linux/include/linux/sched.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_H
   3#define _LINUX_SCHED_H
   4
   5/*
   6 * Define 'struct task_struct' and provide the main scheduler
   7 * APIs (schedule(), wakeup variants, etc.)
   8 */
   9
  10#include <uapi/linux/sched.h>
  11
  12#include <asm/current.h>
  13
  14#include <linux/pid.h>
  15#include <linux/sem.h>
  16#include <linux/shm.h>
  17#include <linux/kcov.h>
  18#include <linux/mutex.h>
  19#include <linux/plist.h>
  20#include <linux/hrtimer.h>
  21#include <linux/irqflags.h>
  22#include <linux/seccomp.h>
  23#include <linux/nodemask.h>
  24#include <linux/rcupdate.h>
  25#include <linux/refcount.h>
  26#include <linux/resource.h>
  27#include <linux/latencytop.h>
  28#include <linux/sched/prio.h>
  29#include <linux/sched/types.h>
  30#include <linux/signal_types.h>
  31#include <linux/mm_types_task.h>
  32#include <linux/task_io_accounting.h>
  33#include <linux/posix-timers.h>
  34#include <linux/rseq.h>
  35#include <linux/seqlock.h>
  36#include <linux/kcsan.h>
  37
  38/* task_struct member predeclarations (sorted alphabetically): */
  39struct audit_context;
  40struct backing_dev_info;
  41struct bio_list;
  42struct blk_plug;
  43struct capture_control;
  44struct cfs_rq;
  45struct fs_struct;
  46struct futex_pi_state;
  47struct io_context;
  48struct mempolicy;
  49struct nameidata;
  50struct nsproxy;
  51struct perf_event_context;
  52struct pid_namespace;
  53struct pipe_inode_info;
  54struct rcu_node;
  55struct reclaim_state;
  56struct robust_list_head;
  57struct root_domain;
  58struct rq;
  59struct sched_attr;
  60struct sched_param;
  61struct seq_file;
  62struct sighand_struct;
  63struct signal_struct;
  64struct task_delay_info;
  65struct task_group;
  66struct io_uring_task;
  67
  68/*
  69 * Task state bitmask. NOTE! These bits are also
  70 * encoded in fs/proc/array.c: get_task_state().
  71 *
  72 * We have two separate sets of flags: task->state
  73 * is about runnability, while task->exit_state are
  74 * about the task exiting. Confusing, but this way
  75 * modifying one set can't modify the other one by
  76 * mistake.
  77 */
  78
  79/* Used in tsk->state: */
  80#define TASK_RUNNING                    0x0000
  81#define TASK_INTERRUPTIBLE              0x0001
  82#define TASK_UNINTERRUPTIBLE            0x0002
  83#define __TASK_STOPPED                  0x0004
  84#define __TASK_TRACED                   0x0008
  85/* Used in tsk->exit_state: */
  86#define EXIT_DEAD                       0x0010
  87#define EXIT_ZOMBIE                     0x0020
  88#define EXIT_TRACE                      (EXIT_ZOMBIE | EXIT_DEAD)
  89/* Used in tsk->state again: */
  90#define TASK_PARKED                     0x0040
  91#define TASK_DEAD                       0x0080
  92#define TASK_WAKEKILL                   0x0100
  93#define TASK_WAKING                     0x0200
  94#define TASK_NOLOAD                     0x0400
  95#define TASK_NEW                        0x0800
  96#define TASK_STATE_MAX                  0x1000
  97
  98/* Convenience macros for the sake of set_current_state: */
  99#define TASK_KILLABLE                   (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE)
 100#define TASK_STOPPED                    (TASK_WAKEKILL | __TASK_STOPPED)
 101#define TASK_TRACED                     (TASK_WAKEKILL | __TASK_TRACED)
 102
 103#define TASK_IDLE                       (TASK_UNINTERRUPTIBLE | TASK_NOLOAD)
 104
 105/* Convenience macros for the sake of wake_up(): */
 106#define TASK_NORMAL                     (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)
 107
 108/* get_task_state(): */
 109#define TASK_REPORT                     (TASK_RUNNING | TASK_INTERRUPTIBLE | \
 110                                         TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \
 111                                         __TASK_TRACED | EXIT_DEAD | EXIT_ZOMBIE | \
 112                                         TASK_PARKED)
 113
 114#define task_is_traced(task)            ((task->state & __TASK_TRACED) != 0)
 115
 116#define task_is_stopped(task)           ((task->state & __TASK_STOPPED) != 0)
 117
 118#define task_is_stopped_or_traced(task) ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0)
 119
 120#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
 121
 122/*
 123 * Special states are those that do not use the normal wait-loop pattern. See
 124 * the comment with set_special_state().
 125 */
 126#define is_special_task_state(state)                            \
 127        ((state) & (__TASK_STOPPED | __TASK_TRACED | TASK_PARKED | TASK_DEAD))
 128
 129#define __set_current_state(state_value)                        \
 130        do {                                                    \
 131                WARN_ON_ONCE(is_special_task_state(state_value));\
 132                current->task_state_change = _THIS_IP_;         \
 133                current->state = (state_value);                 \
 134        } while (0)
 135
 136#define set_current_state(state_value)                          \
 137        do {                                                    \
 138                WARN_ON_ONCE(is_special_task_state(state_value));\
 139                current->task_state_change = _THIS_IP_;         \
 140                smp_store_mb(current->state, (state_value));    \
 141        } while (0)
 142
 143#define set_special_state(state_value)                                  \
 144        do {                                                            \
 145                unsigned long flags; /* may shadow */                   \
 146                WARN_ON_ONCE(!is_special_task_state(state_value));      \
 147                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 148                current->task_state_change = _THIS_IP_;                 \
 149                current->state = (state_value);                         \
 150                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 151        } while (0)
 152#else
 153/*
 154 * set_current_state() includes a barrier so that the write of current->state
 155 * is correctly serialised wrt the caller's subsequent test of whether to
 156 * actually sleep:
 157 *
 158 *   for (;;) {
 159 *      set_current_state(TASK_UNINTERRUPTIBLE);
 160 *      if (CONDITION)
 161 *         break;
 162 *
 163 *      schedule();
 164 *   }
 165 *   __set_current_state(TASK_RUNNING);
 166 *
 167 * If the caller does not need such serialisation (because, for instance, the
 168 * CONDITION test and condition change and wakeup are under the same lock) then
 169 * use __set_current_state().
 170 *
 171 * The above is typically ordered against the wakeup, which does:
 172 *
 173 *   CONDITION = 1;
 174 *   wake_up_state(p, TASK_UNINTERRUPTIBLE);
 175 *
 176 * where wake_up_state()/try_to_wake_up() executes a full memory barrier before
 177 * accessing p->state.
 178 *
 179 * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is,
 180 * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a
 181 * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING).
 182 *
 183 * However, with slightly different timing the wakeup TASK_RUNNING store can
 184 * also collide with the TASK_UNINTERRUPTIBLE store. Losing that store is not
 185 * a problem either because that will result in one extra go around the loop
 186 * and our @cond test will save the day.
 187 *
 188 * Also see the comments of try_to_wake_up().
 189 */
 190#define __set_current_state(state_value)                                \
 191        current->state = (state_value)
 192
 193#define set_current_state(state_value)                                  \
 194        smp_store_mb(current->state, (state_value))
 195
 196/*
 197 * set_special_state() should be used for those states when the blocking task
 198 * can not use the regular condition based wait-loop. In that case we must
 199 * serialize against wakeups such that any possible in-flight TASK_RUNNING stores
 200 * will not collide with our state change.
 201 */
 202#define set_special_state(state_value)                                  \
 203        do {                                                            \
 204                unsigned long flags; /* may shadow */                   \
 205                raw_spin_lock_irqsave(&current->pi_lock, flags);        \
 206                current->state = (state_value);                         \
 207                raw_spin_unlock_irqrestore(&current->pi_lock, flags);   \
 208        } while (0)
 209
 210#endif
 211
 212/* Task command name length: */
 213#define TASK_COMM_LEN                   16
 214
 215extern void scheduler_tick(void);
 216
 217#define MAX_SCHEDULE_TIMEOUT            LONG_MAX
 218
 219extern long schedule_timeout(long timeout);
 220extern long schedule_timeout_interruptible(long timeout);
 221extern long schedule_timeout_killable(long timeout);
 222extern long schedule_timeout_uninterruptible(long timeout);
 223extern long schedule_timeout_idle(long timeout);
 224asmlinkage void schedule(void);
 225extern void schedule_preempt_disabled(void);
 226asmlinkage void preempt_schedule_irq(void);
 227
 228extern int __must_check io_schedule_prepare(void);
 229extern void io_schedule_finish(int token);
 230extern long io_schedule_timeout(long timeout);
 231extern void io_schedule(void);
 232
 233/**
 234 * struct prev_cputime - snapshot of system and user cputime
 235 * @utime: time spent in user mode
 236 * @stime: time spent in system mode
 237 * @lock: protects the above two fields
 238 *
 239 * Stores previous user/system time values such that we can guarantee
 240 * monotonicity.
 241 */
 242struct prev_cputime {
 243#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 244        u64                             utime;
 245        u64                             stime;
 246        raw_spinlock_t                  lock;
 247#endif
 248};
 249
 250enum vtime_state {
 251        /* Task is sleeping or running in a CPU with VTIME inactive: */
 252        VTIME_INACTIVE = 0,
 253        /* Task is idle */
 254        VTIME_IDLE,
 255        /* Task runs in kernelspace in a CPU with VTIME active: */
 256        VTIME_SYS,
 257        /* Task runs in userspace in a CPU with VTIME active: */
 258        VTIME_USER,
 259        /* Task runs as guests in a CPU with VTIME active: */
 260        VTIME_GUEST,
 261};
 262
 263struct vtime {
 264        seqcount_t              seqcount;
 265        unsigned long long      starttime;
 266        enum vtime_state        state;
 267        unsigned int            cpu;
 268        u64                     utime;
 269        u64                     stime;
 270        u64                     gtime;
 271};
 272
 273/*
 274 * Utilization clamp constraints.
 275 * @UCLAMP_MIN: Minimum utilization
 276 * @UCLAMP_MAX: Maximum utilization
 277 * @UCLAMP_CNT: Utilization clamp constraints count
 278 */
 279enum uclamp_id {
 280        UCLAMP_MIN = 0,
 281        UCLAMP_MAX,
 282        UCLAMP_CNT
 283};
 284
 285#ifdef CONFIG_SMP
 286extern struct root_domain def_root_domain;
 287extern struct mutex sched_domains_mutex;
 288#endif
 289
 290struct sched_info {
 291#ifdef CONFIG_SCHED_INFO
 292        /* Cumulative counters: */
 293
 294        /* # of times we have run on this CPU: */
 295        unsigned long                   pcount;
 296
 297        /* Time spent waiting on a runqueue: */
 298        unsigned long long              run_delay;
 299
 300        /* Timestamps: */
 301
 302        /* When did we last run on a CPU? */
 303        unsigned long long              last_arrival;
 304
 305        /* When were we last queued to run? */
 306        unsigned long long              last_queued;
 307
 308#endif /* CONFIG_SCHED_INFO */
 309};
 310
 311/*
 312 * Integer metrics need fixed point arithmetic, e.g., sched/fair
 313 * has a few: load, load_avg, util_avg, freq, and capacity.
 314 *
 315 * We define a basic fixed point arithmetic range, and then formalize
 316 * all these metrics based on that basic range.
 317 */
 318# define SCHED_FIXEDPOINT_SHIFT         10
 319# define SCHED_FIXEDPOINT_SCALE         (1L << SCHED_FIXEDPOINT_SHIFT)
 320
 321/* Increase resolution of cpu_capacity calculations */
 322# define SCHED_CAPACITY_SHIFT           SCHED_FIXEDPOINT_SHIFT
 323# define SCHED_CAPACITY_SCALE           (1L << SCHED_CAPACITY_SHIFT)
 324
 325struct load_weight {
 326        unsigned long                   weight;
 327        u32                             inv_weight;
 328};
 329
 330/**
 331 * struct util_est - Estimation utilization of FAIR tasks
 332 * @enqueued: instantaneous estimated utilization of a task/cpu
 333 * @ewma:     the Exponential Weighted Moving Average (EWMA)
 334 *            utilization of a task
 335 *
 336 * Support data structure to track an Exponential Weighted Moving Average
 337 * (EWMA) of a FAIR task's utilization. New samples are added to the moving
 338 * average each time a task completes an activation. Sample's weight is chosen
 339 * so that the EWMA will be relatively insensitive to transient changes to the
 340 * task's workload.
 341 *
 342 * The enqueued attribute has a slightly different meaning for tasks and cpus:
 343 * - task:   the task's util_avg at last task dequeue time
 344 * - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU
 345 * Thus, the util_est.enqueued of a task represents the contribution on the
 346 * estimated utilization of the CPU where that task is currently enqueued.
 347 *
 348 * Only for tasks we track a moving average of the past instantaneous
 349 * estimated utilization. This allows to absorb sporadic drops in utilization
 350 * of an otherwise almost periodic task.
 351 */
 352struct util_est {
 353        unsigned int                    enqueued;
 354        unsigned int                    ewma;
 355#define UTIL_EST_WEIGHT_SHIFT           2
 356} __attribute__((__aligned__(sizeof(u64))));
 357
 358/*
 359 * The load/runnable/util_avg accumulates an infinite geometric series
 360 * (see __update_load_avg_cfs_rq() in kernel/sched/pelt.c).
 361 *
 362 * [load_avg definition]
 363 *
 364 *   load_avg = runnable% * scale_load_down(load)
 365 *
 366 * [runnable_avg definition]
 367 *
 368 *   runnable_avg = runnable% * SCHED_CAPACITY_SCALE
 369 *
 370 * [util_avg definition]
 371 *
 372 *   util_avg = running% * SCHED_CAPACITY_SCALE
 373 *
 374 * where runnable% is the time ratio that a sched_entity is runnable and
 375 * running% the time ratio that a sched_entity is running.
 376 *
 377 * For cfs_rq, they are the aggregated values of all runnable and blocked
 378 * sched_entities.
 379 *
 380 * The load/runnable/util_avg doesn't directly factor frequency scaling and CPU
 381 * capacity scaling. The scaling is done through the rq_clock_pelt that is used
 382 * for computing those signals (see update_rq_clock_pelt())
 383 *
 384 * N.B., the above ratios (runnable% and running%) themselves are in the
 385 * range of [0, 1]. To do fixed point arithmetics, we therefore scale them
 386 * to as large a range as necessary. This is for example reflected by
 387 * util_avg's SCHED_CAPACITY_SCALE.
 388 *
 389 * [Overflow issue]
 390 *
 391 * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities
 392 * with the highest load (=88761), always runnable on a single cfs_rq,
 393 * and should not overflow as the number already hits PID_MAX_LIMIT.
 394 *
 395 * For all other cases (including 32-bit kernels), struct load_weight's
 396 * weight will overflow first before we do, because:
 397 *
 398 *    Max(load_avg) <= Max(load.weight)
 399 *
 400 * Then it is the load_weight's responsibility to consider overflow
 401 * issues.
 402 */
 403struct sched_avg {
 404        u64                             last_update_time;
 405        u64                             load_sum;
 406        u64                             runnable_sum;
 407        u32                             util_sum;
 408        u32                             period_contrib;
 409        unsigned long                   load_avg;
 410        unsigned long                   runnable_avg;
 411        unsigned long                   util_avg;
 412        struct util_est                 util_est;
 413} ____cacheline_aligned;
 414
 415struct sched_statistics {
 416#ifdef CONFIG_SCHEDSTATS
 417        u64                             wait_start;
 418        u64                             wait_max;
 419        u64                             wait_count;
 420        u64                             wait_sum;
 421        u64                             iowait_count;
 422        u64                             iowait_sum;
 423
 424        u64                             sleep_start;
 425        u64                             sleep_max;
 426        s64                             sum_sleep_runtime;
 427
 428        u64                             block_start;
 429        u64                             block_max;
 430        u64                             exec_max;
 431        u64                             slice_max;
 432
 433        u64                             nr_migrations_cold;
 434        u64                             nr_failed_migrations_affine;
 435        u64                             nr_failed_migrations_running;
 436        u64                             nr_failed_migrations_hot;
 437        u64                             nr_forced_migrations;
 438
 439        u64                             nr_wakeups;
 440        u64                             nr_wakeups_sync;
 441        u64                             nr_wakeups_migrate;
 442        u64                             nr_wakeups_local;
 443        u64                             nr_wakeups_remote;
 444        u64                             nr_wakeups_affine;
 445        u64                             nr_wakeups_affine_attempts;
 446        u64                             nr_wakeups_passive;
 447        u64                             nr_wakeups_idle;
 448#endif
 449};
 450
 451struct sched_entity {
 452        /* For load-balancing: */
 453        struct load_weight              load;
 454        struct rb_node                  run_node;
 455        struct list_head                group_node;
 456        unsigned int                    on_rq;
 457
 458        u64                             exec_start;
 459        u64                             sum_exec_runtime;
 460        u64                             vruntime;
 461        u64                             prev_sum_exec_runtime;
 462
 463        u64                             nr_migrations;
 464
 465        struct sched_statistics         statistics;
 466
 467#ifdef CONFIG_FAIR_GROUP_SCHED
 468        int                             depth;
 469        struct sched_entity             *parent;
 470        /* rq on which this entity is (to be) queued: */
 471        struct cfs_rq                   *cfs_rq;
 472        /* rq "owned" by this entity/group: */
 473        struct cfs_rq                   *my_q;
 474        /* cached value of my_q->h_nr_running */
 475        unsigned long                   runnable_weight;
 476#endif
 477
 478#ifdef CONFIG_SMP
 479        /*
 480         * Per entity load average tracking.
 481         *
 482         * Put into separate cache line so it does not
 483         * collide with read-mostly values above.
 484         */
 485        struct sched_avg                avg;
 486#endif
 487};
 488
 489struct sched_rt_entity {
 490        struct list_head                run_list;
 491        unsigned long                   timeout;
 492        unsigned long                   watchdog_stamp;
 493        unsigned int                    time_slice;
 494        unsigned short                  on_rq;
 495        unsigned short                  on_list;
 496
 497        struct sched_rt_entity          *back;
 498#ifdef CONFIG_RT_GROUP_SCHED
 499        struct sched_rt_entity          *parent;
 500        /* rq on which this entity is (to be) queued: */
 501        struct rt_rq                    *rt_rq;
 502        /* rq "owned" by this entity/group: */
 503        struct rt_rq                    *my_q;
 504#endif
 505} __randomize_layout;
 506
 507struct sched_dl_entity {
 508        struct rb_node                  rb_node;
 509
 510        /*
 511         * Original scheduling parameters. Copied here from sched_attr
 512         * during sched_setattr(), they will remain the same until
 513         * the next sched_setattr().
 514         */
 515        u64                             dl_runtime;     /* Maximum runtime for each instance    */
 516        u64                             dl_deadline;    /* Relative deadline of each instance   */
 517        u64                             dl_period;      /* Separation of two instances (period) */
 518        u64                             dl_bw;          /* dl_runtime / dl_period               */
 519        u64                             dl_density;     /* dl_runtime / dl_deadline             */
 520
 521        /*
 522         * Actual scheduling parameters. Initialized with the values above,
 523         * they are continuously updated during task execution. Note that
 524         * the remaining runtime could be < 0 in case we are in overrun.
 525         */
 526        s64                             runtime;        /* Remaining runtime for this instance  */
 527        u64                             deadline;       /* Absolute deadline for this instance  */
 528        unsigned int                    flags;          /* Specifying the scheduler behaviour   */
 529
 530        /*
 531         * Some bool flags:
 532         *
 533         * @dl_throttled tells if we exhausted the runtime. If so, the
 534         * task has to wait for a replenishment to be performed at the
 535         * next firing of dl_timer.
 536         *
 537         * @dl_boosted tells if we are boosted due to DI. If so we are
 538         * outside bandwidth enforcement mechanism (but only until we
 539         * exit the critical section);
 540         *
 541         * @dl_yielded tells if task gave up the CPU before consuming
 542         * all its available runtime during the last job.
 543         *
 544         * @dl_non_contending tells if the task is inactive while still
 545         * contributing to the active utilization. In other words, it
 546         * indicates if the inactive timer has been armed and its handler
 547         * has not been executed yet. This flag is useful to avoid race
 548         * conditions between the inactive timer handler and the wakeup
 549         * code.
 550         *
 551         * @dl_overrun tells if the task asked to be informed about runtime
 552         * overruns.
 553         */
 554        unsigned int                    dl_throttled      : 1;
 555        unsigned int                    dl_yielded        : 1;
 556        unsigned int                    dl_non_contending : 1;
 557        unsigned int                    dl_overrun        : 1;
 558
 559        /*
 560         * Bandwidth enforcement timer. Each -deadline task has its
 561         * own bandwidth to be enforced, thus we need one timer per task.
 562         */
 563        struct hrtimer                  dl_timer;
 564
 565        /*
 566         * Inactive timer, responsible for decreasing the active utilization
 567         * at the "0-lag time". When a -deadline task blocks, it contributes
 568         * to GRUB's active utilization until the "0-lag time", hence a
 569         * timer is needed to decrease the active utilization at the correct
 570         * time.
 571         */
 572        struct hrtimer inactive_timer;
 573
 574#ifdef CONFIG_RT_MUTEXES
 575        /*
 576         * Priority Inheritance. When a DEADLINE scheduling entity is boosted
 577         * pi_se points to the donor, otherwise points to the dl_se it belongs
 578         * to (the original one/itself).
 579         */
 580        struct sched_dl_entity *pi_se;
 581#endif
 582};
 583
 584#ifdef CONFIG_UCLAMP_TASK
 585/* Number of utilization clamp buckets (shorter alias) */
 586#define UCLAMP_BUCKETS CONFIG_UCLAMP_BUCKETS_COUNT
 587
 588/*
 589 * Utilization clamp for a scheduling entity
 590 * @value:              clamp value "assigned" to a se
 591 * @bucket_id:          bucket index corresponding to the "assigned" value
 592 * @active:             the se is currently refcounted in a rq's bucket
 593 * @user_defined:       the requested clamp value comes from user-space
 594 *
 595 * The bucket_id is the index of the clamp bucket matching the clamp value
 596 * which is pre-computed and stored to avoid expensive integer divisions from
 597 * the fast path.
 598 *
 599 * The active bit is set whenever a task has got an "effective" value assigned,
 600 * which can be different from the clamp value "requested" from user-space.
 601 * This allows to know a task is refcounted in the rq's bucket corresponding
 602 * to the "effective" bucket_id.
 603 *
 604 * The user_defined bit is set whenever a task has got a task-specific clamp
 605 * value requested from userspace, i.e. the system defaults apply to this task
 606 * just as a restriction. This allows to relax default clamps when a less
 607 * restrictive task-specific value has been requested, thus allowing to
 608 * implement a "nice" semantic. For example, a task running with a 20%
 609 * default boost can still drop its own boosting to 0%.
 610 */
 611struct uclamp_se {
 612        unsigned int value              : bits_per(SCHED_CAPACITY_SCALE);
 613        unsigned int bucket_id          : bits_per(UCLAMP_BUCKETS);
 614        unsigned int active             : 1;
 615        unsigned int user_defined       : 1;
 616};
 617#endif /* CONFIG_UCLAMP_TASK */
 618
 619union rcu_special {
 620        struct {
 621                u8                      blocked;
 622                u8                      need_qs;
 623                u8                      exp_hint; /* Hint for performance. */
 624                u8                      need_mb; /* Readers need smp_mb(). */
 625        } b; /* Bits. */
 626        u32 s; /* Set of bits. */
 627};
 628
 629enum perf_event_task_context {
 630        perf_invalid_context = -1,
 631        perf_hw_context = 0,
 632        perf_sw_context,
 633        perf_nr_task_contexts,
 634};
 635
 636struct wake_q_node {
 637        struct wake_q_node *next;
 638};
 639
 640struct task_struct {
 641#ifdef CONFIG_THREAD_INFO_IN_TASK
 642        /*
 643         * For reasons of header soup (see current_thread_info()), this
 644         * must be the first element of task_struct.
 645         */
 646        struct thread_info              thread_info;
 647#endif
 648        /* -1 unrunnable, 0 runnable, >0 stopped: */
 649        volatile long                   state;
 650
 651        /*
 652         * This begins the randomizable portion of task_struct. Only
 653         * scheduling-critical items should be added above here.
 654         */
 655        randomized_struct_fields_start
 656
 657        void                            *stack;
 658        refcount_t                      usage;
 659        /* Per task flags (PF_*), defined further below: */
 660        unsigned int                    flags;
 661        unsigned int                    ptrace;
 662
 663#ifdef CONFIG_SMP
 664        int                             on_cpu;
 665        struct __call_single_node       wake_entry;
 666#ifdef CONFIG_THREAD_INFO_IN_TASK
 667        /* Current CPU: */
 668        unsigned int                    cpu;
 669#endif
 670        unsigned int                    wakee_flips;
 671        unsigned long                   wakee_flip_decay_ts;
 672        struct task_struct              *last_wakee;
 673
 674        /*
 675         * recent_used_cpu is initially set as the last CPU used by a task
 676         * that wakes affine another task. Waker/wakee relationships can
 677         * push tasks around a CPU where each wakeup moves to the next one.
 678         * Tracking a recently used CPU allows a quick search for a recently
 679         * used CPU that may be idle.
 680         */
 681        int                             recent_used_cpu;
 682        int                             wake_cpu;
 683#endif
 684        int                             on_rq;
 685
 686        int                             prio;
 687        int                             static_prio;
 688        int                             normal_prio;
 689        unsigned int                    rt_priority;
 690
 691        const struct sched_class        *sched_class;
 692        struct sched_entity             se;
 693        struct sched_rt_entity          rt;
 694#ifdef CONFIG_CGROUP_SCHED
 695        struct task_group               *sched_task_group;
 696#endif
 697        struct sched_dl_entity          dl;
 698
 699#ifdef CONFIG_UCLAMP_TASK
 700        /*
 701         * Clamp values requested for a scheduling entity.
 702         * Must be updated with task_rq_lock() held.
 703         */
 704        struct uclamp_se                uclamp_req[UCLAMP_CNT];
 705        /*
 706         * Effective clamp values used for a scheduling entity.
 707         * Must be updated with task_rq_lock() held.
 708         */
 709        struct uclamp_se                uclamp[UCLAMP_CNT];
 710#endif
 711
 712#ifdef CONFIG_PREEMPT_NOTIFIERS
 713        /* List of struct preempt_notifier: */
 714        struct hlist_head               preempt_notifiers;
 715#endif
 716
 717#ifdef CONFIG_BLK_DEV_IO_TRACE
 718        unsigned int                    btrace_seq;
 719#endif
 720
 721        unsigned int                    policy;
 722        int                             nr_cpus_allowed;
 723        const cpumask_t                 *cpus_ptr;
 724        cpumask_t                       cpus_mask;
 725
 726#ifdef CONFIG_PREEMPT_RCU
 727        int                             rcu_read_lock_nesting;
 728        union rcu_special               rcu_read_unlock_special;
 729        struct list_head                rcu_node_entry;
 730        struct rcu_node                 *rcu_blocked_node;
 731#endif /* #ifdef CONFIG_PREEMPT_RCU */
 732
 733#ifdef CONFIG_TASKS_RCU
 734        unsigned long                   rcu_tasks_nvcsw;
 735        u8                              rcu_tasks_holdout;
 736        u8                              rcu_tasks_idx;
 737        int                             rcu_tasks_idle_cpu;
 738        struct list_head                rcu_tasks_holdout_list;
 739#endif /* #ifdef CONFIG_TASKS_RCU */
 740
 741#ifdef CONFIG_TASKS_TRACE_RCU
 742        int                             trc_reader_nesting;
 743        int                             trc_ipi_to_cpu;
 744        union rcu_special               trc_reader_special;
 745        bool                            trc_reader_checked;
 746        struct list_head                trc_holdout_list;
 747#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
 748
 749        struct sched_info               sched_info;
 750
 751        struct list_head                tasks;
 752#ifdef CONFIG_SMP
 753        struct plist_node               pushable_tasks;
 754        struct rb_node                  pushable_dl_tasks;
 755#endif
 756
 757        struct mm_struct                *mm;
 758        struct mm_struct                *active_mm;
 759
 760        /* Per-thread vma caching: */
 761        struct vmacache                 vmacache;
 762
 763#ifdef SPLIT_RSS_COUNTING
 764        struct task_rss_stat            rss_stat;
 765#endif
 766        int                             exit_state;
 767        int                             exit_code;
 768        int                             exit_signal;
 769        /* The signal sent when the parent dies: */
 770        int                             pdeath_signal;
 771        /* JOBCTL_*, siglock protected: */
 772        unsigned long                   jobctl;
 773
 774        /* Used for emulating ABI behavior of previous Linux versions: */
 775        unsigned int                    personality;
 776
 777        /* Scheduler bits, serialized by scheduler locks: */
 778        unsigned                        sched_reset_on_fork:1;
 779        unsigned                        sched_contributes_to_load:1;
 780        unsigned                        sched_migrated:1;
 781#ifdef CONFIG_PSI
 782        unsigned                        sched_psi_wake_requeue:1;
 783#endif
 784
 785        /* Force alignment to the next boundary: */
 786        unsigned                        :0;
 787
 788        /* Unserialized, strictly 'current' */
 789
 790        /*
 791         * This field must not be in the scheduler word above due to wakelist
 792         * queueing no longer being serialized by p->on_cpu. However:
 793         *
 794         * p->XXX = X;                  ttwu()
 795         * schedule()                     if (p->on_rq && ..) // false
 796         *   smp_mb__after_spinlock();    if (smp_load_acquire(&p->on_cpu) && //true
 797         *   deactivate_task()                ttwu_queue_wakelist())
 798         *     p->on_rq = 0;                    p->sched_remote_wakeup = Y;
 799         *
 800         * guarantees all stores of 'current' are visible before
 801         * ->sched_remote_wakeup gets used, so it can be in this word.
 802         */
 803        unsigned                        sched_remote_wakeup:1;
 804
 805        /* Bit to tell LSMs we're in execve(): */
 806        unsigned                        in_execve:1;
 807        unsigned                        in_iowait:1;
 808#ifndef TIF_RESTORE_SIGMASK
 809        unsigned                        restore_sigmask:1;
 810#endif
 811#ifdef CONFIG_MEMCG
 812        unsigned                        in_user_fault:1;
 813#endif
 814#ifdef CONFIG_COMPAT_BRK
 815        unsigned                        brk_randomized:1;
 816#endif
 817#ifdef CONFIG_CGROUPS
 818        /* disallow userland-initiated cgroup migration */
 819        unsigned                        no_cgroup_migration:1;
 820        /* task is frozen/stopped (used by the cgroup freezer) */
 821        unsigned                        frozen:1;
 822#endif
 823#ifdef CONFIG_BLK_CGROUP
 824        unsigned                        use_memdelay:1;
 825#endif
 826#ifdef CONFIG_PSI
 827        /* Stalled due to lack of memory */
 828        unsigned                        in_memstall:1;
 829#endif
 830
 831        unsigned long                   atomic_flags; /* Flags requiring atomic access. */
 832
 833        struct restart_block            restart_block;
 834
 835        pid_t                           pid;
 836        pid_t                           tgid;
 837
 838#ifdef CONFIG_STACKPROTECTOR
 839        /* Canary value for the -fstack-protector GCC feature: */
 840        unsigned long                   stack_canary;
 841#endif
 842        /*
 843         * Pointers to the (original) parent process, youngest child, younger sibling,
 844         * older sibling, respectively.  (p->father can be replaced with
 845         * p->real_parent->pid)
 846         */
 847
 848        /* Real parent process: */
 849        struct task_struct __rcu        *real_parent;
 850
 851        /* Recipient of SIGCHLD, wait4() reports: */
 852        struct task_struct __rcu        *parent;
 853
 854        /*
 855         * Children/sibling form the list of natural children:
 856         */
 857        struct list_head                children;
 858        struct list_head                sibling;
 859        struct task_struct              *group_leader;
 860
 861        /*
 862         * 'ptraced' is the list of tasks this task is using ptrace() on.
 863         *
 864         * This includes both natural children and PTRACE_ATTACH targets.
 865         * 'ptrace_entry' is this task's link on the p->parent->ptraced list.
 866         */
 867        struct list_head                ptraced;
 868        struct list_head                ptrace_entry;
 869
 870        /* PID/PID hash table linkage. */
 871        struct pid                      *thread_pid;
 872        struct hlist_node               pid_links[PIDTYPE_MAX];
 873        struct list_head                thread_group;
 874        struct list_head                thread_node;
 875
 876        struct completion               *vfork_done;
 877
 878        /* CLONE_CHILD_SETTID: */
 879        int __user                      *set_child_tid;
 880
 881        /* CLONE_CHILD_CLEARTID: */
 882        int __user                      *clear_child_tid;
 883
 884        u64                             utime;
 885        u64                             stime;
 886#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
 887        u64                             utimescaled;
 888        u64                             stimescaled;
 889#endif
 890        u64                             gtime;
 891        struct prev_cputime             prev_cputime;
 892#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
 893        struct vtime                    vtime;
 894#endif
 895
 896#ifdef CONFIG_NO_HZ_FULL
 897        atomic_t                        tick_dep_mask;
 898#endif
 899        /* Context switch counts: */
 900        unsigned long                   nvcsw;
 901        unsigned long                   nivcsw;
 902
 903        /* Monotonic time in nsecs: */
 904        u64                             start_time;
 905
 906        /* Boot based time in nsecs: */
 907        u64                             start_boottime;
 908
 909        /* MM fault and swap info: this can arguably be seen as either mm-specific or thread-specific: */
 910        unsigned long                   min_flt;
 911        unsigned long                   maj_flt;
 912
 913        /* Empty if CONFIG_POSIX_CPUTIMERS=n */
 914        struct posix_cputimers          posix_cputimers;
 915
 916#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
 917        struct posix_cputimers_work     posix_cputimers_work;
 918#endif
 919
 920        /* Process credentials: */
 921
 922        /* Tracer's credentials at attach: */
 923        const struct cred __rcu         *ptracer_cred;
 924
 925        /* Objective and real subjective task credentials (COW): */
 926        const struct cred __rcu         *real_cred;
 927
 928        /* Effective (overridable) subjective task credentials (COW): */
 929        const struct cred __rcu         *cred;
 930
 931#ifdef CONFIG_KEYS
 932        /* Cached requested key. */
 933        struct key                      *cached_requested_key;
 934#endif
 935
 936        /*
 937         * executable name, excluding path.
 938         *
 939         * - normally initialized setup_new_exec()
 940         * - access it with [gs]et_task_comm()
 941         * - lock it with task_lock()
 942         */
 943        char                            comm[TASK_COMM_LEN];
 944
 945        struct nameidata                *nameidata;
 946
 947#ifdef CONFIG_SYSVIPC
 948        struct sysv_sem                 sysvsem;
 949        struct sysv_shm                 sysvshm;
 950#endif
 951#ifdef CONFIG_DETECT_HUNG_TASK
 952        unsigned long                   last_switch_count;
 953        unsigned long                   last_switch_time;
 954#endif
 955        /* Filesystem information: */
 956        struct fs_struct                *fs;
 957
 958        /* Open file information: */
 959        struct files_struct             *files;
 960
 961#ifdef CONFIG_IO_URING
 962        struct io_uring_task            *io_uring;
 963#endif
 964
 965        /* Namespaces: */
 966        struct nsproxy                  *nsproxy;
 967
 968        /* Signal handlers: */
 969        struct signal_struct            *signal;
 970        struct sighand_struct __rcu             *sighand;
 971        sigset_t                        blocked;
 972        sigset_t                        real_blocked;
 973        /* Restored if set_restore_sigmask() was used: */
 974        sigset_t                        saved_sigmask;
 975        struct sigpending               pending;
 976        unsigned long                   sas_ss_sp;
 977        size_t                          sas_ss_size;
 978        unsigned int                    sas_ss_flags;
 979
 980        struct callback_head            *task_works;
 981
 982#ifdef CONFIG_AUDIT
 983#ifdef CONFIG_AUDITSYSCALL
 984        struct audit_context            *audit_context;
 985#endif
 986        kuid_t                          loginuid;
 987        unsigned int                    sessionid;
 988#endif
 989        struct seccomp                  seccomp;
 990
 991        /* Thread group tracking: */
 992        u64                             parent_exec_id;
 993        u64                             self_exec_id;
 994
 995        /* Protection against (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, mempolicy: */
 996        spinlock_t                      alloc_lock;
 997
 998        /* Protection of the PI data structures: */
 999        raw_spinlock_t                  pi_lock;
1000
1001        struct wake_q_node              wake_q;
1002
1003#ifdef CONFIG_RT_MUTEXES
1004        /* PI waiters blocked on a rt_mutex held by this task: */
1005        struct rb_root_cached           pi_waiters;
1006        /* Updated under owner's pi_lock and rq lock */
1007        struct task_struct              *pi_top_task;
1008        /* Deadlock detection and priority inheritance handling: */
1009        struct rt_mutex_waiter          *pi_blocked_on;
1010#endif
1011
1012#ifdef CONFIG_DEBUG_MUTEXES
1013        /* Mutex deadlock detection: */
1014        struct mutex_waiter             *blocked_on;
1015#endif
1016
1017#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1018        int                             non_block_count;
1019#endif
1020
1021#ifdef CONFIG_TRACE_IRQFLAGS
1022        struct irqtrace_events          irqtrace;
1023        unsigned int                    hardirq_threaded;
1024        u64                             hardirq_chain_key;
1025        int                             softirqs_enabled;
1026        int                             softirq_context;
1027        int                             irq_config;
1028#endif
1029
1030#ifdef CONFIG_LOCKDEP
1031# define MAX_LOCK_DEPTH                 48UL
1032        u64                             curr_chain_key;
1033        int                             lockdep_depth;
1034        unsigned int                    lockdep_recursion;
1035        struct held_lock                held_locks[MAX_LOCK_DEPTH];
1036#endif
1037
1038#if defined(CONFIG_UBSAN) && !defined(CONFIG_UBSAN_TRAP)
1039        unsigned int                    in_ubsan;
1040#endif
1041
1042        /* Journalling filesystem info: */
1043        void                            *journal_info;
1044
1045        /* Stacked block device info: */
1046        struct bio_list                 *bio_list;
1047
1048#ifdef CONFIG_BLOCK
1049        /* Stack plugging: */
1050        struct blk_plug                 *plug;
1051#endif
1052
1053        /* VM state: */
1054        struct reclaim_state            *reclaim_state;
1055
1056        struct backing_dev_info         *backing_dev_info;
1057
1058        struct io_context               *io_context;
1059
1060#ifdef CONFIG_COMPACTION
1061        struct capture_control          *capture_control;
1062#endif
1063        /* Ptrace state: */
1064        unsigned long                   ptrace_message;
1065        kernel_siginfo_t                *last_siginfo;
1066
1067        struct task_io_accounting       ioac;
1068#ifdef CONFIG_PSI
1069        /* Pressure stall state */
1070        unsigned int                    psi_flags;
1071#endif
1072#ifdef CONFIG_TASK_XACCT
1073        /* Accumulated RSS usage: */
1074        u64                             acct_rss_mem1;
1075        /* Accumulated virtual memory usage: */
1076        u64                             acct_vm_mem1;
1077        /* stime + utime since last update: */
1078        u64                             acct_timexpd;
1079#endif
1080#ifdef CONFIG_CPUSETS
1081        /* Protected by ->alloc_lock: */
1082        nodemask_t                      mems_allowed;
1083        /* Seqence number to catch updates: */
1084        seqcount_spinlock_t             mems_allowed_seq;
1085        int                             cpuset_mem_spread_rotor;
1086        int                             cpuset_slab_spread_rotor;
1087#endif
1088#ifdef CONFIG_CGROUPS
1089        /* Control Group info protected by css_set_lock: */
1090        struct css_set __rcu            *cgroups;
1091        /* cg_list protected by css_set_lock and tsk->alloc_lock: */
1092        struct list_head                cg_list;
1093#endif
1094#ifdef CONFIG_X86_CPU_RESCTRL
1095        u32                             closid;
1096        u32                             rmid;
1097#endif
1098#ifdef CONFIG_FUTEX
1099        struct robust_list_head __user  *robust_list;
1100#ifdef CONFIG_COMPAT
1101        struct compat_robust_list_head __user *compat_robust_list;
1102#endif
1103        struct list_head                pi_state_list;
1104        struct futex_pi_state           *pi_state_cache;
1105        struct mutex                    futex_exit_mutex;
1106        unsigned int                    futex_state;
1107#endif
1108#ifdef CONFIG_PERF_EVENTS
1109        struct perf_event_context       *perf_event_ctxp[perf_nr_task_contexts];
1110        struct mutex                    perf_event_mutex;
1111        struct list_head                perf_event_list;
1112#endif
1113#ifdef CONFIG_DEBUG_PREEMPT
1114        unsigned long                   preempt_disable_ip;
1115#endif
1116#ifdef CONFIG_NUMA
1117        /* Protected by alloc_lock: */
1118        struct mempolicy                *mempolicy;
1119        short                           il_prev;
1120        short                           pref_node_fork;
1121#endif
1122#ifdef CONFIG_NUMA_BALANCING
1123        int                             numa_scan_seq;
1124        unsigned int                    numa_scan_period;
1125        unsigned int                    numa_scan_period_max;
1126        int                             numa_preferred_nid;
1127        unsigned long                   numa_migrate_retry;
1128        /* Migration stamp: */
1129        u64                             node_stamp;
1130        u64                             last_task_numa_placement;
1131        u64                             last_sum_exec_runtime;
1132        struct callback_head            numa_work;
1133
1134        /*
1135         * This pointer is only modified for current in syscall and
1136         * pagefault context (and for tasks being destroyed), so it can be read
1137         * from any of the following contexts:
1138         *  - RCU read-side critical section
1139         *  - current->numa_group from everywhere
1140         *  - task's runqueue locked, task not running
1141         */
1142        struct numa_group __rcu         *numa_group;
1143
1144        /*
1145         * numa_faults is an array split into four regions:
1146         * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer
1147         * in this precise order.
1148         *
1149         * faults_memory: Exponential decaying average of faults on a per-node
1150         * basis. Scheduling placement decisions are made based on these
1151         * counts. The values remain static for the duration of a PTE scan.
1152         * faults_cpu: Track the nodes the process was running on when a NUMA
1153         * hinting fault was incurred.
1154         * faults_memory_buffer and faults_cpu_buffer: Record faults per node
1155         * during the current scan window. When the scan completes, the counts
1156         * in faults_memory and faults_cpu decay and these values are copied.
1157         */
1158        unsigned long                   *numa_faults;
1159        unsigned long                   total_numa_faults;
1160
1161        /*
1162         * numa_faults_locality tracks if faults recorded during the last
1163         * scan window were remote/local or failed to migrate. The task scan
1164         * period is adapted based on the locality of the faults with different
1165         * weights depending on whether they were shared or private faults
1166         */
1167        unsigned long                   numa_faults_locality[3];
1168
1169        unsigned long                   numa_pages_migrated;
1170#endif /* CONFIG_NUMA_BALANCING */
1171
1172#ifdef CONFIG_RSEQ
1173        struct rseq __user *rseq;
1174        u32 rseq_sig;
1175        /*
1176         * RmW on rseq_event_mask must be performed atomically
1177         * with respect to preemption.
1178         */
1179        unsigned long rseq_event_mask;
1180#endif
1181
1182        struct tlbflush_unmap_batch     tlb_ubc;
1183
1184        union {
1185                refcount_t              rcu_users;
1186                struct rcu_head         rcu;
1187        };
1188
1189        /* Cache last used pipe for splice(): */
1190        struct pipe_inode_info          *splice_pipe;
1191
1192        struct page_frag                task_frag;
1193
1194#ifdef CONFIG_TASK_DELAY_ACCT
1195        struct task_delay_info          *delays;
1196#endif
1197
1198#ifdef CONFIG_FAULT_INJECTION
1199        int                             make_it_fail;
1200        unsigned int                    fail_nth;
1201#endif
1202        /*
1203         * When (nr_dirtied >= nr_dirtied_pause), it's time to call
1204         * balance_dirty_pages() for a dirty throttling pause:
1205         */
1206        int                             nr_dirtied;
1207        int                             nr_dirtied_pause;
1208        /* Start of a write-and-pause period: */
1209        unsigned long                   dirty_paused_when;
1210
1211#ifdef CONFIG_LATENCYTOP
1212        int                             latency_record_count;
1213        struct latency_record           latency_record[LT_SAVECOUNT];
1214#endif
1215        /*
1216         * Time slack values; these are used to round up poll() and
1217         * select() etc timeout values. These are in nanoseconds.
1218         */
1219        u64                             timer_slack_ns;
1220        u64                             default_timer_slack_ns;
1221
1222#ifdef CONFIG_KASAN
1223        unsigned int                    kasan_depth;
1224#endif
1225
1226#ifdef CONFIG_KCSAN
1227        struct kcsan_ctx                kcsan_ctx;
1228#ifdef CONFIG_TRACE_IRQFLAGS
1229        struct irqtrace_events          kcsan_save_irqtrace;
1230#endif
1231#endif
1232
1233#if IS_ENABLED(CONFIG_KUNIT)
1234        struct kunit                    *kunit_test;
1235#endif
1236
1237#ifdef CONFIG_FUNCTION_GRAPH_TRACER
1238        /* Index of current stored address in ret_stack: */
1239        int                             curr_ret_stack;
1240        int                             curr_ret_depth;
1241
1242        /* Stack of return addresses for return function tracing: */
1243        struct ftrace_ret_stack         *ret_stack;
1244
1245        /* Timestamp for last schedule: */
1246        unsigned long long              ftrace_timestamp;
1247
1248        /*
1249         * Number of functions that haven't been traced
1250         * because of depth overrun:
1251         */
1252        atomic_t                        trace_overrun;
1253
1254        /* Pause tracing: */
1255        atomic_t                        tracing_graph_pause;
1256#endif
1257
1258#ifdef CONFIG_TRACING
1259        /* State flags for use by tracers: */
1260        unsigned long                   trace;
1261
1262        /* Bitmask and counter of trace recursion: */
1263        unsigned long                   trace_recursion;
1264#endif /* CONFIG_TRACING */
1265
1266#ifdef CONFIG_KCOV
1267        /* See kernel/kcov.c for more details. */
1268
1269        /* Coverage collection mode enabled for this task (0 if disabled): */
1270        unsigned int                    kcov_mode;
1271
1272        /* Size of the kcov_area: */
1273        unsigned int                    kcov_size;
1274
1275        /* Buffer for coverage collection: */
1276        void                            *kcov_area;
1277
1278        /* KCOV descriptor wired with this task or NULL: */
1279        struct kcov                     *kcov;
1280
1281        /* KCOV common handle for remote coverage collection: */
1282        u64                             kcov_handle;
1283
1284        /* KCOV sequence number: */
1285        int                             kcov_sequence;
1286
1287        /* Collect coverage from softirq context: */
1288        unsigned int                    kcov_softirq;
1289#endif
1290
1291#ifdef CONFIG_MEMCG
1292        struct mem_cgroup               *memcg_in_oom;
1293        gfp_t                           memcg_oom_gfp_mask;
1294        int                             memcg_oom_order;
1295
1296        /* Number of pages to reclaim on returning to userland: */
1297        unsigned int                    memcg_nr_pages_over_high;
1298
1299        /* Used by memcontrol for targeted memcg charge: */
1300        struct mem_cgroup               *active_memcg;
1301#endif
1302
1303#ifdef CONFIG_BLK_CGROUP
1304        struct request_queue            *throttle_queue;
1305#endif
1306
1307#ifdef CONFIG_UPROBES
1308        struct uprobe_task              *utask;
1309#endif
1310#if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE)
1311        unsigned int                    sequential_io;
1312        unsigned int                    sequential_io_avg;
1313#endif
1314#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
1315        unsigned long                   task_state_change;
1316#endif
1317        int                             pagefault_disabled;
1318#ifdef CONFIG_MMU
1319        struct task_struct              *oom_reaper_list;
1320#endif
1321#ifdef CONFIG_VMAP_STACK
1322        struct vm_struct                *stack_vm_area;
1323#endif
1324#ifdef CONFIG_THREAD_INFO_IN_TASK
1325        /* A live task holds one reference: */
1326        refcount_t                      stack_refcount;
1327#endif
1328#ifdef CONFIG_LIVEPATCH
1329        int patch_state;
1330#endif
1331#ifdef CONFIG_SECURITY
1332        /* Used by LSM modules for access restriction: */
1333        void                            *security;
1334#endif
1335
1336#ifdef CONFIG_GCC_PLUGIN_STACKLEAK
1337        unsigned long                   lowest_stack;
1338        unsigned long                   prev_lowest_stack;
1339#endif
1340
1341#ifdef CONFIG_X86_MCE
1342        void __user                     *mce_vaddr;
1343        __u64                           mce_kflags;
1344        u64                             mce_addr;
1345        __u64                           mce_ripv : 1,
1346                                        mce_whole_page : 1,
1347                                        __mce_reserved : 62;
1348        struct callback_head            mce_kill_me;
1349#endif
1350
1351        /*
1352         * New fields for task_struct should be added above here, so that
1353         * they are included in the randomized portion of task_struct.
1354         */
1355        randomized_struct_fields_end
1356
1357        /* CPU-specific state of this task: */
1358        struct thread_struct            thread;
1359
1360        /*
1361         * WARNING: on x86, 'thread_struct' contains a variable-sized
1362         * structure.  It *MUST* be at the end of 'task_struct'.
1363         *
1364         * Do not put anything below here!
1365         */
1366};
1367
1368static inline struct pid *task_pid(struct task_struct *task)
1369{
1370        return task->thread_pid;
1371}
1372
1373/*
1374 * the helpers to get the task's different pids as they are seen
1375 * from various namespaces
1376 *
1377 * task_xid_nr()     : global id, i.e. the id seen from the init namespace;
1378 * task_xid_vnr()    : virtual id, i.e. the id seen from the pid namespace of
1379 *                     current.
1380 * task_xid_nr_ns()  : id seen from the ns specified;
1381 *
1382 * see also pid_nr() etc in include/linux/pid.h
1383 */
1384pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns);
1385
1386static inline pid_t task_pid_nr(struct task_struct *tsk)
1387{
1388        return tsk->pid;
1389}
1390
1391static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1392{
1393        return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns);
1394}
1395
1396static inline pid_t task_pid_vnr(struct task_struct *tsk)
1397{
1398        return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL);
1399}
1400
1401
1402static inline pid_t task_tgid_nr(struct task_struct *tsk)
1403{
1404        return tsk->tgid;
1405}
1406
1407/**
1408 * pid_alive - check that a task structure is not stale
1409 * @p: Task structure to be checked.
1410 *
1411 * Test if a process is not yet dead (at most zombie state)
1412 * If pid_alive fails, then pointers within the task structure
1413 * can be stale and must not be dereferenced.
1414 *
1415 * Return: 1 if the process is alive. 0 otherwise.
1416 */
1417static inline int pid_alive(const struct task_struct *p)
1418{
1419        return p->thread_pid != NULL;
1420}
1421
1422static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1423{
1424        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns);
1425}
1426
1427static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
1428{
1429        return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL);
1430}
1431
1432
1433static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1434{
1435        return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns);
1436}
1437
1438static inline pid_t task_session_vnr(struct task_struct *tsk)
1439{
1440        return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL);
1441}
1442
1443static inline pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns)
1444{
1445        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, ns);
1446}
1447
1448static inline pid_t task_tgid_vnr(struct task_struct *tsk)
1449{
1450        return __task_pid_nr_ns(tsk, PIDTYPE_TGID, NULL);
1451}
1452
1453static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns)
1454{
1455        pid_t pid = 0;
1456
1457        rcu_read_lock();
1458        if (pid_alive(tsk))
1459                pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns);
1460        rcu_read_unlock();
1461
1462        return pid;
1463}
1464
1465static inline pid_t task_ppid_nr(const struct task_struct *tsk)
1466{
1467        return task_ppid_nr_ns(tsk, &init_pid_ns);
1468}
1469
1470/* Obsolete, do not use: */
1471static inline pid_t task_pgrp_nr(struct task_struct *tsk)
1472{
1473        return task_pgrp_nr_ns(tsk, &init_pid_ns);
1474}
1475
1476#define TASK_REPORT_IDLE        (TASK_REPORT + 1)
1477#define TASK_REPORT_MAX         (TASK_REPORT_IDLE << 1)
1478
1479static inline unsigned int task_state_index(struct task_struct *tsk)
1480{
1481        unsigned int tsk_state = READ_ONCE(tsk->state);
1482        unsigned int state = (tsk_state | tsk->exit_state) & TASK_REPORT;
1483
1484        BUILD_BUG_ON_NOT_POWER_OF_2(TASK_REPORT_MAX);
1485
1486        if (tsk_state == TASK_IDLE)
1487                state = TASK_REPORT_IDLE;
1488
1489        return fls(state);
1490}
1491
1492static inline char task_index_to_char(unsigned int state)
1493{
1494        static const char state_char[] = "RSDTtXZPI";
1495
1496        BUILD_BUG_ON(1 + ilog2(TASK_REPORT_MAX) != sizeof(state_char) - 1);
1497
1498        return state_char[state];
1499}
1500
1501static inline char task_state_to_char(struct task_struct *tsk)
1502{
1503        return task_index_to_char(task_state_index(tsk));
1504}
1505
1506/**
1507 * is_global_init - check if a task structure is init. Since init
1508 * is free to have sub-threads we need to check tgid.
1509 * @tsk: Task structure to be checked.
1510 *
1511 * Check if a task structure is the first user space task the kernel created.
1512 *
1513 * Return: 1 if the task structure is init. 0 otherwise.
1514 */
1515static inline int is_global_init(struct task_struct *tsk)
1516{
1517        return task_tgid_nr(tsk) == 1;
1518}
1519
1520extern struct pid *cad_pid;
1521
1522/*
1523 * Per process flags
1524 */
1525#define PF_VCPU                 0x00000001      /* I'm a virtual CPU */
1526#define PF_IDLE                 0x00000002      /* I am an IDLE thread */
1527#define PF_EXITING              0x00000004      /* Getting shut down */
1528#define PF_IO_WORKER            0x00000010      /* Task is an IO worker */
1529#define PF_WQ_WORKER            0x00000020      /* I'm a workqueue worker */
1530#define PF_FORKNOEXEC           0x00000040      /* Forked but didn't exec */
1531#define PF_MCE_PROCESS          0x00000080      /* Process policy on mce errors */
1532#define PF_SUPERPRIV            0x00000100      /* Used super-user privileges */
1533#define PF_DUMPCORE             0x00000200      /* Dumped core */
1534#define PF_SIGNALED             0x00000400      /* Killed by a signal */
1535#define PF_MEMALLOC             0x00000800      /* Allocating memory */
1536#define PF_NPROC_EXCEEDED       0x00001000      /* set_user() noticed that RLIMIT_NPROC was exceeded */
1537#define PF_USED_MATH            0x00002000      /* If unset the fpu must be initialized before use */
1538#define PF_USED_ASYNC           0x00004000      /* Used async_schedule*(), used by module init */
1539#define PF_NOFREEZE             0x00008000      /* This thread should not be frozen */
1540#define PF_FROZEN               0x00010000      /* Frozen for system suspend */
1541#define PF_KSWAPD               0x00020000      /* I am kswapd */
1542#define PF_MEMALLOC_NOFS        0x00040000      /* All allocation requests will inherit GFP_NOFS */
1543#define PF_MEMALLOC_NOIO        0x00080000      /* All allocation requests will inherit GFP_NOIO */
1544#define PF_LOCAL_THROTTLE       0x00100000      /* Throttle writes only against the bdi I write to,
1545                                                 * I am cleaning dirty pages from some other bdi. */
1546#define PF_KTHREAD              0x00200000      /* I am a kernel thread */
1547#define PF_RANDOMIZE            0x00400000      /* Randomize virtual address space */
1548#define PF_SWAPWRITE            0x00800000      /* Allowed to write to swap */
1549#define PF_NO_SETAFFINITY       0x04000000      /* Userland is not allowed to meddle with cpus_mask */
1550#define PF_MCE_EARLY            0x08000000      /* Early kill for mce process policy */
1551#define PF_MEMALLOC_NOCMA       0x10000000      /* All allocation request will have _GFP_MOVABLE cleared */
1552#define PF_FREEZER_SKIP         0x40000000      /* Freezer should not count it as freezable */
1553#define PF_SUSPEND_TASK         0x80000000      /* This thread called freeze_processes() and should not be frozen */
1554
1555/*
1556 * Only the _current_ task can read/write to tsk->flags, but other
1557 * tasks can access tsk->flags in readonly mode for example
1558 * with tsk_used_math (like during threaded core dumping).
1559 * There is however an exception to this rule during ptrace
1560 * or during fork: the ptracer task is allowed to write to the
1561 * child->flags of its traced child (same goes for fork, the parent
1562 * can write to the child->flags), because we're guaranteed the
1563 * child is not running and in turn not changing child->flags
1564 * at the same time the parent does it.
1565 */
1566#define clear_stopped_child_used_math(child)    do { (child)->flags &= ~PF_USED_MATH; } while (0)
1567#define set_stopped_child_used_math(child)      do { (child)->flags |= PF_USED_MATH; } while (0)
1568#define clear_used_math()                       clear_stopped_child_used_math(current)
1569#define set_used_math()                         set_stopped_child_used_math(current)
1570
1571#define conditional_stopped_child_used_math(condition, child) \
1572        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0)
1573
1574#define conditional_used_math(condition)        conditional_stopped_child_used_math(condition, current)
1575
1576#define copy_to_stopped_child_used_math(child) \
1577        do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0)
1578
1579/* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */
1580#define tsk_used_math(p)                        ((p)->flags & PF_USED_MATH)
1581#define used_math()                             tsk_used_math(current)
1582
1583static inline bool is_percpu_thread(void)
1584{
1585#ifdef CONFIG_SMP
1586        return (current->flags & PF_NO_SETAFFINITY) &&
1587                (current->nr_cpus_allowed  == 1);
1588#else
1589        return true;
1590#endif
1591}
1592
1593/* Per-process atomic flags. */
1594#define PFA_NO_NEW_PRIVS                0       /* May not gain new privileges. */
1595#define PFA_SPREAD_PAGE                 1       /* Spread page cache over cpuset */
1596#define PFA_SPREAD_SLAB                 2       /* Spread some slab caches over cpuset */
1597#define PFA_SPEC_SSB_DISABLE            3       /* Speculative Store Bypass disabled */
1598#define PFA_SPEC_SSB_FORCE_DISABLE      4       /* Speculative Store Bypass force disabled*/
1599#define PFA_SPEC_IB_DISABLE             5       /* Indirect branch speculation restricted */
1600#define PFA_SPEC_IB_FORCE_DISABLE       6       /* Indirect branch speculation permanently restricted */
1601#define PFA_SPEC_SSB_NOEXEC             7       /* Speculative Store Bypass clear on execve() */
1602
1603#define TASK_PFA_TEST(name, func)                                       \
1604        static inline bool task_##func(struct task_struct *p)           \
1605        { return test_bit(PFA_##name, &p->atomic_flags); }
1606
1607#define TASK_PFA_SET(name, func)                                        \
1608        static inline void task_set_##func(struct task_struct *p)       \
1609        { set_bit(PFA_##name, &p->atomic_flags); }
1610
1611#define TASK_PFA_CLEAR(name, func)                                      \
1612        static inline void task_clear_##func(struct task_struct *p)     \
1613        { clear_bit(PFA_##name, &p->atomic_flags); }
1614
1615TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs)
1616TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs)
1617
1618TASK_PFA_TEST(SPREAD_PAGE, spread_page)
1619TASK_PFA_SET(SPREAD_PAGE, spread_page)
1620TASK_PFA_CLEAR(SPREAD_PAGE, spread_page)
1621
1622TASK_PFA_TEST(SPREAD_SLAB, spread_slab)
1623TASK_PFA_SET(SPREAD_SLAB, spread_slab)
1624TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab)
1625
1626TASK_PFA_TEST(SPEC_SSB_DISABLE, spec_ssb_disable)
1627TASK_PFA_SET(SPEC_SSB_DISABLE, spec_ssb_disable)
1628TASK_PFA_CLEAR(SPEC_SSB_DISABLE, spec_ssb_disable)
1629
1630TASK_PFA_TEST(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1631TASK_PFA_SET(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1632TASK_PFA_CLEAR(SPEC_SSB_NOEXEC, spec_ssb_noexec)
1633
1634TASK_PFA_TEST(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1635TASK_PFA_SET(SPEC_SSB_FORCE_DISABLE, spec_ssb_force_disable)
1636
1637TASK_PFA_TEST(SPEC_IB_DISABLE, spec_ib_disable)
1638TASK_PFA_SET(SPEC_IB_DISABLE, spec_ib_disable)
1639TASK_PFA_CLEAR(SPEC_IB_DISABLE, spec_ib_disable)
1640
1641TASK_PFA_TEST(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1642TASK_PFA_SET(SPEC_IB_FORCE_DISABLE, spec_ib_force_disable)
1643
1644static inline void
1645current_restore_flags(unsigned long orig_flags, unsigned long flags)
1646{
1647        current->flags &= ~flags;
1648        current->flags |= orig_flags & flags;
1649}
1650
1651extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
1652extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
1653#ifdef CONFIG_SMP
1654extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask);
1655extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask);
1656#else
1657static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1658{
1659}
1660static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1661{
1662        if (!cpumask_test_cpu(0, new_mask))
1663                return -EINVAL;
1664        return 0;
1665}
1666#endif
1667
1668extern int yield_to(struct task_struct *p, bool preempt);
1669extern void set_user_nice(struct task_struct *p, long nice);
1670extern int task_prio(const struct task_struct *p);
1671
1672/**
1673 * task_nice - return the nice value of a given task.
1674 * @p: the task in question.
1675 *
1676 * Return: The nice value [ -20 ... 0 ... 19 ].
1677 */
1678static inline int task_nice(const struct task_struct *p)
1679{
1680        return PRIO_TO_NICE((p)->static_prio);
1681}
1682
1683extern int can_nice(const struct task_struct *p, const int nice);
1684extern int task_curr(const struct task_struct *p);
1685extern int idle_cpu(int cpu);
1686extern int available_idle_cpu(int cpu);
1687extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *);
1688extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *);
1689extern void sched_set_fifo(struct task_struct *p);
1690extern void sched_set_fifo_low(struct task_struct *p);
1691extern void sched_set_normal(struct task_struct *p, int nice);
1692extern int sched_setattr(struct task_struct *, const struct sched_attr *);
1693extern int sched_setattr_nocheck(struct task_struct *, const struct sched_attr *);
1694extern struct task_struct *idle_task(int cpu);
1695
1696/**
1697 * is_idle_task - is the specified task an idle task?
1698 * @p: the task in question.
1699 *
1700 * Return: 1 if @p is an idle task. 0 otherwise.
1701 */
1702static __always_inline bool is_idle_task(const struct task_struct *p)
1703{
1704        return !!(p->flags & PF_IDLE);
1705}
1706
1707extern struct task_struct *curr_task(int cpu);
1708extern void ia64_set_curr_task(int cpu, struct task_struct *p);
1709
1710void yield(void);
1711
1712union thread_union {
1713#ifndef CONFIG_ARCH_TASK_STRUCT_ON_STACK
1714        struct task_struct task;
1715#endif
1716#ifndef CONFIG_THREAD_INFO_IN_TASK
1717        struct thread_info thread_info;
1718#endif
1719        unsigned long stack[THREAD_SIZE/sizeof(long)];
1720};
1721
1722#ifndef CONFIG_THREAD_INFO_IN_TASK
1723extern struct thread_info init_thread_info;
1724#endif
1725
1726extern unsigned long init_stack[THREAD_SIZE / sizeof(unsigned long)];
1727
1728#ifdef CONFIG_THREAD_INFO_IN_TASK
1729static inline struct thread_info *task_thread_info(struct task_struct *task)
1730{
1731        return &task->thread_info;
1732}
1733#elif !defined(__HAVE_THREAD_FUNCTIONS)
1734# define task_thread_info(task) ((struct thread_info *)(task)->stack)
1735#endif
1736
1737/*
1738 * find a task by one of its numerical ids
1739 *
1740 * find_task_by_pid_ns():
1741 *      finds a task by its pid in the specified namespace
1742 * find_task_by_vpid():
1743 *      finds a task by its virtual pid
1744 *
1745 * see also find_vpid() etc in include/linux/pid.h
1746 */
1747
1748extern struct task_struct *find_task_by_vpid(pid_t nr);
1749extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns);
1750
1751/*
1752 * find a task by its virtual pid and get the task struct
1753 */
1754extern struct task_struct *find_get_task_by_vpid(pid_t nr);
1755
1756extern int wake_up_state(struct task_struct *tsk, unsigned int state);
1757extern int wake_up_process(struct task_struct *tsk);
1758extern void wake_up_new_task(struct task_struct *tsk);
1759
1760#ifdef CONFIG_SMP
1761extern void kick_process(struct task_struct *tsk);
1762#else
1763static inline void kick_process(struct task_struct *tsk) { }
1764#endif
1765
1766extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec);
1767
1768static inline void set_task_comm(struct task_struct *tsk, const char *from)
1769{
1770        __set_task_comm(tsk, from, false);
1771}
1772
1773extern char *__get_task_comm(char *to, size_t len, struct task_struct *tsk);
1774#define get_task_comm(buf, tsk) ({                      \
1775        BUILD_BUG_ON(sizeof(buf) != TASK_COMM_LEN);     \
1776        __get_task_comm(buf, sizeof(buf), tsk);         \
1777})
1778
1779#ifdef CONFIG_SMP
1780static __always_inline void scheduler_ipi(void)
1781{
1782        /*
1783         * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1784         * TIF_NEED_RESCHED remotely (for the first time) will also send
1785         * this IPI.
1786         */
1787        preempt_fold_need_resched();
1788}
1789extern unsigned long wait_task_inactive(struct task_struct *, long match_state);
1790#else
1791static inline void scheduler_ipi(void) { }
1792static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1793{
1794        return 1;
1795}
1796#endif
1797
1798/*
1799 * Set thread flags in other task's structures.
1800 * See asm/thread_info.h for TIF_xxxx flags available:
1801 */
1802static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag)
1803{
1804        set_ti_thread_flag(task_thread_info(tsk), flag);
1805}
1806
1807static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1808{
1809        clear_ti_thread_flag(task_thread_info(tsk), flag);
1810}
1811
1812static inline void update_tsk_thread_flag(struct task_struct *tsk, int flag,
1813                                          bool value)
1814{
1815        update_ti_thread_flag(task_thread_info(tsk), flag, value);
1816}
1817
1818static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag)
1819{
1820        return test_and_set_ti_thread_flag(task_thread_info(tsk), flag);
1821}
1822
1823static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag)
1824{
1825        return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag);
1826}
1827
1828static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag)
1829{
1830        return test_ti_thread_flag(task_thread_info(tsk), flag);
1831}
1832
1833static inline void set_tsk_need_resched(struct task_struct *tsk)
1834{
1835        set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1836}
1837
1838static inline void clear_tsk_need_resched(struct task_struct *tsk)
1839{
1840        clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
1841}
1842
1843static inline int test_tsk_need_resched(struct task_struct *tsk)
1844{
1845        return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED));
1846}
1847
1848/*
1849 * cond_resched() and cond_resched_lock(): latency reduction via
1850 * explicit rescheduling in places that are safe. The return
1851 * value indicates whether a reschedule was done in fact.
1852 * cond_resched_lock() will drop the spinlock before scheduling,
1853 */
1854#ifndef CONFIG_PREEMPTION
1855extern int _cond_resched(void);
1856#else
1857static inline int _cond_resched(void) { return 0; }
1858#endif
1859
1860#define cond_resched() ({                       \
1861        ___might_sleep(__FILE__, __LINE__, 0);  \
1862        _cond_resched();                        \
1863})
1864
1865extern int __cond_resched_lock(spinlock_t *lock);
1866
1867#define cond_resched_lock(lock) ({                              \
1868        ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
1869        __cond_resched_lock(lock);                              \
1870})
1871
1872static inline void cond_resched_rcu(void)
1873{
1874#if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU)
1875        rcu_read_unlock();
1876        cond_resched();
1877        rcu_read_lock();
1878#endif
1879}
1880
1881/*
1882 * Does a critical section need to be broken due to another
1883 * task waiting?: (technically does not depend on CONFIG_PREEMPTION,
1884 * but a general need for low latency)
1885 */
1886static inline int spin_needbreak(spinlock_t *lock)
1887{
1888#ifdef CONFIG_PREEMPTION
1889        return spin_is_contended(lock);
1890#else
1891        return 0;
1892#endif
1893}
1894
1895static __always_inline bool need_resched(void)
1896{
1897        return unlikely(tif_need_resched());
1898}
1899
1900/*
1901 * Wrappers for p->thread_info->cpu access. No-op on UP.
1902 */
1903#ifdef CONFIG_SMP
1904
1905static inline unsigned int task_cpu(const struct task_struct *p)
1906{
1907#ifdef CONFIG_THREAD_INFO_IN_TASK
1908        return READ_ONCE(p->cpu);
1909#else
1910        return READ_ONCE(task_thread_info(p)->cpu);
1911#endif
1912}
1913
1914extern void set_task_cpu(struct task_struct *p, unsigned int cpu);
1915
1916#else
1917
1918static inline unsigned int task_cpu(const struct task_struct *p)
1919{
1920        return 0;
1921}
1922
1923static inline void set_task_cpu(struct task_struct *p, unsigned int cpu)
1924{
1925}
1926
1927#endif /* CONFIG_SMP */
1928
1929/*
1930 * In order to reduce various lock holder preemption latencies provide an
1931 * interface to see if a vCPU is currently running or not.
1932 *
1933 * This allows us to terminate optimistic spin loops and block, analogous to
1934 * the native optimistic spin heuristic of testing if the lock owner task is
1935 * running or not.
1936 */
1937#ifndef vcpu_is_preempted
1938static inline bool vcpu_is_preempted(int cpu)
1939{
1940        return false;
1941}
1942#endif
1943
1944extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask);
1945extern long sched_getaffinity(pid_t pid, struct cpumask *mask);
1946
1947#ifndef TASK_SIZE_OF
1948#define TASK_SIZE_OF(tsk)       TASK_SIZE
1949#endif
1950
1951#ifdef CONFIG_RSEQ
1952
1953/*
1954 * Map the event mask on the user-space ABI enum rseq_cs_flags
1955 * for direct mask checks.
1956 */
1957enum rseq_event_mask_bits {
1958        RSEQ_EVENT_PREEMPT_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_PREEMPT_BIT,
1959        RSEQ_EVENT_SIGNAL_BIT   = RSEQ_CS_FLAG_NO_RESTART_ON_SIGNAL_BIT,
1960        RSEQ_EVENT_MIGRATE_BIT  = RSEQ_CS_FLAG_NO_RESTART_ON_MIGRATE_BIT,
1961};
1962
1963enum rseq_event_mask {
1964        RSEQ_EVENT_PREEMPT      = (1U << RSEQ_EVENT_PREEMPT_BIT),
1965        RSEQ_EVENT_SIGNAL       = (1U << RSEQ_EVENT_SIGNAL_BIT),
1966        RSEQ_EVENT_MIGRATE      = (1U << RSEQ_EVENT_MIGRATE_BIT),
1967};
1968
1969static inline void rseq_set_notify_resume(struct task_struct *t)
1970{
1971        if (t->rseq)
1972                set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
1973}
1974
1975void __rseq_handle_notify_resume(struct ksignal *sig, struct pt_regs *regs);
1976
1977static inline void rseq_handle_notify_resume(struct ksignal *ksig,
1978                                             struct pt_regs *regs)
1979{
1980        if (current->rseq)
1981                __rseq_handle_notify_resume(ksig, regs);
1982}
1983
1984static inline void rseq_signal_deliver(struct ksignal *ksig,
1985                                       struct pt_regs *regs)
1986{
1987        preempt_disable();
1988        __set_bit(RSEQ_EVENT_SIGNAL_BIT, &current->rseq_event_mask);
1989        preempt_enable();
1990        rseq_handle_notify_resume(ksig, regs);
1991}
1992
1993/* rseq_preempt() requires preemption to be disabled. */
1994static inline void rseq_preempt(struct task_struct *t)
1995{
1996        __set_bit(RSEQ_EVENT_PREEMPT_BIT, &t->rseq_event_mask);
1997        rseq_set_notify_resume(t);
1998}
1999
2000/* rseq_migrate() requires preemption to be disabled. */
2001static inline void rseq_migrate(struct task_struct *t)
2002{
2003        __set_bit(RSEQ_EVENT_MIGRATE_BIT, &t->rseq_event_mask);
2004        rseq_set_notify_resume(t);
2005}
2006
2007/*
2008 * If parent process has a registered restartable sequences area, the
2009 * child inherits. Unregister rseq for a clone with CLONE_VM set.
2010 */
2011static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2012{
2013        if (clone_flags & CLONE_VM) {
2014                t->rseq = NULL;
2015                t->rseq_sig = 0;
2016                t->rseq_event_mask = 0;
2017        } else {
2018                t->rseq = current->rseq;
2019                t->rseq_sig = current->rseq_sig;
2020                t->rseq_event_mask = current->rseq_event_mask;
2021        }
2022}
2023
2024static inline void rseq_execve(struct task_struct *t)
2025{
2026        t->rseq = NULL;
2027        t->rseq_sig = 0;
2028        t->rseq_event_mask = 0;
2029}
2030
2031#else
2032
2033static inline void rseq_set_notify_resume(struct task_struct *t)
2034{
2035}
2036static inline void rseq_handle_notify_resume(struct ksignal *ksig,
2037                                             struct pt_regs *regs)
2038{
2039}
2040static inline void rseq_signal_deliver(struct ksignal *ksig,
2041                                       struct pt_regs *regs)
2042{
2043}
2044static inline void rseq_preempt(struct task_struct *t)
2045{
2046}
2047static inline void rseq_migrate(struct task_struct *t)
2048{
2049}
2050static inline void rseq_fork(struct task_struct *t, unsigned long clone_flags)
2051{
2052}
2053static inline void rseq_execve(struct task_struct *t)
2054{
2055}
2056
2057#endif
2058
2059#ifdef CONFIG_DEBUG_RSEQ
2060
2061void rseq_syscall(struct pt_regs *regs);
2062
2063#else
2064
2065static inline void rseq_syscall(struct pt_regs *regs)
2066{
2067}
2068
2069#endif
2070
2071const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq);
2072char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len);
2073int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq);
2074
2075const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq);
2076const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq);
2077const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq);
2078
2079int sched_trace_rq_cpu(struct rq *rq);
2080int sched_trace_rq_cpu_capacity(struct rq *rq);
2081int sched_trace_rq_nr_running(struct rq *rq);
2082
2083const struct cpumask *sched_trace_rd_span(struct root_domain *rd);
2084
2085#endif
2086