linux/include/linux/rcupdate.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0+ */
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion
   4 *
   5 * Copyright IBM Corporation, 2001
   6 *
   7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
   8 *
   9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
  10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  11 * Papers:
  12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
  13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
  14 *
  15 * For detailed explanation of Read-Copy Update mechanism see -
  16 *              http://lse.sourceforge.net/locking/rcupdate.html
  17 *
  18 */
  19
  20#ifndef __LINUX_RCUPDATE_H
  21#define __LINUX_RCUPDATE_H
  22
  23#include <linux/types.h>
  24#include <linux/compiler.h>
  25#include <linux/atomic.h>
  26#include <linux/irqflags.h>
  27#include <linux/preempt.h>
  28#include <linux/bottom_half.h>
  29#include <linux/lockdep.h>
  30#include <asm/processor.h>
  31#include <linux/cpumask.h>
  32
  33#define ULONG_CMP_GE(a, b)      (ULONG_MAX / 2 >= (a) - (b))
  34#define ULONG_CMP_LT(a, b)      (ULONG_MAX / 2 < (a) - (b))
  35#define ulong2long(a)           (*(long *)(&(a)))
  36
  37/* Exported common interfaces */
  38void call_rcu(struct rcu_head *head, rcu_callback_t func);
  39void rcu_barrier_tasks(void);
  40void rcu_barrier_tasks_rude(void);
  41void synchronize_rcu(void);
  42
  43#ifdef CONFIG_PREEMPT_RCU
  44
  45void __rcu_read_lock(void);
  46void __rcu_read_unlock(void);
  47
  48/*
  49 * Defined as a macro as it is a very low level header included from
  50 * areas that don't even know about current.  This gives the rcu_read_lock()
  51 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
  52 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
  53 */
  54#define rcu_preempt_depth() (current->rcu_read_lock_nesting)
  55
  56#else /* #ifdef CONFIG_PREEMPT_RCU */
  57
  58#ifdef CONFIG_TINY_RCU
  59#define rcu_read_unlock_strict() do { } while (0)
  60#else
  61void rcu_read_unlock_strict(void);
  62#endif
  63
  64static inline void __rcu_read_lock(void)
  65{
  66        preempt_disable();
  67}
  68
  69static inline void __rcu_read_unlock(void)
  70{
  71        preempt_enable();
  72        rcu_read_unlock_strict();
  73}
  74
  75static inline int rcu_preempt_depth(void)
  76{
  77        return 0;
  78}
  79
  80#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
  81
  82/* Internal to kernel */
  83void rcu_init(void);
  84extern int rcu_scheduler_active __read_mostly;
  85void rcu_sched_clock_irq(int user);
  86void rcu_report_dead(unsigned int cpu);
  87void rcutree_migrate_callbacks(int cpu);
  88
  89#ifdef CONFIG_RCU_STALL_COMMON
  90void rcu_sysrq_start(void);
  91void rcu_sysrq_end(void);
  92#else /* #ifdef CONFIG_RCU_STALL_COMMON */
  93static inline void rcu_sysrq_start(void) { }
  94static inline void rcu_sysrq_end(void) { }
  95#endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
  96
  97#ifdef CONFIG_NO_HZ_FULL
  98void rcu_user_enter(void);
  99void rcu_user_exit(void);
 100#else
 101static inline void rcu_user_enter(void) { }
 102static inline void rcu_user_exit(void) { }
 103#endif /* CONFIG_NO_HZ_FULL */
 104
 105#ifdef CONFIG_RCU_NOCB_CPU
 106void rcu_init_nohz(void);
 107#else /* #ifdef CONFIG_RCU_NOCB_CPU */
 108static inline void rcu_init_nohz(void) { }
 109#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
 110
 111/**
 112 * RCU_NONIDLE - Indicate idle-loop code that needs RCU readers
 113 * @a: Code that RCU needs to pay attention to.
 114 *
 115 * RCU read-side critical sections are forbidden in the inner idle loop,
 116 * that is, between the rcu_idle_enter() and the rcu_idle_exit() -- RCU
 117 * will happily ignore any such read-side critical sections.  However,
 118 * things like powertop need tracepoints in the inner idle loop.
 119 *
 120 * This macro provides the way out:  RCU_NONIDLE(do_something_with_RCU())
 121 * will tell RCU that it needs to pay attention, invoke its argument
 122 * (in this example, calling the do_something_with_RCU() function),
 123 * and then tell RCU to go back to ignoring this CPU.  It is permissible
 124 * to nest RCU_NONIDLE() wrappers, but not indefinitely (but the limit is
 125 * on the order of a million or so, even on 32-bit systems).  It is
 126 * not legal to block within RCU_NONIDLE(), nor is it permissible to
 127 * transfer control either into or out of RCU_NONIDLE()'s statement.
 128 */
 129#define RCU_NONIDLE(a) \
 130        do { \
 131                rcu_irq_enter_irqson(); \
 132                do { a; } while (0); \
 133                rcu_irq_exit_irqson(); \
 134        } while (0)
 135
 136/*
 137 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
 138 * This is a macro rather than an inline function to avoid #include hell.
 139 */
 140#ifdef CONFIG_TASKS_RCU_GENERIC
 141
 142# ifdef CONFIG_TASKS_RCU
 143# define rcu_tasks_classic_qs(t, preempt)                               \
 144        do {                                                            \
 145                if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))    \
 146                        WRITE_ONCE((t)->rcu_tasks_holdout, false);      \
 147        } while (0)
 148void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
 149void synchronize_rcu_tasks(void);
 150# else
 151# define rcu_tasks_classic_qs(t, preempt) do { } while (0)
 152# define call_rcu_tasks call_rcu
 153# define synchronize_rcu_tasks synchronize_rcu
 154# endif
 155
 156# ifdef CONFIG_TASKS_RCU_TRACE
 157# define rcu_tasks_trace_qs(t)                                          \
 158        do {                                                            \
 159                if (!likely(READ_ONCE((t)->trc_reader_checked)) &&      \
 160                    !unlikely(READ_ONCE((t)->trc_reader_nesting))) {    \
 161                        smp_store_release(&(t)->trc_reader_checked, true); \
 162                        smp_mb(); /* Readers partitioned by store. */   \
 163                }                                                       \
 164        } while (0)
 165# else
 166# define rcu_tasks_trace_qs(t) do { } while (0)
 167# endif
 168
 169#define rcu_tasks_qs(t, preempt)                                        \
 170do {                                                                    \
 171        rcu_tasks_classic_qs((t), (preempt));                           \
 172        rcu_tasks_trace_qs((t));                                        \
 173} while (0)
 174
 175# ifdef CONFIG_TASKS_RUDE_RCU
 176void call_rcu_tasks_rude(struct rcu_head *head, rcu_callback_t func);
 177void synchronize_rcu_tasks_rude(void);
 178# endif
 179
 180#define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
 181void exit_tasks_rcu_start(void);
 182void exit_tasks_rcu_finish(void);
 183#else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
 184#define rcu_tasks_qs(t, preempt) do { } while (0)
 185#define rcu_note_voluntary_context_switch(t) do { } while (0)
 186#define call_rcu_tasks call_rcu
 187#define synchronize_rcu_tasks synchronize_rcu
 188static inline void exit_tasks_rcu_start(void) { }
 189static inline void exit_tasks_rcu_finish(void) { }
 190#endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
 191
 192/**
 193 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
 194 *
 195 * This macro resembles cond_resched(), except that it is defined to
 196 * report potential quiescent states to RCU-tasks even if the cond_resched()
 197 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
 198 */
 199#define cond_resched_tasks_rcu_qs() \
 200do { \
 201        rcu_tasks_qs(current, false); \
 202        cond_resched(); \
 203} while (0)
 204
 205/*
 206 * Infrastructure to implement the synchronize_() primitives in
 207 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
 208 */
 209
 210#if defined(CONFIG_TREE_RCU)
 211#include <linux/rcutree.h>
 212#elif defined(CONFIG_TINY_RCU)
 213#include <linux/rcutiny.h>
 214#else
 215#error "Unknown RCU implementation specified to kernel configuration"
 216#endif
 217
 218/*
 219 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
 220 * are needed for dynamic initialization and destruction of rcu_head
 221 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
 222 * dynamic initialization and destruction of statically allocated rcu_head
 223 * structures.  However, rcu_head structures allocated dynamically in the
 224 * heap don't need any initialization.
 225 */
 226#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
 227void init_rcu_head(struct rcu_head *head);
 228void destroy_rcu_head(struct rcu_head *head);
 229void init_rcu_head_on_stack(struct rcu_head *head);
 230void destroy_rcu_head_on_stack(struct rcu_head *head);
 231#else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 232static inline void init_rcu_head(struct rcu_head *head) { }
 233static inline void destroy_rcu_head(struct rcu_head *head) { }
 234static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
 235static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
 236#endif  /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
 237
 238#if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
 239bool rcu_lockdep_current_cpu_online(void);
 240#else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 241static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
 242#endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
 243
 244#ifdef CONFIG_DEBUG_LOCK_ALLOC
 245
 246static inline void rcu_lock_acquire(struct lockdep_map *map)
 247{
 248        lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
 249}
 250
 251static inline void rcu_lock_release(struct lockdep_map *map)
 252{
 253        lock_release(map, _THIS_IP_);
 254}
 255
 256extern struct lockdep_map rcu_lock_map;
 257extern struct lockdep_map rcu_bh_lock_map;
 258extern struct lockdep_map rcu_sched_lock_map;
 259extern struct lockdep_map rcu_callback_map;
 260int debug_lockdep_rcu_enabled(void);
 261int rcu_read_lock_held(void);
 262int rcu_read_lock_bh_held(void);
 263int rcu_read_lock_sched_held(void);
 264int rcu_read_lock_any_held(void);
 265
 266#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 267
 268# define rcu_lock_acquire(a)            do { } while (0)
 269# define rcu_lock_release(a)            do { } while (0)
 270
 271static inline int rcu_read_lock_held(void)
 272{
 273        return 1;
 274}
 275
 276static inline int rcu_read_lock_bh_held(void)
 277{
 278        return 1;
 279}
 280
 281static inline int rcu_read_lock_sched_held(void)
 282{
 283        return !preemptible();
 284}
 285
 286static inline int rcu_read_lock_any_held(void)
 287{
 288        return !preemptible();
 289}
 290
 291#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
 292
 293#ifdef CONFIG_PROVE_RCU
 294
 295/**
 296 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
 297 * @c: condition to check
 298 * @s: informative message
 299 */
 300#define RCU_LOCKDEP_WARN(c, s)                                          \
 301        do {                                                            \
 302                static bool __section(".data.unlikely") __warned;       \
 303                if (debug_lockdep_rcu_enabled() && !__warned && (c)) {  \
 304                        __warned = true;                                \
 305                        lockdep_rcu_suspicious(__FILE__, __LINE__, s);  \
 306                }                                                       \
 307        } while (0)
 308
 309#if defined(CONFIG_PROVE_RCU) && !defined(CONFIG_PREEMPT_RCU)
 310static inline void rcu_preempt_sleep_check(void)
 311{
 312        RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
 313                         "Illegal context switch in RCU read-side critical section");
 314}
 315#else /* #ifdef CONFIG_PROVE_RCU */
 316static inline void rcu_preempt_sleep_check(void) { }
 317#endif /* #else #ifdef CONFIG_PROVE_RCU */
 318
 319#define rcu_sleep_check()                                               \
 320        do {                                                            \
 321                rcu_preempt_sleep_check();                              \
 322                RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),        \
 323                                 "Illegal context switch in RCU-bh read-side critical section"); \
 324                RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),     \
 325                                 "Illegal context switch in RCU-sched read-side critical section"); \
 326        } while (0)
 327
 328#else /* #ifdef CONFIG_PROVE_RCU */
 329
 330#define RCU_LOCKDEP_WARN(c, s) do { } while (0)
 331#define rcu_sleep_check() do { } while (0)
 332
 333#endif /* #else #ifdef CONFIG_PROVE_RCU */
 334
 335/*
 336 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
 337 * and rcu_assign_pointer().  Some of these could be folded into their
 338 * callers, but they are left separate in order to ease introduction of
 339 * multiple pointers markings to match different RCU implementations
 340 * (e.g., __srcu), should this make sense in the future.
 341 */
 342
 343#ifdef __CHECKER__
 344#define rcu_check_sparse(p, space) \
 345        ((void)(((typeof(*p) space *)p) == p))
 346#else /* #ifdef __CHECKER__ */
 347#define rcu_check_sparse(p, space)
 348#endif /* #else #ifdef __CHECKER__ */
 349
 350#define __rcu_access_pointer(p, space) \
 351({ \
 352        typeof(*p) *_________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 353        rcu_check_sparse(p, space); \
 354        ((typeof(*p) __force __kernel *)(_________p1)); \
 355})
 356#define __rcu_dereference_check(p, c, space) \
 357({ \
 358        /* Dependency order vs. p above. */ \
 359        typeof(*p) *________p1 = (typeof(*p) *__force)READ_ONCE(p); \
 360        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
 361        rcu_check_sparse(p, space); \
 362        ((typeof(*p) __force __kernel *)(________p1)); \
 363})
 364#define __rcu_dereference_protected(p, c, space) \
 365({ \
 366        RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
 367        rcu_check_sparse(p, space); \
 368        ((typeof(*p) __force __kernel *)(p)); \
 369})
 370#define rcu_dereference_raw(p) \
 371({ \
 372        /* Dependency order vs. p above. */ \
 373        typeof(p) ________p1 = READ_ONCE(p); \
 374        ((typeof(*p) __force __kernel *)(________p1)); \
 375})
 376
 377/**
 378 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
 379 * @v: The value to statically initialize with.
 380 */
 381#define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
 382
 383/**
 384 * rcu_assign_pointer() - assign to RCU-protected pointer
 385 * @p: pointer to assign to
 386 * @v: value to assign (publish)
 387 *
 388 * Assigns the specified value to the specified RCU-protected
 389 * pointer, ensuring that any concurrent RCU readers will see
 390 * any prior initialization.
 391 *
 392 * Inserts memory barriers on architectures that require them
 393 * (which is most of them), and also prevents the compiler from
 394 * reordering the code that initializes the structure after the pointer
 395 * assignment.  More importantly, this call documents which pointers
 396 * will be dereferenced by RCU read-side code.
 397 *
 398 * In some special cases, you may use RCU_INIT_POINTER() instead
 399 * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
 400 * to the fact that it does not constrain either the CPU or the compiler.
 401 * That said, using RCU_INIT_POINTER() when you should have used
 402 * rcu_assign_pointer() is a very bad thing that results in
 403 * impossible-to-diagnose memory corruption.  So please be careful.
 404 * See the RCU_INIT_POINTER() comment header for details.
 405 *
 406 * Note that rcu_assign_pointer() evaluates each of its arguments only
 407 * once, appearances notwithstanding.  One of the "extra" evaluations
 408 * is in typeof() and the other visible only to sparse (__CHECKER__),
 409 * neither of which actually execute the argument.  As with most cpp
 410 * macros, this execute-arguments-only-once property is important, so
 411 * please be careful when making changes to rcu_assign_pointer() and the
 412 * other macros that it invokes.
 413 */
 414#define rcu_assign_pointer(p, v)                                              \
 415do {                                                                          \
 416        uintptr_t _r_a_p__v = (uintptr_t)(v);                                 \
 417        rcu_check_sparse(p, __rcu);                                           \
 418                                                                              \
 419        if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)        \
 420                WRITE_ONCE((p), (typeof(p))(_r_a_p__v));                      \
 421        else                                                                  \
 422                smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
 423} while (0)
 424
 425/**
 426 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
 427 * @rcu_ptr: RCU pointer, whose old value is returned
 428 * @ptr: regular pointer
 429 * @c: the lockdep conditions under which the dereference will take place
 430 *
 431 * Perform a replacement, where @rcu_ptr is an RCU-annotated
 432 * pointer and @c is the lockdep argument that is passed to the
 433 * rcu_dereference_protected() call used to read that pointer.  The old
 434 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
 435 */
 436#define rcu_replace_pointer(rcu_ptr, ptr, c)                            \
 437({                                                                      \
 438        typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));  \
 439        rcu_assign_pointer((rcu_ptr), (ptr));                           \
 440        __tmp;                                                          \
 441})
 442
 443/**
 444 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
 445 * @p: The pointer to read
 446 *
 447 * Return the value of the specified RCU-protected pointer, but omit the
 448 * lockdep checks for being in an RCU read-side critical section.  This is
 449 * useful when the value of this pointer is accessed, but the pointer is
 450 * not dereferenced, for example, when testing an RCU-protected pointer
 451 * against NULL.  Although rcu_access_pointer() may also be used in cases
 452 * where update-side locks prevent the value of the pointer from changing,
 453 * you should instead use rcu_dereference_protected() for this use case.
 454 *
 455 * It is also permissible to use rcu_access_pointer() when read-side
 456 * access to the pointer was removed at least one grace period ago, as
 457 * is the case in the context of the RCU callback that is freeing up
 458 * the data, or after a synchronize_rcu() returns.  This can be useful
 459 * when tearing down multi-linked structures after a grace period
 460 * has elapsed.
 461 */
 462#define rcu_access_pointer(p) __rcu_access_pointer((p), __rcu)
 463
 464/**
 465 * rcu_dereference_check() - rcu_dereference with debug checking
 466 * @p: The pointer to read, prior to dereferencing
 467 * @c: The conditions under which the dereference will take place
 468 *
 469 * Do an rcu_dereference(), but check that the conditions under which the
 470 * dereference will take place are correct.  Typically the conditions
 471 * indicate the various locking conditions that should be held at that
 472 * point.  The check should return true if the conditions are satisfied.
 473 * An implicit check for being in an RCU read-side critical section
 474 * (rcu_read_lock()) is included.
 475 *
 476 * For example:
 477 *
 478 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
 479 *
 480 * could be used to indicate to lockdep that foo->bar may only be dereferenced
 481 * if either rcu_read_lock() is held, or that the lock required to replace
 482 * the bar struct at foo->bar is held.
 483 *
 484 * Note that the list of conditions may also include indications of when a lock
 485 * need not be held, for example during initialisation or destruction of the
 486 * target struct:
 487 *
 488 *      bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
 489 *                                            atomic_read(&foo->usage) == 0);
 490 *
 491 * Inserts memory barriers on architectures that require them
 492 * (currently only the Alpha), prevents the compiler from refetching
 493 * (and from merging fetches), and, more importantly, documents exactly
 494 * which pointers are protected by RCU and checks that the pointer is
 495 * annotated as __rcu.
 496 */
 497#define rcu_dereference_check(p, c) \
 498        __rcu_dereference_check((p), (c) || rcu_read_lock_held(), __rcu)
 499
 500/**
 501 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
 502 * @p: The pointer to read, prior to dereferencing
 503 * @c: The conditions under which the dereference will take place
 504 *
 505 * This is the RCU-bh counterpart to rcu_dereference_check().
 506 */
 507#define rcu_dereference_bh_check(p, c) \
 508        __rcu_dereference_check((p), (c) || rcu_read_lock_bh_held(), __rcu)
 509
 510/**
 511 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
 512 * @p: The pointer to read, prior to dereferencing
 513 * @c: The conditions under which the dereference will take place
 514 *
 515 * This is the RCU-sched counterpart to rcu_dereference_check().
 516 */
 517#define rcu_dereference_sched_check(p, c) \
 518        __rcu_dereference_check((p), (c) || rcu_read_lock_sched_held(), \
 519                                __rcu)
 520
 521/*
 522 * The tracing infrastructure traces RCU (we want that), but unfortunately
 523 * some of the RCU checks causes tracing to lock up the system.
 524 *
 525 * The no-tracing version of rcu_dereference_raw() must not call
 526 * rcu_read_lock_held().
 527 */
 528#define rcu_dereference_raw_check(p) __rcu_dereference_check((p), 1, __rcu)
 529
 530/**
 531 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
 532 * @p: The pointer to read, prior to dereferencing
 533 * @c: The conditions under which the dereference will take place
 534 *
 535 * Return the value of the specified RCU-protected pointer, but omit
 536 * the READ_ONCE().  This is useful in cases where update-side locks
 537 * prevent the value of the pointer from changing.  Please note that this
 538 * primitive does *not* prevent the compiler from repeating this reference
 539 * or combining it with other references, so it should not be used without
 540 * protection of appropriate locks.
 541 *
 542 * This function is only for update-side use.  Using this function
 543 * when protected only by rcu_read_lock() will result in infrequent
 544 * but very ugly failures.
 545 */
 546#define rcu_dereference_protected(p, c) \
 547        __rcu_dereference_protected((p), (c), __rcu)
 548
 549
 550/**
 551 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
 552 * @p: The pointer to read, prior to dereferencing
 553 *
 554 * This is a simple wrapper around rcu_dereference_check().
 555 */
 556#define rcu_dereference(p) rcu_dereference_check(p, 0)
 557
 558/**
 559 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
 560 * @p: The pointer to read, prior to dereferencing
 561 *
 562 * Makes rcu_dereference_check() do the dirty work.
 563 */
 564#define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
 565
 566/**
 567 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
 568 * @p: The pointer to read, prior to dereferencing
 569 *
 570 * Makes rcu_dereference_check() do the dirty work.
 571 */
 572#define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
 573
 574/**
 575 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
 576 * @p: The pointer to hand off
 577 *
 578 * This is simply an identity function, but it documents where a pointer
 579 * is handed off from RCU to some other synchronization mechanism, for
 580 * example, reference counting or locking.  In C11, it would map to
 581 * kill_dependency().  It could be used as follows::
 582 *
 583 *      rcu_read_lock();
 584 *      p = rcu_dereference(gp);
 585 *      long_lived = is_long_lived(p);
 586 *      if (long_lived) {
 587 *              if (!atomic_inc_not_zero(p->refcnt))
 588 *                      long_lived = false;
 589 *              else
 590 *                      p = rcu_pointer_handoff(p);
 591 *      }
 592 *      rcu_read_unlock();
 593 */
 594#define rcu_pointer_handoff(p) (p)
 595
 596/**
 597 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
 598 *
 599 * When synchronize_rcu() is invoked on one CPU while other CPUs
 600 * are within RCU read-side critical sections, then the
 601 * synchronize_rcu() is guaranteed to block until after all the other
 602 * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
 603 * on one CPU while other CPUs are within RCU read-side critical
 604 * sections, invocation of the corresponding RCU callback is deferred
 605 * until after the all the other CPUs exit their critical sections.
 606 *
 607 * Note, however, that RCU callbacks are permitted to run concurrently
 608 * with new RCU read-side critical sections.  One way that this can happen
 609 * is via the following sequence of events: (1) CPU 0 enters an RCU
 610 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
 611 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
 612 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
 613 * callback is invoked.  This is legal, because the RCU read-side critical
 614 * section that was running concurrently with the call_rcu() (and which
 615 * therefore might be referencing something that the corresponding RCU
 616 * callback would free up) has completed before the corresponding
 617 * RCU callback is invoked.
 618 *
 619 * RCU read-side critical sections may be nested.  Any deferred actions
 620 * will be deferred until the outermost RCU read-side critical section
 621 * completes.
 622 *
 623 * You can avoid reading and understanding the next paragraph by
 624 * following this rule: don't put anything in an rcu_read_lock() RCU
 625 * read-side critical section that would block in a !PREEMPTION kernel.
 626 * But if you want the full story, read on!
 627 *
 628 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
 629 * it is illegal to block while in an RCU read-side critical section.
 630 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
 631 * kernel builds, RCU read-side critical sections may be preempted,
 632 * but explicit blocking is illegal.  Finally, in preemptible RCU
 633 * implementations in real-time (with -rt patchset) kernel builds, RCU
 634 * read-side critical sections may be preempted and they may also block, but
 635 * only when acquiring spinlocks that are subject to priority inheritance.
 636 */
 637static __always_inline void rcu_read_lock(void)
 638{
 639        __rcu_read_lock();
 640        __acquire(RCU);
 641        rcu_lock_acquire(&rcu_lock_map);
 642        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 643                         "rcu_read_lock() used illegally while idle");
 644}
 645
 646/*
 647 * So where is rcu_write_lock()?  It does not exist, as there is no
 648 * way for writers to lock out RCU readers.  This is a feature, not
 649 * a bug -- this property is what provides RCU's performance benefits.
 650 * Of course, writers must coordinate with each other.  The normal
 651 * spinlock primitives work well for this, but any other technique may be
 652 * used as well.  RCU does not care how the writers keep out of each
 653 * others' way, as long as they do so.
 654 */
 655
 656/**
 657 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
 658 *
 659 * In most situations, rcu_read_unlock() is immune from deadlock.
 660 * However, in kernels built with CONFIG_RCU_BOOST, rcu_read_unlock()
 661 * is responsible for deboosting, which it does via rt_mutex_unlock().
 662 * Unfortunately, this function acquires the scheduler's runqueue and
 663 * priority-inheritance spinlocks.  This means that deadlock could result
 664 * if the caller of rcu_read_unlock() already holds one of these locks or
 665 * any lock that is ever acquired while holding them.
 666 *
 667 * That said, RCU readers are never priority boosted unless they were
 668 * preempted.  Therefore, one way to avoid deadlock is to make sure
 669 * that preemption never happens within any RCU read-side critical
 670 * section whose outermost rcu_read_unlock() is called with one of
 671 * rt_mutex_unlock()'s locks held.  Such preemption can be avoided in
 672 * a number of ways, for example, by invoking preempt_disable() before
 673 * critical section's outermost rcu_read_lock().
 674 *
 675 * Given that the set of locks acquired by rt_mutex_unlock() might change
 676 * at any time, a somewhat more future-proofed approach is to make sure
 677 * that that preemption never happens within any RCU read-side critical
 678 * section whose outermost rcu_read_unlock() is called with irqs disabled.
 679 * This approach relies on the fact that rt_mutex_unlock() currently only
 680 * acquires irq-disabled locks.
 681 *
 682 * The second of these two approaches is best in most situations,
 683 * however, the first approach can also be useful, at least to those
 684 * developers willing to keep abreast of the set of locks acquired by
 685 * rt_mutex_unlock().
 686 *
 687 * See rcu_read_lock() for more information.
 688 */
 689static inline void rcu_read_unlock(void)
 690{
 691        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 692                         "rcu_read_unlock() used illegally while idle");
 693        __release(RCU);
 694        __rcu_read_unlock();
 695        rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
 696}
 697
 698/**
 699 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
 700 *
 701 * This is equivalent of rcu_read_lock(), but also disables softirqs.
 702 * Note that anything else that disables softirqs can also serve as
 703 * an RCU read-side critical section.
 704 *
 705 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
 706 * must occur in the same context, for example, it is illegal to invoke
 707 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
 708 * was invoked from some other task.
 709 */
 710static inline void rcu_read_lock_bh(void)
 711{
 712        local_bh_disable();
 713        __acquire(RCU_BH);
 714        rcu_lock_acquire(&rcu_bh_lock_map);
 715        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 716                         "rcu_read_lock_bh() used illegally while idle");
 717}
 718
 719/**
 720 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
 721 *
 722 * See rcu_read_lock_bh() for more information.
 723 */
 724static inline void rcu_read_unlock_bh(void)
 725{
 726        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 727                         "rcu_read_unlock_bh() used illegally while idle");
 728        rcu_lock_release(&rcu_bh_lock_map);
 729        __release(RCU_BH);
 730        local_bh_enable();
 731}
 732
 733/**
 734 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
 735 *
 736 * This is equivalent of rcu_read_lock(), but disables preemption.
 737 * Read-side critical sections can also be introduced by anything else
 738 * that disables preemption, including local_irq_disable() and friends.
 739 *
 740 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
 741 * must occur in the same context, for example, it is illegal to invoke
 742 * rcu_read_unlock_sched() from process context if the matching
 743 * rcu_read_lock_sched() was invoked from an NMI handler.
 744 */
 745static inline void rcu_read_lock_sched(void)
 746{
 747        preempt_disable();
 748        __acquire(RCU_SCHED);
 749        rcu_lock_acquire(&rcu_sched_lock_map);
 750        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 751                         "rcu_read_lock_sched() used illegally while idle");
 752}
 753
 754/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 755static inline notrace void rcu_read_lock_sched_notrace(void)
 756{
 757        preempt_disable_notrace();
 758        __acquire(RCU_SCHED);
 759}
 760
 761/**
 762 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
 763 *
 764 * See rcu_read_lock_sched() for more information.
 765 */
 766static inline void rcu_read_unlock_sched(void)
 767{
 768        RCU_LOCKDEP_WARN(!rcu_is_watching(),
 769                         "rcu_read_unlock_sched() used illegally while idle");
 770        rcu_lock_release(&rcu_sched_lock_map);
 771        __release(RCU_SCHED);
 772        preempt_enable();
 773}
 774
 775/* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
 776static inline notrace void rcu_read_unlock_sched_notrace(void)
 777{
 778        __release(RCU_SCHED);
 779        preempt_enable_notrace();
 780}
 781
 782/**
 783 * RCU_INIT_POINTER() - initialize an RCU protected pointer
 784 * @p: The pointer to be initialized.
 785 * @v: The value to initialized the pointer to.
 786 *
 787 * Initialize an RCU-protected pointer in special cases where readers
 788 * do not need ordering constraints on the CPU or the compiler.  These
 789 * special cases are:
 790 *
 791 * 1.   This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
 792 * 2.   The caller has taken whatever steps are required to prevent
 793 *      RCU readers from concurrently accessing this pointer *or*
 794 * 3.   The referenced data structure has already been exposed to
 795 *      readers either at compile time or via rcu_assign_pointer() *and*
 796 *
 797 *      a.      You have not made *any* reader-visible changes to
 798 *              this structure since then *or*
 799 *      b.      It is OK for readers accessing this structure from its
 800 *              new location to see the old state of the structure.  (For
 801 *              example, the changes were to statistical counters or to
 802 *              other state where exact synchronization is not required.)
 803 *
 804 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
 805 * result in impossible-to-diagnose memory corruption.  As in the structures
 806 * will look OK in crash dumps, but any concurrent RCU readers might
 807 * see pre-initialized values of the referenced data structure.  So
 808 * please be very careful how you use RCU_INIT_POINTER()!!!
 809 *
 810 * If you are creating an RCU-protected linked structure that is accessed
 811 * by a single external-to-structure RCU-protected pointer, then you may
 812 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
 813 * pointers, but you must use rcu_assign_pointer() to initialize the
 814 * external-to-structure pointer *after* you have completely initialized
 815 * the reader-accessible portions of the linked structure.
 816 *
 817 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
 818 * ordering guarantees for either the CPU or the compiler.
 819 */
 820#define RCU_INIT_POINTER(p, v) \
 821        do { \
 822                rcu_check_sparse(p, __rcu); \
 823                WRITE_ONCE(p, RCU_INITIALIZER(v)); \
 824        } while (0)
 825
 826/**
 827 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
 828 * @p: The pointer to be initialized.
 829 * @v: The value to initialized the pointer to.
 830 *
 831 * GCC-style initialization for an RCU-protected pointer in a structure field.
 832 */
 833#define RCU_POINTER_INITIALIZER(p, v) \
 834                .p = RCU_INITIALIZER(v)
 835
 836/*
 837 * Does the specified offset indicate that the corresponding rcu_head
 838 * structure can be handled by kvfree_rcu()?
 839 */
 840#define __is_kvfree_rcu_offset(offset) ((offset) < 4096)
 841
 842/*
 843 * Helper macro for kfree_rcu() to prevent argument-expansion eyestrain.
 844 */
 845#define __kvfree_rcu(head, offset) \
 846        do { \
 847                BUILD_BUG_ON(!__is_kvfree_rcu_offset(offset)); \
 848                kvfree_call_rcu(head, (rcu_callback_t)(unsigned long)(offset)); \
 849        } while (0)
 850
 851/**
 852 * kfree_rcu() - kfree an object after a grace period.
 853 * @ptr:        pointer to kfree
 854 * @rhf:        the name of the struct rcu_head within the type of @ptr.
 855 *
 856 * Many rcu callbacks functions just call kfree() on the base structure.
 857 * These functions are trivial, but their size adds up, and furthermore
 858 * when they are used in a kernel module, that module must invoke the
 859 * high-latency rcu_barrier() function at module-unload time.
 860 *
 861 * The kfree_rcu() function handles this issue.  Rather than encoding a
 862 * function address in the embedded rcu_head structure, kfree_rcu() instead
 863 * encodes the offset of the rcu_head structure within the base structure.
 864 * Because the functions are not allowed in the low-order 4096 bytes of
 865 * kernel virtual memory, offsets up to 4095 bytes can be accommodated.
 866 * If the offset is larger than 4095 bytes, a compile-time error will
 867 * be generated in __kvfree_rcu(). If this error is triggered, you can
 868 * either fall back to use of call_rcu() or rearrange the structure to
 869 * position the rcu_head structure into the first 4096 bytes.
 870 *
 871 * Note that the allowable offset might decrease in the future, for example,
 872 * to allow something like kmem_cache_free_rcu().
 873 *
 874 * The BUILD_BUG_ON check must not involve any function calls, hence the
 875 * checks are done in macros here.
 876 */
 877#define kfree_rcu(ptr, rhf)                                             \
 878do {                                                                    \
 879        typeof (ptr) ___p = (ptr);                                      \
 880                                                                        \
 881        if (___p)                                                       \
 882                __kvfree_rcu(&((___p)->rhf), offsetof(typeof(*(ptr)), rhf)); \
 883} while (0)
 884
 885/**
 886 * kvfree_rcu() - kvfree an object after a grace period.
 887 *
 888 * This macro consists of one or two arguments and it is
 889 * based on whether an object is head-less or not. If it
 890 * has a head then a semantic stays the same as it used
 891 * to be before:
 892 *
 893 *     kvfree_rcu(ptr, rhf);
 894 *
 895 * where @ptr is a pointer to kvfree(), @rhf is the name
 896 * of the rcu_head structure within the type of @ptr.
 897 *
 898 * When it comes to head-less variant, only one argument
 899 * is passed and that is just a pointer which has to be
 900 * freed after a grace period. Therefore the semantic is
 901 *
 902 *     kvfree_rcu(ptr);
 903 *
 904 * where @ptr is a pointer to kvfree().
 905 *
 906 * Please note, head-less way of freeing is permitted to
 907 * use from a context that has to follow might_sleep()
 908 * annotation. Otherwise, please switch and embed the
 909 * rcu_head structure within the type of @ptr.
 910 */
 911#define kvfree_rcu(...) KVFREE_GET_MACRO(__VA_ARGS__,           \
 912        kvfree_rcu_arg_2, kvfree_rcu_arg_1)(__VA_ARGS__)
 913
 914#define KVFREE_GET_MACRO(_1, _2, NAME, ...) NAME
 915#define kvfree_rcu_arg_2(ptr, rhf) kfree_rcu(ptr, rhf)
 916#define kvfree_rcu_arg_1(ptr)                                   \
 917do {                                                            \
 918        typeof(ptr) ___p = (ptr);                               \
 919                                                                \
 920        if (___p)                                               \
 921                kvfree_call_rcu(NULL, (rcu_callback_t) (___p)); \
 922} while (0)
 923
 924/*
 925 * Place this after a lock-acquisition primitive to guarantee that
 926 * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
 927 * if the UNLOCK and LOCK are executed by the same CPU or if the
 928 * UNLOCK and LOCK operate on the same lock variable.
 929 */
 930#ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
 931#define smp_mb__after_unlock_lock()     smp_mb()  /* Full ordering for lock. */
 932#else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 933#define smp_mb__after_unlock_lock()     do { } while (0)
 934#endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
 935
 936
 937/* Has the specified rcu_head structure been handed to call_rcu()? */
 938
 939/**
 940 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
 941 * @rhp: The rcu_head structure to initialize.
 942 *
 943 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
 944 * given rcu_head structure has already been passed to call_rcu(), then
 945 * you must also invoke this rcu_head_init() function on it just after
 946 * allocating that structure.  Calls to this function must not race with
 947 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
 948 */
 949static inline void rcu_head_init(struct rcu_head *rhp)
 950{
 951        rhp->func = (rcu_callback_t)~0L;
 952}
 953
 954/**
 955 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
 956 * @rhp: The rcu_head structure to test.
 957 * @f: The function passed to call_rcu() along with @rhp.
 958 *
 959 * Returns @true if the @rhp has been passed to call_rcu() with @func,
 960 * and @false otherwise.  Emits a warning in any other case, including
 961 * the case where @rhp has already been invoked after a grace period.
 962 * Calls to this function must not race with callback invocation.  One way
 963 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
 964 * in an RCU read-side critical section that includes a read-side fetch
 965 * of the pointer to the structure containing @rhp.
 966 */
 967static inline bool
 968rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
 969{
 970        rcu_callback_t func = READ_ONCE(rhp->func);
 971
 972        if (func == f)
 973                return true;
 974        WARN_ON_ONCE(func != (rcu_callback_t)~0L);
 975        return false;
 976}
 977
 978/* kernel/ksysfs.c definitions */
 979extern int rcu_expedited;
 980extern int rcu_normal;
 981
 982#endif /* __LINUX_RCUPDATE_H */
 983