linux/include/net/tcp.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-or-later */
   2/*
   3 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   4 *              operating system.  INET is implemented using the  BSD Socket
   5 *              interface as the means of communication with the user level.
   6 *
   7 *              Definitions for the TCP module.
   8 *
   9 * Version:     @(#)tcp.h       1.0.5   05/23/93
  10 *
  11 * Authors:     Ross Biro
  12 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  13 */
  14#ifndef _TCP_H
  15#define _TCP_H
  16
  17#define FASTRETRANS_DEBUG 1
  18
  19#include <linux/list.h>
  20#include <linux/tcp.h>
  21#include <linux/bug.h>
  22#include <linux/slab.h>
  23#include <linux/cache.h>
  24#include <linux/percpu.h>
  25#include <linux/skbuff.h>
  26#include <linux/kref.h>
  27#include <linux/ktime.h>
  28#include <linux/indirect_call_wrapper.h>
  29
  30#include <net/inet_connection_sock.h>
  31#include <net/inet_timewait_sock.h>
  32#include <net/inet_hashtables.h>
  33#include <net/checksum.h>
  34#include <net/request_sock.h>
  35#include <net/sock_reuseport.h>
  36#include <net/sock.h>
  37#include <net/snmp.h>
  38#include <net/ip.h>
  39#include <net/tcp_states.h>
  40#include <net/inet_ecn.h>
  41#include <net/dst.h>
  42#include <net/mptcp.h>
  43
  44#include <linux/seq_file.h>
  45#include <linux/memcontrol.h>
  46#include <linux/bpf-cgroup.h>
  47#include <linux/siphash.h>
  48
  49extern struct inet_hashinfo tcp_hashinfo;
  50
  51extern struct percpu_counter tcp_orphan_count;
  52void tcp_time_wait(struct sock *sk, int state, int timeo);
  53
  54#define MAX_TCP_HEADER  L1_CACHE_ALIGN(128 + MAX_HEADER)
  55#define MAX_TCP_OPTION_SPACE 40
  56#define TCP_MIN_SND_MSS         48
  57#define TCP_MIN_GSO_SIZE        (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
  58
  59/*
  60 * Never offer a window over 32767 without using window scaling. Some
  61 * poor stacks do signed 16bit maths!
  62 */
  63#define MAX_TCP_WINDOW          32767U
  64
  65/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
  66#define TCP_MIN_MSS             88U
  67
  68/* The initial MTU to use for probing */
  69#define TCP_BASE_MSS            1024
  70
  71/* probing interval, default to 10 minutes as per RFC4821 */
  72#define TCP_PROBE_INTERVAL      600
  73
  74/* Specify interval when tcp mtu probing will stop */
  75#define TCP_PROBE_THRESHOLD     8
  76
  77/* After receiving this amount of duplicate ACKs fast retransmit starts. */
  78#define TCP_FASTRETRANS_THRESH 3
  79
  80/* Maximal number of ACKs sent quickly to accelerate slow-start. */
  81#define TCP_MAX_QUICKACKS       16U
  82
  83/* Maximal number of window scale according to RFC1323 */
  84#define TCP_MAX_WSCALE          14U
  85
  86/* urg_data states */
  87#define TCP_URG_VALID   0x0100
  88#define TCP_URG_NOTYET  0x0200
  89#define TCP_URG_READ    0x0400
  90
  91#define TCP_RETR1       3       /*
  92                                 * This is how many retries it does before it
  93                                 * tries to figure out if the gateway is
  94                                 * down. Minimal RFC value is 3; it corresponds
  95                                 * to ~3sec-8min depending on RTO.
  96                                 */
  97
  98#define TCP_RETR2       15      /*
  99                                 * This should take at least
 100                                 * 90 minutes to time out.
 101                                 * RFC1122 says that the limit is 100 sec.
 102                                 * 15 is ~13-30min depending on RTO.
 103                                 */
 104
 105#define TCP_SYN_RETRIES  6      /* This is how many retries are done
 106                                 * when active opening a connection.
 107                                 * RFC1122 says the minimum retry MUST
 108                                 * be at least 180secs.  Nevertheless
 109                                 * this value is corresponding to
 110                                 * 63secs of retransmission with the
 111                                 * current initial RTO.
 112                                 */
 113
 114#define TCP_SYNACK_RETRIES 5    /* This is how may retries are done
 115                                 * when passive opening a connection.
 116                                 * This is corresponding to 31secs of
 117                                 * retransmission with the current
 118                                 * initial RTO.
 119                                 */
 120
 121#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
 122                                  * state, about 60 seconds     */
 123#define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
 124                                 /* BSD style FIN_WAIT2 deadlock breaker.
 125                                  * It used to be 3min, new value is 60sec,
 126                                  * to combine FIN-WAIT-2 timeout with
 127                                  * TIME-WAIT timer.
 128                                  */
 129#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
 130
 131#define TCP_DELACK_MAX  ((unsigned)(HZ/5))      /* maximal time to delay before sending an ACK */
 132#if HZ >= 100
 133#define TCP_DELACK_MIN  ((unsigned)(HZ/25))     /* minimal time to delay before sending an ACK */
 134#define TCP_ATO_MIN     ((unsigned)(HZ/25))
 135#else
 136#define TCP_DELACK_MIN  4U
 137#define TCP_ATO_MIN     4U
 138#endif
 139#define TCP_RTO_MAX     ((unsigned)(120*HZ))
 140#define TCP_RTO_MIN     ((unsigned)(HZ/5))
 141#define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
 142#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))     /* RFC6298 2.1 initial RTO value        */
 143#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
 144                                                 * used as a fallback RTO for the
 145                                                 * initial data transmission if no
 146                                                 * valid RTT sample has been acquired,
 147                                                 * most likely due to retrans in 3WHS.
 148                                                 */
 149
 150#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
 151                                                         * for local resources.
 152                                                         */
 153#define TCP_KEEPALIVE_TIME      (120*60*HZ)     /* two hours */
 154#define TCP_KEEPALIVE_PROBES    9               /* Max of 9 keepalive probes    */
 155#define TCP_KEEPALIVE_INTVL     (75*HZ)
 156
 157#define MAX_TCP_KEEPIDLE        32767
 158#define MAX_TCP_KEEPINTVL       32767
 159#define MAX_TCP_KEEPCNT         127
 160#define MAX_TCP_SYNCNT          127
 161
 162#define TCP_SYNQ_INTERVAL       (HZ/5)  /* Period of SYNACK timer */
 163
 164#define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
 165#define TCP_PAWS_MSL    60              /* Per-host timestamps are invalidated
 166                                         * after this time. It should be equal
 167                                         * (or greater than) TCP_TIMEWAIT_LEN
 168                                         * to provide reliability equal to one
 169                                         * provided by timewait state.
 170                                         */
 171#define TCP_PAWS_WINDOW 1               /* Replay window for per-host
 172                                         * timestamps. It must be less than
 173                                         * minimal timewait lifetime.
 174                                         */
 175/*
 176 *      TCP option
 177 */
 178
 179#define TCPOPT_NOP              1       /* Padding */
 180#define TCPOPT_EOL              0       /* End of options */
 181#define TCPOPT_MSS              2       /* Segment size negotiating */
 182#define TCPOPT_WINDOW           3       /* Window scaling */
 183#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
 184#define TCPOPT_SACK             5       /* SACK Block */
 185#define TCPOPT_TIMESTAMP        8       /* Better RTT estimations/PAWS */
 186#define TCPOPT_MD5SIG           19      /* MD5 Signature (RFC2385) */
 187#define TCPOPT_MPTCP            30      /* Multipath TCP (RFC6824) */
 188#define TCPOPT_FASTOPEN         34      /* Fast open (RFC7413) */
 189#define TCPOPT_EXP              254     /* Experimental */
 190/* Magic number to be after the option value for sharing TCP
 191 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
 192 */
 193#define TCPOPT_FASTOPEN_MAGIC   0xF989
 194#define TCPOPT_SMC_MAGIC        0xE2D4C3D9
 195
 196/*
 197 *     TCP option lengths
 198 */
 199
 200#define TCPOLEN_MSS            4
 201#define TCPOLEN_WINDOW         3
 202#define TCPOLEN_SACK_PERM      2
 203#define TCPOLEN_TIMESTAMP      10
 204#define TCPOLEN_MD5SIG         18
 205#define TCPOLEN_FASTOPEN_BASE  2
 206#define TCPOLEN_EXP_FASTOPEN_BASE  4
 207#define TCPOLEN_EXP_SMC_BASE   6
 208
 209/* But this is what stacks really send out. */
 210#define TCPOLEN_TSTAMP_ALIGNED          12
 211#define TCPOLEN_WSCALE_ALIGNED          4
 212#define TCPOLEN_SACKPERM_ALIGNED        4
 213#define TCPOLEN_SACK_BASE               2
 214#define TCPOLEN_SACK_BASE_ALIGNED       4
 215#define TCPOLEN_SACK_PERBLOCK           8
 216#define TCPOLEN_MD5SIG_ALIGNED          20
 217#define TCPOLEN_MSS_ALIGNED             4
 218#define TCPOLEN_EXP_SMC_BASE_ALIGNED    8
 219
 220/* Flags in tp->nonagle */
 221#define TCP_NAGLE_OFF           1       /* Nagle's algo is disabled */
 222#define TCP_NAGLE_CORK          2       /* Socket is corked         */
 223#define TCP_NAGLE_PUSH          4       /* Cork is overridden for already queued data */
 224
 225/* TCP thin-stream limits */
 226#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
 227
 228/* TCP initial congestion window as per rfc6928 */
 229#define TCP_INIT_CWND           10
 230
 231/* Bit Flags for sysctl_tcp_fastopen */
 232#define TFO_CLIENT_ENABLE       1
 233#define TFO_SERVER_ENABLE       2
 234#define TFO_CLIENT_NO_COOKIE    4       /* Data in SYN w/o cookie option */
 235
 236/* Accept SYN data w/o any cookie option */
 237#define TFO_SERVER_COOKIE_NOT_REQD      0x200
 238
 239/* Force enable TFO on all listeners, i.e., not requiring the
 240 * TCP_FASTOPEN socket option.
 241 */
 242#define TFO_SERVER_WO_SOCKOPT1  0x400
 243
 244
 245/* sysctl variables for tcp */
 246extern int sysctl_tcp_max_orphans;
 247extern long sysctl_tcp_mem[3];
 248
 249#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
 250#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
 251#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
 252
 253extern atomic_long_t tcp_memory_allocated;
 254extern struct percpu_counter tcp_sockets_allocated;
 255extern unsigned long tcp_memory_pressure;
 256
 257/* optimized version of sk_under_memory_pressure() for TCP sockets */
 258static inline bool tcp_under_memory_pressure(const struct sock *sk)
 259{
 260        if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
 261            mem_cgroup_under_socket_pressure(sk->sk_memcg))
 262                return true;
 263
 264        return READ_ONCE(tcp_memory_pressure);
 265}
 266/*
 267 * The next routines deal with comparing 32 bit unsigned ints
 268 * and worry about wraparound (automatic with unsigned arithmetic).
 269 */
 270
 271static inline bool before(__u32 seq1, __u32 seq2)
 272{
 273        return (__s32)(seq1-seq2) < 0;
 274}
 275#define after(seq2, seq1)       before(seq1, seq2)
 276
 277/* is s2<=s1<=s3 ? */
 278static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
 279{
 280        return seq3 - seq2 >= seq1 - seq2;
 281}
 282
 283static inline bool tcp_out_of_memory(struct sock *sk)
 284{
 285        if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
 286            sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
 287                return true;
 288        return false;
 289}
 290
 291void sk_forced_mem_schedule(struct sock *sk, int size);
 292
 293static inline bool tcp_too_many_orphans(struct sock *sk, int shift)
 294{
 295        struct percpu_counter *ocp = sk->sk_prot->orphan_count;
 296        int orphans = percpu_counter_read_positive(ocp);
 297
 298        if (orphans << shift > sysctl_tcp_max_orphans) {
 299                orphans = percpu_counter_sum_positive(ocp);
 300                if (orphans << shift > sysctl_tcp_max_orphans)
 301                        return true;
 302        }
 303        return false;
 304}
 305
 306bool tcp_check_oom(struct sock *sk, int shift);
 307
 308
 309extern struct proto tcp_prot;
 310
 311#define TCP_INC_STATS(net, field)       SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 312#define __TCP_INC_STATS(net, field)     __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
 313#define TCP_DEC_STATS(net, field)       SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
 314#define TCP_ADD_STATS(net, field, val)  SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
 315
 316void tcp_tasklet_init(void);
 317
 318int tcp_v4_err(struct sk_buff *skb, u32);
 319
 320void tcp_shutdown(struct sock *sk, int how);
 321
 322int tcp_v4_early_demux(struct sk_buff *skb);
 323int tcp_v4_rcv(struct sk_buff *skb);
 324
 325int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
 326int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
 327int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
 328int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
 329                 int flags);
 330int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
 331                        size_t size, int flags);
 332ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 333                 size_t size, int flags);
 334int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
 335void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
 336              int size_goal);
 337void tcp_release_cb(struct sock *sk);
 338void tcp_wfree(struct sk_buff *skb);
 339void tcp_write_timer_handler(struct sock *sk);
 340void tcp_delack_timer_handler(struct sock *sk);
 341int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
 342int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
 343void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
 344void tcp_rcv_space_adjust(struct sock *sk);
 345int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
 346void tcp_twsk_destructor(struct sock *sk);
 347ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
 348                        struct pipe_inode_info *pipe, size_t len,
 349                        unsigned int flags);
 350
 351void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks);
 352static inline void tcp_dec_quickack_mode(struct sock *sk,
 353                                         const unsigned int pkts)
 354{
 355        struct inet_connection_sock *icsk = inet_csk(sk);
 356
 357        if (icsk->icsk_ack.quick) {
 358                if (pkts >= icsk->icsk_ack.quick) {
 359                        icsk->icsk_ack.quick = 0;
 360                        /* Leaving quickack mode we deflate ATO. */
 361                        icsk->icsk_ack.ato   = TCP_ATO_MIN;
 362                } else
 363                        icsk->icsk_ack.quick -= pkts;
 364        }
 365}
 366
 367#define TCP_ECN_OK              1
 368#define TCP_ECN_QUEUE_CWR       2
 369#define TCP_ECN_DEMAND_CWR      4
 370#define TCP_ECN_SEEN            8
 371
 372enum tcp_tw_status {
 373        TCP_TW_SUCCESS = 0,
 374        TCP_TW_RST = 1,
 375        TCP_TW_ACK = 2,
 376        TCP_TW_SYN = 3
 377};
 378
 379
 380enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
 381                                              struct sk_buff *skb,
 382                                              const struct tcphdr *th);
 383struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
 384                           struct request_sock *req, bool fastopen,
 385                           bool *lost_race);
 386int tcp_child_process(struct sock *parent, struct sock *child,
 387                      struct sk_buff *skb);
 388void tcp_enter_loss(struct sock *sk);
 389void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
 390void tcp_clear_retrans(struct tcp_sock *tp);
 391void tcp_update_metrics(struct sock *sk);
 392void tcp_init_metrics(struct sock *sk);
 393void tcp_metrics_init(void);
 394bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
 395void tcp_close(struct sock *sk, long timeout);
 396void tcp_init_sock(struct sock *sk);
 397void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
 398__poll_t tcp_poll(struct file *file, struct socket *sock,
 399                      struct poll_table_struct *wait);
 400int tcp_getsockopt(struct sock *sk, int level, int optname,
 401                   char __user *optval, int __user *optlen);
 402int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
 403                   unsigned int optlen);
 404void tcp_set_keepalive(struct sock *sk, int val);
 405void tcp_syn_ack_timeout(const struct request_sock *req);
 406int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
 407                int flags, int *addr_len);
 408int tcp_set_rcvlowat(struct sock *sk, int val);
 409void tcp_data_ready(struct sock *sk);
 410#ifdef CONFIG_MMU
 411int tcp_mmap(struct file *file, struct socket *sock,
 412             struct vm_area_struct *vma);
 413#endif
 414void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
 415                       struct tcp_options_received *opt_rx,
 416                       int estab, struct tcp_fastopen_cookie *foc);
 417const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
 418
 419/*
 420 *      BPF SKB-less helpers
 421 */
 422u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
 423                         struct tcphdr *th, u32 *cookie);
 424u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
 425                         struct tcphdr *th, u32 *cookie);
 426u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
 427                          const struct tcp_request_sock_ops *af_ops,
 428                          struct sock *sk, struct tcphdr *th);
 429/*
 430 *      TCP v4 functions exported for the inet6 API
 431 */
 432
 433void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
 434void tcp_v4_mtu_reduced(struct sock *sk);
 435void tcp_req_err(struct sock *sk, u32 seq, bool abort);
 436void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
 437int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
 438struct sock *tcp_create_openreq_child(const struct sock *sk,
 439                                      struct request_sock *req,
 440                                      struct sk_buff *skb);
 441void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
 442struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
 443                                  struct request_sock *req,
 444                                  struct dst_entry *dst,
 445                                  struct request_sock *req_unhash,
 446                                  bool *own_req);
 447int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
 448int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
 449int tcp_connect(struct sock *sk);
 450enum tcp_synack_type {
 451        TCP_SYNACK_NORMAL,
 452        TCP_SYNACK_FASTOPEN,
 453        TCP_SYNACK_COOKIE,
 454};
 455struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
 456                                struct request_sock *req,
 457                                struct tcp_fastopen_cookie *foc,
 458                                enum tcp_synack_type synack_type,
 459                                struct sk_buff *syn_skb);
 460int tcp_disconnect(struct sock *sk, int flags);
 461
 462void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
 463int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
 464void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
 465
 466/* From syncookies.c */
 467struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
 468                                 struct request_sock *req,
 469                                 struct dst_entry *dst, u32 tsoff);
 470int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
 471                      u32 cookie);
 472struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
 473struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
 474                                            struct sock *sk, struct sk_buff *skb);
 475#ifdef CONFIG_SYN_COOKIES
 476
 477/* Syncookies use a monotonic timer which increments every 60 seconds.
 478 * This counter is used both as a hash input and partially encoded into
 479 * the cookie value.  A cookie is only validated further if the delta
 480 * between the current counter value and the encoded one is less than this,
 481 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
 482 * the counter advances immediately after a cookie is generated).
 483 */
 484#define MAX_SYNCOOKIE_AGE       2
 485#define TCP_SYNCOOKIE_PERIOD    (60 * HZ)
 486#define TCP_SYNCOOKIE_VALID     (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
 487
 488/* syncookies: remember time of last synqueue overflow
 489 * But do not dirty this field too often (once per second is enough)
 490 * It is racy as we do not hold a lock, but race is very minor.
 491 */
 492static inline void tcp_synq_overflow(const struct sock *sk)
 493{
 494        unsigned int last_overflow;
 495        unsigned int now = jiffies;
 496
 497        if (sk->sk_reuseport) {
 498                struct sock_reuseport *reuse;
 499
 500                reuse = rcu_dereference(sk->sk_reuseport_cb);
 501                if (likely(reuse)) {
 502                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 503                        if (!time_between32(now, last_overflow,
 504                                            last_overflow + HZ))
 505                                WRITE_ONCE(reuse->synq_overflow_ts, now);
 506                        return;
 507                }
 508        }
 509
 510        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 511        if (!time_between32(now, last_overflow, last_overflow + HZ))
 512                WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
 513}
 514
 515/* syncookies: no recent synqueue overflow on this listening socket? */
 516static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
 517{
 518        unsigned int last_overflow;
 519        unsigned int now = jiffies;
 520
 521        if (sk->sk_reuseport) {
 522                struct sock_reuseport *reuse;
 523
 524                reuse = rcu_dereference(sk->sk_reuseport_cb);
 525                if (likely(reuse)) {
 526                        last_overflow = READ_ONCE(reuse->synq_overflow_ts);
 527                        return !time_between32(now, last_overflow - HZ,
 528                                               last_overflow +
 529                                               TCP_SYNCOOKIE_VALID);
 530                }
 531        }
 532
 533        last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
 534
 535        /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
 536         * then we're under synflood. However, we have to use
 537         * 'last_overflow - HZ' as lower bound. That's because a concurrent
 538         * tcp_synq_overflow() could update .ts_recent_stamp after we read
 539         * jiffies but before we store .ts_recent_stamp into last_overflow,
 540         * which could lead to rejecting a valid syncookie.
 541         */
 542        return !time_between32(now, last_overflow - HZ,
 543                               last_overflow + TCP_SYNCOOKIE_VALID);
 544}
 545
 546static inline u32 tcp_cookie_time(void)
 547{
 548        u64 val = get_jiffies_64();
 549
 550        do_div(val, TCP_SYNCOOKIE_PERIOD);
 551        return val;
 552}
 553
 554u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
 555                              u16 *mssp);
 556__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
 557u64 cookie_init_timestamp(struct request_sock *req, u64 now);
 558bool cookie_timestamp_decode(const struct net *net,
 559                             struct tcp_options_received *opt);
 560bool cookie_ecn_ok(const struct tcp_options_received *opt,
 561                   const struct net *net, const struct dst_entry *dst);
 562
 563/* From net/ipv6/syncookies.c */
 564int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
 565                      u32 cookie);
 566struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
 567
 568u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
 569                              const struct tcphdr *th, u16 *mssp);
 570__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
 571#endif
 572/* tcp_output.c */
 573
 574void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
 575                               int nonagle);
 576int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 577int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
 578void tcp_retransmit_timer(struct sock *sk);
 579void tcp_xmit_retransmit_queue(struct sock *);
 580void tcp_simple_retransmit(struct sock *);
 581void tcp_enter_recovery(struct sock *sk, bool ece_ack);
 582int tcp_trim_head(struct sock *, struct sk_buff *, u32);
 583enum tcp_queue {
 584        TCP_FRAG_IN_WRITE_QUEUE,
 585        TCP_FRAG_IN_RTX_QUEUE,
 586};
 587int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
 588                 struct sk_buff *skb, u32 len,
 589                 unsigned int mss_now, gfp_t gfp);
 590
 591void tcp_send_probe0(struct sock *);
 592void tcp_send_partial(struct sock *);
 593int tcp_write_wakeup(struct sock *, int mib);
 594void tcp_send_fin(struct sock *sk);
 595void tcp_send_active_reset(struct sock *sk, gfp_t priority);
 596int tcp_send_synack(struct sock *);
 597void tcp_push_one(struct sock *, unsigned int mss_now);
 598void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
 599void tcp_send_ack(struct sock *sk);
 600void tcp_send_delayed_ack(struct sock *sk);
 601void tcp_send_loss_probe(struct sock *sk);
 602bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
 603void tcp_skb_collapse_tstamp(struct sk_buff *skb,
 604                             const struct sk_buff *next_skb);
 605
 606/* tcp_input.c */
 607void tcp_rearm_rto(struct sock *sk);
 608void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
 609void tcp_reset(struct sock *sk);
 610void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
 611void tcp_fin(struct sock *sk);
 612
 613/* tcp_timer.c */
 614void tcp_init_xmit_timers(struct sock *);
 615static inline void tcp_clear_xmit_timers(struct sock *sk)
 616{
 617        if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
 618                __sock_put(sk);
 619
 620        if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
 621                __sock_put(sk);
 622
 623        inet_csk_clear_xmit_timers(sk);
 624}
 625
 626unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
 627unsigned int tcp_current_mss(struct sock *sk);
 628
 629/* Bound MSS / TSO packet size with the half of the window */
 630static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
 631{
 632        int cutoff;
 633
 634        /* When peer uses tiny windows, there is no use in packetizing
 635         * to sub-MSS pieces for the sake of SWS or making sure there
 636         * are enough packets in the pipe for fast recovery.
 637         *
 638         * On the other hand, for extremely large MSS devices, handling
 639         * smaller than MSS windows in this way does make sense.
 640         */
 641        if (tp->max_window > TCP_MSS_DEFAULT)
 642                cutoff = (tp->max_window >> 1);
 643        else
 644                cutoff = tp->max_window;
 645
 646        if (cutoff && pktsize > cutoff)
 647                return max_t(int, cutoff, 68U - tp->tcp_header_len);
 648        else
 649                return pktsize;
 650}
 651
 652/* tcp.c */
 653void tcp_get_info(struct sock *, struct tcp_info *);
 654
 655/* Read 'sendfile()'-style from a TCP socket */
 656int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
 657                  sk_read_actor_t recv_actor);
 658
 659void tcp_initialize_rcv_mss(struct sock *sk);
 660
 661int tcp_mtu_to_mss(struct sock *sk, int pmtu);
 662int tcp_mss_to_mtu(struct sock *sk, int mss);
 663void tcp_mtup_init(struct sock *sk);
 664
 665static inline void tcp_bound_rto(const struct sock *sk)
 666{
 667        if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
 668                inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
 669}
 670
 671static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
 672{
 673        return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
 674}
 675
 676static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
 677{
 678        tp->pred_flags = htonl((tp->tcp_header_len << 26) |
 679                               ntohl(TCP_FLAG_ACK) |
 680                               snd_wnd);
 681}
 682
 683static inline void tcp_fast_path_on(struct tcp_sock *tp)
 684{
 685        __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
 686}
 687
 688static inline void tcp_fast_path_check(struct sock *sk)
 689{
 690        struct tcp_sock *tp = tcp_sk(sk);
 691
 692        if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
 693            tp->rcv_wnd &&
 694            atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
 695            !tp->urg_data)
 696                tcp_fast_path_on(tp);
 697}
 698
 699/* Compute the actual rto_min value */
 700static inline u32 tcp_rto_min(struct sock *sk)
 701{
 702        const struct dst_entry *dst = __sk_dst_get(sk);
 703        u32 rto_min = inet_csk(sk)->icsk_rto_min;
 704
 705        if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
 706                rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
 707        return rto_min;
 708}
 709
 710static inline u32 tcp_rto_min_us(struct sock *sk)
 711{
 712        return jiffies_to_usecs(tcp_rto_min(sk));
 713}
 714
 715static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
 716{
 717        return dst_metric_locked(dst, RTAX_CC_ALGO);
 718}
 719
 720/* Minimum RTT in usec. ~0 means not available. */
 721static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
 722{
 723        return minmax_get(&tp->rtt_min);
 724}
 725
 726/* Compute the actual receive window we are currently advertising.
 727 * Rcv_nxt can be after the window if our peer push more data
 728 * than the offered window.
 729 */
 730static inline u32 tcp_receive_window(const struct tcp_sock *tp)
 731{
 732        s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
 733
 734        if (win < 0)
 735                win = 0;
 736        return (u32) win;
 737}
 738
 739/* Choose a new window, without checks for shrinking, and without
 740 * scaling applied to the result.  The caller does these things
 741 * if necessary.  This is a "raw" window selection.
 742 */
 743u32 __tcp_select_window(struct sock *sk);
 744
 745void tcp_send_window_probe(struct sock *sk);
 746
 747/* TCP uses 32bit jiffies to save some space.
 748 * Note that this is different from tcp_time_stamp, which
 749 * historically has been the same until linux-4.13.
 750 */
 751#define tcp_jiffies32 ((u32)jiffies)
 752
 753/*
 754 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
 755 * It is no longer tied to jiffies, but to 1 ms clock.
 756 * Note: double check if you want to use tcp_jiffies32 instead of this.
 757 */
 758#define TCP_TS_HZ       1000
 759
 760static inline u64 tcp_clock_ns(void)
 761{
 762        return ktime_get_ns();
 763}
 764
 765static inline u64 tcp_clock_us(void)
 766{
 767        return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
 768}
 769
 770/* This should only be used in contexts where tp->tcp_mstamp is up to date */
 771static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
 772{
 773        return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
 774}
 775
 776/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
 777static inline u32 tcp_ns_to_ts(u64 ns)
 778{
 779        return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
 780}
 781
 782/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
 783static inline u32 tcp_time_stamp_raw(void)
 784{
 785        return tcp_ns_to_ts(tcp_clock_ns());
 786}
 787
 788void tcp_mstamp_refresh(struct tcp_sock *tp);
 789
 790static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
 791{
 792        return max_t(s64, t1 - t0, 0);
 793}
 794
 795static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
 796{
 797        return tcp_ns_to_ts(skb->skb_mstamp_ns);
 798}
 799
 800/* provide the departure time in us unit */
 801static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
 802{
 803        return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
 804}
 805
 806
 807#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
 808
 809#define TCPHDR_FIN 0x01
 810#define TCPHDR_SYN 0x02
 811#define TCPHDR_RST 0x04
 812#define TCPHDR_PSH 0x08
 813#define TCPHDR_ACK 0x10
 814#define TCPHDR_URG 0x20
 815#define TCPHDR_ECE 0x40
 816#define TCPHDR_CWR 0x80
 817
 818#define TCPHDR_SYN_ECN  (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
 819
 820/* This is what the send packet queuing engine uses to pass
 821 * TCP per-packet control information to the transmission code.
 822 * We also store the host-order sequence numbers in here too.
 823 * This is 44 bytes if IPV6 is enabled.
 824 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
 825 */
 826struct tcp_skb_cb {
 827        __u32           seq;            /* Starting sequence number     */
 828        __u32           end_seq;        /* SEQ + FIN + SYN + datalen    */
 829        union {
 830                /* Note : tcp_tw_isn is used in input path only
 831                 *        (isn chosen by tcp_timewait_state_process())
 832                 *
 833                 *        tcp_gso_segs/size are used in write queue only,
 834                 *        cf tcp_skb_pcount()/tcp_skb_mss()
 835                 */
 836                __u32           tcp_tw_isn;
 837                struct {
 838                        u16     tcp_gso_segs;
 839                        u16     tcp_gso_size;
 840                };
 841        };
 842        __u8            tcp_flags;      /* TCP header flags. (tcp[13])  */
 843
 844        __u8            sacked;         /* State flags for SACK.        */
 845#define TCPCB_SACKED_ACKED      0x01    /* SKB ACK'd by a SACK block    */
 846#define TCPCB_SACKED_RETRANS    0x02    /* SKB retransmitted            */
 847#define TCPCB_LOST              0x04    /* SKB is lost                  */
 848#define TCPCB_TAGBITS           0x07    /* All tag bits                 */
 849#define TCPCB_REPAIRED          0x10    /* SKB repaired (no skb_mstamp_ns)      */
 850#define TCPCB_EVER_RETRANS      0x80    /* Ever retransmitted frame     */
 851#define TCPCB_RETRANS           (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
 852                                TCPCB_REPAIRED)
 853
 854        __u8            ip_dsfield;     /* IPv4 tos or IPv6 dsfield     */
 855        __u8            txstamp_ack:1,  /* Record TX timestamp for ack? */
 856                        eor:1,          /* Is skb MSG_EOR marked? */
 857                        has_rxtstamp:1, /* SKB has a RX timestamp       */
 858                        unused:5;
 859        __u32           ack_seq;        /* Sequence number ACK'd        */
 860        union {
 861                struct {
 862                        /* There is space for up to 24 bytes */
 863                        __u32 in_flight:30,/* Bytes in flight at transmit */
 864                              is_app_limited:1, /* cwnd not fully used? */
 865                              unused:1;
 866                        /* pkts S/ACKed so far upon tx of skb, incl retrans: */
 867                        __u32 delivered;
 868                        /* start of send pipeline phase */
 869                        u64 first_tx_mstamp;
 870                        /* when we reached the "delivered" count */
 871                        u64 delivered_mstamp;
 872                } tx;   /* only used for outgoing skbs */
 873                union {
 874                        struct inet_skb_parm    h4;
 875#if IS_ENABLED(CONFIG_IPV6)
 876                        struct inet6_skb_parm   h6;
 877#endif
 878                } header;       /* For incoming skbs */
 879                struct {
 880                        __u32 flags;
 881                        struct sock *sk_redir;
 882                        void *data_end;
 883                } bpf;
 884        };
 885};
 886
 887#define TCP_SKB_CB(__skb)       ((struct tcp_skb_cb *)&((__skb)->cb[0]))
 888
 889static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
 890{
 891        TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
 892}
 893
 894static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
 895{
 896        return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
 897}
 898
 899static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
 900{
 901        return TCP_SKB_CB(skb)->bpf.sk_redir;
 902}
 903
 904static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
 905{
 906        TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
 907}
 908
 909extern const struct inet_connection_sock_af_ops ipv4_specific;
 910
 911#if IS_ENABLED(CONFIG_IPV6)
 912/* This is the variant of inet6_iif() that must be used by TCP,
 913 * as TCP moves IP6CB into a different location in skb->cb[]
 914 */
 915static inline int tcp_v6_iif(const struct sk_buff *skb)
 916{
 917        return TCP_SKB_CB(skb)->header.h6.iif;
 918}
 919
 920static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
 921{
 922        bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
 923
 924        return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
 925}
 926
 927/* TCP_SKB_CB reference means this can not be used from early demux */
 928static inline int tcp_v6_sdif(const struct sk_buff *skb)
 929{
 930#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 931        if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
 932                return TCP_SKB_CB(skb)->header.h6.iif;
 933#endif
 934        return 0;
 935}
 936
 937extern const struct inet_connection_sock_af_ops ipv6_specific;
 938
 939INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
 940INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
 941INDIRECT_CALLABLE_DECLARE(void tcp_v6_early_demux(struct sk_buff *skb));
 942
 943#endif
 944
 945/* TCP_SKB_CB reference means this can not be used from early demux */
 946static inline int tcp_v4_sdif(struct sk_buff *skb)
 947{
 948#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 949        if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
 950                return TCP_SKB_CB(skb)->header.h4.iif;
 951#endif
 952        return 0;
 953}
 954
 955/* Due to TSO, an SKB can be composed of multiple actual
 956 * packets.  To keep these tracked properly, we use this.
 957 */
 958static inline int tcp_skb_pcount(const struct sk_buff *skb)
 959{
 960        return TCP_SKB_CB(skb)->tcp_gso_segs;
 961}
 962
 963static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
 964{
 965        TCP_SKB_CB(skb)->tcp_gso_segs = segs;
 966}
 967
 968static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
 969{
 970        TCP_SKB_CB(skb)->tcp_gso_segs += segs;
 971}
 972
 973/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
 974static inline int tcp_skb_mss(const struct sk_buff *skb)
 975{
 976        return TCP_SKB_CB(skb)->tcp_gso_size;
 977}
 978
 979static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
 980{
 981        return likely(!TCP_SKB_CB(skb)->eor);
 982}
 983
 984static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
 985                                        const struct sk_buff *from)
 986{
 987        return likely(tcp_skb_can_collapse_to(to) &&
 988                      mptcp_skb_can_collapse(to, from));
 989}
 990
 991/* Events passed to congestion control interface */
 992enum tcp_ca_event {
 993        CA_EVENT_TX_START,      /* first transmit when no packets in flight */
 994        CA_EVENT_CWND_RESTART,  /* congestion window restart */
 995        CA_EVENT_COMPLETE_CWR,  /* end of congestion recovery */
 996        CA_EVENT_LOSS,          /* loss timeout */
 997        CA_EVENT_ECN_NO_CE,     /* ECT set, but not CE marked */
 998        CA_EVENT_ECN_IS_CE,     /* received CE marked IP packet */
 999};
1000
1001/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1002enum tcp_ca_ack_event_flags {
1003        CA_ACK_SLOWPATH         = (1 << 0),     /* In slow path processing */
1004        CA_ACK_WIN_UPDATE       = (1 << 1),     /* ACK updated window */
1005        CA_ACK_ECE              = (1 << 2),     /* ECE bit is set on ack */
1006};
1007
1008/*
1009 * Interface for adding new TCP congestion control handlers
1010 */
1011#define TCP_CA_NAME_MAX 16
1012#define TCP_CA_MAX      128
1013#define TCP_CA_BUF_MAX  (TCP_CA_NAME_MAX*TCP_CA_MAX)
1014
1015#define TCP_CA_UNSPEC   0
1016
1017/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1018#define TCP_CONG_NON_RESTRICTED 0x1
1019/* Requires ECN/ECT set on all packets */
1020#define TCP_CONG_NEEDS_ECN      0x2
1021#define TCP_CONG_MASK   (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1022
1023union tcp_cc_info;
1024
1025struct ack_sample {
1026        u32 pkts_acked;
1027        s32 rtt_us;
1028        u32 in_flight;
1029};
1030
1031/* A rate sample measures the number of (original/retransmitted) data
1032 * packets delivered "delivered" over an interval of time "interval_us".
1033 * The tcp_rate.c code fills in the rate sample, and congestion
1034 * control modules that define a cong_control function to run at the end
1035 * of ACK processing can optionally chose to consult this sample when
1036 * setting cwnd and pacing rate.
1037 * A sample is invalid if "delivered" or "interval_us" is negative.
1038 */
1039struct rate_sample {
1040        u64  prior_mstamp; /* starting timestamp for interval */
1041        u32  prior_delivered;   /* tp->delivered at "prior_mstamp" */
1042        s32  delivered;         /* number of packets delivered over interval */
1043        long interval_us;       /* time for tp->delivered to incr "delivered" */
1044        u32 snd_interval_us;    /* snd interval for delivered packets */
1045        u32 rcv_interval_us;    /* rcv interval for delivered packets */
1046        long rtt_us;            /* RTT of last (S)ACKed packet (or -1) */
1047        int  losses;            /* number of packets marked lost upon ACK */
1048        u32  acked_sacked;      /* number of packets newly (S)ACKed upon ACK */
1049        u32  prior_in_flight;   /* in flight before this ACK */
1050        bool is_app_limited;    /* is sample from packet with bubble in pipe? */
1051        bool is_retrans;        /* is sample from retransmission? */
1052        bool is_ack_delayed;    /* is this (likely) a delayed ACK? */
1053};
1054
1055struct tcp_congestion_ops {
1056        struct list_head        list;
1057        u32 key;
1058        u32 flags;
1059
1060        /* initialize private data (optional) */
1061        void (*init)(struct sock *sk);
1062        /* cleanup private data  (optional) */
1063        void (*release)(struct sock *sk);
1064
1065        /* return slow start threshold (required) */
1066        u32 (*ssthresh)(struct sock *sk);
1067        /* do new cwnd calculation (required) */
1068        void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1069        /* call before changing ca_state (optional) */
1070        void (*set_state)(struct sock *sk, u8 new_state);
1071        /* call when cwnd event occurs (optional) */
1072        void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1073        /* call when ack arrives (optional) */
1074        void (*in_ack_event)(struct sock *sk, u32 flags);
1075        /* new value of cwnd after loss (required) */
1076        u32  (*undo_cwnd)(struct sock *sk);
1077        /* hook for packet ack accounting (optional) */
1078        void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1079        /* override sysctl_tcp_min_tso_segs */
1080        u32 (*min_tso_segs)(struct sock *sk);
1081        /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1082        u32 (*sndbuf_expand)(struct sock *sk);
1083        /* call when packets are delivered to update cwnd and pacing rate,
1084         * after all the ca_state processing. (optional)
1085         */
1086        void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1087        /* get info for inet_diag (optional) */
1088        size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1089                           union tcp_cc_info *info);
1090
1091        char            name[TCP_CA_NAME_MAX];
1092        struct module   *owner;
1093};
1094
1095int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1096void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1097
1098void tcp_assign_congestion_control(struct sock *sk);
1099void tcp_init_congestion_control(struct sock *sk);
1100void tcp_cleanup_congestion_control(struct sock *sk);
1101int tcp_set_default_congestion_control(struct net *net, const char *name);
1102void tcp_get_default_congestion_control(struct net *net, char *name);
1103void tcp_get_available_congestion_control(char *buf, size_t len);
1104void tcp_get_allowed_congestion_control(char *buf, size_t len);
1105int tcp_set_allowed_congestion_control(char *allowed);
1106int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1107                               bool cap_net_admin);
1108u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1109void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1110
1111u32 tcp_reno_ssthresh(struct sock *sk);
1112u32 tcp_reno_undo_cwnd(struct sock *sk);
1113void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1114extern struct tcp_congestion_ops tcp_reno;
1115
1116struct tcp_congestion_ops *tcp_ca_find(const char *name);
1117struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1118u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1119#ifdef CONFIG_INET
1120char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1121#else
1122static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1123{
1124        return NULL;
1125}
1126#endif
1127
1128static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1129{
1130        const struct inet_connection_sock *icsk = inet_csk(sk);
1131
1132        return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1133}
1134
1135static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1136{
1137        struct inet_connection_sock *icsk = inet_csk(sk);
1138
1139        if (icsk->icsk_ca_ops->set_state)
1140                icsk->icsk_ca_ops->set_state(sk, ca_state);
1141        icsk->icsk_ca_state = ca_state;
1142}
1143
1144static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1145{
1146        const struct inet_connection_sock *icsk = inet_csk(sk);
1147
1148        if (icsk->icsk_ca_ops->cwnd_event)
1149                icsk->icsk_ca_ops->cwnd_event(sk, event);
1150}
1151
1152/* From tcp_rate.c */
1153void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1154void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1155                            struct rate_sample *rs);
1156void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1157                  bool is_sack_reneg, struct rate_sample *rs);
1158void tcp_rate_check_app_limited(struct sock *sk);
1159
1160/* These functions determine how the current flow behaves in respect of SACK
1161 * handling. SACK is negotiated with the peer, and therefore it can vary
1162 * between different flows.
1163 *
1164 * tcp_is_sack - SACK enabled
1165 * tcp_is_reno - No SACK
1166 */
1167static inline int tcp_is_sack(const struct tcp_sock *tp)
1168{
1169        return likely(tp->rx_opt.sack_ok);
1170}
1171
1172static inline bool tcp_is_reno(const struct tcp_sock *tp)
1173{
1174        return !tcp_is_sack(tp);
1175}
1176
1177static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1178{
1179        return tp->sacked_out + tp->lost_out;
1180}
1181
1182/* This determines how many packets are "in the network" to the best
1183 * of our knowledge.  In many cases it is conservative, but where
1184 * detailed information is available from the receiver (via SACK
1185 * blocks etc.) we can make more aggressive calculations.
1186 *
1187 * Use this for decisions involving congestion control, use just
1188 * tp->packets_out to determine if the send queue is empty or not.
1189 *
1190 * Read this equation as:
1191 *
1192 *      "Packets sent once on transmission queue" MINUS
1193 *      "Packets left network, but not honestly ACKed yet" PLUS
1194 *      "Packets fast retransmitted"
1195 */
1196static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1197{
1198        return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1199}
1200
1201#define TCP_INFINITE_SSTHRESH   0x7fffffff
1202
1203static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1204{
1205        return tp->snd_cwnd < tp->snd_ssthresh;
1206}
1207
1208static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1209{
1210        return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1211}
1212
1213static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1214{
1215        return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1216               (1 << inet_csk(sk)->icsk_ca_state);
1217}
1218
1219/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1220 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1221 * ssthresh.
1222 */
1223static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1224{
1225        const struct tcp_sock *tp = tcp_sk(sk);
1226
1227        if (tcp_in_cwnd_reduction(sk))
1228                return tp->snd_ssthresh;
1229        else
1230                return max(tp->snd_ssthresh,
1231                           ((tp->snd_cwnd >> 1) +
1232                            (tp->snd_cwnd >> 2)));
1233}
1234
1235/* Use define here intentionally to get WARN_ON location shown at the caller */
1236#define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1237
1238void tcp_enter_cwr(struct sock *sk);
1239__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1240
1241/* The maximum number of MSS of available cwnd for which TSO defers
1242 * sending if not using sysctl_tcp_tso_win_divisor.
1243 */
1244static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1245{
1246        return 3;
1247}
1248
1249/* Returns end sequence number of the receiver's advertised window */
1250static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1251{
1252        return tp->snd_una + tp->snd_wnd;
1253}
1254
1255/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1256 * flexible approach. The RFC suggests cwnd should not be raised unless
1257 * it was fully used previously. And that's exactly what we do in
1258 * congestion avoidance mode. But in slow start we allow cwnd to grow
1259 * as long as the application has used half the cwnd.
1260 * Example :
1261 *    cwnd is 10 (IW10), but application sends 9 frames.
1262 *    We allow cwnd to reach 18 when all frames are ACKed.
1263 * This check is safe because it's as aggressive as slow start which already
1264 * risks 100% overshoot. The advantage is that we discourage application to
1265 * either send more filler packets or data to artificially blow up the cwnd
1266 * usage, and allow application-limited process to probe bw more aggressively.
1267 */
1268static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1269{
1270        const struct tcp_sock *tp = tcp_sk(sk);
1271
1272        /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1273        if (tcp_in_slow_start(tp))
1274                return tp->snd_cwnd < 2 * tp->max_packets_out;
1275
1276        return tp->is_cwnd_limited;
1277}
1278
1279/* BBR congestion control needs pacing.
1280 * Same remark for SO_MAX_PACING_RATE.
1281 * sch_fq packet scheduler is efficiently handling pacing,
1282 * but is not always installed/used.
1283 * Return true if TCP stack should pace packets itself.
1284 */
1285static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1286{
1287        return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1288}
1289
1290/* Estimates in how many jiffies next packet for this flow can be sent.
1291 * Scheduling a retransmit timer too early would be silly.
1292 */
1293static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1294{
1295        s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1296
1297        return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1298}
1299
1300static inline void tcp_reset_xmit_timer(struct sock *sk,
1301                                        const int what,
1302                                        unsigned long when,
1303                                        const unsigned long max_when)
1304{
1305        inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1306                                  max_when);
1307}
1308
1309/* Something is really bad, we could not queue an additional packet,
1310 * because qdisc is full or receiver sent a 0 window, or we are paced.
1311 * We do not want to add fuel to the fire, or abort too early,
1312 * so make sure the timer we arm now is at least 200ms in the future,
1313 * regardless of current icsk_rto value (as it could be ~2ms)
1314 */
1315static inline unsigned long tcp_probe0_base(const struct sock *sk)
1316{
1317        return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1318}
1319
1320/* Variant of inet_csk_rto_backoff() used for zero window probes */
1321static inline unsigned long tcp_probe0_when(const struct sock *sk,
1322                                            unsigned long max_when)
1323{
1324        u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1325
1326        return (unsigned long)min_t(u64, when, max_when);
1327}
1328
1329static inline void tcp_check_probe_timer(struct sock *sk)
1330{
1331        if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1332                tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1333                                     tcp_probe0_base(sk), TCP_RTO_MAX);
1334}
1335
1336static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1337{
1338        tp->snd_wl1 = seq;
1339}
1340
1341static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1342{
1343        tp->snd_wl1 = seq;
1344}
1345
1346/*
1347 * Calculate(/check) TCP checksum
1348 */
1349static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1350                                   __be32 daddr, __wsum base)
1351{
1352        return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1353}
1354
1355static inline bool tcp_checksum_complete(struct sk_buff *skb)
1356{
1357        return !skb_csum_unnecessary(skb) &&
1358                __skb_checksum_complete(skb);
1359}
1360
1361bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1362int tcp_filter(struct sock *sk, struct sk_buff *skb);
1363void tcp_set_state(struct sock *sk, int state);
1364void tcp_done(struct sock *sk);
1365int tcp_abort(struct sock *sk, int err);
1366
1367static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1368{
1369        rx_opt->dsack = 0;
1370        rx_opt->num_sacks = 0;
1371}
1372
1373void tcp_cwnd_restart(struct sock *sk, s32 delta);
1374
1375static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1376{
1377        const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1378        struct tcp_sock *tp = tcp_sk(sk);
1379        s32 delta;
1380
1381        if (!sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle || tp->packets_out ||
1382            ca_ops->cong_control)
1383                return;
1384        delta = tcp_jiffies32 - tp->lsndtime;
1385        if (delta > inet_csk(sk)->icsk_rto)
1386                tcp_cwnd_restart(sk, delta);
1387}
1388
1389/* Determine a window scaling and initial window to offer. */
1390void tcp_select_initial_window(const struct sock *sk, int __space,
1391                               __u32 mss, __u32 *rcv_wnd,
1392                               __u32 *window_clamp, int wscale_ok,
1393                               __u8 *rcv_wscale, __u32 init_rcv_wnd);
1394
1395static inline int tcp_win_from_space(const struct sock *sk, int space)
1396{
1397        int tcp_adv_win_scale = sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale;
1398
1399        return tcp_adv_win_scale <= 0 ?
1400                (space>>(-tcp_adv_win_scale)) :
1401                space - (space>>tcp_adv_win_scale);
1402}
1403
1404/* Note: caller must be prepared to deal with negative returns */
1405static inline int tcp_space(const struct sock *sk)
1406{
1407        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1408                                  READ_ONCE(sk->sk_backlog.len) -
1409                                  atomic_read(&sk->sk_rmem_alloc));
1410}
1411
1412static inline int tcp_full_space(const struct sock *sk)
1413{
1414        return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1415}
1416
1417void tcp_cleanup_rbuf(struct sock *sk, int copied);
1418
1419/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1420 * If 87.5 % (7/8) of the space has been consumed, we want to override
1421 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1422 * len/truesize ratio.
1423 */
1424static inline bool tcp_rmem_pressure(const struct sock *sk)
1425{
1426        int rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1427        int threshold = rcvbuf - (rcvbuf >> 3);
1428
1429        return atomic_read(&sk->sk_rmem_alloc) > threshold;
1430}
1431
1432extern void tcp_openreq_init_rwin(struct request_sock *req,
1433                                  const struct sock *sk_listener,
1434                                  const struct dst_entry *dst);
1435
1436void tcp_enter_memory_pressure(struct sock *sk);
1437void tcp_leave_memory_pressure(struct sock *sk);
1438
1439static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1440{
1441        struct net *net = sock_net((struct sock *)tp);
1442
1443        return tp->keepalive_intvl ? : net->ipv4.sysctl_tcp_keepalive_intvl;
1444}
1445
1446static inline int keepalive_time_when(const struct tcp_sock *tp)
1447{
1448        struct net *net = sock_net((struct sock *)tp);
1449
1450        return tp->keepalive_time ? : net->ipv4.sysctl_tcp_keepalive_time;
1451}
1452
1453static inline int keepalive_probes(const struct tcp_sock *tp)
1454{
1455        struct net *net = sock_net((struct sock *)tp);
1456
1457        return tp->keepalive_probes ? : net->ipv4.sysctl_tcp_keepalive_probes;
1458}
1459
1460static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1461{
1462        const struct inet_connection_sock *icsk = &tp->inet_conn;
1463
1464        return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1465                          tcp_jiffies32 - tp->rcv_tstamp);
1466}
1467
1468static inline int tcp_fin_time(const struct sock *sk)
1469{
1470        int fin_timeout = tcp_sk(sk)->linger2 ? : sock_net(sk)->ipv4.sysctl_tcp_fin_timeout;
1471        const int rto = inet_csk(sk)->icsk_rto;
1472
1473        if (fin_timeout < (rto << 2) - (rto >> 1))
1474                fin_timeout = (rto << 2) - (rto >> 1);
1475
1476        return fin_timeout;
1477}
1478
1479static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1480                                  int paws_win)
1481{
1482        if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1483                return true;
1484        if (unlikely(!time_before32(ktime_get_seconds(),
1485                                    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1486                return true;
1487        /*
1488         * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1489         * then following tcp messages have valid values. Ignore 0 value,
1490         * or else 'negative' tsval might forbid us to accept their packets.
1491         */
1492        if (!rx_opt->ts_recent)
1493                return true;
1494        return false;
1495}
1496
1497static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1498                                   int rst)
1499{
1500        if (tcp_paws_check(rx_opt, 0))
1501                return false;
1502
1503        /* RST segments are not recommended to carry timestamp,
1504           and, if they do, it is recommended to ignore PAWS because
1505           "their cleanup function should take precedence over timestamps."
1506           Certainly, it is mistake. It is necessary to understand the reasons
1507           of this constraint to relax it: if peer reboots, clock may go
1508           out-of-sync and half-open connections will not be reset.
1509           Actually, the problem would be not existing if all
1510           the implementations followed draft about maintaining clock
1511           via reboots. Linux-2.2 DOES NOT!
1512
1513           However, we can relax time bounds for RST segments to MSL.
1514         */
1515        if (rst && !time_before32(ktime_get_seconds(),
1516                                  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1517                return false;
1518        return true;
1519}
1520
1521bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1522                          int mib_idx, u32 *last_oow_ack_time);
1523
1524static inline void tcp_mib_init(struct net *net)
1525{
1526        /* See RFC 2012 */
1527        TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1528        TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1529        TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1530        TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1531}
1532
1533/* from STCP */
1534static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1535{
1536        tp->lost_skb_hint = NULL;
1537}
1538
1539static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1540{
1541        tcp_clear_retrans_hints_partial(tp);
1542        tp->retransmit_skb_hint = NULL;
1543}
1544
1545union tcp_md5_addr {
1546        struct in_addr  a4;
1547#if IS_ENABLED(CONFIG_IPV6)
1548        struct in6_addr a6;
1549#endif
1550};
1551
1552/* - key database */
1553struct tcp_md5sig_key {
1554        struct hlist_node       node;
1555        u8                      keylen;
1556        u8                      family; /* AF_INET or AF_INET6 */
1557        u8                      prefixlen;
1558        union tcp_md5_addr      addr;
1559        int                     l3index; /* set if key added with L3 scope */
1560        u8                      key[TCP_MD5SIG_MAXKEYLEN];
1561        struct rcu_head         rcu;
1562};
1563
1564/* - sock block */
1565struct tcp_md5sig_info {
1566        struct hlist_head       head;
1567        struct rcu_head         rcu;
1568};
1569
1570/* - pseudo header */
1571struct tcp4_pseudohdr {
1572        __be32          saddr;
1573        __be32          daddr;
1574        __u8            pad;
1575        __u8            protocol;
1576        __be16          len;
1577};
1578
1579struct tcp6_pseudohdr {
1580        struct in6_addr saddr;
1581        struct in6_addr daddr;
1582        __be32          len;
1583        __be32          protocol;       /* including padding */
1584};
1585
1586union tcp_md5sum_block {
1587        struct tcp4_pseudohdr ip4;
1588#if IS_ENABLED(CONFIG_IPV6)
1589        struct tcp6_pseudohdr ip6;
1590#endif
1591};
1592
1593/* - pool: digest algorithm, hash description and scratch buffer */
1594struct tcp_md5sig_pool {
1595        struct ahash_request    *md5_req;
1596        void                    *scratch;
1597};
1598
1599/* - functions */
1600int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1601                        const struct sock *sk, const struct sk_buff *skb);
1602int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1603                   int family, u8 prefixlen, int l3index,
1604                   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1605int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1606                   int family, u8 prefixlen, int l3index);
1607struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1608                                         const struct sock *addr_sk);
1609
1610#ifdef CONFIG_TCP_MD5SIG
1611#include <linux/jump_label.h>
1612extern struct static_key_false tcp_md5_needed;
1613struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1614                                           const union tcp_md5_addr *addr,
1615                                           int family);
1616static inline struct tcp_md5sig_key *
1617tcp_md5_do_lookup(const struct sock *sk, int l3index,
1618                  const union tcp_md5_addr *addr, int family)
1619{
1620        if (!static_branch_unlikely(&tcp_md5_needed))
1621                return NULL;
1622        return __tcp_md5_do_lookup(sk, l3index, addr, family);
1623}
1624
1625#define tcp_twsk_md5_key(twsk)  ((twsk)->tw_md5_key)
1626#else
1627static inline struct tcp_md5sig_key *
1628tcp_md5_do_lookup(const struct sock *sk, int l3index,
1629                  const union tcp_md5_addr *addr, int family)
1630{
1631        return NULL;
1632}
1633#define tcp_twsk_md5_key(twsk)  NULL
1634#endif
1635
1636bool tcp_alloc_md5sig_pool(void);
1637
1638struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1639static inline void tcp_put_md5sig_pool(void)
1640{
1641        local_bh_enable();
1642}
1643
1644int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1645                          unsigned int header_len);
1646int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1647                     const struct tcp_md5sig_key *key);
1648
1649/* From tcp_fastopen.c */
1650void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1651                            struct tcp_fastopen_cookie *cookie);
1652void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1653                            struct tcp_fastopen_cookie *cookie, bool syn_lost,
1654                            u16 try_exp);
1655struct tcp_fastopen_request {
1656        /* Fast Open cookie. Size 0 means a cookie request */
1657        struct tcp_fastopen_cookie      cookie;
1658        struct msghdr                   *data;  /* data in MSG_FASTOPEN */
1659        size_t                          size;
1660        int                             copied; /* queued in tcp_connect() */
1661        struct ubuf_info                *uarg;
1662};
1663void tcp_free_fastopen_req(struct tcp_sock *tp);
1664void tcp_fastopen_destroy_cipher(struct sock *sk);
1665void tcp_fastopen_ctx_destroy(struct net *net);
1666int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1667                              void *primary_key, void *backup_key);
1668int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1669                            u64 *key);
1670void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1671struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1672                              struct request_sock *req,
1673                              struct tcp_fastopen_cookie *foc,
1674                              const struct dst_entry *dst);
1675void tcp_fastopen_init_key_once(struct net *net);
1676bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1677                             struct tcp_fastopen_cookie *cookie);
1678bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1679#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1680#define TCP_FASTOPEN_KEY_MAX 2
1681#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1682        (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1683
1684/* Fastopen key context */
1685struct tcp_fastopen_context {
1686        siphash_key_t   key[TCP_FASTOPEN_KEY_MAX];
1687        int             num;
1688        struct rcu_head rcu;
1689};
1690
1691extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1692void tcp_fastopen_active_disable(struct sock *sk);
1693bool tcp_fastopen_active_should_disable(struct sock *sk);
1694void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1695void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1696
1697/* Caller needs to wrap with rcu_read_(un)lock() */
1698static inline
1699struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1700{
1701        struct tcp_fastopen_context *ctx;
1702
1703        ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1704        if (!ctx)
1705                ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1706        return ctx;
1707}
1708
1709static inline
1710bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1711                               const struct tcp_fastopen_cookie *orig)
1712{
1713        if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1714            orig->len == foc->len &&
1715            !memcmp(orig->val, foc->val, foc->len))
1716                return true;
1717        return false;
1718}
1719
1720static inline
1721int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1722{
1723        return ctx->num;
1724}
1725
1726/* Latencies incurred by various limits for a sender. They are
1727 * chronograph-like stats that are mutually exclusive.
1728 */
1729enum tcp_chrono {
1730        TCP_CHRONO_UNSPEC,
1731        TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1732        TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1733        TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1734        __TCP_CHRONO_MAX,
1735};
1736
1737void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1738void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1739
1740/* This helper is needed, because skb->tcp_tsorted_anchor uses
1741 * the same memory storage than skb->destructor/_skb_refdst
1742 */
1743static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1744{
1745        skb->destructor = NULL;
1746        skb->_skb_refdst = 0UL;
1747}
1748
1749#define tcp_skb_tsorted_save(skb) {             \
1750        unsigned long _save = skb->_skb_refdst; \
1751        skb->_skb_refdst = 0UL;
1752
1753#define tcp_skb_tsorted_restore(skb)            \
1754        skb->_skb_refdst = _save;               \
1755}
1756
1757void tcp_write_queue_purge(struct sock *sk);
1758
1759static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1760{
1761        return skb_rb_first(&sk->tcp_rtx_queue);
1762}
1763
1764static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1765{
1766        return skb_rb_last(&sk->tcp_rtx_queue);
1767}
1768
1769static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1770{
1771        return skb_peek(&sk->sk_write_queue);
1772}
1773
1774static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1775{
1776        return skb_peek_tail(&sk->sk_write_queue);
1777}
1778
1779#define tcp_for_write_queue_from_safe(skb, tmp, sk)                     \
1780        skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1781
1782static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1783{
1784        return skb_peek(&sk->sk_write_queue);
1785}
1786
1787static inline bool tcp_skb_is_last(const struct sock *sk,
1788                                   const struct sk_buff *skb)
1789{
1790        return skb_queue_is_last(&sk->sk_write_queue, skb);
1791}
1792
1793/**
1794 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1795 * @sk: socket
1796 *
1797 * Since the write queue can have a temporary empty skb in it,
1798 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1799 */
1800static inline bool tcp_write_queue_empty(const struct sock *sk)
1801{
1802        const struct tcp_sock *tp = tcp_sk(sk);
1803
1804        return tp->write_seq == tp->snd_nxt;
1805}
1806
1807static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1808{
1809        return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1810}
1811
1812static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1813{
1814        return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1815}
1816
1817static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1818{
1819        __skb_queue_tail(&sk->sk_write_queue, skb);
1820
1821        /* Queue it, remembering where we must start sending. */
1822        if (sk->sk_write_queue.next == skb)
1823                tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1824}
1825
1826/* Insert new before skb on the write queue of sk.  */
1827static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1828                                                  struct sk_buff *skb,
1829                                                  struct sock *sk)
1830{
1831        __skb_queue_before(&sk->sk_write_queue, skb, new);
1832}
1833
1834static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1835{
1836        tcp_skb_tsorted_anchor_cleanup(skb);
1837        __skb_unlink(skb, &sk->sk_write_queue);
1838}
1839
1840void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1841
1842static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1843{
1844        tcp_skb_tsorted_anchor_cleanup(skb);
1845        rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1846}
1847
1848static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1849{
1850        list_del(&skb->tcp_tsorted_anchor);
1851        tcp_rtx_queue_unlink(skb, sk);
1852        sk_wmem_free_skb(sk, skb);
1853}
1854
1855static inline void tcp_push_pending_frames(struct sock *sk)
1856{
1857        if (tcp_send_head(sk)) {
1858                struct tcp_sock *tp = tcp_sk(sk);
1859
1860                __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1861        }
1862}
1863
1864/* Start sequence of the skb just after the highest skb with SACKed
1865 * bit, valid only if sacked_out > 0 or when the caller has ensured
1866 * validity by itself.
1867 */
1868static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1869{
1870        if (!tp->sacked_out)
1871                return tp->snd_una;
1872
1873        if (tp->highest_sack == NULL)
1874                return tp->snd_nxt;
1875
1876        return TCP_SKB_CB(tp->highest_sack)->seq;
1877}
1878
1879static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1880{
1881        tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1882}
1883
1884static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1885{
1886        return tcp_sk(sk)->highest_sack;
1887}
1888
1889static inline void tcp_highest_sack_reset(struct sock *sk)
1890{
1891        tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1892}
1893
1894/* Called when old skb is about to be deleted and replaced by new skb */
1895static inline void tcp_highest_sack_replace(struct sock *sk,
1896                                            struct sk_buff *old,
1897                                            struct sk_buff *new)
1898{
1899        if (old == tcp_highest_sack(sk))
1900                tcp_sk(sk)->highest_sack = new;
1901}
1902
1903/* This helper checks if socket has IP_TRANSPARENT set */
1904static inline bool inet_sk_transparent(const struct sock *sk)
1905{
1906        switch (sk->sk_state) {
1907        case TCP_TIME_WAIT:
1908                return inet_twsk(sk)->tw_transparent;
1909        case TCP_NEW_SYN_RECV:
1910                return inet_rsk(inet_reqsk(sk))->no_srccheck;
1911        }
1912        return inet_sk(sk)->transparent;
1913}
1914
1915/* Determines whether this is a thin stream (which may suffer from
1916 * increased latency). Used to trigger latency-reducing mechanisms.
1917 */
1918static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1919{
1920        return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1921}
1922
1923/* /proc */
1924enum tcp_seq_states {
1925        TCP_SEQ_STATE_LISTENING,
1926        TCP_SEQ_STATE_ESTABLISHED,
1927};
1928
1929void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1930void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1931void tcp_seq_stop(struct seq_file *seq, void *v);
1932
1933struct tcp_seq_afinfo {
1934        sa_family_t                     family;
1935};
1936
1937struct tcp_iter_state {
1938        struct seq_net_private  p;
1939        enum tcp_seq_states     state;
1940        struct sock             *syn_wait_sk;
1941        struct tcp_seq_afinfo   *bpf_seq_afinfo;
1942        int                     bucket, offset, sbucket, num;
1943        loff_t                  last_pos;
1944};
1945
1946extern struct request_sock_ops tcp_request_sock_ops;
1947extern struct request_sock_ops tcp6_request_sock_ops;
1948
1949void tcp_v4_destroy_sock(struct sock *sk);
1950
1951struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1952                                netdev_features_t features);
1953struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1954INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1955INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1956INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1957INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1958int tcp_gro_complete(struct sk_buff *skb);
1959
1960void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1961
1962static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1963{
1964        struct net *net = sock_net((struct sock *)tp);
1965        return tp->notsent_lowat ?: net->ipv4.sysctl_tcp_notsent_lowat;
1966}
1967
1968/* @wake is one when sk_stream_write_space() calls us.
1969 * This sends EPOLLOUT only if notsent_bytes is half the limit.
1970 * This mimics the strategy used in sock_def_write_space().
1971 */
1972static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
1973{
1974        const struct tcp_sock *tp = tcp_sk(sk);
1975        u32 notsent_bytes = READ_ONCE(tp->write_seq) -
1976                            READ_ONCE(tp->snd_nxt);
1977
1978        return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
1979}
1980
1981#ifdef CONFIG_PROC_FS
1982int tcp4_proc_init(void);
1983void tcp4_proc_exit(void);
1984#endif
1985
1986int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
1987int tcp_conn_request(struct request_sock_ops *rsk_ops,
1988                     const struct tcp_request_sock_ops *af_ops,
1989                     struct sock *sk, struct sk_buff *skb);
1990
1991/* TCP af-specific functions */
1992struct tcp_sock_af_ops {
1993#ifdef CONFIG_TCP_MD5SIG
1994        struct tcp_md5sig_key   *(*md5_lookup) (const struct sock *sk,
1995                                                const struct sock *addr_sk);
1996        int             (*calc_md5_hash)(char *location,
1997                                         const struct tcp_md5sig_key *md5,
1998                                         const struct sock *sk,
1999                                         const struct sk_buff *skb);
2000        int             (*md5_parse)(struct sock *sk,
2001                                     int optname,
2002                                     sockptr_t optval,
2003                                     int optlen);
2004#endif
2005};
2006
2007struct tcp_request_sock_ops {
2008        u16 mss_clamp;
2009#ifdef CONFIG_TCP_MD5SIG
2010        struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2011                                                 const struct sock *addr_sk);
2012        int             (*calc_md5_hash) (char *location,
2013                                          const struct tcp_md5sig_key *md5,
2014                                          const struct sock *sk,
2015                                          const struct sk_buff *skb);
2016#endif
2017        void (*init_req)(struct request_sock *req,
2018                         const struct sock *sk_listener,
2019                         struct sk_buff *skb);
2020#ifdef CONFIG_SYN_COOKIES
2021        __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2022                                 __u16 *mss);
2023#endif
2024        struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2025                                       const struct request_sock *req);
2026        u32 (*init_seq)(const struct sk_buff *skb);
2027        u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2028        int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2029                           struct flowi *fl, struct request_sock *req,
2030                           struct tcp_fastopen_cookie *foc,
2031                           enum tcp_synack_type synack_type,
2032                           struct sk_buff *syn_skb);
2033};
2034
2035extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2036#if IS_ENABLED(CONFIG_IPV6)
2037extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2038#endif
2039
2040#ifdef CONFIG_SYN_COOKIES
2041static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2042                                         const struct sock *sk, struct sk_buff *skb,
2043                                         __u16 *mss)
2044{
2045        tcp_synq_overflow(sk);
2046        __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2047        return ops->cookie_init_seq(skb, mss);
2048}
2049#else
2050static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2051                                         const struct sock *sk, struct sk_buff *skb,
2052                                         __u16 *mss)
2053{
2054        return 0;
2055}
2056#endif
2057
2058int tcpv4_offload_init(void);
2059
2060void tcp_v4_init(void);
2061void tcp_init(void);
2062
2063/* tcp_recovery.c */
2064void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2065void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2066extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2067                                u32 reo_wnd);
2068extern void tcp_rack_mark_lost(struct sock *sk);
2069extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2070                             u64 xmit_time);
2071extern void tcp_rack_reo_timeout(struct sock *sk);
2072extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2073
2074/* At how many usecs into the future should the RTO fire? */
2075static inline s64 tcp_rto_delta_us(const struct sock *sk)
2076{
2077        const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2078        u32 rto = inet_csk(sk)->icsk_rto;
2079        u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2080
2081        return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2082}
2083
2084/*
2085 * Save and compile IPv4 options, return a pointer to it
2086 */
2087static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2088                                                         struct sk_buff *skb)
2089{
2090        const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2091        struct ip_options_rcu *dopt = NULL;
2092
2093        if (opt->optlen) {
2094                int opt_size = sizeof(*dopt) + opt->optlen;
2095
2096                dopt = kmalloc(opt_size, GFP_ATOMIC);
2097                if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2098                        kfree(dopt);
2099                        dopt = NULL;
2100                }
2101        }
2102        return dopt;
2103}
2104
2105/* locally generated TCP pure ACKs have skb->truesize == 2
2106 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2107 * This is much faster than dissecting the packet to find out.
2108 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2109 */
2110static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2111{
2112        return skb->truesize == 2;
2113}
2114
2115static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2116{
2117        skb->truesize = 2;
2118}
2119
2120static inline int tcp_inq(struct sock *sk)
2121{
2122        struct tcp_sock *tp = tcp_sk(sk);
2123        int answ;
2124
2125        if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2126                answ = 0;
2127        } else if (sock_flag(sk, SOCK_URGINLINE) ||
2128                   !tp->urg_data ||
2129                   before(tp->urg_seq, tp->copied_seq) ||
2130                   !before(tp->urg_seq, tp->rcv_nxt)) {
2131
2132                answ = tp->rcv_nxt - tp->copied_seq;
2133
2134                /* Subtract 1, if FIN was received */
2135                if (answ && sock_flag(sk, SOCK_DONE))
2136                        answ--;
2137        } else {
2138                answ = tp->urg_seq - tp->copied_seq;
2139        }
2140
2141        return answ;
2142}
2143
2144int tcp_peek_len(struct socket *sock);
2145
2146static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2147{
2148        u16 segs_in;
2149
2150        segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2151        tp->segs_in += segs_in;
2152        if (skb->len > tcp_hdrlen(skb))
2153                tp->data_segs_in += segs_in;
2154}
2155
2156/*
2157 * TCP listen path runs lockless.
2158 * We forced "struct sock" to be const qualified to make sure
2159 * we don't modify one of its field by mistake.
2160 * Here, we increment sk_drops which is an atomic_t, so we can safely
2161 * make sock writable again.
2162 */
2163static inline void tcp_listendrop(const struct sock *sk)
2164{
2165        atomic_inc(&((struct sock *)sk)->sk_drops);
2166        __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2167}
2168
2169enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2170
2171/*
2172 * Interface for adding Upper Level Protocols over TCP
2173 */
2174
2175#define TCP_ULP_NAME_MAX        16
2176#define TCP_ULP_MAX             128
2177#define TCP_ULP_BUF_MAX         (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2178
2179struct tcp_ulp_ops {
2180        struct list_head        list;
2181
2182        /* initialize ulp */
2183        int (*init)(struct sock *sk);
2184        /* update ulp */
2185        void (*update)(struct sock *sk, struct proto *p,
2186                       void (*write_space)(struct sock *sk));
2187        /* cleanup ulp */
2188        void (*release)(struct sock *sk);
2189        /* diagnostic */
2190        int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2191        size_t (*get_info_size)(const struct sock *sk);
2192        /* clone ulp */
2193        void (*clone)(const struct request_sock *req, struct sock *newsk,
2194                      const gfp_t priority);
2195
2196        char            name[TCP_ULP_NAME_MAX];
2197        struct module   *owner;
2198};
2199int tcp_register_ulp(struct tcp_ulp_ops *type);
2200void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2201int tcp_set_ulp(struct sock *sk, const char *name);
2202void tcp_get_available_ulp(char *buf, size_t len);
2203void tcp_cleanup_ulp(struct sock *sk);
2204void tcp_update_ulp(struct sock *sk, struct proto *p,
2205                    void (*write_space)(struct sock *sk));
2206
2207#define MODULE_ALIAS_TCP_ULP(name)                              \
2208        __MODULE_INFO(alias, alias_userspace, name);            \
2209        __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2210
2211struct sk_msg;
2212struct sk_psock;
2213
2214#ifdef CONFIG_BPF_STREAM_PARSER
2215struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2216void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2217#else
2218static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2219{
2220}
2221#endif /* CONFIG_BPF_STREAM_PARSER */
2222
2223#ifdef CONFIG_NET_SOCK_MSG
2224int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2225                          int flags);
2226int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2227                      struct msghdr *msg, int len, int flags);
2228#endif /* CONFIG_NET_SOCK_MSG */
2229
2230#ifdef CONFIG_CGROUP_BPF
2231static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2232                                      struct sk_buff *skb,
2233                                      unsigned int end_offset)
2234{
2235        skops->skb = skb;
2236        skops->skb_data_end = skb->data + end_offset;
2237}
2238#else
2239static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2240                                      struct sk_buff *skb,
2241                                      unsigned int end_offset)
2242{
2243}
2244#endif
2245
2246/* Call BPF_SOCK_OPS program that returns an int. If the return value
2247 * is < 0, then the BPF op failed (for example if the loaded BPF
2248 * program does not support the chosen operation or there is no BPF
2249 * program loaded).
2250 */
2251#ifdef CONFIG_BPF
2252static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2253{
2254        struct bpf_sock_ops_kern sock_ops;
2255        int ret;
2256
2257        memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2258        if (sk_fullsock(sk)) {
2259                sock_ops.is_fullsock = 1;
2260                sock_owned_by_me(sk);
2261        }
2262
2263        sock_ops.sk = sk;
2264        sock_ops.op = op;
2265        if (nargs > 0)
2266                memcpy(sock_ops.args, args, nargs * sizeof(*args));
2267
2268        ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2269        if (ret == 0)
2270                ret = sock_ops.reply;
2271        else
2272                ret = -1;
2273        return ret;
2274}
2275
2276static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2277{
2278        u32 args[2] = {arg1, arg2};
2279
2280        return tcp_call_bpf(sk, op, 2, args);
2281}
2282
2283static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2284                                    u32 arg3)
2285{
2286        u32 args[3] = {arg1, arg2, arg3};
2287
2288        return tcp_call_bpf(sk, op, 3, args);
2289}
2290
2291#else
2292static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2293{
2294        return -EPERM;
2295}
2296
2297static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2298{
2299        return -EPERM;
2300}
2301
2302static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2303                                    u32 arg3)
2304{
2305        return -EPERM;
2306}
2307
2308#endif
2309
2310static inline u32 tcp_timeout_init(struct sock *sk)
2311{
2312        int timeout;
2313
2314        timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2315
2316        if (timeout <= 0)
2317                timeout = TCP_TIMEOUT_INIT;
2318        return timeout;
2319}
2320
2321static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2322{
2323        int rwnd;
2324
2325        rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2326
2327        if (rwnd < 0)
2328                rwnd = 0;
2329        return rwnd;
2330}
2331
2332static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2333{
2334        return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2335}
2336
2337static inline void tcp_bpf_rtt(struct sock *sk)
2338{
2339        if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2340                tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2341}
2342
2343#if IS_ENABLED(CONFIG_SMC)
2344extern struct static_key_false tcp_have_smc;
2345#endif
2346
2347#if IS_ENABLED(CONFIG_TLS_DEVICE)
2348void clean_acked_data_enable(struct inet_connection_sock *icsk,
2349                             void (*cad)(struct sock *sk, u32 ack_seq));
2350void clean_acked_data_disable(struct inet_connection_sock *icsk);
2351void clean_acked_data_flush(void);
2352#endif
2353
2354DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2355static inline void tcp_add_tx_delay(struct sk_buff *skb,
2356                                    const struct tcp_sock *tp)
2357{
2358        if (static_branch_unlikely(&tcp_tx_delay_enabled))
2359                skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2360}
2361
2362/* Compute Earliest Departure Time for some control packets
2363 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2364 */
2365static inline u64 tcp_transmit_time(const struct sock *sk)
2366{
2367        if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2368                u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2369                        tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2370
2371                return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2372        }
2373        return 0;
2374}
2375
2376#endif  /* _TCP_H */
2377