linux/include/uapi/linux/btrfs_tree.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note */
   2#ifndef _BTRFS_CTREE_H_
   3#define _BTRFS_CTREE_H_
   4
   5#include <linux/btrfs.h>
   6#include <linux/types.h>
   7#ifdef __KERNEL__
   8#include <linux/stddef.h>
   9#else
  10#include <stddef.h>
  11#endif
  12
  13/*
  14 * This header contains the structure definitions and constants used
  15 * by file system objects that can be retrieved using
  16 * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
  17 * is needed to describe a leaf node's key or item contents.
  18 */
  19
  20/* holds pointers to all of the tree roots */
  21#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  22
  23/* stores information about which extents are in use, and reference counts */
  24#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  25
  26/*
  27 * chunk tree stores translations from logical -> physical block numbering
  28 * the super block points to the chunk tree
  29 */
  30#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  31
  32/*
  33 * stores information about which areas of a given device are in use.
  34 * one per device.  The tree of tree roots points to the device tree
  35 */
  36#define BTRFS_DEV_TREE_OBJECTID 4ULL
  37
  38/* one per subvolume, storing files and directories */
  39#define BTRFS_FS_TREE_OBJECTID 5ULL
  40
  41/* directory objectid inside the root tree */
  42#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  43
  44/* holds checksums of all the data extents */
  45#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  46
  47/* holds quota configuration and tracking */
  48#define BTRFS_QUOTA_TREE_OBJECTID 8ULL
  49
  50/* for storing items that use the BTRFS_UUID_KEY* types */
  51#define BTRFS_UUID_TREE_OBJECTID 9ULL
  52
  53/* tracks free space in block groups. */
  54#define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
  55
  56/* device stats in the device tree */
  57#define BTRFS_DEV_STATS_OBJECTID 0ULL
  58
  59/* for storing balance parameters in the root tree */
  60#define BTRFS_BALANCE_OBJECTID -4ULL
  61
  62/* orhpan objectid for tracking unlinked/truncated files */
  63#define BTRFS_ORPHAN_OBJECTID -5ULL
  64
  65/* does write ahead logging to speed up fsyncs */
  66#define BTRFS_TREE_LOG_OBJECTID -6ULL
  67#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
  68
  69/* for space balancing */
  70#define BTRFS_TREE_RELOC_OBJECTID -8ULL
  71#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
  72
  73/*
  74 * extent checksums all have this objectid
  75 * this allows them to share the logging tree
  76 * for fsyncs
  77 */
  78#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
  79
  80/* For storing free space cache */
  81#define BTRFS_FREE_SPACE_OBJECTID -11ULL
  82
  83/*
  84 * The inode number assigned to the special inode for storing
  85 * free ino cache
  86 */
  87#define BTRFS_FREE_INO_OBJECTID -12ULL
  88
  89/* dummy objectid represents multiple objectids */
  90#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
  91
  92/*
  93 * All files have objectids in this range.
  94 */
  95#define BTRFS_FIRST_FREE_OBJECTID 256ULL
  96#define BTRFS_LAST_FREE_OBJECTID -256ULL
  97#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
  98
  99
 100/*
 101 * the device items go into the chunk tree.  The key is in the form
 102 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 103 */
 104#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 105
 106#define BTRFS_BTREE_INODE_OBJECTID 1
 107
 108#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 109
 110#define BTRFS_DEV_REPLACE_DEVID 0ULL
 111
 112/*
 113 * inode items have the data typically returned from stat and store other
 114 * info about object characteristics.  There is one for every file and dir in
 115 * the FS
 116 */
 117#define BTRFS_INODE_ITEM_KEY            1
 118#define BTRFS_INODE_REF_KEY             12
 119#define BTRFS_INODE_EXTREF_KEY          13
 120#define BTRFS_XATTR_ITEM_KEY            24
 121#define BTRFS_ORPHAN_ITEM_KEY           48
 122/* reserve 2-15 close to the inode for later flexibility */
 123
 124/*
 125 * dir items are the name -> inode pointers in a directory.  There is one
 126 * for every name in a directory.
 127 */
 128#define BTRFS_DIR_LOG_ITEM_KEY  60
 129#define BTRFS_DIR_LOG_INDEX_KEY 72
 130#define BTRFS_DIR_ITEM_KEY      84
 131#define BTRFS_DIR_INDEX_KEY     96
 132/*
 133 * extent data is for file data
 134 */
 135#define BTRFS_EXTENT_DATA_KEY   108
 136
 137/*
 138 * extent csums are stored in a separate tree and hold csums for
 139 * an entire extent on disk.
 140 */
 141#define BTRFS_EXTENT_CSUM_KEY   128
 142
 143/*
 144 * root items point to tree roots.  They are typically in the root
 145 * tree used by the super block to find all the other trees
 146 */
 147#define BTRFS_ROOT_ITEM_KEY     132
 148
 149/*
 150 * root backrefs tie subvols and snapshots to the directory entries that
 151 * reference them
 152 */
 153#define BTRFS_ROOT_BACKREF_KEY  144
 154
 155/*
 156 * root refs make a fast index for listing all of the snapshots and
 157 * subvolumes referenced by a given root.  They point directly to the
 158 * directory item in the root that references the subvol
 159 */
 160#define BTRFS_ROOT_REF_KEY      156
 161
 162/*
 163 * extent items are in the extent map tree.  These record which blocks
 164 * are used, and how many references there are to each block
 165 */
 166#define BTRFS_EXTENT_ITEM_KEY   168
 167
 168/*
 169 * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
 170 * the length, so we save the level in key->offset instead of the length.
 171 */
 172#define BTRFS_METADATA_ITEM_KEY 169
 173
 174#define BTRFS_TREE_BLOCK_REF_KEY        176
 175
 176#define BTRFS_EXTENT_DATA_REF_KEY       178
 177
 178#define BTRFS_EXTENT_REF_V0_KEY         180
 179
 180#define BTRFS_SHARED_BLOCK_REF_KEY      182
 181
 182#define BTRFS_SHARED_DATA_REF_KEY       184
 183
 184/*
 185 * block groups give us hints into the extent allocation trees.  Which
 186 * blocks are free etc etc
 187 */
 188#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
 189
 190/*
 191 * Every block group is represented in the free space tree by a free space info
 192 * item, which stores some accounting information. It is keyed on
 193 * (block_group_start, FREE_SPACE_INFO, block_group_length).
 194 */
 195#define BTRFS_FREE_SPACE_INFO_KEY 198
 196
 197/*
 198 * A free space extent tracks an extent of space that is free in a block group.
 199 * It is keyed on (start, FREE_SPACE_EXTENT, length).
 200 */
 201#define BTRFS_FREE_SPACE_EXTENT_KEY 199
 202
 203/*
 204 * When a block group becomes very fragmented, we convert it to use bitmaps
 205 * instead of extents. A free space bitmap is keyed on
 206 * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
 207 * (length / sectorsize) bits.
 208 */
 209#define BTRFS_FREE_SPACE_BITMAP_KEY 200
 210
 211#define BTRFS_DEV_EXTENT_KEY    204
 212#define BTRFS_DEV_ITEM_KEY      216
 213#define BTRFS_CHUNK_ITEM_KEY    228
 214
 215/*
 216 * Records the overall state of the qgroups.
 217 * There's only one instance of this key present,
 218 * (0, BTRFS_QGROUP_STATUS_KEY, 0)
 219 */
 220#define BTRFS_QGROUP_STATUS_KEY         240
 221/*
 222 * Records the currently used space of the qgroup.
 223 * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
 224 */
 225#define BTRFS_QGROUP_INFO_KEY           242
 226/*
 227 * Contains the user configured limits for the qgroup.
 228 * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
 229 */
 230#define BTRFS_QGROUP_LIMIT_KEY          244
 231/*
 232 * Records the child-parent relationship of qgroups. For
 233 * each relation, 2 keys are present:
 234 * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
 235 * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
 236 */
 237#define BTRFS_QGROUP_RELATION_KEY       246
 238
 239/*
 240 * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
 241 */
 242#define BTRFS_BALANCE_ITEM_KEY  248
 243
 244/*
 245 * The key type for tree items that are stored persistently, but do not need to
 246 * exist for extended period of time. The items can exist in any tree.
 247 *
 248 * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
 249 *
 250 * Existing items:
 251 *
 252 * - balance status item
 253 *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
 254 */
 255#define BTRFS_TEMPORARY_ITEM_KEY        248
 256
 257/*
 258 * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
 259 */
 260#define BTRFS_DEV_STATS_KEY             249
 261
 262/*
 263 * The key type for tree items that are stored persistently and usually exist
 264 * for a long period, eg. filesystem lifetime. The item kinds can be status
 265 * information, stats or preference values. The item can exist in any tree.
 266 *
 267 * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
 268 *
 269 * Existing items:
 270 *
 271 * - device statistics, store IO stats in the device tree, one key for all
 272 *   stats
 273 *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
 274 */
 275#define BTRFS_PERSISTENT_ITEM_KEY       249
 276
 277/*
 278 * Persistantly stores the device replace state in the device tree.
 279 * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
 280 */
 281#define BTRFS_DEV_REPLACE_KEY   250
 282
 283/*
 284 * Stores items that allow to quickly map UUIDs to something else.
 285 * These items are part of the filesystem UUID tree.
 286 * The key is built like this:
 287 * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
 288 */
 289#if BTRFS_UUID_SIZE != 16
 290#error "UUID items require BTRFS_UUID_SIZE == 16!"
 291#endif
 292#define BTRFS_UUID_KEY_SUBVOL   251     /* for UUIDs assigned to subvols */
 293#define BTRFS_UUID_KEY_RECEIVED_SUBVOL  252     /* for UUIDs assigned to
 294                                                 * received subvols */
 295
 296/*
 297 * string items are for debugging.  They just store a short string of
 298 * data in the FS
 299 */
 300#define BTRFS_STRING_ITEM_KEY   253
 301
 302
 303
 304/* 32 bytes in various csum fields */
 305#define BTRFS_CSUM_SIZE 32
 306
 307/* csum types */
 308enum btrfs_csum_type {
 309        BTRFS_CSUM_TYPE_CRC32   = 0,
 310        BTRFS_CSUM_TYPE_XXHASH  = 1,
 311        BTRFS_CSUM_TYPE_SHA256  = 2,
 312        BTRFS_CSUM_TYPE_BLAKE2  = 3,
 313};
 314
 315/*
 316 * flags definitions for directory entry item type
 317 *
 318 * Used by:
 319 * struct btrfs_dir_item.type
 320 *
 321 * Values 0..7 must match common file type values in fs_types.h.
 322 */
 323#define BTRFS_FT_UNKNOWN        0
 324#define BTRFS_FT_REG_FILE       1
 325#define BTRFS_FT_DIR            2
 326#define BTRFS_FT_CHRDEV         3
 327#define BTRFS_FT_BLKDEV         4
 328#define BTRFS_FT_FIFO           5
 329#define BTRFS_FT_SOCK           6
 330#define BTRFS_FT_SYMLINK        7
 331#define BTRFS_FT_XATTR          8
 332#define BTRFS_FT_MAX            9
 333
 334/*
 335 * The key defines the order in the tree, and so it also defines (optimal)
 336 * block layout.
 337 *
 338 * objectid corresponds to the inode number.
 339 *
 340 * type tells us things about the object, and is a kind of stream selector.
 341 * so for a given inode, keys with type of 1 might refer to the inode data,
 342 * type of 2 may point to file data in the btree and type == 3 may point to
 343 * extents.
 344 *
 345 * offset is the starting byte offset for this key in the stream.
 346 *
 347 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 348 * in cpu native order.  Otherwise they are identical and their sizes
 349 * should be the same (ie both packed)
 350 */
 351struct btrfs_disk_key {
 352        __le64 objectid;
 353        __u8 type;
 354        __le64 offset;
 355} __attribute__ ((__packed__));
 356
 357struct btrfs_key {
 358        __u64 objectid;
 359        __u8 type;
 360        __u64 offset;
 361} __attribute__ ((__packed__));
 362
 363struct btrfs_dev_item {
 364        /* the internal btrfs device id */
 365        __le64 devid;
 366
 367        /* size of the device */
 368        __le64 total_bytes;
 369
 370        /* bytes used */
 371        __le64 bytes_used;
 372
 373        /* optimal io alignment for this device */
 374        __le32 io_align;
 375
 376        /* optimal io width for this device */
 377        __le32 io_width;
 378
 379        /* minimal io size for this device */
 380        __le32 sector_size;
 381
 382        /* type and info about this device */
 383        __le64 type;
 384
 385        /* expected generation for this device */
 386        __le64 generation;
 387
 388        /*
 389         * starting byte of this partition on the device,
 390         * to allow for stripe alignment in the future
 391         */
 392        __le64 start_offset;
 393
 394        /* grouping information for allocation decisions */
 395        __le32 dev_group;
 396
 397        /* seek speed 0-100 where 100 is fastest */
 398        __u8 seek_speed;
 399
 400        /* bandwidth 0-100 where 100 is fastest */
 401        __u8 bandwidth;
 402
 403        /* btrfs generated uuid for this device */
 404        __u8 uuid[BTRFS_UUID_SIZE];
 405
 406        /* uuid of FS who owns this device */
 407        __u8 fsid[BTRFS_UUID_SIZE];
 408} __attribute__ ((__packed__));
 409
 410struct btrfs_stripe {
 411        __le64 devid;
 412        __le64 offset;
 413        __u8 dev_uuid[BTRFS_UUID_SIZE];
 414} __attribute__ ((__packed__));
 415
 416struct btrfs_chunk {
 417        /* size of this chunk in bytes */
 418        __le64 length;
 419
 420        /* objectid of the root referencing this chunk */
 421        __le64 owner;
 422
 423        __le64 stripe_len;
 424        __le64 type;
 425
 426        /* optimal io alignment for this chunk */
 427        __le32 io_align;
 428
 429        /* optimal io width for this chunk */
 430        __le32 io_width;
 431
 432        /* minimal io size for this chunk */
 433        __le32 sector_size;
 434
 435        /* 2^16 stripes is quite a lot, a second limit is the size of a single
 436         * item in the btree
 437         */
 438        __le16 num_stripes;
 439
 440        /* sub stripes only matter for raid10 */
 441        __le16 sub_stripes;
 442        struct btrfs_stripe stripe;
 443        /* additional stripes go here */
 444} __attribute__ ((__packed__));
 445
 446#define BTRFS_FREE_SPACE_EXTENT 1
 447#define BTRFS_FREE_SPACE_BITMAP 2
 448
 449struct btrfs_free_space_entry {
 450        __le64 offset;
 451        __le64 bytes;
 452        __u8 type;
 453} __attribute__ ((__packed__));
 454
 455struct btrfs_free_space_header {
 456        struct btrfs_disk_key location;
 457        __le64 generation;
 458        __le64 num_entries;
 459        __le64 num_bitmaps;
 460} __attribute__ ((__packed__));
 461
 462#define BTRFS_HEADER_FLAG_WRITTEN       (1ULL << 0)
 463#define BTRFS_HEADER_FLAG_RELOC         (1ULL << 1)
 464
 465/* Super block flags */
 466/* Errors detected */
 467#define BTRFS_SUPER_FLAG_ERROR          (1ULL << 2)
 468
 469#define BTRFS_SUPER_FLAG_SEEDING        (1ULL << 32)
 470#define BTRFS_SUPER_FLAG_METADUMP       (1ULL << 33)
 471#define BTRFS_SUPER_FLAG_METADUMP_V2    (1ULL << 34)
 472#define BTRFS_SUPER_FLAG_CHANGING_FSID  (1ULL << 35)
 473#define BTRFS_SUPER_FLAG_CHANGING_FSID_V2 (1ULL << 36)
 474
 475
 476/*
 477 * items in the extent btree are used to record the objectid of the
 478 * owner of the block and the number of references
 479 */
 480
 481struct btrfs_extent_item {
 482        __le64 refs;
 483        __le64 generation;
 484        __le64 flags;
 485} __attribute__ ((__packed__));
 486
 487struct btrfs_extent_item_v0 {
 488        __le32 refs;
 489} __attribute__ ((__packed__));
 490
 491
 492#define BTRFS_EXTENT_FLAG_DATA          (1ULL << 0)
 493#define BTRFS_EXTENT_FLAG_TREE_BLOCK    (1ULL << 1)
 494
 495/* following flags only apply to tree blocks */
 496
 497/* use full backrefs for extent pointers in the block */
 498#define BTRFS_BLOCK_FLAG_FULL_BACKREF   (1ULL << 8)
 499
 500/*
 501 * this flag is only used internally by scrub and may be changed at any time
 502 * it is only declared here to avoid collisions
 503 */
 504#define BTRFS_EXTENT_FLAG_SUPER         (1ULL << 48)
 505
 506struct btrfs_tree_block_info {
 507        struct btrfs_disk_key key;
 508        __u8 level;
 509} __attribute__ ((__packed__));
 510
 511struct btrfs_extent_data_ref {
 512        __le64 root;
 513        __le64 objectid;
 514        __le64 offset;
 515        __le32 count;
 516} __attribute__ ((__packed__));
 517
 518struct btrfs_shared_data_ref {
 519        __le32 count;
 520} __attribute__ ((__packed__));
 521
 522struct btrfs_extent_inline_ref {
 523        __u8 type;
 524        __le64 offset;
 525} __attribute__ ((__packed__));
 526
 527/* dev extents record free space on individual devices.  The owner
 528 * field points back to the chunk allocation mapping tree that allocated
 529 * the extent.  The chunk tree uuid field is a way to double check the owner
 530 */
 531struct btrfs_dev_extent {
 532        __le64 chunk_tree;
 533        __le64 chunk_objectid;
 534        __le64 chunk_offset;
 535        __le64 length;
 536        __u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 537} __attribute__ ((__packed__));
 538
 539struct btrfs_inode_ref {
 540        __le64 index;
 541        __le16 name_len;
 542        /* name goes here */
 543} __attribute__ ((__packed__));
 544
 545struct btrfs_inode_extref {
 546        __le64 parent_objectid;
 547        __le64 index;
 548        __le16 name_len;
 549        __u8   name[0];
 550        /* name goes here */
 551} __attribute__ ((__packed__));
 552
 553struct btrfs_timespec {
 554        __le64 sec;
 555        __le32 nsec;
 556} __attribute__ ((__packed__));
 557
 558struct btrfs_inode_item {
 559        /* nfs style generation number */
 560        __le64 generation;
 561        /* transid that last touched this inode */
 562        __le64 transid;
 563        __le64 size;
 564        __le64 nbytes;
 565        __le64 block_group;
 566        __le32 nlink;
 567        __le32 uid;
 568        __le32 gid;
 569        __le32 mode;
 570        __le64 rdev;
 571        __le64 flags;
 572
 573        /* modification sequence number for NFS */
 574        __le64 sequence;
 575
 576        /*
 577         * a little future expansion, for more than this we can
 578         * just grow the inode item and version it
 579         */
 580        __le64 reserved[4];
 581        struct btrfs_timespec atime;
 582        struct btrfs_timespec ctime;
 583        struct btrfs_timespec mtime;
 584        struct btrfs_timespec otime;
 585} __attribute__ ((__packed__));
 586
 587struct btrfs_dir_log_item {
 588        __le64 end;
 589} __attribute__ ((__packed__));
 590
 591struct btrfs_dir_item {
 592        struct btrfs_disk_key location;
 593        __le64 transid;
 594        __le16 data_len;
 595        __le16 name_len;
 596        __u8 type;
 597} __attribute__ ((__packed__));
 598
 599#define BTRFS_ROOT_SUBVOL_RDONLY        (1ULL << 0)
 600
 601/*
 602 * Internal in-memory flag that a subvolume has been marked for deletion but
 603 * still visible as a directory
 604 */
 605#define BTRFS_ROOT_SUBVOL_DEAD          (1ULL << 48)
 606
 607struct btrfs_root_item {
 608        struct btrfs_inode_item inode;
 609        __le64 generation;
 610        __le64 root_dirid;
 611        __le64 bytenr;
 612        __le64 byte_limit;
 613        __le64 bytes_used;
 614        __le64 last_snapshot;
 615        __le64 flags;
 616        __le32 refs;
 617        struct btrfs_disk_key drop_progress;
 618        __u8 drop_level;
 619        __u8 level;
 620
 621        /*
 622         * The following fields appear after subvol_uuids+subvol_times
 623         * were introduced.
 624         */
 625
 626        /*
 627         * This generation number is used to test if the new fields are valid
 628         * and up to date while reading the root item. Every time the root item
 629         * is written out, the "generation" field is copied into this field. If
 630         * anyone ever mounted the fs with an older kernel, we will have
 631         * mismatching generation values here and thus must invalidate the
 632         * new fields. See btrfs_update_root and btrfs_find_last_root for
 633         * details.
 634         * the offset of generation_v2 is also used as the start for the memset
 635         * when invalidating the fields.
 636         */
 637        __le64 generation_v2;
 638        __u8 uuid[BTRFS_UUID_SIZE];
 639        __u8 parent_uuid[BTRFS_UUID_SIZE];
 640        __u8 received_uuid[BTRFS_UUID_SIZE];
 641        __le64 ctransid; /* updated when an inode changes */
 642        __le64 otransid; /* trans when created */
 643        __le64 stransid; /* trans when sent. non-zero for received subvol */
 644        __le64 rtransid; /* trans when received. non-zero for received subvol */
 645        struct btrfs_timespec ctime;
 646        struct btrfs_timespec otime;
 647        struct btrfs_timespec stime;
 648        struct btrfs_timespec rtime;
 649        __le64 reserved[8]; /* for future */
 650} __attribute__ ((__packed__));
 651
 652/*
 653 * Btrfs root item used to be smaller than current size.  The old format ends
 654 * at where member generation_v2 is.
 655 */
 656static inline __u32 btrfs_legacy_root_item_size(void)
 657{
 658        return offsetof(struct btrfs_root_item, generation_v2);
 659}
 660
 661/*
 662 * this is used for both forward and backward root refs
 663 */
 664struct btrfs_root_ref {
 665        __le64 dirid;
 666        __le64 sequence;
 667        __le16 name_len;
 668} __attribute__ ((__packed__));
 669
 670struct btrfs_disk_balance_args {
 671        /*
 672         * profiles to operate on, single is denoted by
 673         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 674         */
 675        __le64 profiles;
 676
 677        /*
 678         * usage filter
 679         * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
 680         * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
 681         */
 682        union {
 683                __le64 usage;
 684                struct {
 685                        __le32 usage_min;
 686                        __le32 usage_max;
 687                };
 688        };
 689
 690        /* devid filter */
 691        __le64 devid;
 692
 693        /* devid subset filter [pstart..pend) */
 694        __le64 pstart;
 695        __le64 pend;
 696
 697        /* btrfs virtual address space subset filter [vstart..vend) */
 698        __le64 vstart;
 699        __le64 vend;
 700
 701        /*
 702         * profile to convert to, single is denoted by
 703         * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 704         */
 705        __le64 target;
 706
 707        /* BTRFS_BALANCE_ARGS_* */
 708        __le64 flags;
 709
 710        /*
 711         * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
 712         * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
 713         * and maximum
 714         */
 715        union {
 716                __le64 limit;
 717                struct {
 718                        __le32 limit_min;
 719                        __le32 limit_max;
 720                };
 721        };
 722
 723        /*
 724         * Process chunks that cross stripes_min..stripes_max devices,
 725         * BTRFS_BALANCE_ARGS_STRIPES_RANGE
 726         */
 727        __le32 stripes_min;
 728        __le32 stripes_max;
 729
 730        __le64 unused[6];
 731} __attribute__ ((__packed__));
 732
 733/*
 734 * store balance parameters to disk so that balance can be properly
 735 * resumed after crash or unmount
 736 */
 737struct btrfs_balance_item {
 738        /* BTRFS_BALANCE_* */
 739        __le64 flags;
 740
 741        struct btrfs_disk_balance_args data;
 742        struct btrfs_disk_balance_args meta;
 743        struct btrfs_disk_balance_args sys;
 744
 745        __le64 unused[4];
 746} __attribute__ ((__packed__));
 747
 748enum {
 749        BTRFS_FILE_EXTENT_INLINE   = 0,
 750        BTRFS_FILE_EXTENT_REG      = 1,
 751        BTRFS_FILE_EXTENT_PREALLOC = 2,
 752        BTRFS_NR_FILE_EXTENT_TYPES = 3,
 753};
 754
 755struct btrfs_file_extent_item {
 756        /*
 757         * transaction id that created this extent
 758         */
 759        __le64 generation;
 760        /*
 761         * max number of bytes to hold this extent in ram
 762         * when we split a compressed extent we can't know how big
 763         * each of the resulting pieces will be.  So, this is
 764         * an upper limit on the size of the extent in ram instead of
 765         * an exact limit.
 766         */
 767        __le64 ram_bytes;
 768
 769        /*
 770         * 32 bits for the various ways we might encode the data,
 771         * including compression and encryption.  If any of these
 772         * are set to something a given disk format doesn't understand
 773         * it is treated like an incompat flag for reading and writing,
 774         * but not for stat.
 775         */
 776        __u8 compression;
 777        __u8 encryption;
 778        __le16 other_encoding; /* spare for later use */
 779
 780        /* are we inline data or a real extent? */
 781        __u8 type;
 782
 783        /*
 784         * disk space consumed by the extent, checksum blocks are included
 785         * in these numbers
 786         *
 787         * At this offset in the structure, the inline extent data start.
 788         */
 789        __le64 disk_bytenr;
 790        __le64 disk_num_bytes;
 791        /*
 792         * the logical offset in file blocks (no csums)
 793         * this extent record is for.  This allows a file extent to point
 794         * into the middle of an existing extent on disk, sharing it
 795         * between two snapshots (useful if some bytes in the middle of the
 796         * extent have changed
 797         */
 798        __le64 offset;
 799        /*
 800         * the logical number of file blocks (no csums included).  This
 801         * always reflects the size uncompressed and without encoding.
 802         */
 803        __le64 num_bytes;
 804
 805} __attribute__ ((__packed__));
 806
 807struct btrfs_csum_item {
 808        __u8 csum;
 809} __attribute__ ((__packed__));
 810
 811struct btrfs_dev_stats_item {
 812        /*
 813         * grow this item struct at the end for future enhancements and keep
 814         * the existing values unchanged
 815         */
 816        __le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 817} __attribute__ ((__packed__));
 818
 819#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS     0
 820#define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID      1
 821
 822struct btrfs_dev_replace_item {
 823        /*
 824         * grow this item struct at the end for future enhancements and keep
 825         * the existing values unchanged
 826         */
 827        __le64 src_devid;
 828        __le64 cursor_left;
 829        __le64 cursor_right;
 830        __le64 cont_reading_from_srcdev_mode;
 831
 832        __le64 replace_state;
 833        __le64 time_started;
 834        __le64 time_stopped;
 835        __le64 num_write_errors;
 836        __le64 num_uncorrectable_read_errors;
 837} __attribute__ ((__packed__));
 838
 839/* different types of block groups (and chunks) */
 840#define BTRFS_BLOCK_GROUP_DATA          (1ULL << 0)
 841#define BTRFS_BLOCK_GROUP_SYSTEM        (1ULL << 1)
 842#define BTRFS_BLOCK_GROUP_METADATA      (1ULL << 2)
 843#define BTRFS_BLOCK_GROUP_RAID0         (1ULL << 3)
 844#define BTRFS_BLOCK_GROUP_RAID1         (1ULL << 4)
 845#define BTRFS_BLOCK_GROUP_DUP           (1ULL << 5)
 846#define BTRFS_BLOCK_GROUP_RAID10        (1ULL << 6)
 847#define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
 848#define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
 849#define BTRFS_BLOCK_GROUP_RAID1C3       (1ULL << 9)
 850#define BTRFS_BLOCK_GROUP_RAID1C4       (1ULL << 10)
 851#define BTRFS_BLOCK_GROUP_RESERVED      (BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
 852                                         BTRFS_SPACE_INFO_GLOBAL_RSV)
 853
 854enum btrfs_raid_types {
 855        BTRFS_RAID_RAID10,
 856        BTRFS_RAID_RAID1,
 857        BTRFS_RAID_DUP,
 858        BTRFS_RAID_RAID0,
 859        BTRFS_RAID_SINGLE,
 860        BTRFS_RAID_RAID5,
 861        BTRFS_RAID_RAID6,
 862        BTRFS_RAID_RAID1C3,
 863        BTRFS_RAID_RAID1C4,
 864        BTRFS_NR_RAID_TYPES
 865};
 866
 867#define BTRFS_BLOCK_GROUP_TYPE_MASK     (BTRFS_BLOCK_GROUP_DATA |    \
 868                                         BTRFS_BLOCK_GROUP_SYSTEM |  \
 869                                         BTRFS_BLOCK_GROUP_METADATA)
 870
 871#define BTRFS_BLOCK_GROUP_PROFILE_MASK  (BTRFS_BLOCK_GROUP_RAID0 |   \
 872                                         BTRFS_BLOCK_GROUP_RAID1 |   \
 873                                         BTRFS_BLOCK_GROUP_RAID1C3 | \
 874                                         BTRFS_BLOCK_GROUP_RAID1C4 | \
 875                                         BTRFS_BLOCK_GROUP_RAID5 |   \
 876                                         BTRFS_BLOCK_GROUP_RAID6 |   \
 877                                         BTRFS_BLOCK_GROUP_DUP |     \
 878                                         BTRFS_BLOCK_GROUP_RAID10)
 879#define BTRFS_BLOCK_GROUP_RAID56_MASK   (BTRFS_BLOCK_GROUP_RAID5 |   \
 880                                         BTRFS_BLOCK_GROUP_RAID6)
 881
 882#define BTRFS_BLOCK_GROUP_RAID1_MASK    (BTRFS_BLOCK_GROUP_RAID1 |   \
 883                                         BTRFS_BLOCK_GROUP_RAID1C3 | \
 884                                         BTRFS_BLOCK_GROUP_RAID1C4)
 885
 886/*
 887 * We need a bit for restriper to be able to tell when chunks of type
 888 * SINGLE are available.  This "extended" profile format is used in
 889 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 890 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 891 * to avoid remappings between two formats in future.
 892 */
 893#define BTRFS_AVAIL_ALLOC_BIT_SINGLE    (1ULL << 48)
 894
 895/*
 896 * A fake block group type that is used to communicate global block reserve
 897 * size to userspace via the SPACE_INFO ioctl.
 898 */
 899#define BTRFS_SPACE_INFO_GLOBAL_RSV     (1ULL << 49)
 900
 901#define BTRFS_EXTENDED_PROFILE_MASK     (BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 902                                         BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 903
 904static inline __u64 chunk_to_extended(__u64 flags)
 905{
 906        if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 907                flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 908
 909        return flags;
 910}
 911static inline __u64 extended_to_chunk(__u64 flags)
 912{
 913        return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 914}
 915
 916struct btrfs_block_group_item {
 917        __le64 used;
 918        __le64 chunk_objectid;
 919        __le64 flags;
 920} __attribute__ ((__packed__));
 921
 922struct btrfs_free_space_info {
 923        __le32 extent_count;
 924        __le32 flags;
 925} __attribute__ ((__packed__));
 926
 927#define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
 928
 929#define BTRFS_QGROUP_LEVEL_SHIFT                48
 930static inline __u16 btrfs_qgroup_level(__u64 qgroupid)
 931{
 932        return (__u16)(qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT);
 933}
 934
 935/*
 936 * is subvolume quota turned on?
 937 */
 938#define BTRFS_QGROUP_STATUS_FLAG_ON             (1ULL << 0)
 939/*
 940 * RESCAN is set during the initialization phase
 941 */
 942#define BTRFS_QGROUP_STATUS_FLAG_RESCAN         (1ULL << 1)
 943/*
 944 * Some qgroup entries are known to be out of date,
 945 * either because the configuration has changed in a way that
 946 * makes a rescan necessary, or because the fs has been mounted
 947 * with a non-qgroup-aware version.
 948 * Turning qouta off and on again makes it inconsistent, too.
 949 */
 950#define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT   (1ULL << 2)
 951
 952#define BTRFS_QGROUP_STATUS_VERSION        1
 953
 954struct btrfs_qgroup_status_item {
 955        __le64 version;
 956        /*
 957         * the generation is updated during every commit. As older
 958         * versions of btrfs are not aware of qgroups, it will be
 959         * possible to detect inconsistencies by checking the
 960         * generation on mount time
 961         */
 962        __le64 generation;
 963
 964        /* flag definitions see above */
 965        __le64 flags;
 966
 967        /*
 968         * only used during scanning to record the progress
 969         * of the scan. It contains a logical address
 970         */
 971        __le64 rescan;
 972} __attribute__ ((__packed__));
 973
 974struct btrfs_qgroup_info_item {
 975        __le64 generation;
 976        __le64 rfer;
 977        __le64 rfer_cmpr;
 978        __le64 excl;
 979        __le64 excl_cmpr;
 980} __attribute__ ((__packed__));
 981
 982struct btrfs_qgroup_limit_item {
 983        /*
 984         * only updated when any of the other values change
 985         */
 986        __le64 flags;
 987        __le64 max_rfer;
 988        __le64 max_excl;
 989        __le64 rsv_rfer;
 990        __le64 rsv_excl;
 991} __attribute__ ((__packed__));
 992
 993#endif /* _BTRFS_CTREE_H_ */
 994