAIMABLE 0x10u 24#define ___GFP_HIGH 0x20u 25#define ___GFP_IO 0x40u 26#define ___GFP_FS 0x80u 27#define ___GFP_ZERO 0x100u 28#define ___GFP_ATOMIC 0x200u 29#define ___GFP_DIRECT_RECLAIM 0x400u 30#define ___GFP_KSWAPD_RECLAIM 0x800u 31#define ___GFP_WRITE 0x1000u 32#define ___GFP_NOWARN 0x2000u 33#define ___GFP_RETRY_MAYFAIL 0x4000u 34#define ___GFP_NOFAIL 0x8000u 35#define ___GFP_NORETRY 0x10000u 36#define ___GFP_MEMALLOC 0x20000u 37#define ___GFP_COMP 0x40000u 38#define ___GFP_NOMEMALLOC 0x80000u 39#define ___GFP_HARDWALL 0x100000u 40#define ___GFP_THISNODE 0x200000u 41#define ___GFP_ACCOUNT 0x400000u 42#ifdef CONFIG_LOCKDEP 43#define ___GFP_NOLOCKDEP 0x800000u 44#else 45#define ___GFP_NOLOCKDEP 0 46#endif 47/* If the above are modified, __GFP_BITS_SHIFT may need updating */ 48 49/* 50 * Physical address zone modifiers (see linux/mmzone.h - low four bits) 51 * 52 * Do not put any conditional on these. If necessary modify the definitions 53 * without the underscores and use them consistently. The definitions here may 54 * be used in bit comparisons. 55 */ 56#define __GFP_DMA ((__force gfp_t)___GFP_DMA) 57#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM) 58#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32) 59#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */ 60#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE) 61 62/** 63 * DOC: Page mobility and placement hints 64 * 65 * Page mobility and placement hints 66 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 67 * 68 * These flags provide hints about how mobile the page is. Pages with similar 69 * mobility are placed within the same pageblocks to minimise problems due 70 * to external fragmentation. 71 * 72 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be 73 * moved by page migration during memory compaction or can be reclaimed. 74 * 75 * %__GFP_RECLAIMABLE is used for slab allocations that specify 76 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers. 77 * 78 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible, 79 * these pages will be spread between local zones to avoid all the dirty 80 * pages being in one zone (fair zone allocation policy). 81 * 82 * %__GFP_HARDWALL enforces the cpuset memory allocation policy. 83 * 84 * %__GFP_THISNODE forces the allocation to be satisfied from the requested 85 * node with no fallbacks or placement policy enforcements. 86 * 87 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg. 88 */ 89#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE) 90#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE) 91#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL) 92#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE) 93#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT) 94 95/** 96 * DOC: Watermark modifiers 97 * 98 * Watermark modifiers -- controls access to emergency reserves 99 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 100 * 101 * %__GFP_HIGH indicates that the caller is high-priority and that granting 102 * the request is necessary before the system can make forward progress. 103 * For example, creating an IO context to clean pages. 104 * 105 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is 106 * high priority. Users are typically interrupt handlers. This may be 107 * used in conjunction with %__GFP_HIGH 108 * 109 * %__GFP_MEMALLOC allows access to all memory. This should only be used when 110 * the caller guarantees the allocation will allow more memory to be freed 111 * very shortly e.g. process exiting or swapping. Users either should 112 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS). 113 * Users of this flag have to be extremely careful to not deplete the reserve 114 * completely and implement a throttling mechanism which controls the 115 * consumption of the reserve based on the amount of freed memory. 116 * Usage of a pre-allocated pool (e.g. mempool) should be always considered 117 * before using this flag. 118 * 119 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves. 120 * This takes precedence over the %__GFP_MEMALLOC flag if both are set. 121 */ 122#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC) 123#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH) 124#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC) 125#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC) 126 127/** 128 * DOC: Reclaim modifiers 129 * 130 * Reclaim modifiers 131 * ~~~~~~~~~~~~~~~~~ 132 * Please note that all the following flags are only applicable to sleepable 133 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them). 134 * 135 * %__GFP_IO can start physical IO. 136 * 137 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the 138 * allocator recursing into the filesystem which might already be holding 139 * locks. 140 * 141 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim. 142 * This flag can be cleared to avoid unnecessary delays when a fallback 143 * option is available. 144 * 145 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when 146 * the low watermark is reached and have it reclaim pages until the high 147 * watermark is reached. A caller may wish to clear this flag when fallback 148 * options are available and the reclaim is likely to disrupt the system. The 149 * canonical example is THP allocation where a fallback is cheap but 150 * reclaim/compaction may cause indirect stalls. 151 * 152 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim. 153 * 154 * The default allocator behavior depends on the request size. We have a concept 155 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER). 156 * !costly allocations are too essential to fail so they are implicitly 157 * non-failing by default (with some exceptions like OOM victims might fail so 158 * the caller still has to check for failures) while costly requests try to be 159 * not disruptive and back off even without invoking the OOM killer. 160 * The following three modifiers might be used to override some of these 161 * implicit rules 162 * 163 * %__GFP_NORETRY: The VM implementation will try only very lightweight 164 * memory direct reclaim to get some memory under memory pressure (thus 165 * it can sleep). It will avoid disruptive actions like OOM killer. The 166 * caller must handle the failure which is quite likely to happen under 167 * heavy memory pressure. The flag is suitable when failure can easily be 168 * handled at small cost, such as reduced throughput 169 * 170 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim 171 * procedures that have previously failed if there is some indication 172 * that progress has been made else where. It can wait for other 173 * tasks to attempt high level approaches to freeing memory such as 174 * compaction (which removes fragmentation) and page-out. 175 * There is still a definite limit to the number of retries, but it is 176 * a larger limit than with %__GFP_NORETRY. 177 * Allocations with this flag may fail, but only when there is 178 * genuinely little unused memory. While these allocations do not 179 * directly trigger the OOM killer, their failure indicates that 180 * the system is likely to need to use the OOM killer soon. The 181 * caller must handle failure, but can reasonably do so by failing 182 * a higher-level request, or completing it only in a much less 183 * efficient manner. 184 * If the allocation does fail, and the caller is in a position to 185 * free some non-essential memory, doing so could benefit the system 186 * as a whole. 187 * 188 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller 189 * cannot handle allocation failures. The allocation could block 190 * indefinitely but will never return with failure. Testing for 191 * failure is pointless. 192 * New users should be evaluated carefully (and the flag should be 193 * used only when there is no reasonable failure policy) but it is 194 * definitely preferable to use the flag rather than opencode endless 195 * loop around allocator. 196 * Using this flag for costly allocations is _highly_ discouraged. 197 */ 198#define __GFP_IO ((__force gfp_t)___GFP_IO) 199#define __GFP_FS ((__force gfp_t)___GFP_FS) 200#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */ 201#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */ 202#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM)) 203#define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL) 204#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL) 205#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY) 206 207/** 208 * DOC: Action modifiers 209 * 210 * Action modifiers 211 * ~~~~~~~~~~~~~~~~ 212 * 213 * %__GFP_NOWARN suppresses allocation failure reports. 214 * 215 * %__GFP_COMP address compound page metadata. 216 * 217 * %__GFP_ZERO returns a zeroed page on success. 218 */ 219#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN) 220#define __GFP_COMP ((__force gfp_t)___GFP_COMP) 221#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO) 222 223/* Disable lockdep for GFP context tracking */ 224#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP) 225 226/* Room for N __GFP_FOO bits */ 227#define __GFP_BITS_SHIFT (23 + IS_ENABLED(CONFIG_LOCKDEP)) 228#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1)) 229 230/** 231 * DOC: Useful GFP flag combinations 232 * 233 * Useful GFP flag combinations 234 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 235 * 236 * Useful GFP flag combinations that are commonly used. It is recommended 237 * that subsystems start with one of these combinations and then set/clear 238 * %__GFP_FOO flags as necessary. 239 * 240 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower 241 * watermark is applied to allow access to "atomic reserves". 242 * The current implementation doesn't support NMI and few other strict 243 * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT. 244 * 245 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires 246 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim. 247 * 248 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is 249 * accounted to kmemcg. 250 * 251 * %GFP_NOWAIT is for kernel allocations that should not stall for direct 252 * reclaim, start physical IO or use any filesystem callback. 253 * 254 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages 255 * that do not require the starting of any physical IO. 256 * Please try to avoid using this flag directly and instead use 257 * memalloc_noio_{save,restore} to mark the whole scope which cannot 258 * perform any IO with a short explanation why. All allocation requests 259 * will inherit GFP_NOIO implicitly. 260 * 261 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces. 262 * Please try to avoid using this flag directly and instead use 263 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't 264 * recurse into the FS layer with a short explanation why. All allocation 265 * requests will inherit GFP_NOFS implicitly. 266 * 267 * %GFP_USER is for userspace allocations that also need to be directly 268 * accessibly by the kernel or hardware. It is typically used by hardware 269 * for buffers that are mapped to userspace (e.g. graphics) that hardware 270 * still must DMA to. cpuset limits are enforced for these allocations. 271 * 272 * %GFP_DMA exists for historical reasons and should be avoided where possible. 273 * The flags indicates that the caller requires that the lowest zone be 274 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but 275 * it would require careful auditing as some users really require it and 276 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the 277 * lowest zone as a type of emergency reserve. 278 * 279 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit 280 * address. 281 * 282 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace, 283 * do not need to be directly accessible by the kernel but that cannot 284 * move once in use. An example may be a hardware allocation that maps 285 * data directly into userspace but has no addressing limitations. 286 * 287 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not 288 * need direct access to but can use kmap() when access is required. They 289 * are expected to be movable via page reclaim or page migration. Typically, 290 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE. 291 * 292 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They 293 * are compound allocations that will generally fail quickly if memory is not 294 * available and will not wake kswapd/kcompactd on failure. The _LIGHT 295 * version does not attempt reclaim/compaction at all and is by default used 296 * in page fault path, while the non-light is used by khugepaged. 297 */ 298#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM) 299#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS) 300#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT) 301#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM) 302#define GFP_NOIO (__GFP_RECLAIM) 303#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO) 304#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL) 305#define GFP_DMA __GFP_DMA 306#define GFP_DMA32 __GFP_DMA32 307#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM) 308#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE) 309#define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \ 310 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM) 311#define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM) 312 313/* Convert GFP flags to their corresponding migrate type */ 314#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE) 315#define GFP_MOVABLE_SHIFT 3 316 317static inline int gfp_migratetype(const gfp_t gfp_flags) 318{ 319 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK); 320 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE); 321 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE); 322 323 if (unlikely(page_group_by_mobility_disabled)) 324 return MIGRATE_UNMOVABLE; 325 326 /* Group based on mobility */ 327 return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT; 328} 329#undef GFP_MOVABLE_MASK 330#undef GFP_MOVABLE_SHIFT 331 332static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags) 333{ 334 return !!(gfp_flags & __GFP_DIRECT_RECLAIM); 335} 336 337/** 338 * gfpflags_normal_context - is gfp_flags a normal sleepable context? 339 * @gfp_flags: gfp_flags to test 340 * 341 * Test whether @gfp_flags indicates that the allocation is from the 342 * %current context and allowed to sleep. 343 * 344 * An allocation being allowed to block doesn't mean it owns the %current 345 * context. When direct reclaim path tries to allocate memory, the 346 * allocation context is nested inside whatever %current was doing at the 347 * time of the original allocation. The nested allocation may be allowed 348 * to block but modifying anything %current owns can corrupt the outer 349 * context's expectations. 350 * 351 * %true result from this function indicates that the allocation context 352 * can sleep and use anything that's associated with %current. 353 */ 354static inline bool gfpflags_normal_context(const gfp_t gfp_flags) 355{ 356 return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) == 357 __GFP_DIRECT_RECLAIM; 358} 359 360#ifdef CONFIG_HIGHMEM 361#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM 362#else 363#define OPT_ZONE_HIGHMEM ZONE_NORMAL 364#endif 365 366#ifdef CONFIG_ZONE_DMA 367#define OPT_ZONE_DMA ZONE_DMA 368#else 369#define OPT_ZONE_DMA ZONE_NORMAL 370#endif 371 372#ifdef CONFIG_ZONE_DMA32 373#define OPT_ZONE_DMA32 ZONE_DMA32 374#else 375#define OPT_ZONE_DMA32 ZONE_NORMAL 376#endif 377 378/* 379 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the 380 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT 381 * bits long and there are 16 of them to cover all possible combinations of 382 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM. 383 * 384 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA. 385 * But GFP_MOVABLE is not only a zone specifier but also an allocation 386 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid. 387 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1". 388 * 389 * bit result 390 * ================= 391 * 0x0 => NORMAL 392 * 0x1 => DMA or NORMAL 393 * 0x2 => HIGHMEM or NORMAL 394 * 0x3 => BAD (DMA+HIGHMEM) 395 * 0x4 => DMA32 or NORMAL 396 * 0x5 => BAD (DMA+DMA32) 397 * 0x6 => BAD (HIGHMEM+DMA32) 398 * 0x7 => BAD (HIGHMEM+DMA32+DMA) 399 * 0x8 => NORMAL (MOVABLE+0) 400 * 0x9 => DMA or NORMAL (MOVABLE+DMA) 401 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too) 402 * 0xb => BAD (MOVABLE+HIGHMEM+DMA) 403 * 0xc => DMA32 or NORMAL (MOVABLE+DMA32) 404 * 0xd => BAD (MOVABLE+DMA32+DMA) 405 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM) 406 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA) 407 * 408 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms. 409 */ 410 411#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4 412/* ZONE_DEVICE is not a valid GFP zone specifier */ 413#define GFP_ZONES_SHIFT 2 414#else 415#define GFP_ZONES_SHIFT ZONES_SHIFT 416#endif 417 418#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG 419#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer 420#endif 421 422#define GFP_ZONE_TABLE ( \ 423 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \ 424 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \ 425 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \ 426 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \ 427 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \ 428 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \ 429 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\ 430 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\ 431) 432 433/* 434 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32 435 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per 436 * entry starting with bit 0. Bit is set if the combination is not 437 * allowed. 438 */ 439#define GFP_ZONE_BAD ( \ 440 1 << (___GFP_DMA | ___GFP_HIGHMEM) \ 441 | 1 << (___GFP_DMA | ___GFP_DMA32) \ 442 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \ 443 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 444 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \ 445 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \ 446 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \ 447 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \ 448) 449 450static inline enum zone_type gfp_zone(gfp_t flags) 451{ 452 enum zone_type z; 453 int bit = (__force int) (flags & GFP_ZONEMASK); 454 455 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) & 456 ((1 << GFP_ZONES_SHIFT) - 1); 457 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1); 458 return z; 459} 460 461/* 462 * There is only one page-allocator function, and two main namespaces to 463 * it. The alloc_page*() variants return 'struct page *' and as such 464 * can allocate highmem pages, the *get*page*() variants return 465 * virtual kernel addresses to the allocated page(s). 466 */ 467 468static inline int gfp_zonelist(gfp_t flags) 469{ 470#ifdef CONFIG_NUMA 471 if (unlikely(flags & __GFP_THISNODE)) 472 return ZONELIST_NOFALLBACK; 473#endif 474 return ZONELIST_FALLBACK; 475} 476 477/* 478 * We get the zone list from the current node and the gfp_mask. 479 * This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones. 480 * There are two zonelists per node, one for all zones with memory and 481 * one containing just zones from the node the zonelist belongs to. 482 * 483 * For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets 484 * optimized to &contig_page_data at compile-time. 485 */ 486static inline struct zonelist *node_zonelist(int nid, gfp_t flags) 487{ 488 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags); 489} 490 491#ifndef HAVE_ARCH_FREE_PAGE 492static inline void arch_free_page(struct page *page, int order) { } 493#endif 494#ifndef HAVE_ARCH_ALLOC_PAGE 495static inline void arch_alloc_page(struct page *page, int order) { } 496#endif 497#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 498static inline int arch_make_page_accessible(struct page *page) 499{ 500 return 0; 501} 502#endif 503 504struct page * 505__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 506 nodemask_t *nodemask); 507 508static inline struct page * 509__alloc_pages(gfp_t gfp_mask, unsigned int order, int preferred_nid) 510{ 511 return __alloc_pages_nodemask(gfp_mask, order, preferred_nid, NULL); 512} 513 514/* 515 * Allocate pages, preferring the node given as nid. The node must be valid and 516 * online. For more general interface, see alloc_pages_node(). 517 */ 518static inline struct page * 519__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 520{ 521 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES); 522 VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid)); 523 524 return __alloc_pages(gfp_mask, order, nid); 525} 526 527/* 528 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE, 529 * prefer the current CPU's closest node. Otherwise node must be valid and 530 * online. 531 */ 532static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask, 533 unsigned int order) 534{ 535 if (nid == NUMA_NO_NODE) 536 nid = numa_mem_id(); 537 538 return __alloc_pages_node(nid, gfp_mask, order); 539} 540 541#ifdef CONFIG_NUMA 542extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order); 543 544static inline struct page * 545alloc_pages(gfp_t gfp_mask, unsigned int order) 546{ 547 return alloc_pages_current(gfp_mask, order); 548} 549extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order, 550 struct vm_area_struct *vma, unsigned long addr, 551 int node, bool hugepage); 552#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 553 alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true) 554#else 555static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order) 556{ 557 return alloc_pages_node(numa_node_id(), gfp_mask, order); 558} 559#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\ 560 alloc_pages(gfp_mask, order) 561#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \ 562 alloc_pages(gfp_mask, order) 563#endif 564#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0) 565#define alloc_page_vma(gfp_mask, vma, addr) \ 566 alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false) 567 568extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order); 569extern unsigned long get_zeroed_page(gfp_t gfp_mask); 570 571void *alloc_pages_exact(size_t size, gfp_t gfp_mask); 572void free_pages_exact(void *virt, size_t size); 573void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask); 574 575#define __get_free_page(gfp_mask) \ 576 __get_free_pages((gfp_mask), 0) 577 578#define __get_dma_pages(gfp_mask, order) \ 579 __get_free_pages((gfp_mask) | GFP_DMA, (order)) 580 581extern void __free_pages(struct page *page, unsigned int order); 582extern void free_pages(unsigned long addr, unsigned int order); 583extern void free_unref_page(struct page *page); 584extern void free_unref_page_list(struct list_head *list); 585 586struct page_frag_cache; 587extern void __page_frag_cache_drain(struct page *page, unsigned int count); 588extern void *page_frag_alloc(struct page_frag_cache *nc, 589 unsigned int fragsz, gfp_t gfp_mask); 590extern void page_frag_free(void *addr); 591 592#define __free_page(page) __free_pages((page), 0) 593#define free_page(addr) free_pages((addr), 0) 594 595void page_alloc_init(void); 596void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp); 597void drain_all_pages(struct zone *zone); 598void drain_local_pages(struct zone *zone); 599 600void page_alloc_init_late(void); 601 602/* 603 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what 604 * GFP flags are used before interrupts are enabled. Once interrupts are 605 * enabled, it is set to __GFP_BITS_MASK while the system is running. During 606 * hibernation, it is used by PM to avoid I/O during memory allocation while 607 * devices are suspended. 608 */ 609extern gfp_t gfp_allowed_mask; 610 611/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */ 612bool gfp_pfmemalloc_allowed(gfp_t gfp_mask); 613 614extern void pm_restrict_gfp_mask(void); 615extern void pm_restore_gfp_mask(void); 616 617#ifdef CONFIG_PM_SLEEP 618extern bool pm_suspended_storage(void); 619#else 620static inline bool pm_suspended_storage(void) 621{ 622 return false; 623} 624#endif /* CONFIG_PM_SLEEP */ 625 626#ifdef CONFIG_CONTIG_ALLOC 627/* The below functions must be run on a range from a single zone. */ 628extern int alloc_contig_range(unsigned long start, unsigned long end, 629 unsigned migratetype, gfp_t gfp_mask); 630extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 631 int nid, nodemask_t *nodemask); 632#endif 633void free_contig_range(unsigned long pfn, unsigned int nr_pages); 634 635#ifdef CONFIG_CMA 636/* CMA stuff */ 637extern void init_cma_reserved_pageblock(struct page *page); 638#endif 639 640#endif /* __LINUX_GFP_H */ 641