linux/include/linux/kcsan-checks.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2
   3#ifndef _LINUX_KCSAN_CHECKS_H
   4#define _LINUX_KCSAN_CHECKS_H
   5
   6/* Note: Only include what is already included by compiler.h. */
   7#include <linux/compiler_attributes.h>
   8#include <linux/types.h>
   9
  10/* Access types -- if KCSAN_ACCESS_WRITE is not set, the access is a read. */
  11#define KCSAN_ACCESS_WRITE      (1 << 0) /* Access is a write. */
  12#define KCSAN_ACCESS_COMPOUND   (1 << 1) /* Compounded read-write instrumentation. */
  13#define KCSAN_ACCESS_ATOMIC     (1 << 2) /* Access is atomic. */
  14/* The following are special, and never due to compiler instrumentation. */
  15#define KCSAN_ACCESS_ASSERT     (1 << 3) /* Access is an assertion. */
  16#define KCSAN_ACCESS_SCOPED     (1 << 4) /* Access is a scoped access. */
  17
  18/*
  19 * __kcsan_*: Always calls into the runtime when KCSAN is enabled. This may be used
  20 * even in compilation units that selectively disable KCSAN, but must use KCSAN
  21 * to validate access to an address. Never use these in header files!
  22 */
  23#ifdef CONFIG_KCSAN
  24/**
  25 * __kcsan_check_access - check generic access for races
  26 *
  27 * @ptr: address of access
  28 * @size: size of access
  29 * @type: access type modifier
  30 */
  31void __kcsan_check_access(const volatile void *ptr, size_t size, int type);
  32
  33/**
  34 * kcsan_disable_current - disable KCSAN for the current context
  35 *
  36 * Supports nesting.
  37 */
  38void kcsan_disable_current(void);
  39
  40/**
  41 * kcsan_enable_current - re-enable KCSAN for the current context
  42 *
  43 * Supports nesting.
  44 */
  45void kcsan_enable_current(void);
  46void kcsan_enable_current_nowarn(void); /* Safe in uaccess regions. */
  47
  48/**
  49 * kcsan_nestable_atomic_begin - begin nestable atomic region
  50 *
  51 * Accesses within the atomic region may appear to race with other accesses but
  52 * should be considered atomic.
  53 */
  54void kcsan_nestable_atomic_begin(void);
  55
  56/**
  57 * kcsan_nestable_atomic_end - end nestable atomic region
  58 */
  59void kcsan_nestable_atomic_end(void);
  60
  61/**
  62 * kcsan_flat_atomic_begin - begin flat atomic region
  63 *
  64 * Accesses within the atomic region may appear to race with other accesses but
  65 * should be considered atomic.
  66 */
  67void kcsan_flat_atomic_begin(void);
  68
  69/**
  70 * kcsan_flat_atomic_end - end flat atomic region
  71 */
  72void kcsan_flat_atomic_end(void);
  73
  74/**
  75 * kcsan_atomic_next - consider following accesses as atomic
  76 *
  77 * Force treating the next n memory accesses for the current context as atomic
  78 * operations.
  79 *
  80 * @n: number of following memory accesses to treat as atomic.
  81 */
  82void kcsan_atomic_next(int n);
  83
  84/**
  85 * kcsan_set_access_mask - set access mask
  86 *
  87 * Set the access mask for all accesses for the current context if non-zero.
  88 * Only value changes to bits set in the mask will be reported.
  89 *
  90 * @mask: bitmask
  91 */
  92void kcsan_set_access_mask(unsigned long mask);
  93
  94/* Scoped access information. */
  95struct kcsan_scoped_access {
  96        struct list_head list;
  97        const volatile void *ptr;
  98        size_t size;
  99        int type;
 100};
 101/*
 102 * Automatically call kcsan_end_scoped_access() when kcsan_scoped_access goes
 103 * out of scope; relies on attribute "cleanup", which is supported by all
 104 * compilers that support KCSAN.
 105 */
 106#define __kcsan_cleanup_scoped                                                 \
 107        __maybe_unused __attribute__((__cleanup__(kcsan_end_scoped_access)))
 108
 109/**
 110 * kcsan_begin_scoped_access - begin scoped access
 111 *
 112 * Begin scoped access and initialize @sa, which will cause KCSAN to
 113 * continuously check the memory range in the current thread until
 114 * kcsan_end_scoped_access() is called for @sa.
 115 *
 116 * Scoped accesses are implemented by appending @sa to an internal list for the
 117 * current execution context, and then checked on every call into the KCSAN
 118 * runtime.
 119 *
 120 * @ptr: address of access
 121 * @size: size of access
 122 * @type: access type modifier
 123 * @sa: struct kcsan_scoped_access to use for the scope of the access
 124 */
 125struct kcsan_scoped_access *
 126kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
 127                          struct kcsan_scoped_access *sa);
 128
 129/**
 130 * kcsan_end_scoped_access - end scoped access
 131 *
 132 * End a scoped access, which will stop KCSAN checking the memory range.
 133 * Requires that kcsan_begin_scoped_access() was previously called once for @sa.
 134 *
 135 * @sa: a previously initialized struct kcsan_scoped_access
 136 */
 137void kcsan_end_scoped_access(struct kcsan_scoped_access *sa);
 138
 139
 140#else /* CONFIG_KCSAN */
 141
 142static inline void __kcsan_check_access(const volatile void *ptr, size_t size,
 143                                        int type) { }
 144
 145static inline void kcsan_disable_current(void)          { }
 146static inline void kcsan_enable_current(void)           { }
 147static inline void kcsan_enable_current_nowarn(void)    { }
 148static inline void kcsan_nestable_atomic_begin(void)    { }
 149static inline void kcsan_nestable_atomic_end(void)      { }
 150static inline void kcsan_flat_atomic_begin(void)        { }
 151static inline void kcsan_flat_atomic_end(void)          { }
 152static inline void kcsan_atomic_next(int n)             { }
 153static inline void kcsan_set_access_mask(unsigned long mask) { }
 154
 155struct kcsan_scoped_access { };
 156#define __kcsan_cleanup_scoped __maybe_unused
 157static inline struct kcsan_scoped_access *
 158kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
 159                          struct kcsan_scoped_access *sa) { return sa; }
 160static inline void kcsan_end_scoped_access(struct kcsan_scoped_access *sa) { }
 161
 162#endif /* CONFIG_KCSAN */
 163
 164#ifdef __SANITIZE_THREAD__
 165/*
 166 * Only calls into the runtime when the particular compilation unit has KCSAN
 167 * instrumentation enabled. May be used in header files.
 168 */
 169#define kcsan_check_access __kcsan_check_access
 170
 171/*
 172 * Only use these to disable KCSAN for accesses in the current compilation unit;
 173 * calls into libraries may still perform KCSAN checks.
 174 */
 175#define __kcsan_disable_current kcsan_disable_current
 176#define __kcsan_enable_current kcsan_enable_current_nowarn
 177#else
 178static inline void kcsan_check_access(const volatile void *ptr, size_t size,
 179                                      int type) { }
 180static inline void __kcsan_enable_current(void)  { }
 181static inline void __kcsan_disable_current(void) { }
 182#endif
 183
 184/**
 185 * __kcsan_check_read - check regular read access for races
 186 *
 187 * @ptr: address of access
 188 * @size: size of access
 189 */
 190#define __kcsan_check_read(ptr, size) __kcsan_check_access(ptr, size, 0)
 191
 192/**
 193 * __kcsan_check_write - check regular write access for races
 194 *
 195 * @ptr: address of access
 196 * @size: size of access
 197 */
 198#define __kcsan_check_write(ptr, size)                                         \
 199        __kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
 200
 201/**
 202 * __kcsan_check_read_write - check regular read-write access for races
 203 *
 204 * @ptr: address of access
 205 * @size: size of access
 206 */
 207#define __kcsan_check_read_write(ptr, size)                                    \
 208        __kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
 209
 210/**
 211 * kcsan_check_read - check regular read access for races
 212 *
 213 * @ptr: address of access
 214 * @size: size of access
 215 */
 216#define kcsan_check_read(ptr, size) kcsan_check_access(ptr, size, 0)
 217
 218/**
 219 * kcsan_check_write - check regular write access for races
 220 *
 221 * @ptr: address of access
 222 * @size: size of access
 223 */
 224#define kcsan_check_write(ptr, size)                                           \
 225        kcsan_check_access(ptr, size, KCSAN_ACCESS_WRITE)
 226
 227/**
 228 * kcsan_check_read_write - check regular read-write access for races
 229 *
 230 * @ptr: address of access
 231 * @size: size of access
 232 */
 233#define kcsan_check_read_write(ptr, size)                                      \
 234        kcsan_check_access(ptr, size, KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE)
 235
 236/*
 237 * Check for atomic accesses: if atomic accesses are not ignored, this simply
 238 * aliases to kcsan_check_access(), otherwise becomes a no-op.
 239 */
 240#ifdef CONFIG_KCSAN_IGNORE_ATOMICS
 241#define kcsan_check_atomic_read(...)            do { } while (0)
 242#define kcsan_check_atomic_write(...)           do { } while (0)
 243#define kcsan_check_atomic_read_write(...)      do { } while (0)
 244#else
 245#define kcsan_check_atomic_read(ptr, size)                                     \
 246        kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC)
 247#define kcsan_check_atomic_write(ptr, size)                                    \
 248        kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE)
 249#define kcsan_check_atomic_read_write(ptr, size)                               \
 250        kcsan_check_access(ptr, size, KCSAN_ACCESS_ATOMIC | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_COMPOUND)
 251#endif
 252
 253/**
 254 * ASSERT_EXCLUSIVE_WRITER - assert no concurrent writes to @var
 255 *
 256 * Assert that there are no concurrent writes to @var; other readers are
 257 * allowed. This assertion can be used to specify properties of concurrent code,
 258 * where violation cannot be detected as a normal data race.
 259 *
 260 * For example, if we only have a single writer, but multiple concurrent
 261 * readers, to avoid data races, all these accesses must be marked; even
 262 * concurrent marked writes racing with the single writer are bugs.
 263 * Unfortunately, due to being marked, they are no longer data races. For cases
 264 * like these, we can use the macro as follows:
 265 *
 266 * .. code-block:: c
 267 *
 268 *      void writer(void) {
 269 *              spin_lock(&update_foo_lock);
 270 *              ASSERT_EXCLUSIVE_WRITER(shared_foo);
 271 *              WRITE_ONCE(shared_foo, ...);
 272 *              spin_unlock(&update_foo_lock);
 273 *      }
 274 *      void reader(void) {
 275 *              // update_foo_lock does not need to be held!
 276 *              ... = READ_ONCE(shared_foo);
 277 *      }
 278 *
 279 * Note: ASSERT_EXCLUSIVE_WRITER_SCOPED(), if applicable, performs more thorough
 280 * checking if a clear scope where no concurrent writes are expected exists.
 281 *
 282 * @var: variable to assert on
 283 */
 284#define ASSERT_EXCLUSIVE_WRITER(var)                                           \
 285        __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT)
 286
 287/*
 288 * Helper macros for implementation of for ASSERT_EXCLUSIVE_*_SCOPED(). @id is
 289 * expected to be unique for the scope in which instances of kcsan_scoped_access
 290 * are declared.
 291 */
 292#define __kcsan_scoped_name(c, suffix) __kcsan_scoped_##c##suffix
 293#define __ASSERT_EXCLUSIVE_SCOPED(var, type, id)                               \
 294        struct kcsan_scoped_access __kcsan_scoped_name(id, _)                  \
 295                __kcsan_cleanup_scoped;                                        \
 296        struct kcsan_scoped_access *__kcsan_scoped_name(id, _dummy_p)          \
 297                __maybe_unused = kcsan_begin_scoped_access(                    \
 298                        &(var), sizeof(var), KCSAN_ACCESS_SCOPED | (type),     \
 299                        &__kcsan_scoped_name(id, _))
 300
 301/**
 302 * ASSERT_EXCLUSIVE_WRITER_SCOPED - assert no concurrent writes to @var in scope
 303 *
 304 * Scoped variant of ASSERT_EXCLUSIVE_WRITER().
 305 *
 306 * Assert that there are no concurrent writes to @var for the duration of the
 307 * scope in which it is introduced. This provides a better way to fully cover
 308 * the enclosing scope, compared to multiple ASSERT_EXCLUSIVE_WRITER(), and
 309 * increases the likelihood for KCSAN to detect racing accesses.
 310 *
 311 * For example, it allows finding race-condition bugs that only occur due to
 312 * state changes within the scope itself:
 313 *
 314 * .. code-block:: c
 315 *
 316 *      void writer(void) {
 317 *              spin_lock(&update_foo_lock);
 318 *              {
 319 *                      ASSERT_EXCLUSIVE_WRITER_SCOPED(shared_foo);
 320 *                      WRITE_ONCE(shared_foo, 42);
 321 *                      ...
 322 *                      // shared_foo should still be 42 here!
 323 *              }
 324 *              spin_unlock(&update_foo_lock);
 325 *      }
 326 *      void buggy(void) {
 327 *              if (READ_ONCE(shared_foo) == 42)
 328 *                      WRITE_ONCE(shared_foo, 1); // bug!
 329 *      }
 330 *
 331 * @var: variable to assert on
 332 */
 333#define ASSERT_EXCLUSIVE_WRITER_SCOPED(var)                                    \
 334        __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_ASSERT, __COUNTER__)
 335
 336/**
 337 * ASSERT_EXCLUSIVE_ACCESS - assert no concurrent accesses to @var
 338 *
 339 * Assert that there are no concurrent accesses to @var (no readers nor
 340 * writers). This assertion can be used to specify properties of concurrent
 341 * code, where violation cannot be detected as a normal data race.
 342 *
 343 * For example, where exclusive access is expected after determining no other
 344 * users of an object are left, but the object is not actually freed. We can
 345 * check that this property actually holds as follows:
 346 *
 347 * .. code-block:: c
 348 *
 349 *      if (refcount_dec_and_test(&obj->refcnt)) {
 350 *              ASSERT_EXCLUSIVE_ACCESS(*obj);
 351 *              do_some_cleanup(obj);
 352 *              release_for_reuse(obj);
 353 *      }
 354 *
 355 * Note:
 356 *
 357 * 1. ASSERT_EXCLUSIVE_ACCESS_SCOPED(), if applicable, performs more thorough
 358 *    checking if a clear scope where no concurrent accesses are expected exists.
 359 *
 360 * 2. For cases where the object is freed, `KASAN <kasan.html>`_ is a better
 361 *    fit to detect use-after-free bugs.
 362 *
 363 * @var: variable to assert on
 364 */
 365#define ASSERT_EXCLUSIVE_ACCESS(var)                                           \
 366        __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT)
 367
 368/**
 369 * ASSERT_EXCLUSIVE_ACCESS_SCOPED - assert no concurrent accesses to @var in scope
 370 *
 371 * Scoped variant of ASSERT_EXCLUSIVE_ACCESS().
 372 *
 373 * Assert that there are no concurrent accesses to @var (no readers nor writers)
 374 * for the entire duration of the scope in which it is introduced. This provides
 375 * a better way to fully cover the enclosing scope, compared to multiple
 376 * ASSERT_EXCLUSIVE_ACCESS(), and increases the likelihood for KCSAN to detect
 377 * racing accesses.
 378 *
 379 * @var: variable to assert on
 380 */
 381#define ASSERT_EXCLUSIVE_ACCESS_SCOPED(var)                                    \
 382        __ASSERT_EXCLUSIVE_SCOPED(var, KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, __COUNTER__)
 383
 384/**
 385 * ASSERT_EXCLUSIVE_BITS - assert no concurrent writes to subset of bits in @var
 386 *
 387 * Bit-granular variant of ASSERT_EXCLUSIVE_WRITER().
 388 *
 389 * Assert that there are no concurrent writes to a subset of bits in @var;
 390 * concurrent readers are permitted. This assertion captures more detailed
 391 * bit-level properties, compared to the other (word granularity) assertions.
 392 * Only the bits set in @mask are checked for concurrent modifications, while
 393 * ignoring the remaining bits, i.e. concurrent writes (or reads) to ~mask bits
 394 * are ignored.
 395 *
 396 * Use this for variables, where some bits must not be modified concurrently,
 397 * yet other bits are expected to be modified concurrently.
 398 *
 399 * For example, variables where, after initialization, some bits are read-only,
 400 * but other bits may still be modified concurrently. A reader may wish to
 401 * assert that this is true as follows:
 402 *
 403 * .. code-block:: c
 404 *
 405 *      ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
 406 *      foo = (READ_ONCE(flags) & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
 407 *
 408 * Note: The access that immediately follows ASSERT_EXCLUSIVE_BITS() is assumed
 409 * to access the masked bits only, and KCSAN optimistically assumes it is
 410 * therefore safe, even in the presence of data races, and marking it with
 411 * READ_ONCE() is optional from KCSAN's point-of-view. We caution, however, that
 412 * it may still be advisable to do so, since we cannot reason about all compiler
 413 * optimizations when it comes to bit manipulations (on the reader and writer
 414 * side). If you are sure nothing can go wrong, we can write the above simply
 415 * as:
 416 *
 417 * .. code-block:: c
 418 *
 419 *      ASSERT_EXCLUSIVE_BITS(flags, READ_ONLY_MASK);
 420 *      foo = (flags & READ_ONLY_MASK) >> READ_ONLY_SHIFT;
 421 *
 422 * Another example, where this may be used, is when certain bits of @var may
 423 * only be modified when holding the appropriate lock, but other bits may still
 424 * be modified concurrently. Writers, where other bits may change concurrently,
 425 * could use the assertion as follows:
 426 *
 427 * .. code-block:: c
 428 *
 429 *      spin_lock(&foo_lock);
 430 *      ASSERT_EXCLUSIVE_BITS(flags, FOO_MASK);
 431 *      old_flags = flags;
 432 *      new_flags = (old_flags & ~FOO_MASK) | (new_foo << FOO_SHIFT);
 433 *      if (cmpxchg(&flags, old_flags, new_flags) != old_flags) { ... }
 434 *      spin_unlock(&foo_lock);
 435 *
 436 * @var: variable to assert on
 437 * @mask: only check for modifications to bits set in @mask
 438 */
 439#define ASSERT_EXCLUSIVE_BITS(var, mask)                                       \
 440        do {                                                                   \
 441                kcsan_set_access_mask(mask);                                   \
 442                __kcsan_check_access(&(var), sizeof(var), KCSAN_ACCESS_ASSERT);\
 443                kcsan_set_access_mask(0);                                      \
 444                kcsan_atomic_next(1);                                          \
 445        } while (0)
 446
 447#endif /* _LINUX_KCSAN_CHECKS_H */
 448