linux/include/linux/rculist.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_RCULIST_H
   3#define _LINUX_RCULIST_H
   4
   5#ifdef __KERNEL__
   6
   7/*
   8 * RCU-protected list version
   9 */
  10#include <linux/list.h>
  11#include <linux/rcupdate.h>
  12
  13/*
  14 * Why is there no list_empty_rcu()?  Because list_empty() serves this
  15 * purpose.  The list_empty() function fetches the RCU-protected pointer
  16 * and compares it to the address of the list head, but neither dereferences
  17 * this pointer itself nor provides this pointer to the caller.  Therefore,
  18 * it is not necessary to use rcu_dereference(), so that list_empty() can
  19 * be used anywhere you would want to use a list_empty_rcu().
  20 */
  21
  22/*
  23 * INIT_LIST_HEAD_RCU - Initialize a list_head visible to RCU readers
  24 * @list: list to be initialized
  25 *
  26 * You should instead use INIT_LIST_HEAD() for normal initialization and
  27 * cleanup tasks, when readers have no access to the list being initialized.
  28 * However, if the list being initialized is visible to readers, you
  29 * need to keep the compiler from being too mischievous.
  30 */
  31static inline void INIT_LIST_HEAD_RCU(struct list_head *list)
  32{
  33        WRITE_ONCE(list->next, list);
  34        WRITE_ONCE(list->prev, list);
  35}
  36
  37/*
  38 * return the ->next pointer of a list_head in an rcu safe
  39 * way, we must not access it directly
  40 */
  41#define list_next_rcu(list)     (*((struct list_head __rcu **)(&(list)->next)))
  42
  43/**
  44 * list_tail_rcu - returns the prev pointer of the head of the list
  45 * @head: the head of the list
  46 *
  47 * Note: This should only be used with the list header, and even then
  48 * only if list_del() and similar primitives are not also used on the
  49 * list header.
  50 */
  51#define list_tail_rcu(head)     (*((struct list_head __rcu **)(&(head)->prev)))
  52
  53/*
  54 * Check during list traversal that we are within an RCU reader
  55 */
  56
  57#define check_arg_count_one(dummy)
  58
  59#ifdef CONFIG_PROVE_RCU_LIST
  60#define __list_check_rcu(dummy, cond, extra...)                         \
  61        ({                                                              \
  62        check_arg_count_one(extra);                                     \
  63        RCU_LOCKDEP_WARN(!(cond) && !rcu_read_lock_any_held(),          \
  64                         "RCU-list traversed in non-reader section!");  \
  65        })
  66
  67#define __list_check_srcu(cond)                                  \
  68        ({                                                               \
  69        RCU_LOCKDEP_WARN(!(cond),                                        \
  70                "RCU-list traversed without holding the required lock!");\
  71        })
  72#else
  73#define __list_check_rcu(dummy, cond, extra...)                         \
  74        ({ check_arg_count_one(extra); })
  75
  76#define __list_check_srcu(cond) ({ })
  77#endif
  78
  79/*
  80 * Insert a new entry between two known consecutive entries.
  81 *
  82 * This is only for internal list manipulation where we know
  83 * the prev/next entries already!
  84 */
  85static inline void __list_add_rcu(struct list_head *new,
  86                struct list_head *prev, struct list_head *next)
  87{
  88        if (!__list_add_valid(new, prev, next))
  89                return;
  90
  91        new->next = next;
  92        new->prev = prev;
  93        rcu_assign_pointer(list_next_rcu(prev), new);
  94        next->prev = new;
  95}
  96
  97/**
  98 * list_add_rcu - add a new entry to rcu-protected list
  99 * @new: new entry to be added
 100 * @head: list head to add it after
 101 *
 102 * Insert a new entry after the specified head.
 103 * This is good for implementing stacks.
 104 *
 105 * The caller must take whatever precautions are necessary
 106 * (such as holding appropriate locks) to avoid racing
 107 * with another list-mutation primitive, such as list_add_rcu()
 108 * or list_del_rcu(), running on this same list.
 109 * However, it is perfectly legal to run concurrently with
 110 * the _rcu list-traversal primitives, such as
 111 * list_for_each_entry_rcu().
 112 */
 113static inline void list_add_rcu(struct list_head *new, struct list_head *head)
 114{
 115        __list_add_rcu(new, head, head->next);
 116}
 117
 118/**
 119 * list_add_tail_rcu - add a new entry to rcu-protected list
 120 * @new: new entry to be added
 121 * @head: list head to add it before
 122 *
 123 * Insert a new entry before the specified head.
 124 * This is useful for implementing queues.
 125 *
 126 * The caller must take whatever precautions are necessary
 127 * (such as holding appropriate locks) to avoid racing
 128 * with another list-mutation primitive, such as list_add_tail_rcu()
 129 * or list_del_rcu(), running on this same list.
 130 * However, it is perfectly legal to run concurrently with
 131 * the _rcu list-traversal primitives, such as
 132 * list_for_each_entry_rcu().
 133 */
 134static inline void list_add_tail_rcu(struct list_head *new,
 135                                        struct list_head *head)
 136{
 137        __list_add_rcu(new, head->prev, head);
 138}
 139
 140/**
 141 * list_del_rcu - deletes entry from list without re-initialization
 142 * @entry: the element to delete from the list.
 143 *
 144 * Note: list_empty() on entry does not return true after this,
 145 * the entry is in an undefined state. It is useful for RCU based
 146 * lockfree traversal.
 147 *
 148 * In particular, it means that we can not poison the forward
 149 * pointers that may still be used for walking the list.
 150 *
 151 * The caller must take whatever precautions are necessary
 152 * (such as holding appropriate locks) to avoid racing
 153 * with another list-mutation primitive, such as list_del_rcu()
 154 * or list_add_rcu(), running on this same list.
 155 * However, it is perfectly legal to run concurrently with
 156 * the _rcu list-traversal primitives, such as
 157 * list_for_each_entry_rcu().
 158 *
 159 * Note that the caller is not permitted to immediately free
 160 * the newly deleted entry.  Instead, either synchronize_rcu()
 161 * or call_rcu() must be used to defer freeing until an RCU
 162 * grace period has elapsed.
 163 */
 164static inline void list_del_rcu(struct list_head *entry)
 165{
 166        __list_del_entry(entry);
 167        entry->prev = LIST_POISON2;
 168}
 169
 170/**
 171 * hlist_del_init_rcu - deletes entry from hash list with re-initialization
 172 * @n: the element to delete from the hash list.
 173 *
 174 * Note: list_unhashed() on the node return true after this. It is
 175 * useful for RCU based read lockfree traversal if the writer side
 176 * must know if the list entry is still hashed or already unhashed.
 177 *
 178 * In particular, it means that we can not poison the forward pointers
 179 * that may still be used for walking the hash list and we can only
 180 * zero the pprev pointer so list_unhashed() will return true after
 181 * this.
 182 *
 183 * The caller must take whatever precautions are necessary (such as
 184 * holding appropriate locks) to avoid racing with another
 185 * list-mutation primitive, such as hlist_add_head_rcu() or
 186 * hlist_del_rcu(), running on this same list.  However, it is
 187 * perfectly legal to run concurrently with the _rcu list-traversal
 188 * primitives, such as hlist_for_each_entry_rcu().
 189 */
 190static inline void hlist_del_init_rcu(struct hlist_node *n)
 191{
 192        if (!hlist_unhashed(n)) {
 193                __hlist_del(n);
 194                WRITE_ONCE(n->pprev, NULL);
 195        }
 196}
 197
 198/**
 199 * list_replace_rcu - replace old entry by new one
 200 * @old : the element to be replaced
 201 * @new : the new element to insert
 202 *
 203 * The @old entry will be replaced with the @new entry atomically.
 204 * Note: @old should not be empty.
 205 */
 206static inline void list_replace_rcu(struct list_head *old,
 207                                struct list_head *new)
 208{
 209        new->next = old->next;
 210        new->prev = old->prev;
 211        rcu_assign_pointer(list_next_rcu(new->prev), new);
 212        new->next->prev = new;
 213        old->prev = LIST_POISON2;
 214}
 215
 216/**
 217 * __list_splice_init_rcu - join an RCU-protected list into an existing list.
 218 * @list:       the RCU-protected list to splice
 219 * @prev:       points to the last element of the existing list
 220 * @next:       points to the first element of the existing list
 221 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 222 *
 223 * The list pointed to by @prev and @next can be RCU-read traversed
 224 * concurrently with this function.
 225 *
 226 * Note that this function blocks.
 227 *
 228 * Important note: the caller must take whatever action is necessary to prevent
 229 * any other updates to the existing list.  In principle, it is possible to
 230 * modify the list as soon as sync() begins execution. If this sort of thing
 231 * becomes necessary, an alternative version based on call_rcu() could be
 232 * created.  But only if -really- needed -- there is no shortage of RCU API
 233 * members.
 234 */
 235static inline void __list_splice_init_rcu(struct list_head *list,
 236                                          struct list_head *prev,
 237                                          struct list_head *next,
 238                                          void (*sync)(void))
 239{
 240        struct list_head *first = list->next;
 241        struct list_head *last = list->prev;
 242
 243        /*
 244         * "first" and "last" tracking list, so initialize it.  RCU readers
 245         * have access to this list, so we must use INIT_LIST_HEAD_RCU()
 246         * instead of INIT_LIST_HEAD().
 247         */
 248
 249        INIT_LIST_HEAD_RCU(list);
 250
 251        /*
 252         * At this point, the list body still points to the source list.
 253         * Wait for any readers to finish using the list before splicing
 254         * the list body into the new list.  Any new readers will see
 255         * an empty list.
 256         */
 257
 258        sync();
 259        ASSERT_EXCLUSIVE_ACCESS(*first);
 260        ASSERT_EXCLUSIVE_ACCESS(*last);
 261
 262        /*
 263         * Readers are finished with the source list, so perform splice.
 264         * The order is important if the new list is global and accessible
 265         * to concurrent RCU readers.  Note that RCU readers are not
 266         * permitted to traverse the prev pointers without excluding
 267         * this function.
 268         */
 269
 270        last->next = next;
 271        rcu_assign_pointer(list_next_rcu(prev), first);
 272        first->prev = prev;
 273        next->prev = last;
 274}
 275
 276/**
 277 * list_splice_init_rcu - splice an RCU-protected list into an existing list,
 278 *                        designed for stacks.
 279 * @list:       the RCU-protected list to splice
 280 * @head:       the place in the existing list to splice the first list into
 281 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 282 */
 283static inline void list_splice_init_rcu(struct list_head *list,
 284                                        struct list_head *head,
 285                                        void (*sync)(void))
 286{
 287        if (!list_empty(list))
 288                __list_splice_init_rcu(list, head, head->next, sync);
 289}
 290
 291/**
 292 * list_splice_tail_init_rcu - splice an RCU-protected list into an existing
 293 *                             list, designed for queues.
 294 * @list:       the RCU-protected list to splice
 295 * @head:       the place in the existing list to splice the first list into
 296 * @sync:       synchronize_rcu, synchronize_rcu_expedited, ...
 297 */
 298static inline void list_splice_tail_init_rcu(struct list_head *list,
 299                                             struct list_head *head,
 300                                             void (*sync)(void))
 301{
 302        if (!list_empty(list))
 303                __list_splice_init_rcu(list, head->prev, head, sync);
 304}
 305
 306/**
 307 * list_entry_rcu - get the struct for this entry
 308 * @ptr:        the &struct list_head pointer.
 309 * @type:       the type of the struct this is embedded in.
 310 * @member:     the name of the list_head within the struct.
 311 *
 312 * This primitive may safely run concurrently with the _rcu list-mutation
 313 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 314 */
 315#define list_entry_rcu(ptr, type, member) \
 316        container_of(READ_ONCE(ptr), type, member)
 317
 318/*
 319 * Where are list_empty_rcu() and list_first_entry_rcu()?
 320 *
 321 * Implementing those functions following their counterparts list_empty() and
 322 * list_first_entry() is not advisable because they lead to subtle race
 323 * conditions as the following snippet shows:
 324 *
 325 * if (!list_empty_rcu(mylist)) {
 326 *      struct foo *bar = list_first_entry_rcu(mylist, struct foo, list_member);
 327 *      do_something(bar);
 328 * }
 329 *
 330 * The list may not be empty when list_empty_rcu checks it, but it may be when
 331 * list_first_entry_rcu rereads the ->next pointer.
 332 *
 333 * Rereading the ->next pointer is not a problem for list_empty() and
 334 * list_first_entry() because they would be protected by a lock that blocks
 335 * writers.
 336 *
 337 * See list_first_or_null_rcu for an alternative.
 338 */
 339
 340/**
 341 * list_first_or_null_rcu - get the first element from a list
 342 * @ptr:        the list head to take the element from.
 343 * @type:       the type of the struct this is embedded in.
 344 * @member:     the name of the list_head within the struct.
 345 *
 346 * Note that if the list is empty, it returns NULL.
 347 *
 348 * This primitive may safely run concurrently with the _rcu list-mutation
 349 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 350 */
 351#define list_first_or_null_rcu(ptr, type, member) \
 352({ \
 353        struct list_head *__ptr = (ptr); \
 354        struct list_head *__next = READ_ONCE(__ptr->next); \
 355        likely(__ptr != __next) ? list_entry_rcu(__next, type, member) : NULL; \
 356})
 357
 358/**
 359 * list_next_or_null_rcu - get the first element from a list
 360 * @head:       the head for the list.
 361 * @ptr:        the list head to take the next element from.
 362 * @type:       the type of the struct this is embedded in.
 363 * @member:     the name of the list_head within the struct.
 364 *
 365 * Note that if the ptr is at the end of the list, NULL is returned.
 366 *
 367 * This primitive may safely run concurrently with the _rcu list-mutation
 368 * primitives such as list_add_rcu() as long as it's guarded by rcu_read_lock().
 369 */
 370#define list_next_or_null_rcu(head, ptr, type, member) \
 371({ \
 372        struct list_head *__head = (head); \
 373        struct list_head *__ptr = (ptr); \
 374        struct list_head *__next = READ_ONCE(__ptr->next); \
 375        likely(__next != __head) ? list_entry_rcu(__next, type, \
 376                                                  member) : NULL; \
 377})
 378
 379/**
 380 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 381 * @pos:        the type * to use as a loop cursor.
 382 * @head:       the head for your list.
 383 * @member:     the name of the list_head within the struct.
 384 * @cond:       optional lockdep expression if called from non-RCU protection.
 385 *
 386 * This list-traversal primitive may safely run concurrently with
 387 * the _rcu list-mutation primitives such as list_add_rcu()
 388 * as long as the traversal is guarded by rcu_read_lock().
 389 */
 390#define list_for_each_entry_rcu(pos, head, member, cond...)             \
 391        for (__list_check_rcu(dummy, ## cond, 0),                       \
 392             pos = list_entry_rcu((head)->next, typeof(*pos), member);  \
 393                &pos->member != (head);                                 \
 394                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 395
 396/**
 397 * list_for_each_entry_srcu     -       iterate over rcu list of given type
 398 * @pos:        the type * to use as a loop cursor.
 399 * @head:       the head for your list.
 400 * @member:     the name of the list_head within the struct.
 401 * @cond:       lockdep expression for the lock required to traverse the list.
 402 *
 403 * This list-traversal primitive may safely run concurrently with
 404 * the _rcu list-mutation primitives such as list_add_rcu()
 405 * as long as the traversal is guarded by srcu_read_lock().
 406 * The lockdep expression srcu_read_lock_held() can be passed as the
 407 * cond argument from read side.
 408 */
 409#define list_for_each_entry_srcu(pos, head, member, cond)               \
 410        for (__list_check_srcu(cond),                                   \
 411             pos = list_entry_rcu((head)->next, typeof(*pos), member);  \
 412                &pos->member != (head);                                 \
 413                pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 414
 415/**
 416 * list_entry_lockless - get the struct for this entry
 417 * @ptr:        the &struct list_head pointer.
 418 * @type:       the type of the struct this is embedded in.
 419 * @member:     the name of the list_head within the struct.
 420 *
 421 * This primitive may safely run concurrently with the _rcu
 422 * list-mutation primitives such as list_add_rcu(), but requires some
 423 * implicit RCU read-side guarding.  One example is running within a special
 424 * exception-time environment where preemption is disabled and where lockdep
 425 * cannot be invoked.  Another example is when items are added to the list,
 426 * but never deleted.
 427 */
 428#define list_entry_lockless(ptr, type, member) \
 429        container_of((typeof(ptr))READ_ONCE(ptr), type, member)
 430
 431/**
 432 * list_for_each_entry_lockless - iterate over rcu list of given type
 433 * @pos:        the type * to use as a loop cursor.
 434 * @head:       the head for your list.
 435 * @member:     the name of the list_struct within the struct.
 436 *
 437 * This primitive may safely run concurrently with the _rcu
 438 * list-mutation primitives such as list_add_rcu(), but requires some
 439 * implicit RCU read-side guarding.  One example is running within a special
 440 * exception-time environment where preemption is disabled and where lockdep
 441 * cannot be invoked.  Another example is when items are added to the list,
 442 * but never deleted.
 443 */
 444#define list_for_each_entry_lockless(pos, head, member) \
 445        for (pos = list_entry_lockless((head)->next, typeof(*pos), member); \
 446             &pos->member != (head); \
 447             pos = list_entry_lockless(pos->member.next, typeof(*pos), member))
 448
 449/**
 450 * list_for_each_entry_continue_rcu - continue iteration over list of given type
 451 * @pos:        the type * to use as a loop cursor.
 452 * @head:       the head for your list.
 453 * @member:     the name of the list_head within the struct.
 454 *
 455 * Continue to iterate over list of given type, continuing after
 456 * the current position which must have been in the list when the RCU read
 457 * lock was taken.
 458 * This would typically require either that you obtained the node from a
 459 * previous walk of the list in the same RCU read-side critical section, or
 460 * that you held some sort of non-RCU reference (such as a reference count)
 461 * to keep the node alive *and* in the list.
 462 *
 463 * This iterator is similar to list_for_each_entry_from_rcu() except
 464 * this starts after the given position and that one starts at the given
 465 * position.
 466 */
 467#define list_for_each_entry_continue_rcu(pos, head, member)             \
 468        for (pos = list_entry_rcu(pos->member.next, typeof(*pos), member); \
 469             &pos->member != (head);    \
 470             pos = list_entry_rcu(pos->member.next, typeof(*pos), member))
 471
 472/**
 473 * list_for_each_entry_from_rcu - iterate over a list from current point
 474 * @pos:        the type * to use as a loop cursor.
 475 * @head:       the head for your list.
 476 * @member:     the name of the list_node within the struct.
 477 *
 478 * Iterate over the tail of a list starting from a given position,
 479 * which must have been in the list when the RCU read lock was taken.
 480 * This would typically require either that you obtained the node from a
 481 * previous walk of the list in the same RCU read-side critical section, or
 482 * that you held some sort of non-RCU reference (such as a reference count)
 483 * to keep the node alive *and* in the list.
 484 *
 485 * This iterator is similar to list_for_each_entry_continue_rcu() except
 486 * this starts from the given position and that one starts from the position
 487 * after the given position.
 488 */
 489#define list_for_each_entry_from_rcu(pos, head, member)                 \
 490        for (; &(pos)->member != (head);                                        \
 491                pos = list_entry_rcu(pos->member.next, typeof(*(pos)), member))
 492
 493/**
 494 * hlist_del_rcu - deletes entry from hash list without re-initialization
 495 * @n: the element to delete from the hash list.
 496 *
 497 * Note: list_unhashed() on entry does not return true after this,
 498 * the entry is in an undefined state. It is useful for RCU based
 499 * lockfree traversal.
 500 *
 501 * In particular, it means that we can not poison the forward
 502 * pointers that may still be used for walking the hash list.
 503 *
 504 * The caller must take whatever precautions are necessary
 505 * (such as holding appropriate locks) to avoid racing
 506 * with another list-mutation primitive, such as hlist_add_head_rcu()
 507 * or hlist_del_rcu(), running on this same list.
 508 * However, it is perfectly legal to run concurrently with
 509 * the _rcu list-traversal primitives, such as
 510 * hlist_for_each_entry().
 511 */
 512static inline void hlist_del_rcu(struct hlist_node *n)
 513{
 514        __hlist_del(n);
 515        WRITE_ONCE(n->pprev, LIST_POISON2);
 516}
 517
 518/**
 519 * hlist_replace_rcu - replace old entry by new one
 520 * @old : the element to be replaced
 521 * @new : the new element to insert
 522 *
 523 * The @old entry will be replaced with the @new entry atomically.
 524 */
 525static inline void hlist_replace_rcu(struct hlist_node *old,
 526                                        struct hlist_node *new)
 527{
 528        struct hlist_node *next = old->next;
 529
 530        new->next = next;
 531        WRITE_ONCE(new->pprev, old->pprev);
 532        rcu_assign_pointer(*(struct hlist_node __rcu **)new->pprev, new);
 533        if (next)
 534                WRITE_ONCE(new->next->pprev, &new->next);
 535        WRITE_ONCE(old->pprev, LIST_POISON2);
 536}
 537
 538/**
 539 * hlists_swap_heads_rcu - swap the lists the hlist heads point to
 540 * @left:  The hlist head on the left
 541 * @right: The hlist head on the right
 542 *
 543 * The lists start out as [@left  ][node1 ... ] and
 544 *                        [@right ][node2 ... ]
 545 * The lists end up as    [@left  ][node2 ... ]
 546 *                        [@right ][node1 ... ]
 547 */
 548static inline void hlists_swap_heads_rcu(struct hlist_head *left, struct hlist_head *right)
 549{
 550        struct hlist_node *node1 = left->first;
 551        struct hlist_node *node2 = right->first;
 552
 553        rcu_assign_pointer(left->first, node2);
 554        rcu_assign_pointer(right->first, node1);
 555        WRITE_ONCE(node2->pprev, &left->first);
 556        WRITE_ONCE(node1->pprev, &right->first);
 557}
 558
 559/*
 560 * return the first or the next element in an RCU protected hlist
 561 */
 562#define hlist_first_rcu(head)   (*((struct hlist_node __rcu **)(&(head)->first)))
 563#define hlist_next_rcu(node)    (*((struct hlist_node __rcu **)(&(node)->next)))
 564#define hlist_pprev_rcu(node)   (*((struct hlist_node __rcu **)((node)->pprev)))
 565
 566/**
 567 * hlist_add_head_rcu
 568 * @n: the element to add to the hash list.
 569 * @h: the list to add to.
 570 *
 571 * Description:
 572 * Adds the specified element to the specified hlist,
 573 * while permitting racing traversals.
 574 *
 575 * The caller must take whatever precautions are necessary
 576 * (such as holding appropriate locks) to avoid racing
 577 * with another list-mutation primitive, such as hlist_add_head_rcu()
 578 * or hlist_del_rcu(), running on this same list.
 579 * However, it is perfectly legal to run concurrently with
 580 * the _rcu list-traversal primitives, such as
 581 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 582 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 583 * list-traversal primitive must be guarded by rcu_read_lock().
 584 */
 585static inline void hlist_add_head_rcu(struct hlist_node *n,
 586                                        struct hlist_head *h)
 587{
 588        struct hlist_node *first = h->first;
 589
 590        n->next = first;
 591        WRITE_ONCE(n->pprev, &h->first);
 592        rcu_assign_pointer(hlist_first_rcu(h), n);
 593        if (first)
 594                WRITE_ONCE(first->pprev, &n->next);
 595}
 596
 597/**
 598 * hlist_add_tail_rcu
 599 * @n: the element to add to the hash list.
 600 * @h: the list to add to.
 601 *
 602 * Description:
 603 * Adds the specified element to the specified hlist,
 604 * while permitting racing traversals.
 605 *
 606 * The caller must take whatever precautions are necessary
 607 * (such as holding appropriate locks) to avoid racing
 608 * with another list-mutation primitive, such as hlist_add_head_rcu()
 609 * or hlist_del_rcu(), running on this same list.
 610 * However, it is perfectly legal to run concurrently with
 611 * the _rcu list-traversal primitives, such as
 612 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 613 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 614 * list-traversal primitive must be guarded by rcu_read_lock().
 615 */
 616static inline void hlist_add_tail_rcu(struct hlist_node *n,
 617                                      struct hlist_head *h)
 618{
 619        struct hlist_node *i, *last = NULL;
 620
 621        /* Note: write side code, so rcu accessors are not needed. */
 622        for (i = h->first; i; i = i->next)
 623                last = i;
 624
 625        if (last) {
 626                n->next = last->next;
 627                WRITE_ONCE(n->pprev, &last->next);
 628                rcu_assign_pointer(hlist_next_rcu(last), n);
 629        } else {
 630                hlist_add_head_rcu(n, h);
 631        }
 632}
 633
 634/**
 635 * hlist_add_before_rcu
 636 * @n: the new element to add to the hash list.
 637 * @next: the existing element to add the new element before.
 638 *
 639 * Description:
 640 * Adds the specified element to the specified hlist
 641 * before the specified node while permitting racing traversals.
 642 *
 643 * The caller must take whatever precautions are necessary
 644 * (such as holding appropriate locks) to avoid racing
 645 * with another list-mutation primitive, such as hlist_add_head_rcu()
 646 * or hlist_del_rcu(), running on this same list.
 647 * However, it is perfectly legal to run concurrently with
 648 * the _rcu list-traversal primitives, such as
 649 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 650 * problems on Alpha CPUs.
 651 */
 652static inline void hlist_add_before_rcu(struct hlist_node *n,
 653                                        struct hlist_node *next)
 654{
 655        WRITE_ONCE(n->pprev, next->pprev);
 656        n->next = next;
 657        rcu_assign_pointer(hlist_pprev_rcu(n), n);
 658        WRITE_ONCE(next->pprev, &n->next);
 659}
 660
 661/**
 662 * hlist_add_behind_rcu
 663 * @n: the new element to add to the hash list.
 664 * @prev: the existing element to add the new element after.
 665 *
 666 * Description:
 667 * Adds the specified element to the specified hlist
 668 * after the specified node while permitting racing traversals.
 669 *
 670 * The caller must take whatever precautions are necessary
 671 * (such as holding appropriate locks) to avoid racing
 672 * with another list-mutation primitive, such as hlist_add_head_rcu()
 673 * or hlist_del_rcu(), running on this same list.
 674 * However, it is perfectly legal to run concurrently with
 675 * the _rcu list-traversal primitives, such as
 676 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 677 * problems on Alpha CPUs.
 678 */
 679static inline void hlist_add_behind_rcu(struct hlist_node *n,
 680                                        struct hlist_node *prev)
 681{
 682        n->next = prev->next;
 683        WRITE_ONCE(n->pprev, &prev->next);
 684        rcu_assign_pointer(hlist_next_rcu(prev), n);
 685        if (n->next)
 686                WRITE_ONCE(n->next->pprev, &n->next);
 687}
 688
 689#define __hlist_for_each_rcu(pos, head)                         \
 690        for (pos = rcu_dereference(hlist_first_rcu(head));      \
 691             pos;                                               \
 692             pos = rcu_dereference(hlist_next_rcu(pos)))
 693
 694/**
 695 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 696 * @pos:        the type * to use as a loop cursor.
 697 * @head:       the head for your list.
 698 * @member:     the name of the hlist_node within the struct.
 699 * @cond:       optional lockdep expression if called from non-RCU protection.
 700 *
 701 * This list-traversal primitive may safely run concurrently with
 702 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 703 * as long as the traversal is guarded by rcu_read_lock().
 704 */
 705#define hlist_for_each_entry_rcu(pos, head, member, cond...)            \
 706        for (__list_check_rcu(dummy, ## cond, 0),                       \
 707             pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
 708                        typeof(*(pos)), member);                        \
 709                pos;                                                    \
 710                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 711                        &(pos)->member)), typeof(*(pos)), member))
 712
 713/**
 714 * hlist_for_each_entry_srcu - iterate over rcu list of given type
 715 * @pos:        the type * to use as a loop cursor.
 716 * @head:       the head for your list.
 717 * @member:     the name of the hlist_node within the struct.
 718 * @cond:       lockdep expression for the lock required to traverse the list.
 719 *
 720 * This list-traversal primitive may safely run concurrently with
 721 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 722 * as long as the traversal is guarded by srcu_read_lock().
 723 * The lockdep expression srcu_read_lock_held() can be passed as the
 724 * cond argument from read side.
 725 */
 726#define hlist_for_each_entry_srcu(pos, head, member, cond)              \
 727        for (__list_check_srcu(cond),                                   \
 728             pos = hlist_entry_safe(rcu_dereference_raw(hlist_first_rcu(head)),\
 729                        typeof(*(pos)), member);                        \
 730                pos;                                                    \
 731                pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu(\
 732                        &(pos)->member)), typeof(*(pos)), member))
 733
 734/**
 735 * hlist_for_each_entry_rcu_notrace - iterate over rcu list of given type (for tracing)
 736 * @pos:        the type * to use as a loop cursor.
 737 * @head:       the head for your list.
 738 * @member:     the name of the hlist_node within the struct.
 739 *
 740 * This list-traversal primitive may safely run concurrently with
 741 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 742 * as long as the traversal is guarded by rcu_read_lock().
 743 *
 744 * This is the same as hlist_for_each_entry_rcu() except that it does
 745 * not do any RCU debugging or tracing.
 746 */
 747#define hlist_for_each_entry_rcu_notrace(pos, head, member)                     \
 748        for (pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_first_rcu(head)),\
 749                        typeof(*(pos)), member);                        \
 750                pos;                                                    \
 751                pos = hlist_entry_safe(rcu_dereference_raw_check(hlist_next_rcu(\
 752                        &(pos)->member)), typeof(*(pos)), member))
 753
 754/**
 755 * hlist_for_each_entry_rcu_bh - iterate over rcu list of given type
 756 * @pos:        the type * to use as a loop cursor.
 757 * @head:       the head for your list.
 758 * @member:     the name of the hlist_node within the struct.
 759 *
 760 * This list-traversal primitive may safely run concurrently with
 761 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 762 * as long as the traversal is guarded by rcu_read_lock().
 763 */
 764#define hlist_for_each_entry_rcu_bh(pos, head, member)                  \
 765        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_first_rcu(head)),\
 766                        typeof(*(pos)), member);                        \
 767                pos;                                                    \
 768                pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(\
 769                        &(pos)->member)), typeof(*(pos)), member))
 770
 771/**
 772 * hlist_for_each_entry_continue_rcu - iterate over a hlist continuing after current point
 773 * @pos:        the type * to use as a loop cursor.
 774 * @member:     the name of the hlist_node within the struct.
 775 */
 776#define hlist_for_each_entry_continue_rcu(pos, member)                  \
 777        for (pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 778                        &(pos)->member)), typeof(*(pos)), member);      \
 779             pos;                                                       \
 780             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 781                        &(pos)->member)), typeof(*(pos)), member))
 782
 783/**
 784 * hlist_for_each_entry_continue_rcu_bh - iterate over a hlist continuing after current point
 785 * @pos:        the type * to use as a loop cursor.
 786 * @member:     the name of the hlist_node within the struct.
 787 */
 788#define hlist_for_each_entry_continue_rcu_bh(pos, member)               \
 789        for (pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 790                        &(pos)->member)), typeof(*(pos)), member);      \
 791             pos;                                                       \
 792             pos = hlist_entry_safe(rcu_dereference_bh(hlist_next_rcu(  \
 793                        &(pos)->member)), typeof(*(pos)), member))
 794
 795/**
 796 * hlist_for_each_entry_from_rcu - iterate over a hlist continuing from current point
 797 * @pos:        the type * to use as a loop cursor.
 798 * @member:     the name of the hlist_node within the struct.
 799 */
 800#define hlist_for_each_entry_from_rcu(pos, member)                      \
 801        for (; pos;                                                     \
 802             pos = hlist_entry_safe(rcu_dereference_raw(hlist_next_rcu( \
 803                        &(pos)->member)), typeof(*(pos)), member))
 804
 805#endif  /* __KERNEL__ */
 806#endif
 807