linux/kernel/events/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Performance events core code:
   4 *
   5 *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
   6 *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
   7 *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
   8 *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
   9 */
  10
  11#include <linux/fs.h>
  12#include <linux/mm.h>
  13#include <linux/cpu.h>
  14#include <linux/smp.h>
  15#include <linux/idr.h>
  16#include <linux/file.h>
  17#include <linux/poll.h>
  18#include <linux/slab.h>
  19#include <linux/hash.h>
  20#include <linux/tick.h>
  21#include <linux/sysfs.h>
  22#include <linux/dcache.h>
  23#include <linux/percpu.h>
  24#include <linux/ptrace.h>
  25#include <linux/reboot.h>
  26#include <linux/vmstat.h>
  27#include <linux/device.h>
  28#include <linux/export.h>
  29#include <linux/vmalloc.h>
  30#include <linux/hardirq.h>
  31#include <linux/hugetlb.h>
  32#include <linux/rculist.h>
  33#include <linux/uaccess.h>
  34#include <linux/syscalls.h>
  35#include <linux/anon_inodes.h>
  36#include <linux/kernel_stat.h>
  37#include <linux/cgroup.h>
  38#include <linux/perf_event.h>
  39#include <linux/trace_events.h>
  40#include <linux/hw_breakpoint.h>
  41#include <linux/mm_types.h>
  42#include <linux/module.h>
  43#include <linux/mman.h>
  44#include <linux/compat.h>
  45#include <linux/bpf.h>
  46#include <linux/filter.h>
  47#include <linux/namei.h>
  48#include <linux/parser.h>
  49#include <linux/sched/clock.h>
  50#include <linux/sched/mm.h>
  51#include <linux/proc_ns.h>
  52#include <linux/mount.h>
  53#include <linux/min_heap.h>
  54
  55#include "internal.h"
  56
  57#include <asm/irq_regs.h>
  58
  59typedef int (*remote_function_f)(void *);
  60
  61struct remote_function_call {
  62        struct task_struct      *p;
  63        remote_function_f       func;
  64        void                    *info;
  65        int                     ret;
  66};
  67
  68static void remote_function(void *data)
  69{
  70        struct remote_function_call *tfc = data;
  71        struct task_struct *p = tfc->p;
  72
  73        if (p) {
  74                /* -EAGAIN */
  75                if (task_cpu(p) != smp_processor_id())
  76                        return;
  77
  78                /*
  79                 * Now that we're on right CPU with IRQs disabled, we can test
  80                 * if we hit the right task without races.
  81                 */
  82
  83                tfc->ret = -ESRCH; /* No such (running) process */
  84                if (p != current)
  85                        return;
  86        }
  87
  88        tfc->ret = tfc->func(tfc->info);
  89}
  90
  91/**
  92 * task_function_call - call a function on the cpu on which a task runs
  93 * @p:          the task to evaluate
  94 * @func:       the function to be called
  95 * @info:       the function call argument
  96 *
  97 * Calls the function @func when the task is currently running. This might
  98 * be on the current CPU, which just calls the function directly.  This will
  99 * retry due to any failures in smp_call_function_single(), such as if the
 100 * task_cpu() goes offline concurrently.
 101 *
 102 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
 103 */
 104static int
 105task_function_call(struct task_struct *p, remote_function_f func, void *info)
 106{
 107        struct remote_function_call data = {
 108                .p      = p,
 109                .func   = func,
 110                .info   = info,
 111                .ret    = -EAGAIN,
 112        };
 113        int ret;
 114
 115        for (;;) {
 116                ret = smp_call_function_single(task_cpu(p), remote_function,
 117                                               &data, 1);
 118                if (!ret)
 119                        ret = data.ret;
 120
 121                if (ret != -EAGAIN)
 122                        break;
 123
 124                cond_resched();
 125        }
 126
 127        return ret;
 128}
 129
 130/**
 131 * cpu_function_call - call a function on the cpu
 132 * @func:       the function to be called
 133 * @info:       the function call argument
 134 *
 135 * Calls the function @func on the remote cpu.
 136 *
 137 * returns: @func return value or -ENXIO when the cpu is offline
 138 */
 139static int cpu_function_call(int cpu, remote_function_f func, void *info)
 140{
 141        struct remote_function_call data = {
 142                .p      = NULL,
 143                .func   = func,
 144                .info   = info,
 145                .ret    = -ENXIO, /* No such CPU */
 146        };
 147
 148        smp_call_function_single(cpu, remote_function, &data, 1);
 149
 150        return data.ret;
 151}
 152
 153static inline struct perf_cpu_context *
 154__get_cpu_context(struct perf_event_context *ctx)
 155{
 156        return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
 157}
 158
 159static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
 160                          struct perf_event_context *ctx)
 161{
 162        raw_spin_lock(&cpuctx->ctx.lock);
 163        if (ctx)
 164                raw_spin_lock(&ctx->lock);
 165}
 166
 167static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
 168                            struct perf_event_context *ctx)
 169{
 170        if (ctx)
 171                raw_spin_unlock(&ctx->lock);
 172        raw_spin_unlock(&cpuctx->ctx.lock);
 173}
 174
 175#define TASK_TOMBSTONE ((void *)-1L)
 176
 177static bool is_kernel_event(struct perf_event *event)
 178{
 179        return READ_ONCE(event->owner) == TASK_TOMBSTONE;
 180}
 181
 182/*
 183 * On task ctx scheduling...
 184 *
 185 * When !ctx->nr_events a task context will not be scheduled. This means
 186 * we can disable the scheduler hooks (for performance) without leaving
 187 * pending task ctx state.
 188 *
 189 * This however results in two special cases:
 190 *
 191 *  - removing the last event from a task ctx; this is relatively straight
 192 *    forward and is done in __perf_remove_from_context.
 193 *
 194 *  - adding the first event to a task ctx; this is tricky because we cannot
 195 *    rely on ctx->is_active and therefore cannot use event_function_call().
 196 *    See perf_install_in_context().
 197 *
 198 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
 199 */
 200
 201typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
 202                        struct perf_event_context *, void *);
 203
 204struct event_function_struct {
 205        struct perf_event *event;
 206        event_f func;
 207        void *data;
 208};
 209
 210static int event_function(void *info)
 211{
 212        struct event_function_struct *efs = info;
 213        struct perf_event *event = efs->event;
 214        struct perf_event_context *ctx = event->ctx;
 215        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 216        struct perf_event_context *task_ctx = cpuctx->task_ctx;
 217        int ret = 0;
 218
 219        lockdep_assert_irqs_disabled();
 220
 221        perf_ctx_lock(cpuctx, task_ctx);
 222        /*
 223         * Since we do the IPI call without holding ctx->lock things can have
 224         * changed, double check we hit the task we set out to hit.
 225         */
 226        if (ctx->task) {
 227                if (ctx->task != current) {
 228                        ret = -ESRCH;
 229                        goto unlock;
 230                }
 231
 232                /*
 233                 * We only use event_function_call() on established contexts,
 234                 * and event_function() is only ever called when active (or
 235                 * rather, we'll have bailed in task_function_call() or the
 236                 * above ctx->task != current test), therefore we must have
 237                 * ctx->is_active here.
 238                 */
 239                WARN_ON_ONCE(!ctx->is_active);
 240                /*
 241                 * And since we have ctx->is_active, cpuctx->task_ctx must
 242                 * match.
 243                 */
 244                WARN_ON_ONCE(task_ctx != ctx);
 245        } else {
 246                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 247        }
 248
 249        efs->func(event, cpuctx, ctx, efs->data);
 250unlock:
 251        perf_ctx_unlock(cpuctx, task_ctx);
 252
 253        return ret;
 254}
 255
 256static void event_function_call(struct perf_event *event, event_f func, void *data)
 257{
 258        struct perf_event_context *ctx = event->ctx;
 259        struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
 260        struct event_function_struct efs = {
 261                .event = event,
 262                .func = func,
 263                .data = data,
 264        };
 265
 266        if (!event->parent) {
 267                /*
 268                 * If this is a !child event, we must hold ctx::mutex to
 269                 * stabilize the the event->ctx relation. See
 270                 * perf_event_ctx_lock().
 271                 */
 272                lockdep_assert_held(&ctx->mutex);
 273        }
 274
 275        if (!task) {
 276                cpu_function_call(event->cpu, event_function, &efs);
 277                return;
 278        }
 279
 280        if (task == TASK_TOMBSTONE)
 281                return;
 282
 283again:
 284        if (!task_function_call(task, event_function, &efs))
 285                return;
 286
 287        raw_spin_lock_irq(&ctx->lock);
 288        /*
 289         * Reload the task pointer, it might have been changed by
 290         * a concurrent perf_event_context_sched_out().
 291         */
 292        task = ctx->task;
 293        if (task == TASK_TOMBSTONE) {
 294                raw_spin_unlock_irq(&ctx->lock);
 295                return;
 296        }
 297        if (ctx->is_active) {
 298                raw_spin_unlock_irq(&ctx->lock);
 299                goto again;
 300        }
 301        func(event, NULL, ctx, data);
 302        raw_spin_unlock_irq(&ctx->lock);
 303}
 304
 305/*
 306 * Similar to event_function_call() + event_function(), but hard assumes IRQs
 307 * are already disabled and we're on the right CPU.
 308 */
 309static void event_function_local(struct perf_event *event, event_f func, void *data)
 310{
 311        struct perf_event_context *ctx = event->ctx;
 312        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 313        struct task_struct *task = READ_ONCE(ctx->task);
 314        struct perf_event_context *task_ctx = NULL;
 315
 316        lockdep_assert_irqs_disabled();
 317
 318        if (task) {
 319                if (task == TASK_TOMBSTONE)
 320                        return;
 321
 322                task_ctx = ctx;
 323        }
 324
 325        perf_ctx_lock(cpuctx, task_ctx);
 326
 327        task = ctx->task;
 328        if (task == TASK_TOMBSTONE)
 329                goto unlock;
 330
 331        if (task) {
 332                /*
 333                 * We must be either inactive or active and the right task,
 334                 * otherwise we're screwed, since we cannot IPI to somewhere
 335                 * else.
 336                 */
 337                if (ctx->is_active) {
 338                        if (WARN_ON_ONCE(task != current))
 339                                goto unlock;
 340
 341                        if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
 342                                goto unlock;
 343                }
 344        } else {
 345                WARN_ON_ONCE(&cpuctx->ctx != ctx);
 346        }
 347
 348        func(event, cpuctx, ctx, data);
 349unlock:
 350        perf_ctx_unlock(cpuctx, task_ctx);
 351}
 352
 353#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
 354                       PERF_FLAG_FD_OUTPUT  |\
 355                       PERF_FLAG_PID_CGROUP |\
 356                       PERF_FLAG_FD_CLOEXEC)
 357
 358/*
 359 * branch priv levels that need permission checks
 360 */
 361#define PERF_SAMPLE_BRANCH_PERM_PLM \
 362        (PERF_SAMPLE_BRANCH_KERNEL |\
 363         PERF_SAMPLE_BRANCH_HV)
 364
 365enum event_type_t {
 366        EVENT_FLEXIBLE = 0x1,
 367        EVENT_PINNED = 0x2,
 368        EVENT_TIME = 0x4,
 369        /* see ctx_resched() for details */
 370        EVENT_CPU = 0x8,
 371        EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
 372};
 373
 374/*
 375 * perf_sched_events : >0 events exist
 376 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
 377 */
 378
 379static void perf_sched_delayed(struct work_struct *work);
 380DEFINE_STATIC_KEY_FALSE(perf_sched_events);
 381static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
 382static DEFINE_MUTEX(perf_sched_mutex);
 383static atomic_t perf_sched_count;
 384
 385static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
 386static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
 387
 388static atomic_t nr_mmap_events __read_mostly;
 389static atomic_t nr_comm_events __read_mostly;
 390static atomic_t nr_namespaces_events __read_mostly;
 391static atomic_t nr_task_events __read_mostly;
 392static atomic_t nr_freq_events __read_mostly;
 393static atomic_t nr_switch_events __read_mostly;
 394static atomic_t nr_ksymbol_events __read_mostly;
 395static atomic_t nr_bpf_events __read_mostly;
 396static atomic_t nr_cgroup_events __read_mostly;
 397static atomic_t nr_text_poke_events __read_mostly;
 398
 399static LIST_HEAD(pmus);
 400static DEFINE_MUTEX(pmus_lock);
 401static struct srcu_struct pmus_srcu;
 402static cpumask_var_t perf_online_mask;
 403
 404/*
 405 * perf event paranoia level:
 406 *  -1 - not paranoid at all
 407 *   0 - disallow raw tracepoint access for unpriv
 408 *   1 - disallow cpu events for unpriv
 409 *   2 - disallow kernel profiling for unpriv
 410 */
 411int sysctl_perf_event_paranoid __read_mostly = 2;
 412
 413/* Minimum for 512 kiB + 1 user control page */
 414int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
 415
 416/*
 417 * max perf event sample rate
 418 */
 419#define DEFAULT_MAX_SAMPLE_RATE         100000
 420#define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
 421#define DEFAULT_CPU_TIME_MAX_PERCENT    25
 422
 423int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
 424
 425static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
 426static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
 427
 428static int perf_sample_allowed_ns __read_mostly =
 429        DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
 430
 431static void update_perf_cpu_limits(void)
 432{
 433        u64 tmp = perf_sample_period_ns;
 434
 435        tmp *= sysctl_perf_cpu_time_max_percent;
 436        tmp = div_u64(tmp, 100);
 437        if (!tmp)
 438                tmp = 1;
 439
 440        WRITE_ONCE(perf_sample_allowed_ns, tmp);
 441}
 442
 443static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
 444
 445int perf_proc_update_handler(struct ctl_table *table, int write,
 446                void *buffer, size_t *lenp, loff_t *ppos)
 447{
 448        int ret;
 449        int perf_cpu = sysctl_perf_cpu_time_max_percent;
 450        /*
 451         * If throttling is disabled don't allow the write:
 452         */
 453        if (write && (perf_cpu == 100 || perf_cpu == 0))
 454                return -EINVAL;
 455
 456        ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 457        if (ret || !write)
 458                return ret;
 459
 460        max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
 461        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 462        update_perf_cpu_limits();
 463
 464        return 0;
 465}
 466
 467int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
 468
 469int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
 470                void *buffer, size_t *lenp, loff_t *ppos)
 471{
 472        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 473
 474        if (ret || !write)
 475                return ret;
 476
 477        if (sysctl_perf_cpu_time_max_percent == 100 ||
 478            sysctl_perf_cpu_time_max_percent == 0) {
 479                printk(KERN_WARNING
 480                       "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
 481                WRITE_ONCE(perf_sample_allowed_ns, 0);
 482        } else {
 483                update_perf_cpu_limits();
 484        }
 485
 486        return 0;
 487}
 488
 489/*
 490 * perf samples are done in some very critical code paths (NMIs).
 491 * If they take too much CPU time, the system can lock up and not
 492 * get any real work done.  This will drop the sample rate when
 493 * we detect that events are taking too long.
 494 */
 495#define NR_ACCUMULATED_SAMPLES 128
 496static DEFINE_PER_CPU(u64, running_sample_length);
 497
 498static u64 __report_avg;
 499static u64 __report_allowed;
 500
 501static void perf_duration_warn(struct irq_work *w)
 502{
 503        printk_ratelimited(KERN_INFO
 504                "perf: interrupt took too long (%lld > %lld), lowering "
 505                "kernel.perf_event_max_sample_rate to %d\n",
 506                __report_avg, __report_allowed,
 507                sysctl_perf_event_sample_rate);
 508}
 509
 510static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
 511
 512void perf_sample_event_took(u64 sample_len_ns)
 513{
 514        u64 max_len = READ_ONCE(perf_sample_allowed_ns);
 515        u64 running_len;
 516        u64 avg_len;
 517        u32 max;
 518
 519        if (max_len == 0)
 520                return;
 521
 522        /* Decay the counter by 1 average sample. */
 523        running_len = __this_cpu_read(running_sample_length);
 524        running_len -= running_len/NR_ACCUMULATED_SAMPLES;
 525        running_len += sample_len_ns;
 526        __this_cpu_write(running_sample_length, running_len);
 527
 528        /*
 529         * Note: this will be biased artifically low until we have
 530         * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
 531         * from having to maintain a count.
 532         */
 533        avg_len = running_len/NR_ACCUMULATED_SAMPLES;
 534        if (avg_len <= max_len)
 535                return;
 536
 537        __report_avg = avg_len;
 538        __report_allowed = max_len;
 539
 540        /*
 541         * Compute a throttle threshold 25% below the current duration.
 542         */
 543        avg_len += avg_len / 4;
 544        max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
 545        if (avg_len < max)
 546                max /= (u32)avg_len;
 547        else
 548                max = 1;
 549
 550        WRITE_ONCE(perf_sample_allowed_ns, avg_len);
 551        WRITE_ONCE(max_samples_per_tick, max);
 552
 553        sysctl_perf_event_sample_rate = max * HZ;
 554        perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
 555
 556        if (!irq_work_queue(&perf_duration_work)) {
 557                early_printk("perf: interrupt took too long (%lld > %lld), lowering "
 558                             "kernel.perf_event_max_sample_rate to %d\n",
 559                             __report_avg, __report_allowed,
 560                             sysctl_perf_event_sample_rate);
 561        }
 562}
 563
 564static atomic64_t perf_event_id;
 565
 566static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
 567                              enum event_type_t event_type);
 568
 569static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
 570                             enum event_type_t event_type,
 571                             struct task_struct *task);
 572
 573static void update_context_time(struct perf_event_context *ctx);
 574static u64 perf_event_time(struct perf_event *event);
 575
 576void __weak perf_event_print_debug(void)        { }
 577
 578extern __weak const char *perf_pmu_name(void)
 579{
 580        return "pmu";
 581}
 582
 583static inline u64 perf_clock(void)
 584{
 585        return local_clock();
 586}
 587
 588static inline u64 perf_event_clock(struct perf_event *event)
 589{
 590        return event->clock();
 591}
 592
 593/*
 594 * State based event timekeeping...
 595 *
 596 * The basic idea is to use event->state to determine which (if any) time
 597 * fields to increment with the current delta. This means we only need to
 598 * update timestamps when we change state or when they are explicitly requested
 599 * (read).
 600 *
 601 * Event groups make things a little more complicated, but not terribly so. The
 602 * rules for a group are that if the group leader is OFF the entire group is
 603 * OFF, irrespecive of what the group member states are. This results in
 604 * __perf_effective_state().
 605 *
 606 * A futher ramification is that when a group leader flips between OFF and
 607 * !OFF, we need to update all group member times.
 608 *
 609 *
 610 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
 611 * need to make sure the relevant context time is updated before we try and
 612 * update our timestamps.
 613 */
 614
 615static __always_inline enum perf_event_state
 616__perf_effective_state(struct perf_event *event)
 617{
 618        struct perf_event *leader = event->group_leader;
 619
 620        if (leader->state <= PERF_EVENT_STATE_OFF)
 621                return leader->state;
 622
 623        return event->state;
 624}
 625
 626static __always_inline void
 627__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
 628{
 629        enum perf_event_state state = __perf_effective_state(event);
 630        u64 delta = now - event->tstamp;
 631
 632        *enabled = event->total_time_enabled;
 633        if (state >= PERF_EVENT_STATE_INACTIVE)
 634                *enabled += delta;
 635
 636        *running = event->total_time_running;
 637        if (state >= PERF_EVENT_STATE_ACTIVE)
 638                *running += delta;
 639}
 640
 641static void perf_event_update_time(struct perf_event *event)
 642{
 643        u64 now = perf_event_time(event);
 644
 645        __perf_update_times(event, now, &event->total_time_enabled,
 646                                        &event->total_time_running);
 647        event->tstamp = now;
 648}
 649
 650static void perf_event_update_sibling_time(struct perf_event *leader)
 651{
 652        struct perf_event *sibling;
 653
 654        for_each_sibling_event(sibling, leader)
 655                perf_event_update_time(sibling);
 656}
 657
 658static void
 659perf_event_set_state(struct perf_event *event, enum perf_event_state state)
 660{
 661        if (event->state == state)
 662                return;
 663
 664        perf_event_update_time(event);
 665        /*
 666         * If a group leader gets enabled/disabled all its siblings
 667         * are affected too.
 668         */
 669        if ((event->state < 0) ^ (state < 0))
 670                perf_event_update_sibling_time(event);
 671
 672        WRITE_ONCE(event->state, state);
 673}
 674
 675#ifdef CONFIG_CGROUP_PERF
 676
 677static inline bool
 678perf_cgroup_match(struct perf_event *event)
 679{
 680        struct perf_event_context *ctx = event->ctx;
 681        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
 682
 683        /* @event doesn't care about cgroup */
 684        if (!event->cgrp)
 685                return true;
 686
 687        /* wants specific cgroup scope but @cpuctx isn't associated with any */
 688        if (!cpuctx->cgrp)
 689                return false;
 690
 691        /*
 692         * Cgroup scoping is recursive.  An event enabled for a cgroup is
 693         * also enabled for all its descendant cgroups.  If @cpuctx's
 694         * cgroup is a descendant of @event's (the test covers identity
 695         * case), it's a match.
 696         */
 697        return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
 698                                    event->cgrp->css.cgroup);
 699}
 700
 701static inline void perf_detach_cgroup(struct perf_event *event)
 702{
 703        css_put(&event->cgrp->css);
 704        event->cgrp = NULL;
 705}
 706
 707static inline int is_cgroup_event(struct perf_event *event)
 708{
 709        return event->cgrp != NULL;
 710}
 711
 712static inline u64 perf_cgroup_event_time(struct perf_event *event)
 713{
 714        struct perf_cgroup_info *t;
 715
 716        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 717        return t->time;
 718}
 719
 720static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
 721{
 722        struct perf_cgroup_info *info;
 723        u64 now;
 724
 725        now = perf_clock();
 726
 727        info = this_cpu_ptr(cgrp->info);
 728
 729        info->time += now - info->timestamp;
 730        info->timestamp = now;
 731}
 732
 733static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
 734{
 735        struct perf_cgroup *cgrp = cpuctx->cgrp;
 736        struct cgroup_subsys_state *css;
 737
 738        if (cgrp) {
 739                for (css = &cgrp->css; css; css = css->parent) {
 740                        cgrp = container_of(css, struct perf_cgroup, css);
 741                        __update_cgrp_time(cgrp);
 742                }
 743        }
 744}
 745
 746static inline void update_cgrp_time_from_event(struct perf_event *event)
 747{
 748        struct perf_cgroup *cgrp;
 749
 750        /*
 751         * ensure we access cgroup data only when needed and
 752         * when we know the cgroup is pinned (css_get)
 753         */
 754        if (!is_cgroup_event(event))
 755                return;
 756
 757        cgrp = perf_cgroup_from_task(current, event->ctx);
 758        /*
 759         * Do not update time when cgroup is not active
 760         */
 761        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
 762                __update_cgrp_time(event->cgrp);
 763}
 764
 765static inline void
 766perf_cgroup_set_timestamp(struct task_struct *task,
 767                          struct perf_event_context *ctx)
 768{
 769        struct perf_cgroup *cgrp;
 770        struct perf_cgroup_info *info;
 771        struct cgroup_subsys_state *css;
 772
 773        /*
 774         * ctx->lock held by caller
 775         * ensure we do not access cgroup data
 776         * unless we have the cgroup pinned (css_get)
 777         */
 778        if (!task || !ctx->nr_cgroups)
 779                return;
 780
 781        cgrp = perf_cgroup_from_task(task, ctx);
 782
 783        for (css = &cgrp->css; css; css = css->parent) {
 784                cgrp = container_of(css, struct perf_cgroup, css);
 785                info = this_cpu_ptr(cgrp->info);
 786                info->timestamp = ctx->timestamp;
 787        }
 788}
 789
 790static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
 791
 792#define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
 793#define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
 794
 795/*
 796 * reschedule events based on the cgroup constraint of task.
 797 *
 798 * mode SWOUT : schedule out everything
 799 * mode SWIN : schedule in based on cgroup for next
 800 */
 801static void perf_cgroup_switch(struct task_struct *task, int mode)
 802{
 803        struct perf_cpu_context *cpuctx;
 804        struct list_head *list;
 805        unsigned long flags;
 806
 807        /*
 808         * Disable interrupts and preemption to avoid this CPU's
 809         * cgrp_cpuctx_entry to change under us.
 810         */
 811        local_irq_save(flags);
 812
 813        list = this_cpu_ptr(&cgrp_cpuctx_list);
 814        list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
 815                WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
 816
 817                perf_ctx_lock(cpuctx, cpuctx->task_ctx);
 818                perf_pmu_disable(cpuctx->ctx.pmu);
 819
 820                if (mode & PERF_CGROUP_SWOUT) {
 821                        cpu_ctx_sched_out(cpuctx, EVENT_ALL);
 822                        /*
 823                         * must not be done before ctxswout due
 824                         * to event_filter_match() in event_sched_out()
 825                         */
 826                        cpuctx->cgrp = NULL;
 827                }
 828
 829                if (mode & PERF_CGROUP_SWIN) {
 830                        WARN_ON_ONCE(cpuctx->cgrp);
 831                        /*
 832                         * set cgrp before ctxsw in to allow
 833                         * event_filter_match() to not have to pass
 834                         * task around
 835                         * we pass the cpuctx->ctx to perf_cgroup_from_task()
 836                         * because cgorup events are only per-cpu
 837                         */
 838                        cpuctx->cgrp = perf_cgroup_from_task(task,
 839                                                             &cpuctx->ctx);
 840                        cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
 841                }
 842                perf_pmu_enable(cpuctx->ctx.pmu);
 843                perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
 844        }
 845
 846        local_irq_restore(flags);
 847}
 848
 849static inline void perf_cgroup_sched_out(struct task_struct *task,
 850                                         struct task_struct *next)
 851{
 852        struct perf_cgroup *cgrp1;
 853        struct perf_cgroup *cgrp2 = NULL;
 854
 855        rcu_read_lock();
 856        /*
 857         * we come here when we know perf_cgroup_events > 0
 858         * we do not need to pass the ctx here because we know
 859         * we are holding the rcu lock
 860         */
 861        cgrp1 = perf_cgroup_from_task(task, NULL);
 862        cgrp2 = perf_cgroup_from_task(next, NULL);
 863
 864        /*
 865         * only schedule out current cgroup events if we know
 866         * that we are switching to a different cgroup. Otherwise,
 867         * do no touch the cgroup events.
 868         */
 869        if (cgrp1 != cgrp2)
 870                perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
 871
 872        rcu_read_unlock();
 873}
 874
 875static inline void perf_cgroup_sched_in(struct task_struct *prev,
 876                                        struct task_struct *task)
 877{
 878        struct perf_cgroup *cgrp1;
 879        struct perf_cgroup *cgrp2 = NULL;
 880
 881        rcu_read_lock();
 882        /*
 883         * we come here when we know perf_cgroup_events > 0
 884         * we do not need to pass the ctx here because we know
 885         * we are holding the rcu lock
 886         */
 887        cgrp1 = perf_cgroup_from_task(task, NULL);
 888        cgrp2 = perf_cgroup_from_task(prev, NULL);
 889
 890        /*
 891         * only need to schedule in cgroup events if we are changing
 892         * cgroup during ctxsw. Cgroup events were not scheduled
 893         * out of ctxsw out if that was not the case.
 894         */
 895        if (cgrp1 != cgrp2)
 896                perf_cgroup_switch(task, PERF_CGROUP_SWIN);
 897
 898        rcu_read_unlock();
 899}
 900
 901static int perf_cgroup_ensure_storage(struct perf_event *event,
 902                                struct cgroup_subsys_state *css)
 903{
 904        struct perf_cpu_context *cpuctx;
 905        struct perf_event **storage;
 906        int cpu, heap_size, ret = 0;
 907
 908        /*
 909         * Allow storage to have sufficent space for an iterator for each
 910         * possibly nested cgroup plus an iterator for events with no cgroup.
 911         */
 912        for (heap_size = 1; css; css = css->parent)
 913                heap_size++;
 914
 915        for_each_possible_cpu(cpu) {
 916                cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
 917                if (heap_size <= cpuctx->heap_size)
 918                        continue;
 919
 920                storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
 921                                       GFP_KERNEL, cpu_to_node(cpu));
 922                if (!storage) {
 923                        ret = -ENOMEM;
 924                        break;
 925                }
 926
 927                raw_spin_lock_irq(&cpuctx->ctx.lock);
 928                if (cpuctx->heap_size < heap_size) {
 929                        swap(cpuctx->heap, storage);
 930                        if (storage == cpuctx->heap_default)
 931                                storage = NULL;
 932                        cpuctx->heap_size = heap_size;
 933                }
 934                raw_spin_unlock_irq(&cpuctx->ctx.lock);
 935
 936                kfree(storage);
 937        }
 938
 939        return ret;
 940}
 941
 942static inline int perf_cgroup_connect(int fd, struct perf_event *event,
 943                                      struct perf_event_attr *attr,
 944                                      struct perf_event *group_leader)
 945{
 946        struct perf_cgroup *cgrp;
 947        struct cgroup_subsys_state *css;
 948        struct fd f = fdget(fd);
 949        int ret = 0;
 950
 951        if (!f.file)
 952                return -EBADF;
 953
 954        css = css_tryget_online_from_dir(f.file->f_path.dentry,
 955                                         &perf_event_cgrp_subsys);
 956        if (IS_ERR(css)) {
 957                ret = PTR_ERR(css);
 958                goto out;
 959        }
 960
 961        ret = perf_cgroup_ensure_storage(event, css);
 962        if (ret)
 963                goto out;
 964
 965        cgrp = container_of(css, struct perf_cgroup, css);
 966        event->cgrp = cgrp;
 967
 968        /*
 969         * all events in a group must monitor
 970         * the same cgroup because a task belongs
 971         * to only one perf cgroup at a time
 972         */
 973        if (group_leader && group_leader->cgrp != cgrp) {
 974                perf_detach_cgroup(event);
 975                ret = -EINVAL;
 976        }
 977out:
 978        fdput(f);
 979        return ret;
 980}
 981
 982static inline void
 983perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
 984{
 985        struct perf_cgroup_info *t;
 986        t = per_cpu_ptr(event->cgrp->info, event->cpu);
 987        event->shadow_ctx_time = now - t->timestamp;
 988}
 989
 990static inline void
 991perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
 992{
 993        struct perf_cpu_context *cpuctx;
 994
 995        if (!is_cgroup_event(event))
 996                return;
 997
 998        /*
 999         * Because cgroup events are always per-cpu events,
1000         * @ctx == &cpuctx->ctx.
1001         */
1002        cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1003
1004        /*
1005         * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006         * matching the event's cgroup, we must do this for every new event,
1007         * because if the first would mismatch, the second would not try again
1008         * and we would leave cpuctx->cgrp unset.
1009         */
1010        if (ctx->is_active && !cpuctx->cgrp) {
1011                struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012
1013                if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014                        cpuctx->cgrp = cgrp;
1015        }
1016
1017        if (ctx->nr_cgroups++)
1018                return;
1019
1020        list_add(&cpuctx->cgrp_cpuctx_entry,
1021                        per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1022}
1023
1024static inline void
1025perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1026{
1027        struct perf_cpu_context *cpuctx;
1028
1029        if (!is_cgroup_event(event))
1030                return;
1031
1032        /*
1033         * Because cgroup events are always per-cpu events,
1034         * @ctx == &cpuctx->ctx.
1035         */
1036        cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037
1038        if (--ctx->nr_cgroups)
1039                return;
1040
1041        if (ctx->is_active && cpuctx->cgrp)
1042                cpuctx->cgrp = NULL;
1043
1044        list_del(&cpuctx->cgrp_cpuctx_entry);
1045}
1046
1047#else /* !CONFIG_CGROUP_PERF */
1048
1049static inline bool
1050perf_cgroup_match(struct perf_event *event)
1051{
1052        return true;
1053}
1054
1055static inline void perf_detach_cgroup(struct perf_event *event)
1056{}
1057
1058static inline int is_cgroup_event(struct perf_event *event)
1059{
1060        return 0;
1061}
1062
1063static inline void update_cgrp_time_from_event(struct perf_event *event)
1064{
1065}
1066
1067static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1068{
1069}
1070
1071static inline void perf_cgroup_sched_out(struct task_struct *task,
1072                                         struct task_struct *next)
1073{
1074}
1075
1076static inline void perf_cgroup_sched_in(struct task_struct *prev,
1077                                        struct task_struct *task)
1078{
1079}
1080
1081static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1082                                      struct perf_event_attr *attr,
1083                                      struct perf_event *group_leader)
1084{
1085        return -EINVAL;
1086}
1087
1088static inline void
1089perf_cgroup_set_timestamp(struct task_struct *task,
1090                          struct perf_event_context *ctx)
1091{
1092}
1093
1094static inline void
1095perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1096{
1097}
1098
1099static inline void
1100perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1101{
1102}
1103
1104static inline u64 perf_cgroup_event_time(struct perf_event *event)
1105{
1106        return 0;
1107}
1108
1109static inline void
1110perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1111{
1112}
1113
1114static inline void
1115perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1116{
1117}
1118#endif
1119
1120/*
1121 * set default to be dependent on timer tick just
1122 * like original code
1123 */
1124#define PERF_CPU_HRTIMER (1000 / HZ)
1125/*
1126 * function must be called with interrupts disabled
1127 */
1128static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1129{
1130        struct perf_cpu_context *cpuctx;
1131        bool rotations;
1132
1133        lockdep_assert_irqs_disabled();
1134
1135        cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1136        rotations = perf_rotate_context(cpuctx);
1137
1138        raw_spin_lock(&cpuctx->hrtimer_lock);
1139        if (rotations)
1140                hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1141        else
1142                cpuctx->hrtimer_active = 0;
1143        raw_spin_unlock(&cpuctx->hrtimer_lock);
1144
1145        return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1146}
1147
1148static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1149{
1150        struct hrtimer *timer = &cpuctx->hrtimer;
1151        struct pmu *pmu = cpuctx->ctx.pmu;
1152        u64 interval;
1153
1154        /* no multiplexing needed for SW PMU */
1155        if (pmu->task_ctx_nr == perf_sw_context)
1156                return;
1157
1158        /*
1159         * check default is sane, if not set then force to
1160         * default interval (1/tick)
1161         */
1162        interval = pmu->hrtimer_interval_ms;
1163        if (interval < 1)
1164                interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1165
1166        cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1167
1168        raw_spin_lock_init(&cpuctx->hrtimer_lock);
1169        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1170        timer->function = perf_mux_hrtimer_handler;
1171}
1172
1173static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1174{
1175        struct hrtimer *timer = &cpuctx->hrtimer;
1176        struct pmu *pmu = cpuctx->ctx.pmu;
1177        unsigned long flags;
1178
1179        /* not for SW PMU */
1180        if (pmu->task_ctx_nr == perf_sw_context)
1181                return 0;
1182
1183        raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1184        if (!cpuctx->hrtimer_active) {
1185                cpuctx->hrtimer_active = 1;
1186                hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1187                hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1188        }
1189        raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1190
1191        return 0;
1192}
1193
1194void perf_pmu_disable(struct pmu *pmu)
1195{
1196        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1197        if (!(*count)++)
1198                pmu->pmu_disable(pmu);
1199}
1200
1201void perf_pmu_enable(struct pmu *pmu)
1202{
1203        int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204        if (!--(*count))
1205                pmu->pmu_enable(pmu);
1206}
1207
1208static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1209
1210/*
1211 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1212 * perf_event_task_tick() are fully serialized because they're strictly cpu
1213 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1214 * disabled, while perf_event_task_tick is called from IRQ context.
1215 */
1216static void perf_event_ctx_activate(struct perf_event_context *ctx)
1217{
1218        struct list_head *head = this_cpu_ptr(&active_ctx_list);
1219
1220        lockdep_assert_irqs_disabled();
1221
1222        WARN_ON(!list_empty(&ctx->active_ctx_list));
1223
1224        list_add(&ctx->active_ctx_list, head);
1225}
1226
1227static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1228{
1229        lockdep_assert_irqs_disabled();
1230
1231        WARN_ON(list_empty(&ctx->active_ctx_list));
1232
1233        list_del_init(&ctx->active_ctx_list);
1234}
1235
1236static void get_ctx(struct perf_event_context *ctx)
1237{
1238        refcount_inc(&ctx->refcount);
1239}
1240
1241static void *alloc_task_ctx_data(struct pmu *pmu)
1242{
1243        if (pmu->task_ctx_cache)
1244                return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1245
1246        return NULL;
1247}
1248
1249static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1250{
1251        if (pmu->task_ctx_cache && task_ctx_data)
1252                kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1253}
1254
1255static void free_ctx(struct rcu_head *head)
1256{
1257        struct perf_event_context *ctx;
1258
1259        ctx = container_of(head, struct perf_event_context, rcu_head);
1260        free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1261        kfree(ctx);
1262}
1263
1264static void put_ctx(struct perf_event_context *ctx)
1265{
1266        if (refcount_dec_and_test(&ctx->refcount)) {
1267                if (ctx->parent_ctx)
1268                        put_ctx(ctx->parent_ctx);
1269                if (ctx->task && ctx->task != TASK_TOMBSTONE)
1270                        put_task_struct(ctx->task);
1271                call_rcu(&ctx->rcu_head, free_ctx);
1272        }
1273}
1274
1275/*
1276 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1277 * perf_pmu_migrate_context() we need some magic.
1278 *
1279 * Those places that change perf_event::ctx will hold both
1280 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1281 *
1282 * Lock ordering is by mutex address. There are two other sites where
1283 * perf_event_context::mutex nests and those are:
1284 *
1285 *  - perf_event_exit_task_context()    [ child , 0 ]
1286 *      perf_event_exit_event()
1287 *        put_event()                   [ parent, 1 ]
1288 *
1289 *  - perf_event_init_context()         [ parent, 0 ]
1290 *      inherit_task_group()
1291 *        inherit_group()
1292 *          inherit_event()
1293 *            perf_event_alloc()
1294 *              perf_init_event()
1295 *                perf_try_init_event() [ child , 1 ]
1296 *
1297 * While it appears there is an obvious deadlock here -- the parent and child
1298 * nesting levels are inverted between the two. This is in fact safe because
1299 * life-time rules separate them. That is an exiting task cannot fork, and a
1300 * spawning task cannot (yet) exit.
1301 *
1302 * But remember that that these are parent<->child context relations, and
1303 * migration does not affect children, therefore these two orderings should not
1304 * interact.
1305 *
1306 * The change in perf_event::ctx does not affect children (as claimed above)
1307 * because the sys_perf_event_open() case will install a new event and break
1308 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1309 * concerned with cpuctx and that doesn't have children.
1310 *
1311 * The places that change perf_event::ctx will issue:
1312 *
1313 *   perf_remove_from_context();
1314 *   synchronize_rcu();
1315 *   perf_install_in_context();
1316 *
1317 * to affect the change. The remove_from_context() + synchronize_rcu() should
1318 * quiesce the event, after which we can install it in the new location. This
1319 * means that only external vectors (perf_fops, prctl) can perturb the event
1320 * while in transit. Therefore all such accessors should also acquire
1321 * perf_event_context::mutex to serialize against this.
1322 *
1323 * However; because event->ctx can change while we're waiting to acquire
1324 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1325 * function.
1326 *
1327 * Lock order:
1328 *    exec_update_mutex
1329 *      task_struct::perf_event_mutex
1330 *        perf_event_context::mutex
1331 *          perf_event::child_mutex;
1332 *            perf_event_context::lock
1333 *          perf_event::mmap_mutex
1334 *          mmap_lock
1335 *            perf_addr_filters_head::lock
1336 *
1337 *    cpu_hotplug_lock
1338 *      pmus_lock
1339 *        cpuctx->mutex / perf_event_context::mutex
1340 */
1341static struct perf_event_context *
1342perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1343{
1344        struct perf_event_context *ctx;
1345
1346again:
1347        rcu_read_lock();
1348        ctx = READ_ONCE(event->ctx);
1349        if (!refcount_inc_not_zero(&ctx->refcount)) {
1350                rcu_read_unlock();
1351                goto again;
1352        }
1353        rcu_read_unlock();
1354
1355        mutex_lock_nested(&ctx->mutex, nesting);
1356        if (event->ctx != ctx) {
1357                mutex_unlock(&ctx->mutex);
1358                put_ctx(ctx);
1359                goto again;
1360        }
1361
1362        return ctx;
1363}
1364
1365static inline struct perf_event_context *
1366perf_event_ctx_lock(struct perf_event *event)
1367{
1368        return perf_event_ctx_lock_nested(event, 0);
1369}
1370
1371static void perf_event_ctx_unlock(struct perf_event *event,
1372                                  struct perf_event_context *ctx)
1373{
1374        mutex_unlock(&ctx->mutex);
1375        put_ctx(ctx);
1376}
1377
1378/*
1379 * This must be done under the ctx->lock, such as to serialize against
1380 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1381 * calling scheduler related locks and ctx->lock nests inside those.
1382 */
1383static __must_check struct perf_event_context *
1384unclone_ctx(struct perf_event_context *ctx)
1385{
1386        struct perf_event_context *parent_ctx = ctx->parent_ctx;
1387
1388        lockdep_assert_held(&ctx->lock);
1389
1390        if (parent_ctx)
1391                ctx->parent_ctx = NULL;
1392        ctx->generation++;
1393
1394        return parent_ctx;
1395}
1396
1397static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1398                                enum pid_type type)
1399{
1400        u32 nr;
1401        /*
1402         * only top level events have the pid namespace they were created in
1403         */
1404        if (event->parent)
1405                event = event->parent;
1406
1407        nr = __task_pid_nr_ns(p, type, event->ns);
1408        /* avoid -1 if it is idle thread or runs in another ns */
1409        if (!nr && !pid_alive(p))
1410                nr = -1;
1411        return nr;
1412}
1413
1414static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1415{
1416        return perf_event_pid_type(event, p, PIDTYPE_TGID);
1417}
1418
1419static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1420{
1421        return perf_event_pid_type(event, p, PIDTYPE_PID);
1422}
1423
1424/*
1425 * If we inherit events we want to return the parent event id
1426 * to userspace.
1427 */
1428static u64 primary_event_id(struct perf_event *event)
1429{
1430        u64 id = event->id;
1431
1432        if (event->parent)
1433                id = event->parent->id;
1434
1435        return id;
1436}
1437
1438/*
1439 * Get the perf_event_context for a task and lock it.
1440 *
1441 * This has to cope with with the fact that until it is locked,
1442 * the context could get moved to another task.
1443 */
1444static struct perf_event_context *
1445perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1446{
1447        struct perf_event_context *ctx;
1448
1449retry:
1450        /*
1451         * One of the few rules of preemptible RCU is that one cannot do
1452         * rcu_read_unlock() while holding a scheduler (or nested) lock when
1453         * part of the read side critical section was irqs-enabled -- see
1454         * rcu_read_unlock_special().
1455         *
1456         * Since ctx->lock nests under rq->lock we must ensure the entire read
1457         * side critical section has interrupts disabled.
1458         */
1459        local_irq_save(*flags);
1460        rcu_read_lock();
1461        ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1462        if (ctx) {
1463                /*
1464                 * If this context is a clone of another, it might
1465                 * get swapped for another underneath us by
1466                 * perf_event_task_sched_out, though the
1467                 * rcu_read_lock() protects us from any context
1468                 * getting freed.  Lock the context and check if it
1469                 * got swapped before we could get the lock, and retry
1470                 * if so.  If we locked the right context, then it
1471                 * can't get swapped on us any more.
1472                 */
1473                raw_spin_lock(&ctx->lock);
1474                if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1475                        raw_spin_unlock(&ctx->lock);
1476                        rcu_read_unlock();
1477                        local_irq_restore(*flags);
1478                        goto retry;
1479                }
1480
1481                if (ctx->task == TASK_TOMBSTONE ||
1482                    !refcount_inc_not_zero(&ctx->refcount)) {
1483                        raw_spin_unlock(&ctx->lock);
1484                        ctx = NULL;
1485                } else {
1486                        WARN_ON_ONCE(ctx->task != task);
1487                }
1488        }
1489        rcu_read_unlock();
1490        if (!ctx)
1491                local_irq_restore(*flags);
1492        return ctx;
1493}
1494
1495/*
1496 * Get the context for a task and increment its pin_count so it
1497 * can't get swapped to another task.  This also increments its
1498 * reference count so that the context can't get freed.
1499 */
1500static struct perf_event_context *
1501perf_pin_task_context(struct task_struct *task, int ctxn)
1502{
1503        struct perf_event_context *ctx;
1504        unsigned long flags;
1505
1506        ctx = perf_lock_task_context(task, ctxn, &flags);
1507        if (ctx) {
1508                ++ctx->pin_count;
1509                raw_spin_unlock_irqrestore(&ctx->lock, flags);
1510        }
1511        return ctx;
1512}
1513
1514static void perf_unpin_context(struct perf_event_context *ctx)
1515{
1516        unsigned long flags;
1517
1518        raw_spin_lock_irqsave(&ctx->lock, flags);
1519        --ctx->pin_count;
1520        raw_spin_unlock_irqrestore(&ctx->lock, flags);
1521}
1522
1523/*
1524 * Update the record of the current time in a context.
1525 */
1526static void update_context_time(struct perf_event_context *ctx)
1527{
1528        u64 now = perf_clock();
1529
1530        ctx->time += now - ctx->timestamp;
1531        ctx->timestamp = now;
1532}
1533
1534static u64 perf_event_time(struct perf_event *event)
1535{
1536        struct perf_event_context *ctx = event->ctx;
1537
1538        if (is_cgroup_event(event))
1539                return perf_cgroup_event_time(event);
1540
1541        return ctx ? ctx->time : 0;
1542}
1543
1544static enum event_type_t get_event_type(struct perf_event *event)
1545{
1546        struct perf_event_context *ctx = event->ctx;
1547        enum event_type_t event_type;
1548
1549        lockdep_assert_held(&ctx->lock);
1550
1551        /*
1552         * It's 'group type', really, because if our group leader is
1553         * pinned, so are we.
1554         */
1555        if (event->group_leader != event)
1556                event = event->group_leader;
1557
1558        event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1559        if (!ctx->task)
1560                event_type |= EVENT_CPU;
1561
1562        return event_type;
1563}
1564
1565/*
1566 * Helper function to initialize event group nodes.
1567 */
1568static void init_event_group(struct perf_event *event)
1569{
1570        RB_CLEAR_NODE(&event->group_node);
1571        event->group_index = 0;
1572}
1573
1574/*
1575 * Extract pinned or flexible groups from the context
1576 * based on event attrs bits.
1577 */
1578static struct perf_event_groups *
1579get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1580{
1581        if (event->attr.pinned)
1582                return &ctx->pinned_groups;
1583        else
1584                return &ctx->flexible_groups;
1585}
1586
1587/*
1588 * Helper function to initializes perf_event_group trees.
1589 */
1590static void perf_event_groups_init(struct perf_event_groups *groups)
1591{
1592        groups->tree = RB_ROOT;
1593        groups->index = 0;
1594}
1595
1596/*
1597 * Compare function for event groups;
1598 *
1599 * Implements complex key that first sorts by CPU and then by virtual index
1600 * which provides ordering when rotating groups for the same CPU.
1601 */
1602static bool
1603perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1604{
1605        if (left->cpu < right->cpu)
1606                return true;
1607        if (left->cpu > right->cpu)
1608                return false;
1609
1610#ifdef CONFIG_CGROUP_PERF
1611        if (left->cgrp != right->cgrp) {
1612                if (!left->cgrp || !left->cgrp->css.cgroup) {
1613                        /*
1614                         * Left has no cgroup but right does, no cgroups come
1615                         * first.
1616                         */
1617                        return true;
1618                }
1619                if (!right->cgrp || !right->cgrp->css.cgroup) {
1620                        /*
1621                         * Right has no cgroup but left does, no cgroups come
1622                         * first.
1623                         */
1624                        return false;
1625                }
1626                /* Two dissimilar cgroups, order by id. */
1627                if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1628                        return true;
1629
1630                return false;
1631        }
1632#endif
1633
1634        if (left->group_index < right->group_index)
1635                return true;
1636        if (left->group_index > right->group_index)
1637                return false;
1638
1639        return false;
1640}
1641
1642/*
1643 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1644 * key (see perf_event_groups_less). This places it last inside the CPU
1645 * subtree.
1646 */
1647static void
1648perf_event_groups_insert(struct perf_event_groups *groups,
1649                         struct perf_event *event)
1650{
1651        struct perf_event *node_event;
1652        struct rb_node *parent;
1653        struct rb_node **node;
1654
1655        event->group_index = ++groups->index;
1656
1657        node = &groups->tree.rb_node;
1658        parent = *node;
1659
1660        while (*node) {
1661                parent = *node;
1662                node_event = container_of(*node, struct perf_event, group_node);
1663
1664                if (perf_event_groups_less(event, node_event))
1665                        node = &parent->rb_left;
1666                else
1667                        node = &parent->rb_right;
1668        }
1669
1670        rb_link_node(&event->group_node, parent, node);
1671        rb_insert_color(&event->group_node, &groups->tree);
1672}
1673
1674/*
1675 * Helper function to insert event into the pinned or flexible groups.
1676 */
1677static void
1678add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1679{
1680        struct perf_event_groups *groups;
1681
1682        groups = get_event_groups(event, ctx);
1683        perf_event_groups_insert(groups, event);
1684}
1685
1686/*
1687 * Delete a group from a tree.
1688 */
1689static void
1690perf_event_groups_delete(struct perf_event_groups *groups,
1691                         struct perf_event *event)
1692{
1693        WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1694                     RB_EMPTY_ROOT(&groups->tree));
1695
1696        rb_erase(&event->group_node, &groups->tree);
1697        init_event_group(event);
1698}
1699
1700/*
1701 * Helper function to delete event from its groups.
1702 */
1703static void
1704del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1705{
1706        struct perf_event_groups *groups;
1707
1708        groups = get_event_groups(event, ctx);
1709        perf_event_groups_delete(groups, event);
1710}
1711
1712/*
1713 * Get the leftmost event in the cpu/cgroup subtree.
1714 */
1715static struct perf_event *
1716perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1717                        struct cgroup *cgrp)
1718{
1719        struct perf_event *node_event = NULL, *match = NULL;
1720        struct rb_node *node = groups->tree.rb_node;
1721#ifdef CONFIG_CGROUP_PERF
1722        u64 node_cgrp_id, cgrp_id = 0;
1723
1724        if (cgrp)
1725                cgrp_id = cgrp->kn->id;
1726#endif
1727
1728        while (node) {
1729                node_event = container_of(node, struct perf_event, group_node);
1730
1731                if (cpu < node_event->cpu) {
1732                        node = node->rb_left;
1733                        continue;
1734                }
1735                if (cpu > node_event->cpu) {
1736                        node = node->rb_right;
1737                        continue;
1738                }
1739#ifdef CONFIG_CGROUP_PERF
1740                node_cgrp_id = 0;
1741                if (node_event->cgrp && node_event->cgrp->css.cgroup)
1742                        node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1743
1744                if (cgrp_id < node_cgrp_id) {
1745                        node = node->rb_left;
1746                        continue;
1747                }
1748                if (cgrp_id > node_cgrp_id) {
1749                        node = node->rb_right;
1750                        continue;
1751                }
1752#endif
1753                match = node_event;
1754                node = node->rb_left;
1755        }
1756
1757        return match;
1758}
1759
1760/*
1761 * Like rb_entry_next_safe() for the @cpu subtree.
1762 */
1763static struct perf_event *
1764perf_event_groups_next(struct perf_event *event)
1765{
1766        struct perf_event *next;
1767#ifdef CONFIG_CGROUP_PERF
1768        u64 curr_cgrp_id = 0;
1769        u64 next_cgrp_id = 0;
1770#endif
1771
1772        next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1773        if (next == NULL || next->cpu != event->cpu)
1774                return NULL;
1775
1776#ifdef CONFIG_CGROUP_PERF
1777        if (event->cgrp && event->cgrp->css.cgroup)
1778                curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1779
1780        if (next->cgrp && next->cgrp->css.cgroup)
1781                next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1782
1783        if (curr_cgrp_id != next_cgrp_id)
1784                return NULL;
1785#endif
1786        return next;
1787}
1788
1789/*
1790 * Iterate through the whole groups tree.
1791 */
1792#define perf_event_groups_for_each(event, groups)                       \
1793        for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1794                                typeof(*event), group_node); event;     \
1795                event = rb_entry_safe(rb_next(&event->group_node),      \
1796                                typeof(*event), group_node))
1797
1798/*
1799 * Add an event from the lists for its context.
1800 * Must be called with ctx->mutex and ctx->lock held.
1801 */
1802static void
1803list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1804{
1805        lockdep_assert_held(&ctx->lock);
1806
1807        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1808        event->attach_state |= PERF_ATTACH_CONTEXT;
1809
1810        event->tstamp = perf_event_time(event);
1811
1812        /*
1813         * If we're a stand alone event or group leader, we go to the context
1814         * list, group events are kept attached to the group so that
1815         * perf_group_detach can, at all times, locate all siblings.
1816         */
1817        if (event->group_leader == event) {
1818                event->group_caps = event->event_caps;
1819                add_event_to_groups(event, ctx);
1820        }
1821
1822        list_add_rcu(&event->event_entry, &ctx->event_list);
1823        ctx->nr_events++;
1824        if (event->attr.inherit_stat)
1825                ctx->nr_stat++;
1826
1827        if (event->state > PERF_EVENT_STATE_OFF)
1828                perf_cgroup_event_enable(event, ctx);
1829
1830        ctx->generation++;
1831}
1832
1833/*
1834 * Initialize event state based on the perf_event_attr::disabled.
1835 */
1836static inline void perf_event__state_init(struct perf_event *event)
1837{
1838        event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1839                                              PERF_EVENT_STATE_INACTIVE;
1840}
1841
1842static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1843{
1844        int entry = sizeof(u64); /* value */
1845        int size = 0;
1846        int nr = 1;
1847
1848        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1849                size += sizeof(u64);
1850
1851        if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1852                size += sizeof(u64);
1853
1854        if (event->attr.read_format & PERF_FORMAT_ID)
1855                entry += sizeof(u64);
1856
1857        if (event->attr.read_format & PERF_FORMAT_GROUP) {
1858                nr += nr_siblings;
1859                size += sizeof(u64);
1860        }
1861
1862        size += entry * nr;
1863        event->read_size = size;
1864}
1865
1866static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1867{
1868        struct perf_sample_data *data;
1869        u16 size = 0;
1870
1871        if (sample_type & PERF_SAMPLE_IP)
1872                size += sizeof(data->ip);
1873
1874        if (sample_type & PERF_SAMPLE_ADDR)
1875                size += sizeof(data->addr);
1876
1877        if (sample_type & PERF_SAMPLE_PERIOD)
1878                size += sizeof(data->period);
1879
1880        if (sample_type & PERF_SAMPLE_WEIGHT)
1881                size += sizeof(data->weight);
1882
1883        if (sample_type & PERF_SAMPLE_READ)
1884                size += event->read_size;
1885
1886        if (sample_type & PERF_SAMPLE_DATA_SRC)
1887                size += sizeof(data->data_src.val);
1888
1889        if (sample_type & PERF_SAMPLE_TRANSACTION)
1890                size += sizeof(data->txn);
1891
1892        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1893                size += sizeof(data->phys_addr);
1894
1895        if (sample_type & PERF_SAMPLE_CGROUP)
1896                size += sizeof(data->cgroup);
1897
1898        event->header_size = size;
1899}
1900
1901/*
1902 * Called at perf_event creation and when events are attached/detached from a
1903 * group.
1904 */
1905static void perf_event__header_size(struct perf_event *event)
1906{
1907        __perf_event_read_size(event,
1908                               event->group_leader->nr_siblings);
1909        __perf_event_header_size(event, event->attr.sample_type);
1910}
1911
1912static void perf_event__id_header_size(struct perf_event *event)
1913{
1914        struct perf_sample_data *data;
1915        u64 sample_type = event->attr.sample_type;
1916        u16 size = 0;
1917
1918        if (sample_type & PERF_SAMPLE_TID)
1919                size += sizeof(data->tid_entry);
1920
1921        if (sample_type & PERF_SAMPLE_TIME)
1922                size += sizeof(data->time);
1923
1924        if (sample_type & PERF_SAMPLE_IDENTIFIER)
1925                size += sizeof(data->id);
1926
1927        if (sample_type & PERF_SAMPLE_ID)
1928                size += sizeof(data->id);
1929
1930        if (sample_type & PERF_SAMPLE_STREAM_ID)
1931                size += sizeof(data->stream_id);
1932
1933        if (sample_type & PERF_SAMPLE_CPU)
1934                size += sizeof(data->cpu_entry);
1935
1936        event->id_header_size = size;
1937}
1938
1939static bool perf_event_validate_size(struct perf_event *event)
1940{
1941        /*
1942         * The values computed here will be over-written when we actually
1943         * attach the event.
1944         */
1945        __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1946        __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1947        perf_event__id_header_size(event);
1948
1949        /*
1950         * Sum the lot; should not exceed the 64k limit we have on records.
1951         * Conservative limit to allow for callchains and other variable fields.
1952         */
1953        if (event->read_size + event->header_size +
1954            event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1955                return false;
1956
1957        return true;
1958}
1959
1960static void perf_group_attach(struct perf_event *event)
1961{
1962        struct perf_event *group_leader = event->group_leader, *pos;
1963
1964        lockdep_assert_held(&event->ctx->lock);
1965
1966        /*
1967         * We can have double attach due to group movement in perf_event_open.
1968         */
1969        if (event->attach_state & PERF_ATTACH_GROUP)
1970                return;
1971
1972        event->attach_state |= PERF_ATTACH_GROUP;
1973
1974        if (group_leader == event)
1975                return;
1976
1977        WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978
1979        group_leader->group_caps &= event->event_caps;
1980
1981        list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982        group_leader->nr_siblings++;
1983
1984        perf_event__header_size(group_leader);
1985
1986        for_each_sibling_event(pos, group_leader)
1987                perf_event__header_size(pos);
1988}
1989
1990/*
1991 * Remove an event from the lists for its context.
1992 * Must be called with ctx->mutex and ctx->lock held.
1993 */
1994static void
1995list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1996{
1997        WARN_ON_ONCE(event->ctx != ctx);
1998        lockdep_assert_held(&ctx->lock);
1999
2000        /*
2001         * We can have double detach due to exit/hot-unplug + close.
2002         */
2003        if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2004                return;
2005
2006        event->attach_state &= ~PERF_ATTACH_CONTEXT;
2007
2008        ctx->nr_events--;
2009        if (event->attr.inherit_stat)
2010                ctx->nr_stat--;
2011
2012        list_del_rcu(&event->event_entry);
2013
2014        if (event->group_leader == event)
2015                del_event_from_groups(event, ctx);
2016
2017        /*
2018         * If event was in error state, then keep it
2019         * that way, otherwise bogus counts will be
2020         * returned on read(). The only way to get out
2021         * of error state is by explicit re-enabling
2022         * of the event
2023         */
2024        if (event->state > PERF_EVENT_STATE_OFF) {
2025                perf_cgroup_event_disable(event, ctx);
2026                perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2027        }
2028
2029        ctx->generation++;
2030}
2031
2032static int
2033perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2034{
2035        if (!has_aux(aux_event))
2036                return 0;
2037
2038        if (!event->pmu->aux_output_match)
2039                return 0;
2040
2041        return event->pmu->aux_output_match(aux_event);
2042}
2043
2044static void put_event(struct perf_event *event);
2045static void event_sched_out(struct perf_event *event,
2046                            struct perf_cpu_context *cpuctx,
2047                            struct perf_event_context *ctx);
2048
2049static void perf_put_aux_event(struct perf_event *event)
2050{
2051        struct perf_event_context *ctx = event->ctx;
2052        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2053        struct perf_event *iter;
2054
2055        /*
2056         * If event uses aux_event tear down the link
2057         */
2058        if (event->aux_event) {
2059                iter = event->aux_event;
2060                event->aux_event = NULL;
2061                put_event(iter);
2062                return;
2063        }
2064
2065        /*
2066         * If the event is an aux_event, tear down all links to
2067         * it from other events.
2068         */
2069        for_each_sibling_event(iter, event->group_leader) {
2070                if (iter->aux_event != event)
2071                        continue;
2072
2073                iter->aux_event = NULL;
2074                put_event(event);
2075
2076                /*
2077                 * If it's ACTIVE, schedule it out and put it into ERROR
2078                 * state so that we don't try to schedule it again. Note
2079                 * that perf_event_enable() will clear the ERROR status.
2080                 */
2081                event_sched_out(iter, cpuctx, ctx);
2082                perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2083        }
2084}
2085
2086static bool perf_need_aux_event(struct perf_event *event)
2087{
2088        return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2089}
2090
2091static int perf_get_aux_event(struct perf_event *event,
2092                              struct perf_event *group_leader)
2093{
2094        /*
2095         * Our group leader must be an aux event if we want to be
2096         * an aux_output. This way, the aux event will precede its
2097         * aux_output events in the group, and therefore will always
2098         * schedule first.
2099         */
2100        if (!group_leader)
2101                return 0;
2102
2103        /*
2104         * aux_output and aux_sample_size are mutually exclusive.
2105         */
2106        if (event->attr.aux_output && event->attr.aux_sample_size)
2107                return 0;
2108
2109        if (event->attr.aux_output &&
2110            !perf_aux_output_match(event, group_leader))
2111                return 0;
2112
2113        if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2114                return 0;
2115
2116        if (!atomic_long_inc_not_zero(&group_leader->refcount))
2117                return 0;
2118
2119        /*
2120         * Link aux_outputs to their aux event; this is undone in
2121         * perf_group_detach() by perf_put_aux_event(). When the
2122         * group in torn down, the aux_output events loose their
2123         * link to the aux_event and can't schedule any more.
2124         */
2125        event->aux_event = group_leader;
2126
2127        return 1;
2128}
2129
2130static inline struct list_head *get_event_list(struct perf_event *event)
2131{
2132        struct perf_event_context *ctx = event->ctx;
2133        return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2134}
2135
2136/*
2137 * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2138 * cannot exist on their own, schedule them out and move them into the ERROR
2139 * state. Also see _perf_event_enable(), it will not be able to recover
2140 * this ERROR state.
2141 */
2142static inline void perf_remove_sibling_event(struct perf_event *event)
2143{
2144        struct perf_event_context *ctx = event->ctx;
2145        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2146
2147        event_sched_out(event, cpuctx, ctx);
2148        perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2149}
2150
2151static void perf_group_detach(struct perf_event *event)
2152{
2153        struct perf_event *leader = event->group_leader;
2154        struct perf_event *sibling, *tmp;
2155        struct perf_event_context *ctx = event->ctx;
2156
2157        lockdep_assert_held(&ctx->lock);
2158
2159        /*
2160         * We can have double detach due to exit/hot-unplug + close.
2161         */
2162        if (!(event->attach_state & PERF_ATTACH_GROUP))
2163                return;
2164
2165        event->attach_state &= ~PERF_ATTACH_GROUP;
2166
2167        perf_put_aux_event(event);
2168
2169        /*
2170         * If this is a sibling, remove it from its group.
2171         */
2172        if (leader != event) {
2173                list_del_init(&event->sibling_list);
2174                event->group_leader->nr_siblings--;
2175                goto out;
2176        }
2177
2178        /*
2179         * If this was a group event with sibling events then
2180         * upgrade the siblings to singleton events by adding them
2181         * to whatever list we are on.
2182         */
2183        list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2184
2185                if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2186                        perf_remove_sibling_event(sibling);
2187
2188                sibling->group_leader = sibling;
2189                list_del_init(&sibling->sibling_list);
2190
2191                /* Inherit group flags from the previous leader */
2192                sibling->group_caps = event->group_caps;
2193
2194                if (!RB_EMPTY_NODE(&event->group_node)) {
2195                        add_event_to_groups(sibling, event->ctx);
2196
2197                        if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2198                                list_add_tail(&sibling->active_list, get_event_list(sibling));
2199                }
2200
2201                WARN_ON_ONCE(sibling->ctx != event->ctx);
2202        }
2203
2204out:
2205        for_each_sibling_event(tmp, leader)
2206                perf_event__header_size(tmp);
2207
2208        perf_event__header_size(leader);
2209}
2210
2211static bool is_orphaned_event(struct perf_event *event)
2212{
2213        return event->state == PERF_EVENT_STATE_DEAD;
2214}
2215
2216static inline int __pmu_filter_match(struct perf_event *event)
2217{
2218        struct pmu *pmu = event->pmu;
2219        return pmu->filter_match ? pmu->filter_match(event) : 1;
2220}
2221
2222/*
2223 * Check whether we should attempt to schedule an event group based on
2224 * PMU-specific filtering. An event group can consist of HW and SW events,
2225 * potentially with a SW leader, so we must check all the filters, to
2226 * determine whether a group is schedulable:
2227 */
2228static inline int pmu_filter_match(struct perf_event *event)
2229{
2230        struct perf_event *sibling;
2231
2232        if (!__pmu_filter_match(event))
2233                return 0;
2234
2235        for_each_sibling_event(sibling, event) {
2236                if (!__pmu_filter_match(sibling))
2237                        return 0;
2238        }
2239
2240        return 1;
2241}
2242
2243static inline int
2244event_filter_match(struct perf_event *event)
2245{
2246        return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2247               perf_cgroup_match(event) && pmu_filter_match(event);
2248}
2249
2250static void
2251event_sched_out(struct perf_event *event,
2252                  struct perf_cpu_context *cpuctx,
2253                  struct perf_event_context *ctx)
2254{
2255        enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2256
2257        WARN_ON_ONCE(event->ctx != ctx);
2258        lockdep_assert_held(&ctx->lock);
2259
2260        if (event->state != PERF_EVENT_STATE_ACTIVE)
2261                return;
2262
2263        /*
2264         * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2265         * we can schedule events _OUT_ individually through things like
2266         * __perf_remove_from_context().
2267         */
2268        list_del_init(&event->active_list);
2269
2270        perf_pmu_disable(event->pmu);
2271
2272        event->pmu->del(event, 0);
2273        event->oncpu = -1;
2274
2275        if (READ_ONCE(event->pending_disable) >= 0) {
2276                WRITE_ONCE(event->pending_disable, -1);
2277                perf_cgroup_event_disable(event, ctx);
2278                state = PERF_EVENT_STATE_OFF;
2279        }
2280        perf_event_set_state(event, state);
2281
2282        if (!is_software_event(event))
2283                cpuctx->active_oncpu--;
2284        if (!--ctx->nr_active)
2285                perf_event_ctx_deactivate(ctx);
2286        if (event->attr.freq && event->attr.sample_freq)
2287                ctx->nr_freq--;
2288        if (event->attr.exclusive || !cpuctx->active_oncpu)
2289                cpuctx->exclusive = 0;
2290
2291        perf_pmu_enable(event->pmu);
2292}
2293
2294static void
2295group_sched_out(struct perf_event *group_event,
2296                struct perf_cpu_context *cpuctx,
2297                struct perf_event_context *ctx)
2298{
2299        struct perf_event *event;
2300
2301        if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2302                return;
2303
2304        perf_pmu_disable(ctx->pmu);
2305
2306        event_sched_out(group_event, cpuctx, ctx);
2307
2308        /*
2309         * Schedule out siblings (if any):
2310         */
2311        for_each_sibling_event(event, group_event)
2312                event_sched_out(event, cpuctx, ctx);
2313
2314        perf_pmu_enable(ctx->pmu);
2315}
2316
2317#define DETACH_GROUP    0x01UL
2318
2319/*
2320 * Cross CPU call to remove a performance event
2321 *
2322 * We disable the event on the hardware level first. After that we
2323 * remove it from the context list.
2324 */
2325static void
2326__perf_remove_from_context(struct perf_event *event,
2327                           struct perf_cpu_context *cpuctx,
2328                           struct perf_event_context *ctx,
2329                           void *info)
2330{
2331        unsigned long flags = (unsigned long)info;
2332
2333        if (ctx->is_active & EVENT_TIME) {
2334                update_context_time(ctx);
2335                update_cgrp_time_from_cpuctx(cpuctx);
2336        }
2337
2338        event_sched_out(event, cpuctx, ctx);
2339        if (flags & DETACH_GROUP)
2340                perf_group_detach(event);
2341        list_del_event(event, ctx);
2342
2343        if (!ctx->nr_events && ctx->is_active) {
2344                ctx->is_active = 0;
2345                ctx->rotate_necessary = 0;
2346                if (ctx->task) {
2347                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2348                        cpuctx->task_ctx = NULL;
2349                }
2350        }
2351}
2352
2353/*
2354 * Remove the event from a task's (or a CPU's) list of events.
2355 *
2356 * If event->ctx is a cloned context, callers must make sure that
2357 * every task struct that event->ctx->task could possibly point to
2358 * remains valid.  This is OK when called from perf_release since
2359 * that only calls us on the top-level context, which can't be a clone.
2360 * When called from perf_event_exit_task, it's OK because the
2361 * context has been detached from its task.
2362 */
2363static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2364{
2365        struct perf_event_context *ctx = event->ctx;
2366
2367        lockdep_assert_held(&ctx->mutex);
2368
2369        event_function_call(event, __perf_remove_from_context, (void *)flags);
2370
2371        /*
2372         * The above event_function_call() can NO-OP when it hits
2373         * TASK_TOMBSTONE. In that case we must already have been detached
2374         * from the context (by perf_event_exit_event()) but the grouping
2375         * might still be in-tact.
2376         */
2377        WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2378        if ((flags & DETACH_GROUP) &&
2379            (event->attach_state & PERF_ATTACH_GROUP)) {
2380                /*
2381                 * Since in that case we cannot possibly be scheduled, simply
2382                 * detach now.
2383                 */
2384                raw_spin_lock_irq(&ctx->lock);
2385                perf_group_detach(event);
2386                raw_spin_unlock_irq(&ctx->lock);
2387        }
2388}
2389
2390/*
2391 * Cross CPU call to disable a performance event
2392 */
2393static void __perf_event_disable(struct perf_event *event,
2394                                 struct perf_cpu_context *cpuctx,
2395                                 struct perf_event_context *ctx,
2396                                 void *info)
2397{
2398        if (event->state < PERF_EVENT_STATE_INACTIVE)
2399                return;
2400
2401        if (ctx->is_active & EVENT_TIME) {
2402                update_context_time(ctx);
2403                update_cgrp_time_from_event(event);
2404        }
2405
2406        if (event == event->group_leader)
2407                group_sched_out(event, cpuctx, ctx);
2408        else
2409                event_sched_out(event, cpuctx, ctx);
2410
2411        perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2412        perf_cgroup_event_disable(event, ctx);
2413}
2414
2415/*
2416 * Disable an event.
2417 *
2418 * If event->ctx is a cloned context, callers must make sure that
2419 * every task struct that event->ctx->task could possibly point to
2420 * remains valid.  This condition is satisfied when called through
2421 * perf_event_for_each_child or perf_event_for_each because they
2422 * hold the top-level event's child_mutex, so any descendant that
2423 * goes to exit will block in perf_event_exit_event().
2424 *
2425 * When called from perf_pending_event it's OK because event->ctx
2426 * is the current context on this CPU and preemption is disabled,
2427 * hence we can't get into perf_event_task_sched_out for this context.
2428 */
2429static void _perf_event_disable(struct perf_event *event)
2430{
2431        struct perf_event_context *ctx = event->ctx;
2432
2433        raw_spin_lock_irq(&ctx->lock);
2434        if (event->state <= PERF_EVENT_STATE_OFF) {
2435                raw_spin_unlock_irq(&ctx->lock);
2436                return;
2437        }
2438        raw_spin_unlock_irq(&ctx->lock);
2439
2440        event_function_call(event, __perf_event_disable, NULL);
2441}
2442
2443void perf_event_disable_local(struct perf_event *event)
2444{
2445        event_function_local(event, __perf_event_disable, NULL);
2446}
2447
2448/*
2449 * Strictly speaking kernel users cannot create groups and therefore this
2450 * interface does not need the perf_event_ctx_lock() magic.
2451 */
2452void perf_event_disable(struct perf_event *event)
2453{
2454        struct perf_event_context *ctx;
2455
2456        ctx = perf_event_ctx_lock(event);
2457        _perf_event_disable(event);
2458        perf_event_ctx_unlock(event, ctx);
2459}
2460EXPORT_SYMBOL_GPL(perf_event_disable);
2461
2462void perf_event_disable_inatomic(struct perf_event *event)
2463{
2464        WRITE_ONCE(event->pending_disable, smp_processor_id());
2465        /* can fail, see perf_pending_event_disable() */
2466        irq_work_queue(&event->pending);
2467}
2468
2469static void perf_set_shadow_time(struct perf_event *event,
2470                                 struct perf_event_context *ctx)
2471{
2472        /*
2473         * use the correct time source for the time snapshot
2474         *
2475         * We could get by without this by leveraging the
2476         * fact that to get to this function, the caller
2477         * has most likely already called update_context_time()
2478         * and update_cgrp_time_xx() and thus both timestamp
2479         * are identical (or very close). Given that tstamp is,
2480         * already adjusted for cgroup, we could say that:
2481         *    tstamp - ctx->timestamp
2482         * is equivalent to
2483         *    tstamp - cgrp->timestamp.
2484         *
2485         * Then, in perf_output_read(), the calculation would
2486         * work with no changes because:
2487         * - event is guaranteed scheduled in
2488         * - no scheduled out in between
2489         * - thus the timestamp would be the same
2490         *
2491         * But this is a bit hairy.
2492         *
2493         * So instead, we have an explicit cgroup call to remain
2494         * within the time time source all along. We believe it
2495         * is cleaner and simpler to understand.
2496         */
2497        if (is_cgroup_event(event))
2498                perf_cgroup_set_shadow_time(event, event->tstamp);
2499        else
2500                event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2501}
2502
2503#define MAX_INTERRUPTS (~0ULL)
2504
2505static void perf_log_throttle(struct perf_event *event, int enable);
2506static void perf_log_itrace_start(struct perf_event *event);
2507
2508static int
2509event_sched_in(struct perf_event *event,
2510                 struct perf_cpu_context *cpuctx,
2511                 struct perf_event_context *ctx)
2512{
2513        int ret = 0;
2514
2515        WARN_ON_ONCE(event->ctx != ctx);
2516
2517        lockdep_assert_held(&ctx->lock);
2518
2519        if (event->state <= PERF_EVENT_STATE_OFF)
2520                return 0;
2521
2522        WRITE_ONCE(event->oncpu, smp_processor_id());
2523        /*
2524         * Order event::oncpu write to happen before the ACTIVE state is
2525         * visible. This allows perf_event_{stop,read}() to observe the correct
2526         * ->oncpu if it sees ACTIVE.
2527         */
2528        smp_wmb();
2529        perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2530
2531        /*
2532         * Unthrottle events, since we scheduled we might have missed several
2533         * ticks already, also for a heavily scheduling task there is little
2534         * guarantee it'll get a tick in a timely manner.
2535         */
2536        if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2537                perf_log_throttle(event, 1);
2538                event->hw.interrupts = 0;
2539        }
2540
2541        perf_pmu_disable(event->pmu);
2542
2543        perf_set_shadow_time(event, ctx);
2544
2545        perf_log_itrace_start(event);
2546
2547        if (event->pmu->add(event, PERF_EF_START)) {
2548                perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2549                event->oncpu = -1;
2550                ret = -EAGAIN;
2551                goto out;
2552        }
2553
2554        if (!is_software_event(event))
2555                cpuctx->active_oncpu++;
2556        if (!ctx->nr_active++)
2557                perf_event_ctx_activate(ctx);
2558        if (event->attr.freq && event->attr.sample_freq)
2559                ctx->nr_freq++;
2560
2561        if (event->attr.exclusive)
2562                cpuctx->exclusive = 1;
2563
2564out:
2565        perf_pmu_enable(event->pmu);
2566
2567        return ret;
2568}
2569
2570static int
2571group_sched_in(struct perf_event *group_event,
2572               struct perf_cpu_context *cpuctx,
2573               struct perf_event_context *ctx)
2574{
2575        struct perf_event *event, *partial_group = NULL;
2576        struct pmu *pmu = ctx->pmu;
2577
2578        if (group_event->state == PERF_EVENT_STATE_OFF)
2579                return 0;
2580
2581        pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2582
2583        if (event_sched_in(group_event, cpuctx, ctx))
2584                goto error;
2585
2586        /*
2587         * Schedule in siblings as one group (if any):
2588         */
2589        for_each_sibling_event(event, group_event) {
2590                if (event_sched_in(event, cpuctx, ctx)) {
2591                        partial_group = event;
2592                        goto group_error;
2593                }
2594        }
2595
2596        if (!pmu->commit_txn(pmu))
2597                return 0;
2598
2599group_error:
2600        /*
2601         * Groups can be scheduled in as one unit only, so undo any
2602         * partial group before returning:
2603         * The events up to the failed event are scheduled out normally.
2604         */
2605        for_each_sibling_event(event, group_event) {
2606                if (event == partial_group)
2607                        break;
2608
2609                event_sched_out(event, cpuctx, ctx);
2610        }
2611        event_sched_out(group_event, cpuctx, ctx);
2612
2613error:
2614        pmu->cancel_txn(pmu);
2615        return -EAGAIN;
2616}
2617
2618/*
2619 * Work out whether we can put this event group on the CPU now.
2620 */
2621static int group_can_go_on(struct perf_event *event,
2622                           struct perf_cpu_context *cpuctx,
2623                           int can_add_hw)
2624{
2625        /*
2626         * Groups consisting entirely of software events can always go on.
2627         */
2628        if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2629                return 1;
2630        /*
2631         * If an exclusive group is already on, no other hardware
2632         * events can go on.
2633         */
2634        if (cpuctx->exclusive)
2635                return 0;
2636        /*
2637         * If this group is exclusive and there are already
2638         * events on the CPU, it can't go on.
2639         */
2640        if (event->attr.exclusive && !list_empty(get_event_list(event)))
2641                return 0;
2642        /*
2643         * Otherwise, try to add it if all previous groups were able
2644         * to go on.
2645         */
2646        return can_add_hw;
2647}
2648
2649static void add_event_to_ctx(struct perf_event *event,
2650                               struct perf_event_context *ctx)
2651{
2652        list_add_event(event, ctx);
2653        perf_group_attach(event);
2654}
2655
2656static void ctx_sched_out(struct perf_event_context *ctx,
2657                          struct perf_cpu_context *cpuctx,
2658                          enum event_type_t event_type);
2659static void
2660ctx_sched_in(struct perf_event_context *ctx,
2661             struct perf_cpu_context *cpuctx,
2662             enum event_type_t event_type,
2663             struct task_struct *task);
2664
2665static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2666                               struct perf_event_context *ctx,
2667                               enum event_type_t event_type)
2668{
2669        if (!cpuctx->task_ctx)
2670                return;
2671
2672        if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2673                return;
2674
2675        ctx_sched_out(ctx, cpuctx, event_type);
2676}
2677
2678static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2679                                struct perf_event_context *ctx,
2680                                struct task_struct *task)
2681{
2682        cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2683        if (ctx)
2684                ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2685        cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2686        if (ctx)
2687                ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2688}
2689
2690/*
2691 * We want to maintain the following priority of scheduling:
2692 *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2693 *  - task pinned (EVENT_PINNED)
2694 *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2695 *  - task flexible (EVENT_FLEXIBLE).
2696 *
2697 * In order to avoid unscheduling and scheduling back in everything every
2698 * time an event is added, only do it for the groups of equal priority and
2699 * below.
2700 *
2701 * This can be called after a batch operation on task events, in which case
2702 * event_type is a bit mask of the types of events involved. For CPU events,
2703 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2704 */
2705static void ctx_resched(struct perf_cpu_context *cpuctx,
2706                        struct perf_event_context *task_ctx,
2707                        enum event_type_t event_type)
2708{
2709        enum event_type_t ctx_event_type;
2710        bool cpu_event = !!(event_type & EVENT_CPU);
2711
2712        /*
2713         * If pinned groups are involved, flexible groups also need to be
2714         * scheduled out.
2715         */
2716        if (event_type & EVENT_PINNED)
2717                event_type |= EVENT_FLEXIBLE;
2718
2719        ctx_event_type = event_type & EVENT_ALL;
2720
2721        perf_pmu_disable(cpuctx->ctx.pmu);
2722        if (task_ctx)
2723                task_ctx_sched_out(cpuctx, task_ctx, event_type);
2724
2725        /*
2726         * Decide which cpu ctx groups to schedule out based on the types
2727         * of events that caused rescheduling:
2728         *  - EVENT_CPU: schedule out corresponding groups;
2729         *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2730         *  - otherwise, do nothing more.
2731         */
2732        if (cpu_event)
2733                cpu_ctx_sched_out(cpuctx, ctx_event_type);
2734        else if (ctx_event_type & EVENT_PINNED)
2735                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2736
2737        perf_event_sched_in(cpuctx, task_ctx, current);
2738        perf_pmu_enable(cpuctx->ctx.pmu);
2739}
2740
2741void perf_pmu_resched(struct pmu *pmu)
2742{
2743        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2744        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2745
2746        perf_ctx_lock(cpuctx, task_ctx);
2747        ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2748        perf_ctx_unlock(cpuctx, task_ctx);
2749}
2750
2751/*
2752 * Cross CPU call to install and enable a performance event
2753 *
2754 * Very similar to remote_function() + event_function() but cannot assume that
2755 * things like ctx->is_active and cpuctx->task_ctx are set.
2756 */
2757static int  __perf_install_in_context(void *info)
2758{
2759        struct perf_event *event = info;
2760        struct perf_event_context *ctx = event->ctx;
2761        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2762        struct perf_event_context *task_ctx = cpuctx->task_ctx;
2763        bool reprogram = true;
2764        int ret = 0;
2765
2766        raw_spin_lock(&cpuctx->ctx.lock);
2767        if (ctx->task) {
2768                raw_spin_lock(&ctx->lock);
2769                task_ctx = ctx;
2770
2771                reprogram = (ctx->task == current);
2772
2773                /*
2774                 * If the task is running, it must be running on this CPU,
2775                 * otherwise we cannot reprogram things.
2776                 *
2777                 * If its not running, we don't care, ctx->lock will
2778                 * serialize against it becoming runnable.
2779                 */
2780                if (task_curr(ctx->task) && !reprogram) {
2781                        ret = -ESRCH;
2782                        goto unlock;
2783                }
2784
2785                WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2786        } else if (task_ctx) {
2787                raw_spin_lock(&task_ctx->lock);
2788        }
2789
2790#ifdef CONFIG_CGROUP_PERF
2791        if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2792                /*
2793                 * If the current cgroup doesn't match the event's
2794                 * cgroup, we should not try to schedule it.
2795                 */
2796                struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2797                reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2798                                        event->cgrp->css.cgroup);
2799        }
2800#endif
2801
2802        if (reprogram) {
2803                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2804                add_event_to_ctx(event, ctx);
2805                ctx_resched(cpuctx, task_ctx, get_event_type(event));
2806        } else {
2807                add_event_to_ctx(event, ctx);
2808        }
2809
2810unlock:
2811        perf_ctx_unlock(cpuctx, task_ctx);
2812
2813        return ret;
2814}
2815
2816static bool exclusive_event_installable(struct perf_event *event,
2817                                        struct perf_event_context *ctx);
2818
2819/*
2820 * Attach a performance event to a context.
2821 *
2822 * Very similar to event_function_call, see comment there.
2823 */
2824static void
2825perf_install_in_context(struct perf_event_context *ctx,
2826                        struct perf_event *event,
2827                        int cpu)
2828{
2829        struct task_struct *task = READ_ONCE(ctx->task);
2830
2831        lockdep_assert_held(&ctx->mutex);
2832
2833        WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2834
2835        if (event->cpu != -1)
2836                event->cpu = cpu;
2837
2838        /*
2839         * Ensures that if we can observe event->ctx, both the event and ctx
2840         * will be 'complete'. See perf_iterate_sb_cpu().
2841         */
2842        smp_store_release(&event->ctx, ctx);
2843
2844        /*
2845         * perf_event_attr::disabled events will not run and can be initialized
2846         * without IPI. Except when this is the first event for the context, in
2847         * that case we need the magic of the IPI to set ctx->is_active.
2848         *
2849         * The IOC_ENABLE that is sure to follow the creation of a disabled
2850         * event will issue the IPI and reprogram the hardware.
2851         */
2852        if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2853                raw_spin_lock_irq(&ctx->lock);
2854                if (ctx->task == TASK_TOMBSTONE) {
2855                        raw_spin_unlock_irq(&ctx->lock);
2856                        return;
2857                }
2858                add_event_to_ctx(event, ctx);
2859                raw_spin_unlock_irq(&ctx->lock);
2860                return;
2861        }
2862
2863        if (!task) {
2864                cpu_function_call(cpu, __perf_install_in_context, event);
2865                return;
2866        }
2867
2868        /*
2869         * Should not happen, we validate the ctx is still alive before calling.
2870         */
2871        if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2872                return;
2873
2874        /*
2875         * Installing events is tricky because we cannot rely on ctx->is_active
2876         * to be set in case this is the nr_events 0 -> 1 transition.
2877         *
2878         * Instead we use task_curr(), which tells us if the task is running.
2879         * However, since we use task_curr() outside of rq::lock, we can race
2880         * against the actual state. This means the result can be wrong.
2881         *
2882         * If we get a false positive, we retry, this is harmless.
2883         *
2884         * If we get a false negative, things are complicated. If we are after
2885         * perf_event_context_sched_in() ctx::lock will serialize us, and the
2886         * value must be correct. If we're before, it doesn't matter since
2887         * perf_event_context_sched_in() will program the counter.
2888         *
2889         * However, this hinges on the remote context switch having observed
2890         * our task->perf_event_ctxp[] store, such that it will in fact take
2891         * ctx::lock in perf_event_context_sched_in().
2892         *
2893         * We do this by task_function_call(), if the IPI fails to hit the task
2894         * we know any future context switch of task must see the
2895         * perf_event_ctpx[] store.
2896         */
2897
2898        /*
2899         * This smp_mb() orders the task->perf_event_ctxp[] store with the
2900         * task_cpu() load, such that if the IPI then does not find the task
2901         * running, a future context switch of that task must observe the
2902         * store.
2903         */
2904        smp_mb();
2905again:
2906        if (!task_function_call(task, __perf_install_in_context, event))
2907                return;
2908
2909        raw_spin_lock_irq(&ctx->lock);
2910        task = ctx->task;
2911        if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2912                /*
2913                 * Cannot happen because we already checked above (which also
2914                 * cannot happen), and we hold ctx->mutex, which serializes us
2915                 * against perf_event_exit_task_context().
2916                 */
2917                raw_spin_unlock_irq(&ctx->lock);
2918                return;
2919        }
2920        /*
2921         * If the task is not running, ctx->lock will avoid it becoming so,
2922         * thus we can safely install the event.
2923         */
2924        if (task_curr(task)) {
2925                raw_spin_unlock_irq(&ctx->lock);
2926                goto again;
2927        }
2928        add_event_to_ctx(event, ctx);
2929        raw_spin_unlock_irq(&ctx->lock);
2930}
2931
2932/*
2933 * Cross CPU call to enable a performance event
2934 */
2935static void __perf_event_enable(struct perf_event *event,
2936                                struct perf_cpu_context *cpuctx,
2937                                struct perf_event_context *ctx,
2938                                void *info)
2939{
2940        struct perf_event *leader = event->group_leader;
2941        struct perf_event_context *task_ctx;
2942
2943        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2944            event->state <= PERF_EVENT_STATE_ERROR)
2945                return;
2946
2947        if (ctx->is_active)
2948                ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2949
2950        perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2951        perf_cgroup_event_enable(event, ctx);
2952
2953        if (!ctx->is_active)
2954                return;
2955
2956        if (!event_filter_match(event)) {
2957                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2958                return;
2959        }
2960
2961        /*
2962         * If the event is in a group and isn't the group leader,
2963         * then don't put it on unless the group is on.
2964         */
2965        if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2966                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2967                return;
2968        }
2969
2970        task_ctx = cpuctx->task_ctx;
2971        if (ctx->task)
2972                WARN_ON_ONCE(task_ctx != ctx);
2973
2974        ctx_resched(cpuctx, task_ctx, get_event_type(event));
2975}
2976
2977/*
2978 * Enable an event.
2979 *
2980 * If event->ctx is a cloned context, callers must make sure that
2981 * every task struct that event->ctx->task could possibly point to
2982 * remains valid.  This condition is satisfied when called through
2983 * perf_event_for_each_child or perf_event_for_each as described
2984 * for perf_event_disable.
2985 */
2986static void _perf_event_enable(struct perf_event *event)
2987{
2988        struct perf_event_context *ctx = event->ctx;
2989
2990        raw_spin_lock_irq(&ctx->lock);
2991        if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2992            event->state <  PERF_EVENT_STATE_ERROR) {
2993out:
2994                raw_spin_unlock_irq(&ctx->lock);
2995                return;
2996        }
2997
2998        /*
2999         * If the event is in error state, clear that first.
3000         *
3001         * That way, if we see the event in error state below, we know that it
3002         * has gone back into error state, as distinct from the task having
3003         * been scheduled away before the cross-call arrived.
3004         */
3005        if (event->state == PERF_EVENT_STATE_ERROR) {
3006                /*
3007                 * Detached SIBLING events cannot leave ERROR state.
3008                 */
3009                if (event->event_caps & PERF_EV_CAP_SIBLING &&
3010                    event->group_leader == event)
3011                        goto out;
3012
3013                event->state = PERF_EVENT_STATE_OFF;
3014        }
3015        raw_spin_unlock_irq(&ctx->lock);
3016
3017        event_function_call(event, __perf_event_enable, NULL);
3018}
3019
3020/*
3021 * See perf_event_disable();
3022 */
3023void perf_event_enable(struct perf_event *event)
3024{
3025        struct perf_event_context *ctx;
3026
3027        ctx = perf_event_ctx_lock(event);
3028        _perf_event_enable(event);
3029        perf_event_ctx_unlock(event, ctx);
3030}
3031EXPORT_SYMBOL_GPL(perf_event_enable);
3032
3033struct stop_event_data {
3034        struct perf_event       *event;
3035        unsigned int            restart;
3036};
3037
3038static int __perf_event_stop(void *info)
3039{
3040        struct stop_event_data *sd = info;
3041        struct perf_event *event = sd->event;
3042
3043        /* if it's already INACTIVE, do nothing */
3044        if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3045                return 0;
3046
3047        /* matches smp_wmb() in event_sched_in() */
3048        smp_rmb();
3049
3050        /*
3051         * There is a window with interrupts enabled before we get here,
3052         * so we need to check again lest we try to stop another CPU's event.
3053         */
3054        if (READ_ONCE(event->oncpu) != smp_processor_id())
3055                return -EAGAIN;
3056
3057        event->pmu->stop(event, PERF_EF_UPDATE);
3058
3059        /*
3060         * May race with the actual stop (through perf_pmu_output_stop()),
3061         * but it is only used for events with AUX ring buffer, and such
3062         * events will refuse to restart because of rb::aux_mmap_count==0,
3063         * see comments in perf_aux_output_begin().
3064         *
3065         * Since this is happening on an event-local CPU, no trace is lost
3066         * while restarting.
3067         */
3068        if (sd->restart)
3069                event->pmu->start(event, 0);
3070
3071        return 0;
3072}
3073
3074static int perf_event_stop(struct perf_event *event, int restart)
3075{
3076        struct stop_event_data sd = {
3077                .event          = event,
3078                .restart        = restart,
3079        };
3080        int ret = 0;
3081
3082        do {
3083                if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3084                        return 0;
3085
3086                /* matches smp_wmb() in event_sched_in() */
3087                smp_rmb();
3088
3089                /*
3090                 * We only want to restart ACTIVE events, so if the event goes
3091                 * inactive here (event->oncpu==-1), there's nothing more to do;
3092                 * fall through with ret==-ENXIO.
3093                 */
3094                ret = cpu_function_call(READ_ONCE(event->oncpu),
3095                                        __perf_event_stop, &sd);
3096        } while (ret == -EAGAIN);
3097
3098        return ret;
3099}
3100
3101/*
3102 * In order to contain the amount of racy and tricky in the address filter
3103 * configuration management, it is a two part process:
3104 *
3105 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3106 *      we update the addresses of corresponding vmas in
3107 *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3108 * (p2) when an event is scheduled in (pmu::add), it calls
3109 *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3110 *      if the generation has changed since the previous call.
3111 *
3112 * If (p1) happens while the event is active, we restart it to force (p2).
3113 *
3114 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3115 *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3116 *     ioctl;
3117 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3118 *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3119 *     for reading;
3120 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3121 *     of exec.
3122 */
3123void perf_event_addr_filters_sync(struct perf_event *event)
3124{
3125        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3126
3127        if (!has_addr_filter(event))
3128                return;
3129
3130        raw_spin_lock(&ifh->lock);
3131        if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3132                event->pmu->addr_filters_sync(event);
3133                event->hw.addr_filters_gen = event->addr_filters_gen;
3134        }
3135        raw_spin_unlock(&ifh->lock);
3136}
3137EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3138
3139static int _perf_event_refresh(struct perf_event *event, int refresh)
3140{
3141        /*
3142         * not supported on inherited events
3143         */
3144        if (event->attr.inherit || !is_sampling_event(event))
3145                return -EINVAL;
3146
3147        atomic_add(refresh, &event->event_limit);
3148        _perf_event_enable(event);
3149
3150        return 0;
3151}
3152
3153/*
3154 * See perf_event_disable()
3155 */
3156int perf_event_refresh(struct perf_event *event, int refresh)
3157{
3158        struct perf_event_context *ctx;
3159        int ret;
3160
3161        ctx = perf_event_ctx_lock(event);
3162        ret = _perf_event_refresh(event, refresh);
3163        perf_event_ctx_unlock(event, ctx);
3164
3165        return ret;
3166}
3167EXPORT_SYMBOL_GPL(perf_event_refresh);
3168
3169static int perf_event_modify_breakpoint(struct perf_event *bp,
3170                                         struct perf_event_attr *attr)
3171{
3172        int err;
3173
3174        _perf_event_disable(bp);
3175
3176        err = modify_user_hw_breakpoint_check(bp, attr, true);
3177
3178        if (!bp->attr.disabled)
3179                _perf_event_enable(bp);
3180
3181        return err;
3182}
3183
3184static int perf_event_modify_attr(struct perf_event *event,
3185                                  struct perf_event_attr *attr)
3186{
3187        if (event->attr.type != attr->type)
3188                return -EINVAL;
3189
3190        switch (event->attr.type) {
3191        case PERF_TYPE_BREAKPOINT:
3192                return perf_event_modify_breakpoint(event, attr);
3193        default:
3194                /* Place holder for future additions. */
3195                return -EOPNOTSUPP;
3196        }
3197}
3198
3199static void ctx_sched_out(struct perf_event_context *ctx,
3200                          struct perf_cpu_context *cpuctx,
3201                          enum event_type_t event_type)
3202{
3203        struct perf_event *event, *tmp;
3204        int is_active = ctx->is_active;
3205
3206        lockdep_assert_held(&ctx->lock);
3207
3208        if (likely(!ctx->nr_events)) {
3209                /*
3210                 * See __perf_remove_from_context().
3211                 */
3212                WARN_ON_ONCE(ctx->is_active);
3213                if (ctx->task)
3214                        WARN_ON_ONCE(cpuctx->task_ctx);
3215                return;
3216        }
3217
3218        ctx->is_active &= ~event_type;
3219        if (!(ctx->is_active & EVENT_ALL))
3220                ctx->is_active = 0;
3221
3222        if (ctx->task) {
3223                WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3224                if (!ctx->is_active)
3225                        cpuctx->task_ctx = NULL;
3226        }
3227
3228        /*
3229         * Always update time if it was set; not only when it changes.
3230         * Otherwise we can 'forget' to update time for any but the last
3231         * context we sched out. For example:
3232         *
3233         *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3234         *   ctx_sched_out(.event_type = EVENT_PINNED)
3235         *
3236         * would only update time for the pinned events.
3237         */
3238        if (is_active & EVENT_TIME) {
3239                /* update (and stop) ctx time */
3240                update_context_time(ctx);
3241                update_cgrp_time_from_cpuctx(cpuctx);
3242        }
3243
3244        is_active ^= ctx->is_active; /* changed bits */
3245
3246        if (!ctx->nr_active || !(is_active & EVENT_ALL))
3247                return;
3248
3249        perf_pmu_disable(ctx->pmu);
3250        if (is_active & EVENT_PINNED) {
3251                list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3252                        group_sched_out(event, cpuctx, ctx);
3253        }
3254
3255        if (is_active & EVENT_FLEXIBLE) {
3256                list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3257                        group_sched_out(event, cpuctx, ctx);
3258
3259                /*
3260                 * Since we cleared EVENT_FLEXIBLE, also clear
3261                 * rotate_necessary, is will be reset by
3262                 * ctx_flexible_sched_in() when needed.
3263                 */
3264                ctx->rotate_necessary = 0;
3265        }
3266        perf_pmu_enable(ctx->pmu);
3267}
3268
3269/*
3270 * Test whether two contexts are equivalent, i.e. whether they have both been
3271 * cloned from the same version of the same context.
3272 *
3273 * Equivalence is measured using a generation number in the context that is
3274 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3275 * and list_del_event().
3276 */
3277static int context_equiv(struct perf_event_context *ctx1,
3278                         struct perf_event_context *ctx2)
3279{
3280        lockdep_assert_held(&ctx1->lock);
3281        lockdep_assert_held(&ctx2->lock);
3282
3283        /* Pinning disables the swap optimization */
3284        if (ctx1->pin_count || ctx2->pin_count)
3285                return 0;
3286
3287        /* If ctx1 is the parent of ctx2 */
3288        if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3289                return 1;
3290
3291        /* If ctx2 is the parent of ctx1 */
3292        if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3293                return 1;
3294
3295        /*
3296         * If ctx1 and ctx2 have the same parent; we flatten the parent
3297         * hierarchy, see perf_event_init_context().
3298         */
3299        if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3300                        ctx1->parent_gen == ctx2->parent_gen)
3301                return 1;
3302
3303        /* Unmatched */
3304        return 0;
3305}
3306
3307static void __perf_event_sync_stat(struct perf_event *event,
3308                                     struct perf_event *next_event)
3309{
3310        u64 value;
3311
3312        if (!event->attr.inherit_stat)
3313                return;
3314
3315        /*
3316         * Update the event value, we cannot use perf_event_read()
3317         * because we're in the middle of a context switch and have IRQs
3318         * disabled, which upsets smp_call_function_single(), however
3319         * we know the event must be on the current CPU, therefore we
3320         * don't need to use it.
3321         */
3322        if (event->state == PERF_EVENT_STATE_ACTIVE)
3323                event->pmu->read(event);
3324
3325        perf_event_update_time(event);
3326
3327        /*
3328         * In order to keep per-task stats reliable we need to flip the event
3329         * values when we flip the contexts.
3330         */
3331        value = local64_read(&next_event->count);
3332        value = local64_xchg(&event->count, value);
3333        local64_set(&next_event->count, value);
3334
3335        swap(event->total_time_enabled, next_event->total_time_enabled);
3336        swap(event->total_time_running, next_event->total_time_running);
3337
3338        /*
3339         * Since we swizzled the values, update the user visible data too.
3340         */
3341        perf_event_update_userpage(event);
3342        perf_event_update_userpage(next_event);
3343}
3344
3345static void perf_event_sync_stat(struct perf_event_context *ctx,
3346                                   struct perf_event_context *next_ctx)
3347{
3348        struct perf_event *event, *next_event;
3349
3350        if (!ctx->nr_stat)
3351                return;
3352
3353        update_context_time(ctx);
3354
3355        event = list_first_entry(&ctx->event_list,
3356                                   struct perf_event, event_entry);
3357
3358        next_event = list_first_entry(&next_ctx->event_list,
3359                                        struct perf_event, event_entry);
3360
3361        while (&event->event_entry != &ctx->event_list &&
3362               &next_event->event_entry != &next_ctx->event_list) {
3363
3364                __perf_event_sync_stat(event, next_event);
3365
3366                event = list_next_entry(event, event_entry);
3367                next_event = list_next_entry(next_event, event_entry);
3368        }
3369}
3370
3371static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3372                                         struct task_struct *next)
3373{
3374        struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3375        struct perf_event_context *next_ctx;
3376        struct perf_event_context *parent, *next_parent;
3377        struct perf_cpu_context *cpuctx;
3378        int do_switch = 1;
3379        struct pmu *pmu;
3380
3381        if (likely(!ctx))
3382                return;
3383
3384        pmu = ctx->pmu;
3385        cpuctx = __get_cpu_context(ctx);
3386        if (!cpuctx->task_ctx)
3387                return;
3388
3389        rcu_read_lock();
3390        next_ctx = next->perf_event_ctxp[ctxn];
3391        if (!next_ctx)
3392                goto unlock;
3393
3394        parent = rcu_dereference(ctx->parent_ctx);
3395        next_parent = rcu_dereference(next_ctx->parent_ctx);
3396
3397        /* If neither context have a parent context; they cannot be clones. */
3398        if (!parent && !next_parent)
3399                goto unlock;
3400
3401        if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3402                /*
3403                 * Looks like the two contexts are clones, so we might be
3404                 * able to optimize the context switch.  We lock both
3405                 * contexts and check that they are clones under the
3406                 * lock (including re-checking that neither has been
3407                 * uncloned in the meantime).  It doesn't matter which
3408                 * order we take the locks because no other cpu could
3409                 * be trying to lock both of these tasks.
3410                 */
3411                raw_spin_lock(&ctx->lock);
3412                raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3413                if (context_equiv(ctx, next_ctx)) {
3414
3415                        WRITE_ONCE(ctx->task, next);
3416                        WRITE_ONCE(next_ctx->task, task);
3417
3418                        perf_pmu_disable(pmu);
3419
3420                        if (cpuctx->sched_cb_usage && pmu->sched_task)
3421                                pmu->sched_task(ctx, false);
3422
3423                        /*
3424                         * PMU specific parts of task perf context can require
3425                         * additional synchronization. As an example of such
3426                         * synchronization see implementation details of Intel
3427                         * LBR call stack data profiling;
3428                         */
3429                        if (pmu->swap_task_ctx)
3430                                pmu->swap_task_ctx(ctx, next_ctx);
3431                        else
3432                                swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3433
3434                        perf_pmu_enable(pmu);
3435
3436                        /*
3437                         * RCU_INIT_POINTER here is safe because we've not
3438                         * modified the ctx and the above modification of
3439                         * ctx->task and ctx->task_ctx_data are immaterial
3440                         * since those values are always verified under
3441                         * ctx->lock which we're now holding.
3442                         */
3443                        RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3444                        RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3445
3446                        do_switch = 0;
3447
3448                        perf_event_sync_stat(ctx, next_ctx);
3449                }
3450                raw_spin_unlock(&next_ctx->lock);
3451                raw_spin_unlock(&ctx->lock);
3452        }
3453unlock:
3454        rcu_read_unlock();
3455
3456        if (do_switch) {
3457                raw_spin_lock(&ctx->lock);
3458                perf_pmu_disable(pmu);
3459
3460                if (cpuctx->sched_cb_usage && pmu->sched_task)
3461                        pmu->sched_task(ctx, false);
3462                task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3463
3464                perf_pmu_enable(pmu);
3465                raw_spin_unlock(&ctx->lock);
3466        }
3467}
3468
3469void perf_sched_cb_dec(struct pmu *pmu)
3470{
3471        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3472
3473        --cpuctx->sched_cb_usage;
3474}
3475
3476
3477void perf_sched_cb_inc(struct pmu *pmu)
3478{
3479        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3480
3481        cpuctx->sched_cb_usage++;
3482}
3483
3484/*
3485 * This function provides the context switch callback to the lower code
3486 * layer. It is invoked ONLY when the context switch callback is enabled.
3487 *
3488 * This callback is relevant even to per-cpu events; for example multi event
3489 * PEBS requires this to provide PID/TID information. This requires we flush
3490 * all queued PEBS records before we context switch to a new task.
3491 */
3492static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3493{
3494        struct pmu *pmu;
3495
3496        pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3497
3498        if (WARN_ON_ONCE(!pmu->sched_task))
3499                return;
3500
3501        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3502        perf_pmu_disable(pmu);
3503
3504        pmu->sched_task(cpuctx->task_ctx, sched_in);
3505
3506        perf_pmu_enable(pmu);
3507        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3508}
3509
3510static void perf_event_switch(struct task_struct *task,
3511                              struct task_struct *next_prev, bool sched_in);
3512
3513#define for_each_task_context_nr(ctxn)                                  \
3514        for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3515
3516/*
3517 * Called from scheduler to remove the events of the current task,
3518 * with interrupts disabled.
3519 *
3520 * We stop each event and update the event value in event->count.
3521 *
3522 * This does not protect us against NMI, but disable()
3523 * sets the disabled bit in the control field of event _before_
3524 * accessing the event control register. If a NMI hits, then it will
3525 * not restart the event.
3526 */
3527void __perf_event_task_sched_out(struct task_struct *task,
3528                                 struct task_struct *next)
3529{
3530        int ctxn;
3531
3532        if (atomic_read(&nr_switch_events))
3533                perf_event_switch(task, next, false);
3534
3535        for_each_task_context_nr(ctxn)
3536                perf_event_context_sched_out(task, ctxn, next);
3537
3538        /*
3539         * if cgroup events exist on this CPU, then we need
3540         * to check if we have to switch out PMU state.
3541         * cgroup event are system-wide mode only
3542         */
3543        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3544                perf_cgroup_sched_out(task, next);
3545}
3546
3547/*
3548 * Called with IRQs disabled
3549 */
3550static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3551                              enum event_type_t event_type)
3552{
3553        ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3554}
3555
3556static bool perf_less_group_idx(const void *l, const void *r)
3557{
3558        const struct perf_event *le = *(const struct perf_event **)l;
3559        const struct perf_event *re = *(const struct perf_event **)r;
3560
3561        return le->group_index < re->group_index;
3562}
3563
3564static void swap_ptr(void *l, void *r)
3565{
3566        void **lp = l, **rp = r;
3567
3568        swap(*lp, *rp);
3569}
3570
3571static const struct min_heap_callbacks perf_min_heap = {
3572        .elem_size = sizeof(struct perf_event *),
3573        .less = perf_less_group_idx,
3574        .swp = swap_ptr,
3575};
3576
3577static void __heap_add(struct min_heap *heap, struct perf_event *event)
3578{
3579        struct perf_event **itrs = heap->data;
3580
3581        if (event) {
3582                itrs[heap->nr] = event;
3583                heap->nr++;
3584        }
3585}
3586
3587static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3588                                struct perf_event_groups *groups, int cpu,
3589                                int (*func)(struct perf_event *, void *),
3590                                void *data)
3591{
3592#ifdef CONFIG_CGROUP_PERF
3593        struct cgroup_subsys_state *css = NULL;
3594#endif
3595        /* Space for per CPU and/or any CPU event iterators. */
3596        struct perf_event *itrs[2];
3597        struct min_heap event_heap;
3598        struct perf_event **evt;
3599        int ret;
3600
3601        if (cpuctx) {
3602                event_heap = (struct min_heap){
3603                        .data = cpuctx->heap,
3604                        .nr = 0,
3605                        .size = cpuctx->heap_size,
3606                };
3607
3608                lockdep_assert_held(&cpuctx->ctx.lock);
3609
3610#ifdef CONFIG_CGROUP_PERF
3611                if (cpuctx->cgrp)
3612                        css = &cpuctx->cgrp->css;
3613#endif
3614        } else {
3615                event_heap = (struct min_heap){
3616                        .data = itrs,
3617                        .nr = 0,
3618                        .size = ARRAY_SIZE(itrs),
3619                };
3620                /* Events not within a CPU context may be on any CPU. */
3621                __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3622        }
3623        evt = event_heap.data;
3624
3625        __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3626
3627#ifdef CONFIG_CGROUP_PERF
3628        for (; css; css = css->parent)
3629                __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3630#endif
3631
3632        min_heapify_all(&event_heap, &perf_min_heap);
3633
3634        while (event_heap.nr) {
3635                ret = func(*evt, data);
3636                if (ret)
3637                        return ret;
3638
3639                *evt = perf_event_groups_next(*evt);
3640                if (*evt)
3641                        min_heapify(&event_heap, 0, &perf_min_heap);
3642                else
3643                        min_heap_pop(&event_heap, &perf_min_heap);
3644        }
3645
3646        return 0;
3647}
3648
3649static int merge_sched_in(struct perf_event *event, void *data)
3650{
3651        struct perf_event_context *ctx = event->ctx;
3652        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3653        int *can_add_hw = data;
3654
3655        if (event->state <= PERF_EVENT_STATE_OFF)
3656                return 0;
3657
3658        if (!event_filter_match(event))
3659                return 0;
3660
3661        if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3662                if (!group_sched_in(event, cpuctx, ctx))
3663                        list_add_tail(&event->active_list, get_event_list(event));
3664        }
3665
3666        if (event->state == PERF_EVENT_STATE_INACTIVE) {
3667                if (event->attr.pinned) {
3668                        perf_cgroup_event_disable(event, ctx);
3669                        perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3670                }
3671
3672                *can_add_hw = 0;
3673                ctx->rotate_necessary = 1;
3674                perf_mux_hrtimer_restart(cpuctx);
3675        }
3676
3677        return 0;
3678}
3679
3680static void
3681ctx_pinned_sched_in(struct perf_event_context *ctx,
3682                    struct perf_cpu_context *cpuctx)
3683{
3684        int can_add_hw = 1;
3685
3686        if (ctx != &cpuctx->ctx)
3687                cpuctx = NULL;
3688
3689        visit_groups_merge(cpuctx, &ctx->pinned_groups,
3690                           smp_processor_id(),
3691                           merge_sched_in, &can_add_hw);
3692}
3693
3694static void
3695ctx_flexible_sched_in(struct perf_event_context *ctx,
3696                      struct perf_cpu_context *cpuctx)
3697{
3698        int can_add_hw = 1;
3699
3700        if (ctx != &cpuctx->ctx)
3701                cpuctx = NULL;
3702
3703        visit_groups_merge(cpuctx, &ctx->flexible_groups,
3704                           smp_processor_id(),
3705                           merge_sched_in, &can_add_hw);
3706}
3707
3708static void
3709ctx_sched_in(struct perf_event_context *ctx,
3710             struct perf_cpu_context *cpuctx,
3711             enum event_type_t event_type,
3712             struct task_struct *task)
3713{
3714        int is_active = ctx->is_active;
3715        u64 now;
3716
3717        lockdep_assert_held(&ctx->lock);
3718
3719        if (likely(!ctx->nr_events))
3720                return;
3721
3722        ctx->is_active |= (event_type | EVENT_TIME);
3723        if (ctx->task) {
3724                if (!is_active)
3725                        cpuctx->task_ctx = ctx;
3726                else
3727                        WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3728        }
3729
3730        is_active ^= ctx->is_active; /* changed bits */
3731
3732        if (is_active & EVENT_TIME) {
3733                /* start ctx time */
3734                now = perf_clock();
3735                ctx->timestamp = now;
3736                perf_cgroup_set_timestamp(task, ctx);
3737        }
3738
3739        /*
3740         * First go through the list and put on any pinned groups
3741         * in order to give them the best chance of going on.
3742         */
3743        if (is_active & EVENT_PINNED)
3744                ctx_pinned_sched_in(ctx, cpuctx);
3745
3746        /* Then walk through the lower prio flexible groups */
3747        if (is_active & EVENT_FLEXIBLE)
3748                ctx_flexible_sched_in(ctx, cpuctx);
3749}
3750
3751static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3752                             enum event_type_t event_type,
3753                             struct task_struct *task)
3754{
3755        struct perf_event_context *ctx = &cpuctx->ctx;
3756
3757        ctx_sched_in(ctx, cpuctx, event_type, task);
3758}
3759
3760static void perf_event_context_sched_in(struct perf_event_context *ctx,
3761                                        struct task_struct *task)
3762{
3763        struct perf_cpu_context *cpuctx;
3764        struct pmu *pmu = ctx->pmu;
3765
3766        cpuctx = __get_cpu_context(ctx);
3767        if (cpuctx->task_ctx == ctx) {
3768                if (cpuctx->sched_cb_usage)
3769                        __perf_pmu_sched_task(cpuctx, true);
3770                return;
3771        }
3772
3773        perf_ctx_lock(cpuctx, ctx);
3774        /*
3775         * We must check ctx->nr_events while holding ctx->lock, such
3776         * that we serialize against perf_install_in_context().
3777         */
3778        if (!ctx->nr_events)
3779                goto unlock;
3780
3781        perf_pmu_disable(pmu);
3782        /*
3783         * We want to keep the following priority order:
3784         * cpu pinned (that don't need to move), task pinned,
3785         * cpu flexible, task flexible.
3786         *
3787         * However, if task's ctx is not carrying any pinned
3788         * events, no need to flip the cpuctx's events around.
3789         */
3790        if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3791                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3792        perf_event_sched_in(cpuctx, ctx, task);
3793
3794        if (cpuctx->sched_cb_usage && pmu->sched_task)
3795                pmu->sched_task(cpuctx->task_ctx, true);
3796
3797        perf_pmu_enable(pmu);
3798
3799unlock:
3800        perf_ctx_unlock(cpuctx, ctx);
3801}
3802
3803/*
3804 * Called from scheduler to add the events of the current task
3805 * with interrupts disabled.
3806 *
3807 * We restore the event value and then enable it.
3808 *
3809 * This does not protect us against NMI, but enable()
3810 * sets the enabled bit in the control field of event _before_
3811 * accessing the event control register. If a NMI hits, then it will
3812 * keep the event running.
3813 */
3814void __perf_event_task_sched_in(struct task_struct *prev,
3815                                struct task_struct *task)
3816{
3817        struct perf_event_context *ctx;
3818        int ctxn;
3819
3820        /*
3821         * If cgroup events exist on this CPU, then we need to check if we have
3822         * to switch in PMU state; cgroup event are system-wide mode only.
3823         *
3824         * Since cgroup events are CPU events, we must schedule these in before
3825         * we schedule in the task events.
3826         */
3827        if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3828                perf_cgroup_sched_in(prev, task);
3829
3830        for_each_task_context_nr(ctxn) {
3831                ctx = task->perf_event_ctxp[ctxn];
3832                if (likely(!ctx))
3833                        continue;
3834
3835                perf_event_context_sched_in(ctx, task);
3836        }
3837
3838        if (atomic_read(&nr_switch_events))
3839                perf_event_switch(task, prev, true);
3840}
3841
3842static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3843{
3844        u64 frequency = event->attr.sample_freq;
3845        u64 sec = NSEC_PER_SEC;
3846        u64 divisor, dividend;
3847
3848        int count_fls, nsec_fls, frequency_fls, sec_fls;
3849
3850        count_fls = fls64(count);
3851        nsec_fls = fls64(nsec);
3852        frequency_fls = fls64(frequency);
3853        sec_fls = 30;
3854
3855        /*
3856         * We got @count in @nsec, with a target of sample_freq HZ
3857         * the target period becomes:
3858         *
3859         *             @count * 10^9
3860         * period = -------------------
3861         *          @nsec * sample_freq
3862         *
3863         */
3864
3865        /*
3866         * Reduce accuracy by one bit such that @a and @b converge
3867         * to a similar magnitude.
3868         */
3869#define REDUCE_FLS(a, b)                \
3870do {                                    \
3871        if (a##_fls > b##_fls) {        \
3872                a >>= 1;                \
3873                a##_fls--;              \
3874        } else {                        \
3875                b >>= 1;                \
3876                b##_fls--;              \
3877        }                               \
3878} while (0)
3879
3880        /*
3881         * Reduce accuracy until either term fits in a u64, then proceed with
3882         * the other, so that finally we can do a u64/u64 division.
3883         */
3884        while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3885                REDUCE_FLS(nsec, frequency);
3886                REDUCE_FLS(sec, count);
3887        }
3888
3889        if (count_fls + sec_fls > 64) {
3890                divisor = nsec * frequency;
3891
3892                while (count_fls + sec_fls > 64) {
3893                        REDUCE_FLS(count, sec);
3894                        divisor >>= 1;
3895                }
3896
3897                dividend = count * sec;
3898        } else {
3899                dividend = count * sec;
3900
3901                while (nsec_fls + frequency_fls > 64) {
3902                        REDUCE_FLS(nsec, frequency);
3903                        dividend >>= 1;
3904                }
3905
3906                divisor = nsec * frequency;
3907        }
3908
3909        if (!divisor)
3910                return dividend;
3911
3912        return div64_u64(dividend, divisor);
3913}
3914
3915static DEFINE_PER_CPU(int, perf_throttled_count);
3916static DEFINE_PER_CPU(u64, perf_throttled_seq);
3917
3918static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3919{
3920        struct hw_perf_event *hwc = &event->hw;
3921        s64 period, sample_period;
3922        s64 delta;
3923
3924        period = perf_calculate_period(event, nsec, count);
3925
3926        delta = (s64)(period - hwc->sample_period);
3927        delta = (delta + 7) / 8; /* low pass filter */
3928
3929        sample_period = hwc->sample_period + delta;
3930
3931        if (!sample_period)
3932                sample_period = 1;
3933
3934        hwc->sample_period = sample_period;
3935
3936        if (local64_read(&hwc->period_left) > 8*sample_period) {
3937                if (disable)
3938                        event->pmu->stop(event, PERF_EF_UPDATE);
3939
3940                local64_set(&hwc->period_left, 0);
3941
3942                if (disable)
3943                        event->pmu->start(event, PERF_EF_RELOAD);
3944        }
3945}
3946
3947/*
3948 * combine freq adjustment with unthrottling to avoid two passes over the
3949 * events. At the same time, make sure, having freq events does not change
3950 * the rate of unthrottling as that would introduce bias.
3951 */
3952static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3953                                           int needs_unthr)
3954{
3955        struct perf_event *event;
3956        struct hw_perf_event *hwc;
3957        u64 now, period = TICK_NSEC;
3958        s64 delta;
3959
3960        /*
3961         * only need to iterate over all events iff:
3962         * - context have events in frequency mode (needs freq adjust)
3963         * - there are events to unthrottle on this cpu
3964         */
3965        if (!(ctx->nr_freq || needs_unthr))
3966                return;
3967
3968        raw_spin_lock(&ctx->lock);
3969        perf_pmu_disable(ctx->pmu);
3970
3971        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3972                if (event->state != PERF_EVENT_STATE_ACTIVE)
3973                        continue;
3974
3975                if (!event_filter_match(event))
3976                        continue;
3977
3978                perf_pmu_disable(event->pmu);
3979
3980                hwc = &event->hw;
3981
3982                if (hwc->interrupts == MAX_INTERRUPTS) {
3983                        hwc->interrupts = 0;
3984                        perf_log_throttle(event, 1);
3985                        event->pmu->start(event, 0);
3986                }
3987
3988                if (!event->attr.freq || !event->attr.sample_freq)
3989                        goto next;
3990
3991                /*
3992                 * stop the event and update event->count
3993                 */
3994                event->pmu->stop(event, PERF_EF_UPDATE);
3995
3996                now = local64_read(&event->count);
3997                delta = now - hwc->freq_count_stamp;
3998                hwc->freq_count_stamp = now;
3999
4000                /*
4001                 * restart the event
4002                 * reload only if value has changed
4003                 * we have stopped the event so tell that
4004                 * to perf_adjust_period() to avoid stopping it
4005                 * twice.
4006                 */
4007                if (delta > 0)
4008                        perf_adjust_period(event, period, delta, false);
4009
4010                event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4011        next:
4012                perf_pmu_enable(event->pmu);
4013        }
4014
4015        perf_pmu_enable(ctx->pmu);
4016        raw_spin_unlock(&ctx->lock);
4017}
4018
4019/*
4020 * Move @event to the tail of the @ctx's elegible events.
4021 */
4022static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4023{
4024        /*
4025         * Rotate the first entry last of non-pinned groups. Rotation might be
4026         * disabled by the inheritance code.
4027         */
4028        if (ctx->rotate_disable)
4029                return;
4030
4031        perf_event_groups_delete(&ctx->flexible_groups, event);
4032        perf_event_groups_insert(&ctx->flexible_groups, event);
4033}
4034
4035/* pick an event from the flexible_groups to rotate */
4036static inline struct perf_event *
4037ctx_event_to_rotate(struct perf_event_context *ctx)
4038{
4039        struct perf_event *event;
4040
4041        /* pick the first active flexible event */
4042        event = list_first_entry_or_null(&ctx->flexible_active,
4043                                         struct perf_event, active_list);
4044
4045        /* if no active flexible event, pick the first event */
4046        if (!event) {
4047                event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4048                                      typeof(*event), group_node);
4049        }
4050
4051        /*
4052         * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4053         * finds there are unschedulable events, it will set it again.
4054         */
4055        ctx->rotate_necessary = 0;
4056
4057        return event;
4058}
4059
4060static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4061{
4062        struct perf_event *cpu_event = NULL, *task_event = NULL;
4063        struct perf_event_context *task_ctx = NULL;
4064        int cpu_rotate, task_rotate;
4065
4066        /*
4067         * Since we run this from IRQ context, nobody can install new
4068         * events, thus the event count values are stable.
4069         */
4070
4071        cpu_rotate = cpuctx->ctx.rotate_necessary;
4072        task_ctx = cpuctx->task_ctx;
4073        task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4074
4075        if (!(cpu_rotate || task_rotate))
4076                return false;
4077
4078        perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4079        perf_pmu_disable(cpuctx->ctx.pmu);
4080
4081        if (task_rotate)
4082                task_event = ctx_event_to_rotate(task_ctx);
4083        if (cpu_rotate)
4084                cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4085
4086        /*
4087         * As per the order given at ctx_resched() first 'pop' task flexible
4088         * and then, if needed CPU flexible.
4089         */
4090        if (task_event || (task_ctx && cpu_event))
4091                ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4092        if (cpu_event)
4093                cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4094
4095        if (task_event)
4096                rotate_ctx(task_ctx, task_event);
4097        if (cpu_event)
4098                rotate_ctx(&cpuctx->ctx, cpu_event);
4099
4100        perf_event_sched_in(cpuctx, task_ctx, current);
4101
4102        perf_pmu_enable(cpuctx->ctx.pmu);
4103        perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4104
4105        return true;
4106}
4107
4108void perf_event_task_tick(void)
4109{
4110        struct list_head *head = this_cpu_ptr(&active_ctx_list);
4111        struct perf_event_context *ctx, *tmp;
4112        int throttled;
4113
4114        lockdep_assert_irqs_disabled();
4115
4116        __this_cpu_inc(perf_throttled_seq);
4117        throttled = __this_cpu_xchg(perf_throttled_count, 0);
4118        tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4119
4120        list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4121                perf_adjust_freq_unthr_context(ctx, throttled);
4122}
4123
4124static int event_enable_on_exec(struct perf_event *event,
4125                                struct perf_event_context *ctx)
4126{
4127        if (!event->attr.enable_on_exec)
4128                return 0;
4129
4130        event->attr.enable_on_exec = 0;
4131        if (event->state >= PERF_EVENT_STATE_INACTIVE)
4132                return 0;
4133
4134        perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4135
4136        return 1;
4137}
4138
4139/*
4140 * Enable all of a task's events that have been marked enable-on-exec.
4141 * This expects task == current.
4142 */
4143static void perf_event_enable_on_exec(int ctxn)
4144{
4145        struct perf_event_context *ctx, *clone_ctx = NULL;
4146        enum event_type_t event_type = 0;
4147        struct perf_cpu_context *cpuctx;
4148        struct perf_event *event;
4149        unsigned long flags;
4150        int enabled = 0;
4151
4152        local_irq_save(flags);
4153        ctx = current->perf_event_ctxp[ctxn];
4154        if (!ctx || !ctx->nr_events)
4155                goto out;
4156
4157        cpuctx = __get_cpu_context(ctx);
4158        perf_ctx_lock(cpuctx, ctx);
4159        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4160        list_for_each_entry(event, &ctx->event_list, event_entry) {
4161                enabled |= event_enable_on_exec(event, ctx);
4162                event_type |= get_event_type(event);
4163        }
4164
4165        /*
4166         * Unclone and reschedule this context if we enabled any event.
4167         */
4168        if (enabled) {
4169                clone_ctx = unclone_ctx(ctx);
4170                ctx_resched(cpuctx, ctx, event_type);
4171        } else {
4172                ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4173        }
4174        perf_ctx_unlock(cpuctx, ctx);
4175
4176out:
4177        local_irq_restore(flags);
4178
4179        if (clone_ctx)
4180                put_ctx(clone_ctx);
4181}
4182
4183struct perf_read_data {
4184        struct perf_event *event;
4185        bool group;
4186        int ret;
4187};
4188
4189static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4190{
4191        u16 local_pkg, event_pkg;
4192
4193        if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4194                int local_cpu = smp_processor_id();
4195
4196                event_pkg = topology_physical_package_id(event_cpu);
4197                local_pkg = topology_physical_package_id(local_cpu);
4198
4199                if (event_pkg == local_pkg)
4200                        return local_cpu;
4201        }
4202
4203        return event_cpu;
4204}
4205
4206/*
4207 * Cross CPU call to read the hardware event
4208 */
4209static void __perf_event_read(void *info)
4210{
4211        struct perf_read_data *data = info;
4212        struct perf_event *sub, *event = data->event;
4213        struct perf_event_context *ctx = event->ctx;
4214        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4215        struct pmu *pmu = event->pmu;
4216
4217        /*
4218         * If this is a task context, we need to check whether it is
4219         * the current task context of this cpu.  If not it has been
4220         * scheduled out before the smp call arrived.  In that case
4221         * event->count would have been updated to a recent sample
4222         * when the event was scheduled out.
4223         */
4224        if (ctx->task && cpuctx->task_ctx != ctx)
4225                return;
4226
4227        raw_spin_lock(&ctx->lock);
4228        if (ctx->is_active & EVENT_TIME) {
4229                update_context_time(ctx);
4230                update_cgrp_time_from_event(event);
4231        }
4232
4233        perf_event_update_time(event);
4234        if (data->group)
4235                perf_event_update_sibling_time(event);
4236
4237        if (event->state != PERF_EVENT_STATE_ACTIVE)
4238                goto unlock;
4239
4240        if (!data->group) {
4241                pmu->read(event);
4242                data->ret = 0;
4243                goto unlock;
4244        }
4245
4246        pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4247
4248        pmu->read(event);
4249
4250        for_each_sibling_event(sub, event) {
4251                if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4252                        /*
4253                         * Use sibling's PMU rather than @event's since
4254                         * sibling could be on different (eg: software) PMU.
4255                         */
4256                        sub->pmu->read(sub);
4257                }
4258        }
4259
4260        data->ret = pmu->commit_txn(pmu);
4261
4262unlock:
4263        raw_spin_unlock(&ctx->lock);
4264}
4265
4266static inline u64 perf_event_count(struct perf_event *event)
4267{
4268        return local64_read(&event->count) + atomic64_read(&event->child_count);
4269}
4270
4271/*
4272 * NMI-safe method to read a local event, that is an event that
4273 * is:
4274 *   - either for the current task, or for this CPU
4275 *   - does not have inherit set, for inherited task events
4276 *     will not be local and we cannot read them atomically
4277 *   - must not have a pmu::count method
4278 */
4279int perf_event_read_local(struct perf_event *event, u64 *value,
4280                          u64 *enabled, u64 *running)
4281{
4282        unsigned long flags;
4283        int ret = 0;
4284
4285        /*
4286         * Disabling interrupts avoids all counter scheduling (context
4287         * switches, timer based rotation and IPIs).
4288         */
4289        local_irq_save(flags);
4290
4291        /*
4292         * It must not be an event with inherit set, we cannot read
4293         * all child counters from atomic context.
4294         */
4295        if (event->attr.inherit) {
4296                ret = -EOPNOTSUPP;
4297                goto out;
4298        }
4299
4300        /* If this is a per-task event, it must be for current */
4301        if ((event->attach_state & PERF_ATTACH_TASK) &&
4302            event->hw.target != current) {
4303                ret = -EINVAL;
4304                goto out;
4305        }
4306
4307        /* If this is a per-CPU event, it must be for this CPU */
4308        if (!(event->attach_state & PERF_ATTACH_TASK) &&
4309            event->cpu != smp_processor_id()) {
4310                ret = -EINVAL;
4311                goto out;
4312        }
4313
4314        /* If this is a pinned event it must be running on this CPU */
4315        if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4316                ret = -EBUSY;
4317                goto out;
4318        }
4319
4320        /*
4321         * If the event is currently on this CPU, its either a per-task event,
4322         * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4323         * oncpu == -1).
4324         */
4325        if (event->oncpu == smp_processor_id())
4326                event->pmu->read(event);
4327
4328        *value = local64_read(&event->count);
4329        if (enabled || running) {
4330                u64 now = event->shadow_ctx_time + perf_clock();
4331                u64 __enabled, __running;
4332
4333                __perf_update_times(event, now, &__enabled, &__running);
4334                if (enabled)
4335                        *enabled = __enabled;
4336                if (running)
4337                        *running = __running;
4338        }
4339out:
4340        local_irq_restore(flags);
4341
4342        return ret;
4343}
4344
4345static int perf_event_read(struct perf_event *event, bool group)
4346{
4347        enum perf_event_state state = READ_ONCE(event->state);
4348        int event_cpu, ret = 0;
4349
4350        /*
4351         * If event is enabled and currently active on a CPU, update the
4352         * value in the event structure:
4353         */
4354again:
4355        if (state == PERF_EVENT_STATE_ACTIVE) {
4356                struct perf_read_data data;
4357
4358                /*
4359                 * Orders the ->state and ->oncpu loads such that if we see
4360                 * ACTIVE we must also see the right ->oncpu.
4361                 *
4362                 * Matches the smp_wmb() from event_sched_in().
4363                 */
4364                smp_rmb();
4365
4366                event_cpu = READ_ONCE(event->oncpu);
4367                if ((unsigned)event_cpu >= nr_cpu_ids)
4368                        return 0;
4369
4370                data = (struct perf_read_data){
4371                        .event = event,
4372                        .group = group,
4373                        .ret = 0,
4374                };
4375
4376                preempt_disable();
4377                event_cpu = __perf_event_read_cpu(event, event_cpu);
4378
4379                /*
4380                 * Purposely ignore the smp_call_function_single() return
4381                 * value.
4382                 *
4383                 * If event_cpu isn't a valid CPU it means the event got
4384                 * scheduled out and that will have updated the event count.
4385                 *
4386                 * Therefore, either way, we'll have an up-to-date event count
4387                 * after this.
4388                 */
4389                (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4390                preempt_enable();
4391                ret = data.ret;
4392
4393        } else if (state == PERF_EVENT_STATE_INACTIVE) {
4394                struct perf_event_context *ctx = event->ctx;
4395                unsigned long flags;
4396
4397                raw_spin_lock_irqsave(&ctx->lock, flags);
4398                state = event->state;
4399                if (state != PERF_EVENT_STATE_INACTIVE) {
4400                        raw_spin_unlock_irqrestore(&ctx->lock, flags);
4401                        goto again;
4402                }
4403
4404                /*
4405                 * May read while context is not active (e.g., thread is
4406                 * blocked), in that case we cannot update context time
4407                 */
4408                if (ctx->is_active & EVENT_TIME) {
4409                        update_context_time(ctx);
4410                        update_cgrp_time_from_event(event);
4411                }
4412
4413                perf_event_update_time(event);
4414                if (group)
4415                        perf_event_update_sibling_time(event);
4416                raw_spin_unlock_irqrestore(&ctx->lock, flags);
4417        }
4418
4419        return ret;
4420}
4421
4422/*
4423 * Initialize the perf_event context in a task_struct:
4424 */
4425static void __perf_event_init_context(struct perf_event_context *ctx)
4426{
4427        raw_spin_lock_init(&ctx->lock);
4428        mutex_init(&ctx->mutex);
4429        INIT_LIST_HEAD(&ctx->active_ctx_list);
4430        perf_event_groups_init(&ctx->pinned_groups);
4431        perf_event_groups_init(&ctx->flexible_groups);
4432        INIT_LIST_HEAD(&ctx->event_list);
4433        INIT_LIST_HEAD(&ctx->pinned_active);
4434        INIT_LIST_HEAD(&ctx->flexible_active);
4435        refcount_set(&ctx->refcount, 1);
4436}
4437
4438static struct perf_event_context *
4439alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4440{
4441        struct perf_event_context *ctx;
4442
4443        ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4444        if (!ctx)
4445                return NULL;
4446
4447        __perf_event_init_context(ctx);
4448        if (task)
4449                ctx->task = get_task_struct(task);
4450        ctx->pmu = pmu;
4451
4452        return ctx;
4453}
4454
4455static struct task_struct *
4456find_lively_task_by_vpid(pid_t vpid)
4457{
4458        struct task_struct *task;
4459
4460        rcu_read_lock();
4461        if (!vpid)
4462                task = current;
4463        else
4464                task = find_task_by_vpid(vpid);
4465        if (task)
4466                get_task_struct(task);
4467        rcu_read_unlock();
4468
4469        if (!task)
4470                return ERR_PTR(-ESRCH);
4471
4472        return task;
4473}
4474
4475/*
4476 * Returns a matching context with refcount and pincount.
4477 */
4478static struct perf_event_context *
4479find_get_context(struct pmu *pmu, struct task_struct *task,
4480                struct perf_event *event)
4481{
4482        struct perf_event_context *ctx, *clone_ctx = NULL;
4483        struct perf_cpu_context *cpuctx;
4484        void *task_ctx_data = NULL;
4485        unsigned long flags;
4486        int ctxn, err;
4487        int cpu = event->cpu;
4488
4489        if (!task) {
4490                /* Must be root to operate on a CPU event: */
4491                err = perf_allow_cpu(&event->attr);
4492                if (err)
4493                        return ERR_PTR(err);
4494
4495                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4496                ctx = &cpuctx->ctx;
4497                get_ctx(ctx);
4498                ++ctx->pin_count;
4499
4500                return ctx;
4501        }
4502
4503        err = -EINVAL;
4504        ctxn = pmu->task_ctx_nr;
4505        if (ctxn < 0)
4506                goto errout;
4507
4508        if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4509                task_ctx_data = alloc_task_ctx_data(pmu);
4510                if (!task_ctx_data) {
4511                        err = -ENOMEM;
4512                        goto errout;
4513                }
4514        }
4515
4516retry:
4517        ctx = perf_lock_task_context(task, ctxn, &flags);
4518        if (ctx) {
4519                clone_ctx = unclone_ctx(ctx);
4520                ++ctx->pin_count;
4521
4522                if (task_ctx_data && !ctx->task_ctx_data) {
4523                        ctx->task_ctx_data = task_ctx_data;
4524                        task_ctx_data = NULL;
4525                }
4526                raw_spin_unlock_irqrestore(&ctx->lock, flags);
4527
4528                if (clone_ctx)
4529                        put_ctx(clone_ctx);
4530        } else {
4531                ctx = alloc_perf_context(pmu, task);
4532                err = -ENOMEM;
4533                if (!ctx)
4534                        goto errout;
4535
4536                if (task_ctx_data) {
4537                        ctx->task_ctx_data = task_ctx_data;
4538                        task_ctx_data = NULL;
4539                }
4540
4541                err = 0;
4542                mutex_lock(&task->perf_event_mutex);
4543                /*
4544                 * If it has already passed perf_event_exit_task().
4545                 * we must see PF_EXITING, it takes this mutex too.
4546                 */
4547                if (task->flags & PF_EXITING)
4548                        err = -ESRCH;
4549                else if (task->perf_event_ctxp[ctxn])
4550                        err = -EAGAIN;
4551                else {
4552                        get_ctx(ctx);
4553                        ++ctx->pin_count;
4554                        rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4555                }
4556                mutex_unlock(&task->perf_event_mutex);
4557
4558                if (unlikely(err)) {
4559                        put_ctx(ctx);
4560
4561                        if (err == -EAGAIN)
4562                                goto retry;
4563                        goto errout;
4564                }
4565        }
4566
4567        free_task_ctx_data(pmu, task_ctx_data);
4568        return ctx;
4569
4570errout:
4571        free_task_ctx_data(pmu, task_ctx_data);
4572        return ERR_PTR(err);
4573}
4574
4575static void perf_event_free_filter(struct perf_event *event);
4576static void perf_event_free_bpf_prog(struct perf_event *event);
4577
4578static void free_event_rcu(struct rcu_head *head)
4579{
4580        struct perf_event *event;
4581
4582        event = container_of(head, struct perf_event, rcu_head);
4583        if (event->ns)
4584                put_pid_ns(event->ns);
4585        perf_event_free_filter(event);
4586        kfree(event);
4587}
4588
4589static void ring_buffer_attach(struct perf_event *event,
4590                               struct perf_buffer *rb);
4591
4592static void detach_sb_event(struct perf_event *event)
4593{
4594        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4595
4596        raw_spin_lock(&pel->lock);
4597        list_del_rcu(&event->sb_list);
4598        raw_spin_unlock(&pel->lock);
4599}
4600
4601static bool is_sb_event(struct perf_event *event)
4602{
4603        struct perf_event_attr *attr = &event->attr;
4604
4605        if (event->parent)
4606                return false;
4607
4608        if (event->attach_state & PERF_ATTACH_TASK)
4609                return false;
4610
4611        if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4612            attr->comm || attr->comm_exec ||
4613            attr->task || attr->ksymbol ||
4614            attr->context_switch || attr->text_poke ||
4615            attr->bpf_event)
4616                return true;
4617        return false;
4618}
4619
4620static void unaccount_pmu_sb_event(struct perf_event *event)
4621{
4622        if (is_sb_event(event))
4623                detach_sb_event(event);
4624}
4625
4626static void unaccount_event_cpu(struct perf_event *event, int cpu)
4627{
4628        if (event->parent)
4629                return;
4630
4631        if (is_cgroup_event(event))
4632                atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4633}
4634
4635#ifdef CONFIG_NO_HZ_FULL
4636static DEFINE_SPINLOCK(nr_freq_lock);
4637#endif
4638
4639static void unaccount_freq_event_nohz(void)
4640{
4641#ifdef CONFIG_NO_HZ_FULL
4642        spin_lock(&nr_freq_lock);
4643        if (atomic_dec_and_test(&nr_freq_events))
4644                tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4645        spin_unlock(&nr_freq_lock);
4646#endif
4647}
4648
4649static void unaccount_freq_event(void)
4650{
4651        if (tick_nohz_full_enabled())
4652                unaccount_freq_event_nohz();
4653        else
4654                atomic_dec(&nr_freq_events);
4655}
4656
4657static void unaccount_event(struct perf_event *event)
4658{
4659        bool dec = false;
4660
4661        if (event->parent)
4662                return;
4663
4664        if (event->attach_state & PERF_ATTACH_TASK)
4665                dec = true;
4666        if (event->attr.mmap || event->attr.mmap_data)
4667                atomic_dec(&nr_mmap_events);
4668        if (event->attr.comm)
4669                atomic_dec(&nr_comm_events);
4670        if (event->attr.namespaces)
4671                atomic_dec(&nr_namespaces_events);
4672        if (event->attr.cgroup)
4673                atomic_dec(&nr_cgroup_events);
4674        if (event->attr.task)
4675                atomic_dec(&nr_task_events);
4676        if (event->attr.freq)
4677                unaccount_freq_event();
4678        if (event->attr.context_switch) {
4679                dec = true;
4680                atomic_dec(&nr_switch_events);
4681        }
4682        if (is_cgroup_event(event))
4683                dec = true;
4684        if (has_branch_stack(event))
4685                dec = true;
4686        if (event->attr.ksymbol)
4687                atomic_dec(&nr_ksymbol_events);
4688        if (event->attr.bpf_event)
4689                atomic_dec(&nr_bpf_events);
4690        if (event->attr.text_poke)
4691                atomic_dec(&nr_text_poke_events);
4692
4693        if (dec) {
4694                if (!atomic_add_unless(&perf_sched_count, -1, 1))
4695                        schedule_delayed_work(&perf_sched_work, HZ);
4696        }
4697
4698        unaccount_event_cpu(event, event->cpu);
4699
4700        unaccount_pmu_sb_event(event);
4701}
4702
4703static void perf_sched_delayed(struct work_struct *work)
4704{
4705        mutex_lock(&perf_sched_mutex);
4706        if (atomic_dec_and_test(&perf_sched_count))
4707                static_branch_disable(&perf_sched_events);
4708        mutex_unlock(&perf_sched_mutex);
4709}
4710
4711/*
4712 * The following implement mutual exclusion of events on "exclusive" pmus
4713 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4714 * at a time, so we disallow creating events that might conflict, namely:
4715 *
4716 *  1) cpu-wide events in the presence of per-task events,
4717 *  2) per-task events in the presence of cpu-wide events,
4718 *  3) two matching events on the same context.
4719 *
4720 * The former two cases are handled in the allocation path (perf_event_alloc(),
4721 * _free_event()), the latter -- before the first perf_install_in_context().
4722 */
4723static int exclusive_event_init(struct perf_event *event)
4724{
4725        struct pmu *pmu = event->pmu;
4726
4727        if (!is_exclusive_pmu(pmu))
4728                return 0;
4729
4730        /*
4731         * Prevent co-existence of per-task and cpu-wide events on the
4732         * same exclusive pmu.
4733         *
4734         * Negative pmu::exclusive_cnt means there are cpu-wide
4735         * events on this "exclusive" pmu, positive means there are
4736         * per-task events.
4737         *
4738         * Since this is called in perf_event_alloc() path, event::ctx
4739         * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4740         * to mean "per-task event", because unlike other attach states it
4741         * never gets cleared.
4742         */
4743        if (event->attach_state & PERF_ATTACH_TASK) {
4744                if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4745                        return -EBUSY;
4746        } else {
4747                if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4748                        return -EBUSY;
4749        }
4750
4751        return 0;
4752}
4753
4754static void exclusive_event_destroy(struct perf_event *event)
4755{
4756        struct pmu *pmu = event->pmu;
4757
4758        if (!is_exclusive_pmu(pmu))
4759                return;
4760
4761        /* see comment in exclusive_event_init() */
4762        if (event->attach_state & PERF_ATTACH_TASK)
4763                atomic_dec(&pmu->exclusive_cnt);
4764        else
4765                atomic_inc(&pmu->exclusive_cnt);
4766}
4767
4768static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4769{
4770        if ((e1->pmu == e2->pmu) &&
4771            (e1->cpu == e2->cpu ||
4772             e1->cpu == -1 ||
4773             e2->cpu == -1))
4774                return true;
4775        return false;
4776}
4777
4778static bool exclusive_event_installable(struct perf_event *event,
4779                                        struct perf_event_context *ctx)
4780{
4781        struct perf_event *iter_event;
4782        struct pmu *pmu = event->pmu;
4783
4784        lockdep_assert_held(&ctx->mutex);
4785
4786        if (!is_exclusive_pmu(pmu))
4787                return true;
4788
4789        list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4790                if (exclusive_event_match(iter_event, event))
4791                        return false;
4792        }
4793
4794        return true;
4795}
4796
4797static void perf_addr_filters_splice(struct perf_event *event,
4798                                       struct list_head *head);
4799
4800static void _free_event(struct perf_event *event)
4801{
4802        irq_work_sync(&event->pending);
4803
4804        unaccount_event(event);
4805
4806        security_perf_event_free(event);
4807
4808        if (event->rb) {
4809                /*
4810                 * Can happen when we close an event with re-directed output.
4811                 *
4812                 * Since we have a 0 refcount, perf_mmap_close() will skip
4813                 * over us; possibly making our ring_buffer_put() the last.
4814                 */
4815                mutex_lock(&event->mmap_mutex);
4816                ring_buffer_attach(event, NULL);
4817                mutex_unlock(&event->mmap_mutex);
4818        }
4819
4820        if (is_cgroup_event(event))
4821                perf_detach_cgroup(event);
4822
4823        if (!event->parent) {
4824                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4825                        put_callchain_buffers();
4826        }
4827
4828        perf_event_free_bpf_prog(event);
4829        perf_addr_filters_splice(event, NULL);
4830        kfree(event->addr_filter_ranges);
4831
4832        if (event->destroy)
4833                event->destroy(event);
4834
4835        /*
4836         * Must be after ->destroy(), due to uprobe_perf_close() using
4837         * hw.target.
4838         */
4839        if (event->hw.target)
4840                put_task_struct(event->hw.target);
4841
4842        /*
4843         * perf_event_free_task() relies on put_ctx() being 'last', in particular
4844         * all task references must be cleaned up.
4845         */
4846        if (event->ctx)
4847                put_ctx(event->ctx);
4848
4849        exclusive_event_destroy(event);
4850        module_put(event->pmu->module);
4851
4852        call_rcu(&event->rcu_head, free_event_rcu);
4853}
4854
4855/*
4856 * Used to free events which have a known refcount of 1, such as in error paths
4857 * where the event isn't exposed yet and inherited events.
4858 */
4859static void free_event(struct perf_event *event)
4860{
4861        if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4862                                "unexpected event refcount: %ld; ptr=%p\n",
4863                                atomic_long_read(&event->refcount), event)) {
4864                /* leak to avoid use-after-free */
4865                return;
4866        }
4867
4868        _free_event(event);
4869}
4870
4871/*
4872 * Remove user event from the owner task.
4873 */
4874static void perf_remove_from_owner(struct perf_event *event)
4875{
4876        struct task_struct *owner;
4877
4878        rcu_read_lock();
4879        /*
4880         * Matches the smp_store_release() in perf_event_exit_task(). If we
4881         * observe !owner it means the list deletion is complete and we can
4882         * indeed free this event, otherwise we need to serialize on
4883         * owner->perf_event_mutex.
4884         */
4885        owner = READ_ONCE(event->owner);
4886        if (owner) {
4887                /*
4888                 * Since delayed_put_task_struct() also drops the last
4889                 * task reference we can safely take a new reference
4890                 * while holding the rcu_read_lock().
4891                 */
4892                get_task_struct(owner);
4893        }
4894        rcu_read_unlock();
4895
4896        if (owner) {
4897                /*
4898                 * If we're here through perf_event_exit_task() we're already
4899                 * holding ctx->mutex which would be an inversion wrt. the
4900                 * normal lock order.
4901                 *
4902                 * However we can safely take this lock because its the child
4903                 * ctx->mutex.
4904                 */
4905                mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4906
4907                /*
4908                 * We have to re-check the event->owner field, if it is cleared
4909                 * we raced with perf_event_exit_task(), acquiring the mutex
4910                 * ensured they're done, and we can proceed with freeing the
4911                 * event.
4912                 */
4913                if (event->owner) {
4914                        list_del_init(&event->owner_entry);
4915                        smp_store_release(&event->owner, NULL);
4916                }
4917                mutex_unlock(&owner->perf_event_mutex);
4918                put_task_struct(owner);
4919        }
4920}
4921
4922static void put_event(struct perf_event *event)
4923{
4924        if (!atomic_long_dec_and_test(&event->refcount))
4925                return;
4926
4927        _free_event(event);
4928}
4929
4930/*
4931 * Kill an event dead; while event:refcount will preserve the event
4932 * object, it will not preserve its functionality. Once the last 'user'
4933 * gives up the object, we'll destroy the thing.
4934 */
4935int perf_event_release_kernel(struct perf_event *event)
4936{
4937        struct perf_event_context *ctx = event->ctx;
4938        struct perf_event *child, *tmp;
4939        LIST_HEAD(free_list);
4940
4941        /*
4942         * If we got here through err_file: fput(event_file); we will not have
4943         * attached to a context yet.
4944         */
4945        if (!ctx) {
4946                WARN_ON_ONCE(event->attach_state &
4947                                (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4948                goto no_ctx;
4949        }
4950
4951        if (!is_kernel_event(event))
4952                perf_remove_from_owner(event);
4953
4954        ctx = perf_event_ctx_lock(event);
4955        WARN_ON_ONCE(ctx->parent_ctx);
4956        perf_remove_from_context(event, DETACH_GROUP);
4957
4958        raw_spin_lock_irq(&ctx->lock);
4959        /*
4960         * Mark this event as STATE_DEAD, there is no external reference to it
4961         * anymore.
4962         *
4963         * Anybody acquiring event->child_mutex after the below loop _must_
4964         * also see this, most importantly inherit_event() which will avoid
4965         * placing more children on the list.
4966         *
4967         * Thus this guarantees that we will in fact observe and kill _ALL_
4968         * child events.
4969         */
4970        event->state = PERF_EVENT_STATE_DEAD;
4971        raw_spin_unlock_irq(&ctx->lock);
4972
4973        perf_event_ctx_unlock(event, ctx);
4974
4975again:
4976        mutex_lock(&event->child_mutex);
4977        list_for_each_entry(child, &event->child_list, child_list) {
4978
4979                /*
4980                 * Cannot change, child events are not migrated, see the
4981                 * comment with perf_event_ctx_lock_nested().
4982                 */
4983                ctx = READ_ONCE(child->ctx);
4984                /*
4985                 * Since child_mutex nests inside ctx::mutex, we must jump
4986                 * through hoops. We start by grabbing a reference on the ctx.
4987                 *
4988                 * Since the event cannot get freed while we hold the
4989                 * child_mutex, the context must also exist and have a !0
4990                 * reference count.
4991                 */
4992                get_ctx(ctx);
4993
4994                /*
4995                 * Now that we have a ctx ref, we can drop child_mutex, and
4996                 * acquire ctx::mutex without fear of it going away. Then we
4997                 * can re-acquire child_mutex.
4998                 */
4999                mutex_unlock(&event->child_mutex);
5000                mutex_lock(&ctx->mutex);
5001                mutex_lock(&event->child_mutex);
5002
5003                /*
5004                 * Now that we hold ctx::mutex and child_mutex, revalidate our
5005                 * state, if child is still the first entry, it didn't get freed
5006                 * and we can continue doing so.
5007                 */
5008                tmp = list_first_entry_or_null(&event->child_list,
5009                                               struct perf_event, child_list);
5010                if (tmp == child) {
5011                        perf_remove_from_context(child, DETACH_GROUP);
5012                        list_move(&child->child_list, &free_list);
5013                        /*
5014                         * This matches the refcount bump in inherit_event();
5015                         * this can't be the last reference.
5016                         */
5017                        put_event(event);
5018                }
5019
5020                mutex_unlock(&event->child_mutex);
5021                mutex_unlock(&ctx->mutex);
5022                put_ctx(ctx);
5023                goto again;
5024        }
5025        mutex_unlock(&event->child_mutex);
5026
5027        list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5028                void *var = &child->ctx->refcount;
5029
5030                list_del(&child->child_list);
5031                free_event(child);
5032
5033                /*
5034                 * Wake any perf_event_free_task() waiting for this event to be
5035                 * freed.
5036                 */
5037                smp_mb(); /* pairs with wait_var_event() */
5038                wake_up_var(var);
5039        }
5040
5041no_ctx:
5042        put_event(event); /* Must be the 'last' reference */
5043        return 0;
5044}
5045EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5046
5047/*
5048 * Called when the last reference to the file is gone.
5049 */
5050static int perf_release(struct inode *inode, struct file *file)
5051{
5052        perf_event_release_kernel(file->private_data);
5053        return 0;
5054}
5055
5056static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5057{
5058        struct perf_event *child;
5059        u64 total = 0;
5060
5061        *enabled = 0;
5062        *running = 0;
5063
5064        mutex_lock(&event->child_mutex);
5065
5066        (void)perf_event_read(event, false);
5067        total += perf_event_count(event);
5068
5069        *enabled += event->total_time_enabled +
5070                        atomic64_read(&event->child_total_time_enabled);
5071        *running += event->total_time_running +
5072                        atomic64_read(&event->child_total_time_running);
5073
5074        list_for_each_entry(child, &event->child_list, child_list) {
5075                (void)perf_event_read(child, false);
5076                total += perf_event_count(child);
5077                *enabled += child->total_time_enabled;
5078                *running += child->total_time_running;
5079        }
5080        mutex_unlock(&event->child_mutex);
5081
5082        return total;
5083}
5084
5085u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5086{
5087        struct perf_event_context *ctx;
5088        u64 count;
5089
5090        ctx = perf_event_ctx_lock(event);
5091        count = __perf_event_read_value(event, enabled, running);
5092        perf_event_ctx_unlock(event, ctx);
5093
5094        return count;
5095}
5096EXPORT_SYMBOL_GPL(perf_event_read_value);
5097
5098static int __perf_read_group_add(struct perf_event *leader,
5099                                        u64 read_format, u64 *values)
5100{
5101        struct perf_event_context *ctx = leader->ctx;
5102        struct perf_event *sub;
5103        unsigned long flags;
5104        int n = 1; /* skip @nr */
5105        int ret;
5106
5107        ret = perf_event_read(leader, true);
5108        if (ret)
5109                return ret;
5110
5111        raw_spin_lock_irqsave(&ctx->lock, flags);
5112
5113        /*
5114         * Since we co-schedule groups, {enabled,running} times of siblings
5115         * will be identical to those of the leader, so we only publish one
5116         * set.
5117         */
5118        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5119                values[n++] += leader->total_time_enabled +
5120                        atomic64_read(&leader->child_total_time_enabled);
5121        }
5122
5123        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5124                values[n++] += leader->total_time_running +
5125                        atomic64_read(&leader->child_total_time_running);
5126        }
5127
5128        /*
5129         * Write {count,id} tuples for every sibling.
5130         */
5131        values[n++] += perf_event_count(leader);
5132        if (read_format & PERF_FORMAT_ID)
5133                values[n++] = primary_event_id(leader);
5134
5135        for_each_sibling_event(sub, leader) {
5136                values[n++] += perf_event_count(sub);
5137                if (read_format & PERF_FORMAT_ID)
5138                        values[n++] = primary_event_id(sub);
5139        }
5140
5141        raw_spin_unlock_irqrestore(&ctx->lock, flags);
5142        return 0;
5143}
5144
5145static int perf_read_group(struct perf_event *event,
5146                                   u64 read_format, char __user *buf)
5147{
5148        struct perf_event *leader = event->group_leader, *child;
5149        struct perf_event_context *ctx = leader->ctx;
5150        int ret;
5151        u64 *values;
5152
5153        lockdep_assert_held(&ctx->mutex);
5154
5155        values = kzalloc(event->read_size, GFP_KERNEL);
5156        if (!values)
5157                return -ENOMEM;
5158
5159        values[0] = 1 + leader->nr_siblings;
5160
5161        /*
5162         * By locking the child_mutex of the leader we effectively
5163         * lock the child list of all siblings.. XXX explain how.
5164         */
5165        mutex_lock(&leader->child_mutex);
5166
5167        ret = __perf_read_group_add(leader, read_format, values);
5168        if (ret)
5169                goto unlock;
5170
5171        list_for_each_entry(child, &leader->child_list, child_list) {
5172                ret = __perf_read_group_add(child, read_format, values);
5173                if (ret)
5174                        goto unlock;
5175        }
5176
5177        mutex_unlock(&leader->child_mutex);
5178
5179        ret = event->read_size;
5180        if (copy_to_user(buf, values, event->read_size))
5181                ret = -EFAULT;
5182        goto out;
5183
5184unlock:
5185        mutex_unlock(&leader->child_mutex);
5186out:
5187        kfree(values);
5188        return ret;
5189}
5190
5191static int perf_read_one(struct perf_event *event,
5192                                 u64 read_format, char __user *buf)
5193{
5194        u64 enabled, running;
5195        u64 values[4];
5196        int n = 0;
5197
5198        values[n++] = __perf_event_read_value(event, &enabled, &running);
5199        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5200                values[n++] = enabled;
5201        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5202                values[n++] = running;
5203        if (read_format & PERF_FORMAT_ID)
5204                values[n++] = primary_event_id(event);
5205
5206        if (copy_to_user(buf, values, n * sizeof(u64)))
5207                return -EFAULT;
5208
5209        return n * sizeof(u64);
5210}
5211
5212static bool is_event_hup(struct perf_event *event)
5213{
5214        bool no_children;
5215
5216        if (event->state > PERF_EVENT_STATE_EXIT)
5217                return false;
5218
5219        mutex_lock(&event->child_mutex);
5220        no_children = list_empty(&event->child_list);
5221        mutex_unlock(&event->child_mutex);
5222        return no_children;
5223}
5224
5225/*
5226 * Read the performance event - simple non blocking version for now
5227 */
5228static ssize_t
5229__perf_read(struct perf_event *event, char __user *buf, size_t count)
5230{
5231        u64 read_format = event->attr.read_format;
5232        int ret;
5233
5234        /*
5235         * Return end-of-file for a read on an event that is in
5236         * error state (i.e. because it was pinned but it couldn't be
5237         * scheduled on to the CPU at some point).
5238         */
5239        if (event->state == PERF_EVENT_STATE_ERROR)
5240                return 0;
5241
5242        if (count < event->read_size)
5243                return -ENOSPC;
5244
5245        WARN_ON_ONCE(event->ctx->parent_ctx);
5246        if (read_format & PERF_FORMAT_GROUP)
5247                ret = perf_read_group(event, read_format, buf);
5248        else
5249                ret = perf_read_one(event, read_format, buf);
5250
5251        return ret;
5252}
5253
5254static ssize_t
5255perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5256{
5257        struct perf_event *event = file->private_data;
5258        struct perf_event_context *ctx;
5259        int ret;
5260
5261        ret = security_perf_event_read(event);
5262        if (ret)
5263                return ret;
5264
5265        ctx = perf_event_ctx_lock(event);
5266        ret = __perf_read(event, buf, count);
5267        perf_event_ctx_unlock(event, ctx);
5268
5269        return ret;
5270}
5271
5272static __poll_t perf_poll(struct file *file, poll_table *wait)
5273{
5274        struct perf_event *event = file->private_data;
5275        struct perf_buffer *rb;
5276        __poll_t events = EPOLLHUP;
5277
5278        poll_wait(file, &event->waitq, wait);
5279
5280        if (is_event_hup(event))
5281                return events;
5282
5283        /*
5284         * Pin the event->rb by taking event->mmap_mutex; otherwise
5285         * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5286         */
5287        mutex_lock(&event->mmap_mutex);
5288        rb = event->rb;
5289        if (rb)
5290                events = atomic_xchg(&rb->poll, 0);
5291        mutex_unlock(&event->mmap_mutex);
5292        return events;
5293}
5294
5295static void _perf_event_reset(struct perf_event *event)
5296{
5297        (void)perf_event_read(event, false);
5298        local64_set(&event->count, 0);
5299        perf_event_update_userpage(event);
5300}
5301
5302/* Assume it's not an event with inherit set. */
5303u64 perf_event_pause(struct perf_event *event, bool reset)
5304{
5305        struct perf_event_context *ctx;
5306        u64 count;
5307
5308        ctx = perf_event_ctx_lock(event);
5309        WARN_ON_ONCE(event->attr.inherit);
5310        _perf_event_disable(event);
5311        count = local64_read(&event->count);
5312        if (reset)
5313                local64_set(&event->count, 0);
5314        perf_event_ctx_unlock(event, ctx);
5315
5316        return count;
5317}
5318EXPORT_SYMBOL_GPL(perf_event_pause);
5319
5320/*
5321 * Holding the top-level event's child_mutex means that any
5322 * descendant process that has inherited this event will block
5323 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5324 * task existence requirements of perf_event_enable/disable.
5325 */
5326static void perf_event_for_each_child(struct perf_event *event,
5327                                        void (*func)(struct perf_event *))
5328{
5329        struct perf_event *child;
5330
5331        WARN_ON_ONCE(event->ctx->parent_ctx);
5332
5333        mutex_lock(&event->child_mutex);
5334        func(event);
5335        list_for_each_entry(child, &event->child_list, child_list)
5336                func(child);
5337        mutex_unlock(&event->child_mutex);
5338}
5339
5340static void perf_event_for_each(struct perf_event *event,
5341                                  void (*func)(struct perf_event *))
5342{
5343        struct perf_event_context *ctx = event->ctx;
5344        struct perf_event *sibling;
5345
5346        lockdep_assert_held(&ctx->mutex);
5347
5348        event = event->group_leader;
5349
5350        perf_event_for_each_child(event, func);
5351        for_each_sibling_event(sibling, event)
5352                perf_event_for_each_child(sibling, func);
5353}
5354
5355static void __perf_event_period(struct perf_event *event,
5356                                struct perf_cpu_context *cpuctx,
5357                                struct perf_event_context *ctx,
5358                                void *info)
5359{
5360        u64 value = *((u64 *)info);
5361        bool active;
5362
5363        if (event->attr.freq) {
5364                event->attr.sample_freq = value;
5365        } else {
5366                event->attr.sample_period = value;
5367                event->hw.sample_period = value;
5368        }
5369
5370        active = (event->state == PERF_EVENT_STATE_ACTIVE);
5371        if (active) {
5372                perf_pmu_disable(ctx->pmu);
5373                /*
5374                 * We could be throttled; unthrottle now to avoid the tick
5375                 * trying to unthrottle while we already re-started the event.
5376                 */
5377                if (event->hw.interrupts == MAX_INTERRUPTS) {
5378                        event->hw.interrupts = 0;
5379                        perf_log_throttle(event, 1);
5380                }
5381                event->pmu->stop(event, PERF_EF_UPDATE);
5382        }
5383
5384        local64_set(&event->hw.period_left, 0);
5385
5386        if (active) {
5387                event->pmu->start(event, PERF_EF_RELOAD);
5388                perf_pmu_enable(ctx->pmu);
5389        }
5390}
5391
5392static int perf_event_check_period(struct perf_event *event, u64 value)
5393{
5394        return event->pmu->check_period(event, value);
5395}
5396
5397static int _perf_event_period(struct perf_event *event, u64 value)
5398{
5399        if (!is_sampling_event(event))
5400                return -EINVAL;
5401
5402        if (!value)
5403                return -EINVAL;
5404
5405        if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5406                return -EINVAL;
5407
5408        if (perf_event_check_period(event, value))
5409                return -EINVAL;
5410
5411        if (!event->attr.freq && (value & (1ULL << 63)))
5412                return -EINVAL;
5413
5414        event_function_call(event, __perf_event_period, &value);
5415
5416        return 0;
5417}
5418
5419int perf_event_period(struct perf_event *event, u64 value)
5420{
5421        struct perf_event_context *ctx;
5422        int ret;
5423
5424        ctx = perf_event_ctx_lock(event);
5425        ret = _perf_event_period(event, value);
5426        perf_event_ctx_unlock(event, ctx);
5427
5428        return ret;
5429}
5430EXPORT_SYMBOL_GPL(perf_event_period);
5431
5432static const struct file_operations perf_fops;
5433
5434static inline int perf_fget_light(int fd, struct fd *p)
5435{
5436        struct fd f = fdget(fd);
5437        if (!f.file)
5438                return -EBADF;
5439
5440        if (f.file->f_op != &perf_fops) {
5441                fdput(f);
5442                return -EBADF;
5443        }
5444        *p = f;
5445        return 0;
5446}
5447
5448static int perf_event_set_output(struct perf_event *event,
5449                                 struct perf_event *output_event);
5450static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5451static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5452static int perf_copy_attr(struct perf_event_attr __user *uattr,
5453                          struct perf_event_attr *attr);
5454
5455static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5456{
5457        void (*func)(struct perf_event *);
5458        u32 flags = arg;
5459
5460        switch (cmd) {
5461        case PERF_EVENT_IOC_ENABLE:
5462                func = _perf_event_enable;
5463                break;
5464        case PERF_EVENT_IOC_DISABLE:
5465                func = _perf_event_disable;
5466                break;
5467        case PERF_EVENT_IOC_RESET:
5468                func = _perf_event_reset;
5469                break;
5470
5471        case PERF_EVENT_IOC_REFRESH:
5472                return _perf_event_refresh(event, arg);
5473
5474        case PERF_EVENT_IOC_PERIOD:
5475        {
5476                u64 value;
5477
5478                if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5479                        return -EFAULT;
5480
5481                return _perf_event_period(event, value);
5482        }
5483        case PERF_EVENT_IOC_ID:
5484        {
5485                u64 id = primary_event_id(event);
5486
5487                if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5488                        return -EFAULT;
5489                return 0;
5490        }
5491
5492        case PERF_EVENT_IOC_SET_OUTPUT:
5493        {
5494                int ret;
5495                if (arg != -1) {
5496                        struct perf_event *output_event;
5497                        struct fd output;
5498                        ret = perf_fget_light(arg, &output);
5499                        if (ret)
5500                                return ret;
5501                        output_event = output.file->private_data;
5502                        ret = perf_event_set_output(event, output_event);
5503                        fdput(output);
5504                } else {
5505                        ret = perf_event_set_output(event, NULL);
5506                }
5507                return ret;
5508        }
5509
5510        case PERF_EVENT_IOC_SET_FILTER:
5511                return perf_event_set_filter(event, (void __user *)arg);
5512
5513        case PERF_EVENT_IOC_SET_BPF:
5514                return perf_event_set_bpf_prog(event, arg);
5515
5516        case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5517                struct perf_buffer *rb;
5518
5519                rcu_read_lock();
5520                rb = rcu_dereference(event->rb);
5521                if (!rb || !rb->nr_pages) {
5522                        rcu_read_unlock();
5523                        return -EINVAL;
5524                }
5525                rb_toggle_paused(rb, !!arg);
5526                rcu_read_unlock();
5527                return 0;
5528        }
5529
5530        case PERF_EVENT_IOC_QUERY_BPF:
5531                return perf_event_query_prog_array(event, (void __user *)arg);
5532
5533        case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5534                struct perf_event_attr new_attr;
5535                int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5536                                         &new_attr);
5537
5538                if (err)
5539                        return err;
5540
5541                return perf_event_modify_attr(event,  &new_attr);
5542        }
5543        default:
5544                return -ENOTTY;
5545        }
5546
5547        if (flags & PERF_IOC_FLAG_GROUP)
5548                perf_event_for_each(event, func);
5549        else
5550                perf_event_for_each_child(event, func);
5551
5552        return 0;
5553}
5554
5555static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5556{
5557        struct perf_event *event = file->private_data;
5558        struct perf_event_context *ctx;
5559        long ret;
5560
5561        /* Treat ioctl like writes as it is likely a mutating operation. */
5562        ret = security_perf_event_write(event);
5563        if (ret)
5564                return ret;
5565
5566        ctx = perf_event_ctx_lock(event);
5567        ret = _perf_ioctl(event, cmd, arg);
5568        perf_event_ctx_unlock(event, ctx);
5569
5570        return ret;
5571}
5572
5573#ifdef CONFIG_COMPAT
5574static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5575                                unsigned long arg)
5576{
5577        switch (_IOC_NR(cmd)) {
5578        case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5579        case _IOC_NR(PERF_EVENT_IOC_ID):
5580        case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5581        case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5582                /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5583                if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5584                        cmd &= ~IOCSIZE_MASK;
5585                        cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5586                }
5587                break;
5588        }
5589        return perf_ioctl(file, cmd, arg);
5590}
5591#else
5592# define perf_compat_ioctl NULL
5593#endif
5594
5595int perf_event_task_enable(void)
5596{
5597        struct perf_event_context *ctx;
5598        struct perf_event *event;
5599
5600        mutex_lock(&current->perf_event_mutex);
5601        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5602                ctx = perf_event_ctx_lock(event);
5603                perf_event_for_each_child(event, _perf_event_enable);
5604                perf_event_ctx_unlock(event, ctx);
5605        }
5606        mutex_unlock(&current->perf_event_mutex);
5607
5608        return 0;
5609}
5610
5611int perf_event_task_disable(void)
5612{
5613        struct perf_event_context *ctx;
5614        struct perf_event *event;
5615
5616        mutex_lock(&current->perf_event_mutex);
5617        list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5618                ctx = perf_event_ctx_lock(event);
5619                perf_event_for_each_child(event, _perf_event_disable);
5620                perf_event_ctx_unlock(event, ctx);
5621        }
5622        mutex_unlock(&current->perf_event_mutex);
5623
5624        return 0;
5625}
5626
5627static int perf_event_index(struct perf_event *event)
5628{
5629        if (event->hw.state & PERF_HES_STOPPED)
5630                return 0;
5631
5632        if (event->state != PERF_EVENT_STATE_ACTIVE)
5633                return 0;
5634
5635        return event->pmu->event_idx(event);
5636}
5637
5638static void calc_timer_values(struct perf_event *event,
5639                                u64 *now,
5640                                u64 *enabled,
5641                                u64 *running)
5642{
5643        u64 ctx_time;
5644
5645        *now = perf_clock();
5646        ctx_time = event->shadow_ctx_time + *now;
5647        __perf_update_times(event, ctx_time, enabled, running);
5648}
5649
5650static void perf_event_init_userpage(struct perf_event *event)
5651{
5652        struct perf_event_mmap_page *userpg;
5653        struct perf_buffer *rb;
5654
5655        rcu_read_lock();
5656        rb = rcu_dereference(event->rb);
5657        if (!rb)
5658                goto unlock;
5659
5660        userpg = rb->user_page;
5661
5662        /* Allow new userspace to detect that bit 0 is deprecated */
5663        userpg->cap_bit0_is_deprecated = 1;
5664        userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5665        userpg->data_offset = PAGE_SIZE;
5666        userpg->data_size = perf_data_size(rb);
5667
5668unlock:
5669        rcu_read_unlock();
5670}
5671
5672void __weak arch_perf_update_userpage(
5673        struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5674{
5675}
5676
5677/*
5678 * Callers need to ensure there can be no nesting of this function, otherwise
5679 * the seqlock logic goes bad. We can not serialize this because the arch
5680 * code calls this from NMI context.
5681 */
5682void perf_event_update_userpage(struct perf_event *event)
5683{
5684        struct perf_event_mmap_page *userpg;
5685        struct perf_buffer *rb;
5686        u64 enabled, running, now;
5687
5688        rcu_read_lock();
5689        rb = rcu_dereference(event->rb);
5690        if (!rb)
5691                goto unlock;
5692
5693        /*
5694         * compute total_time_enabled, total_time_running
5695         * based on snapshot values taken when the event
5696         * was last scheduled in.
5697         *
5698         * we cannot simply called update_context_time()
5699         * because of locking issue as we can be called in
5700         * NMI context
5701         */
5702        calc_timer_values(event, &now, &enabled, &running);
5703
5704        userpg = rb->user_page;
5705        /*
5706         * Disable preemption to guarantee consistent time stamps are stored to
5707         * the user page.
5708         */
5709        preempt_disable();
5710        ++userpg->lock;
5711        barrier();
5712        userpg->index = perf_event_index(event);
5713        userpg->offset = perf_event_count(event);
5714        if (userpg->index)
5715                userpg->offset -= local64_read(&event->hw.prev_count);
5716
5717        userpg->time_enabled = enabled +
5718                        atomic64_read(&event->child_total_time_enabled);
5719
5720        userpg->time_running = running +
5721                        atomic64_read(&event->child_total_time_running);
5722
5723        arch_perf_update_userpage(event, userpg, now);
5724
5725        barrier();
5726        ++userpg->lock;
5727        preempt_enable();
5728unlock:
5729        rcu_read_unlock();
5730}
5731EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5732
5733static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5734{
5735        struct perf_event *event = vmf->vma->vm_file->private_data;
5736        struct perf_buffer *rb;
5737        vm_fault_t ret = VM_FAULT_SIGBUS;
5738
5739        if (vmf->flags & FAULT_FLAG_MKWRITE) {
5740                if (vmf->pgoff == 0)
5741                        ret = 0;
5742                return ret;
5743        }
5744
5745        rcu_read_lock();
5746        rb = rcu_dereference(event->rb);
5747        if (!rb)
5748                goto unlock;
5749
5750        if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5751                goto unlock;
5752
5753        vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5754        if (!vmf->page)
5755                goto unlock;
5756
5757        get_page(vmf->page);
5758        vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5759        vmf->page->index   = vmf->pgoff;
5760
5761        ret = 0;
5762unlock:
5763        rcu_read_unlock();
5764
5765        return ret;
5766}
5767
5768static void ring_buffer_attach(struct perf_event *event,
5769                               struct perf_buffer *rb)
5770{
5771        struct perf_buffer *old_rb = NULL;
5772        unsigned long flags;
5773
5774        if (event->rb) {
5775                /*
5776                 * Should be impossible, we set this when removing
5777                 * event->rb_entry and wait/clear when adding event->rb_entry.
5778                 */
5779                WARN_ON_ONCE(event->rcu_pending);
5780
5781                old_rb = event->rb;
5782                spin_lock_irqsave(&old_rb->event_lock, flags);
5783                list_del_rcu(&event->rb_entry);
5784                spin_unlock_irqrestore(&old_rb->event_lock, flags);
5785
5786                event->rcu_batches = get_state_synchronize_rcu();
5787                event->rcu_pending = 1;
5788        }
5789
5790        if (rb) {
5791                if (event->rcu_pending) {
5792                        cond_synchronize_rcu(event->rcu_batches);
5793                        event->rcu_pending = 0;
5794                }
5795
5796                spin_lock_irqsave(&rb->event_lock, flags);
5797                list_add_rcu(&event->rb_entry, &rb->event_list);
5798                spin_unlock_irqrestore(&rb->event_lock, flags);
5799        }
5800
5801        /*
5802         * Avoid racing with perf_mmap_close(AUX): stop the event
5803         * before swizzling the event::rb pointer; if it's getting
5804         * unmapped, its aux_mmap_count will be 0 and it won't
5805         * restart. See the comment in __perf_pmu_output_stop().
5806         *
5807         * Data will inevitably be lost when set_output is done in
5808         * mid-air, but then again, whoever does it like this is
5809         * not in for the data anyway.
5810         */
5811        if (has_aux(event))
5812                perf_event_stop(event, 0);
5813
5814        rcu_assign_pointer(event->rb, rb);
5815
5816        if (old_rb) {
5817                ring_buffer_put(old_rb);
5818                /*
5819                 * Since we detached before setting the new rb, so that we
5820                 * could attach the new rb, we could have missed a wakeup.
5821                 * Provide it now.
5822                 */
5823                wake_up_all(&event->waitq);
5824        }
5825}
5826
5827static void ring_buffer_wakeup(struct perf_event *event)
5828{
5829        struct perf_buffer *rb;
5830
5831        rcu_read_lock();
5832        rb = rcu_dereference(event->rb);
5833        if (rb) {
5834                list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5835                        wake_up_all(&event->waitq);
5836        }
5837        rcu_read_unlock();
5838}
5839
5840struct perf_buffer *ring_buffer_get(struct perf_event *event)
5841{
5842        struct perf_buffer *rb;
5843
5844        rcu_read_lock();
5845        rb = rcu_dereference(event->rb);
5846        if (rb) {
5847                if (!refcount_inc_not_zero(&rb->refcount))
5848                        rb = NULL;
5849        }
5850        rcu_read_unlock();
5851
5852        return rb;
5853}
5854
5855void ring_buffer_put(struct perf_buffer *rb)
5856{
5857        if (!refcount_dec_and_test(&rb->refcount))
5858                return;
5859
5860        WARN_ON_ONCE(!list_empty(&rb->event_list));
5861
5862        call_rcu(&rb->rcu_head, rb_free_rcu);
5863}
5864
5865static void perf_mmap_open(struct vm_area_struct *vma)
5866{
5867        struct perf_event *event = vma->vm_file->private_data;
5868
5869        atomic_inc(&event->mmap_count);
5870        atomic_inc(&event->rb->mmap_count);
5871
5872        if (vma->vm_pgoff)
5873                atomic_inc(&event->rb->aux_mmap_count);
5874
5875        if (event->pmu->event_mapped)
5876                event->pmu->event_mapped(event, vma->vm_mm);
5877}
5878
5879static void perf_pmu_output_stop(struct perf_event *event);
5880
5881/*
5882 * A buffer can be mmap()ed multiple times; either directly through the same
5883 * event, or through other events by use of perf_event_set_output().
5884 *
5885 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5886 * the buffer here, where we still have a VM context. This means we need
5887 * to detach all events redirecting to us.
5888 */
5889static void perf_mmap_close(struct vm_area_struct *vma)
5890{
5891        struct perf_event *event = vma->vm_file->private_data;
5892        struct perf_buffer *rb = ring_buffer_get(event);
5893        struct user_struct *mmap_user = rb->mmap_user;
5894        int mmap_locked = rb->mmap_locked;
5895        unsigned long size = perf_data_size(rb);
5896        bool detach_rest = false;
5897
5898        if (event->pmu->event_unmapped)
5899                event->pmu->event_unmapped(event, vma->vm_mm);
5900
5901        /*
5902         * rb->aux_mmap_count will always drop before rb->mmap_count and
5903         * event->mmap_count, so it is ok to use event->mmap_mutex to
5904         * serialize with perf_mmap here.
5905         */
5906        if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5907            atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5908                /*
5909                 * Stop all AUX events that are writing to this buffer,
5910                 * so that we can free its AUX pages and corresponding PMU
5911                 * data. Note that after rb::aux_mmap_count dropped to zero,
5912                 * they won't start any more (see perf_aux_output_begin()).
5913                 */
5914                perf_pmu_output_stop(event);
5915
5916                /* now it's safe to free the pages */
5917                atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5918                atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5919
5920                /* this has to be the last one */
5921                rb_free_aux(rb);
5922                WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5923
5924                mutex_unlock(&event->mmap_mutex);
5925        }
5926
5927        if (atomic_dec_and_test(&rb->mmap_count))
5928                detach_rest = true;
5929
5930        if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5931                goto out_put;
5932
5933        ring_buffer_attach(event, NULL);
5934        mutex_unlock(&event->mmap_mutex);
5935
5936        /* If there's still other mmap()s of this buffer, we're done. */
5937        if (!detach_rest)
5938                goto out_put;
5939
5940        /*
5941         * No other mmap()s, detach from all other events that might redirect
5942         * into the now unreachable buffer. Somewhat complicated by the
5943         * fact that rb::event_lock otherwise nests inside mmap_mutex.
5944         */
5945again:
5946        rcu_read_lock();
5947        list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5948                if (!atomic_long_inc_not_zero(&event->refcount)) {
5949                        /*
5950                         * This event is en-route to free_event() which will
5951                         * detach it and remove it from the list.
5952                         */
5953                        continue;
5954                }
5955                rcu_read_unlock();
5956
5957                mutex_lock(&event->mmap_mutex);
5958                /*
5959                 * Check we didn't race with perf_event_set_output() which can
5960                 * swizzle the rb from under us while we were waiting to
5961                 * acquire mmap_mutex.
5962                 *
5963                 * If we find a different rb; ignore this event, a next
5964                 * iteration will no longer find it on the list. We have to
5965                 * still restart the iteration to make sure we're not now
5966                 * iterating the wrong list.
5967                 */
5968                if (event->rb == rb)
5969                        ring_buffer_attach(event, NULL);
5970
5971                mutex_unlock(&event->mmap_mutex);
5972                put_event(event);
5973
5974                /*
5975                 * Restart the iteration; either we're on the wrong list or
5976                 * destroyed its integrity by doing a deletion.
5977                 */
5978                goto again;
5979        }
5980        rcu_read_unlock();
5981
5982        /*
5983         * It could be there's still a few 0-ref events on the list; they'll
5984         * get cleaned up by free_event() -- they'll also still have their
5985         * ref on the rb and will free it whenever they are done with it.
5986         *
5987         * Aside from that, this buffer is 'fully' detached and unmapped,
5988         * undo the VM accounting.
5989         */
5990
5991        atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5992                        &mmap_user->locked_vm);
5993        atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5994        free_uid(mmap_user);
5995
5996out_put:
5997        ring_buffer_put(rb); /* could be last */
5998}
5999
6000static const struct vm_operations_struct perf_mmap_vmops = {
6001        .open           = perf_mmap_open,
6002        .close          = perf_mmap_close, /* non mergeable */
6003        .fault          = perf_mmap_fault,
6004        .page_mkwrite   = perf_mmap_fault,
6005};
6006
6007static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6008{
6009        struct perf_event *event = file->private_data;
6010        unsigned long user_locked, user_lock_limit;
6011        struct user_struct *user = current_user();
6012        struct perf_buffer *rb = NULL;
6013        unsigned long locked, lock_limit;
6014        unsigned long vma_size;
6015        unsigned long nr_pages;
6016        long user_extra = 0, extra = 0;
6017        int ret = 0, flags = 0;
6018
6019        /*
6020         * Don't allow mmap() of inherited per-task counters. This would
6021         * create a performance issue due to all children writing to the
6022         * same rb.
6023         */
6024        if (event->cpu == -1 && event->attr.inherit)
6025                return -EINVAL;
6026
6027        if (!(vma->vm_flags & VM_SHARED))
6028                return -EINVAL;
6029
6030        ret = security_perf_event_read(event);
6031        if (ret)
6032                return ret;
6033
6034        vma_size = vma->vm_end - vma->vm_start;
6035
6036        if (vma->vm_pgoff == 0) {
6037                nr_pages = (vma_size / PAGE_SIZE) - 1;
6038        } else {
6039                /*
6040                 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6041                 * mapped, all subsequent mappings should have the same size
6042                 * and offset. Must be above the normal perf buffer.
6043                 */
6044                u64 aux_offset, aux_size;
6045
6046                if (!event->rb)
6047                        return -EINVAL;
6048
6049                nr_pages = vma_size / PAGE_SIZE;
6050
6051                mutex_lock(&event->mmap_mutex);
6052                ret = -EINVAL;
6053
6054                rb = event->rb;
6055                if (!rb)
6056                        goto aux_unlock;
6057
6058                aux_offset = READ_ONCE(rb->user_page->aux_offset);
6059                aux_size = READ_ONCE(rb->user_page->aux_size);
6060
6061                if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6062                        goto aux_unlock;
6063
6064                if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6065                        goto aux_unlock;
6066
6067                /* already mapped with a different offset */
6068                if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6069                        goto aux_unlock;
6070
6071                if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6072                        goto aux_unlock;
6073
6074                /* already mapped with a different size */
6075                if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6076                        goto aux_unlock;
6077
6078                if (!is_power_of_2(nr_pages))
6079                        goto aux_unlock;
6080
6081                if (!atomic_inc_not_zero(&rb->mmap_count))
6082                        goto aux_unlock;
6083
6084                if (rb_has_aux(rb)) {
6085                        atomic_inc(&rb->aux_mmap_count);
6086                        ret = 0;
6087                        goto unlock;
6088                }
6089
6090                atomic_set(&rb->aux_mmap_count, 1);
6091                user_extra = nr_pages;
6092
6093                goto accounting;
6094        }
6095
6096        /*
6097         * If we have rb pages ensure they're a power-of-two number, so we
6098         * can do bitmasks instead of modulo.
6099         */
6100        if (nr_pages != 0 && !is_power_of_2(nr_pages))
6101                return -EINVAL;
6102
6103        if (vma_size != PAGE_SIZE * (1 + nr_pages))
6104                return -EINVAL;
6105
6106        WARN_ON_ONCE(event->ctx->parent_ctx);
6107again:
6108        mutex_lock(&event->mmap_mutex);
6109        if (event->rb) {
6110                if (event->rb->nr_pages != nr_pages) {
6111                        ret = -EINVAL;
6112                        goto unlock;
6113                }
6114
6115                if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6116                        /*
6117                         * Raced against perf_mmap_close() through
6118                         * perf_event_set_output(). Try again, hope for better
6119                         * luck.
6120                         */
6121                        mutex_unlock(&event->mmap_mutex);
6122                        goto again;
6123                }
6124
6125                goto unlock;
6126        }
6127
6128        user_extra = nr_pages + 1;
6129
6130accounting:
6131        user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6132
6133        /*
6134         * Increase the limit linearly with more CPUs:
6135         */
6136        user_lock_limit *= num_online_cpus();
6137
6138        user_locked = atomic_long_read(&user->locked_vm);
6139
6140        /*
6141         * sysctl_perf_event_mlock may have changed, so that
6142         *     user->locked_vm > user_lock_limit
6143         */
6144        if (user_locked > user_lock_limit)
6145                user_locked = user_lock_limit;
6146        user_locked += user_extra;
6147
6148        if (user_locked > user_lock_limit) {
6149                /*
6150                 * charge locked_vm until it hits user_lock_limit;
6151                 * charge the rest from pinned_vm
6152                 */
6153                extra = user_locked - user_lock_limit;
6154                user_extra -= extra;
6155        }
6156
6157        lock_limit = rlimit(RLIMIT_MEMLOCK);
6158        lock_limit >>= PAGE_SHIFT;
6159        locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6160
6161        if ((locked > lock_limit) && perf_is_paranoid() &&
6162                !capable(CAP_IPC_LOCK)) {
6163                ret = -EPERM;
6164                goto unlock;
6165        }
6166
6167        WARN_ON(!rb && event->rb);
6168
6169        if (vma->vm_flags & VM_WRITE)
6170                flags |= RING_BUFFER_WRITABLE;
6171
6172        if (!rb) {
6173                rb = rb_alloc(nr_pages,
6174                              event->attr.watermark ? event->attr.wakeup_watermark : 0,
6175                              event->cpu, flags);
6176
6177                if (!rb) {
6178                        ret = -ENOMEM;
6179                        goto unlock;
6180                }
6181
6182                atomic_set(&rb->mmap_count, 1);
6183                rb->mmap_user = get_current_user();
6184                rb->mmap_locked = extra;
6185
6186                ring_buffer_attach(event, rb);
6187
6188                perf_event_init_userpage(event);
6189                perf_event_update_userpage(event);
6190        } else {
6191                ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6192                                   event->attr.aux_watermark, flags);
6193                if (!ret)
6194                        rb->aux_mmap_locked = extra;
6195        }
6196
6197unlock:
6198        if (!ret) {
6199                atomic_long_add(user_extra, &user->locked_vm);
6200                atomic64_add(extra, &vma->vm_mm->pinned_vm);
6201
6202                atomic_inc(&event->mmap_count);
6203        } else if (rb) {
6204                atomic_dec(&rb->mmap_count);
6205        }
6206aux_unlock:
6207        mutex_unlock(&event->mmap_mutex);
6208
6209        /*
6210         * Since pinned accounting is per vm we cannot allow fork() to copy our
6211         * vma.
6212         */
6213        vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6214        vma->vm_ops = &perf_mmap_vmops;
6215
6216        if (event->pmu->event_mapped)
6217                event->pmu->event_mapped(event, vma->vm_mm);
6218
6219        return ret;
6220}
6221
6222static int perf_fasync(int fd, struct file *filp, int on)
6223{
6224        struct inode *inode = file_inode(filp);
6225        struct perf_event *event = filp->private_data;
6226        int retval;
6227
6228        inode_lock(inode);
6229        retval = fasync_helper(fd, filp, on, &event->fasync);
6230        inode_unlock(inode);
6231
6232        if (retval < 0)
6233                return retval;
6234
6235        return 0;
6236}
6237
6238static const struct file_operations perf_fops = {
6239        .llseek                 = no_llseek,
6240        .release                = perf_release,
6241        .read                   = perf_read,
6242        .poll                   = perf_poll,
6243        .unlocked_ioctl         = perf_ioctl,
6244        .compat_ioctl           = perf_compat_ioctl,
6245        .mmap                   = perf_mmap,
6246        .fasync                 = perf_fasync,
6247};
6248
6249/*
6250 * Perf event wakeup
6251 *
6252 * If there's data, ensure we set the poll() state and publish everything
6253 * to user-space before waking everybody up.
6254 */
6255
6256static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6257{
6258        /* only the parent has fasync state */
6259        if (event->parent)
6260                event = event->parent;
6261        return &event->fasync;
6262}
6263
6264void perf_event_wakeup(struct perf_event *event)
6265{
6266        ring_buffer_wakeup(event);
6267
6268        if (event->pending_kill) {
6269                kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6270                event->pending_kill = 0;
6271        }
6272}
6273
6274static void perf_pending_event_disable(struct perf_event *event)
6275{
6276        int cpu = READ_ONCE(event->pending_disable);
6277
6278        if (cpu < 0)
6279                return;
6280
6281        if (cpu == smp_processor_id()) {
6282                WRITE_ONCE(event->pending_disable, -1);
6283                perf_event_disable_local(event);
6284                return;
6285        }
6286
6287        /*
6288         *  CPU-A                       CPU-B
6289         *
6290         *  perf_event_disable_inatomic()
6291         *    @pending_disable = CPU-A;
6292         *    irq_work_queue();
6293         *
6294         *  sched-out
6295         *    @pending_disable = -1;
6296         *
6297         *                              sched-in
6298         *                              perf_event_disable_inatomic()
6299         *                                @pending_disable = CPU-B;
6300         *                                irq_work_queue(); // FAILS
6301         *
6302         *  irq_work_run()
6303         *    perf_pending_event()
6304         *
6305         * But the event runs on CPU-B and wants disabling there.
6306         */
6307        irq_work_queue_on(&event->pending, cpu);
6308}
6309
6310static void perf_pending_event(struct irq_work *entry)
6311{
6312        struct perf_event *event = container_of(entry, struct perf_event, pending);
6313        int rctx;
6314
6315        rctx = perf_swevent_get_recursion_context();
6316        /*
6317         * If we 'fail' here, that's OK, it means recursion is already disabled
6318         * and we won't recurse 'further'.
6319         */
6320
6321        perf_pending_event_disable(event);
6322
6323        if (event->pending_wakeup) {
6324                event->pending_wakeup = 0;
6325                perf_event_wakeup(event);
6326        }
6327
6328        if (rctx >= 0)
6329                perf_swevent_put_recursion_context(rctx);
6330}
6331
6332/*
6333 * We assume there is only KVM supporting the callbacks.
6334 * Later on, we might change it to a list if there is
6335 * another virtualization implementation supporting the callbacks.
6336 */
6337struct perf_guest_info_callbacks *perf_guest_cbs;
6338
6339int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6340{
6341        perf_guest_cbs = cbs;
6342        return 0;
6343}
6344EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6345
6346int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6347{
6348        perf_guest_cbs = NULL;
6349        return 0;
6350}
6351EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6352
6353static void
6354perf_output_sample_regs(struct perf_output_handle *handle,
6355                        struct pt_regs *regs, u64 mask)
6356{
6357        int bit;
6358        DECLARE_BITMAP(_mask, 64);
6359
6360        bitmap_from_u64(_mask, mask);
6361        for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6362                u64 val;
6363
6364                val = perf_reg_value(regs, bit);
6365                perf_output_put(handle, val);
6366        }
6367}
6368
6369static void perf_sample_regs_user(struct perf_regs *regs_user,
6370                                  struct pt_regs *regs)
6371{
6372        if (user_mode(regs)) {
6373                regs_user->abi = perf_reg_abi(current);
6374                regs_user->regs = regs;
6375        } else if (!(current->flags & PF_KTHREAD)) {
6376                perf_get_regs_user(regs_user, regs);
6377        } else {
6378                regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6379                regs_user->regs = NULL;
6380        }
6381}
6382
6383static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6384                                  struct pt_regs *regs)
6385{
6386        regs_intr->regs = regs;
6387        regs_intr->abi  = perf_reg_abi(current);
6388}
6389
6390
6391/*
6392 * Get remaining task size from user stack pointer.
6393 *
6394 * It'd be better to take stack vma map and limit this more
6395 * precisely, but there's no way to get it safely under interrupt,
6396 * so using TASK_SIZE as limit.
6397 */
6398static u64 perf_ustack_task_size(struct pt_regs *regs)
6399{
6400        unsigned long addr = perf_user_stack_pointer(regs);
6401
6402        if (!addr || addr >= TASK_SIZE)
6403                return 0;
6404
6405        return TASK_SIZE - addr;
6406}
6407
6408static u16
6409perf_sample_ustack_size(u16 stack_size, u16 header_size,
6410                        struct pt_regs *regs)
6411{
6412        u64 task_size;
6413
6414        /* No regs, no stack pointer, no dump. */
6415        if (!regs)
6416                return 0;
6417
6418        /*
6419         * Check if we fit in with the requested stack size into the:
6420         * - TASK_SIZE
6421         *   If we don't, we limit the size to the TASK_SIZE.
6422         *
6423         * - remaining sample size
6424         *   If we don't, we customize the stack size to
6425         *   fit in to the remaining sample size.
6426         */
6427
6428        task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6429        stack_size = min(stack_size, (u16) task_size);
6430
6431        /* Current header size plus static size and dynamic size. */
6432        header_size += 2 * sizeof(u64);
6433
6434        /* Do we fit in with the current stack dump size? */
6435        if ((u16) (header_size + stack_size) < header_size) {
6436                /*
6437                 * If we overflow the maximum size for the sample,
6438                 * we customize the stack dump size to fit in.
6439                 */
6440                stack_size = USHRT_MAX - header_size - sizeof(u64);
6441                stack_size = round_up(stack_size, sizeof(u64));
6442        }
6443
6444        return stack_size;
6445}
6446
6447static void
6448perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6449                          struct pt_regs *regs)
6450{
6451        /* Case of a kernel thread, nothing to dump */
6452        if (!regs) {
6453                u64 size = 0;
6454                perf_output_put(handle, size);
6455        } else {
6456                unsigned long sp;
6457                unsigned int rem;
6458                u64 dyn_size;
6459                mm_segment_t fs;
6460
6461                /*
6462                 * We dump:
6463                 * static size
6464                 *   - the size requested by user or the best one we can fit
6465                 *     in to the sample max size
6466                 * data
6467                 *   - user stack dump data
6468                 * dynamic size
6469                 *   - the actual dumped size
6470                 */
6471
6472                /* Static size. */
6473                perf_output_put(handle, dump_size);
6474
6475                /* Data. */
6476                sp = perf_user_stack_pointer(regs);
6477                fs = force_uaccess_begin();
6478                rem = __output_copy_user(handle, (void *) sp, dump_size);
6479                force_uaccess_end(fs);
6480                dyn_size = dump_size - rem;
6481
6482                perf_output_skip(handle, rem);
6483
6484                /* Dynamic size. */
6485                perf_output_put(handle, dyn_size);
6486        }
6487}
6488
6489static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6490                                          struct perf_sample_data *data,
6491                                          size_t size)
6492{
6493        struct perf_event *sampler = event->aux_event;
6494        struct perf_buffer *rb;
6495
6496        data->aux_size = 0;
6497
6498        if (!sampler)
6499                goto out;
6500
6501        if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6502                goto out;
6503
6504        if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6505                goto out;
6506
6507        rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6508        if (!rb)
6509                goto out;
6510
6511        /*
6512         * If this is an NMI hit inside sampling code, don't take
6513         * the sample. See also perf_aux_sample_output().
6514         */
6515        if (READ_ONCE(rb->aux_in_sampling)) {
6516                data->aux_size = 0;
6517        } else {
6518                size = min_t(size_t, size, perf_aux_size(rb));
6519                data->aux_size = ALIGN(size, sizeof(u64));
6520        }
6521        ring_buffer_put(rb);
6522
6523out:
6524        return data->aux_size;
6525}
6526
6527long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6528                           struct perf_event *event,
6529                           struct perf_output_handle *handle,
6530                           unsigned long size)
6531{
6532        unsigned long flags;
6533        long ret;
6534
6535        /*
6536         * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6537         * paths. If we start calling them in NMI context, they may race with
6538         * the IRQ ones, that is, for example, re-starting an event that's just
6539         * been stopped, which is why we're using a separate callback that
6540         * doesn't change the event state.
6541         *
6542         * IRQs need to be disabled to prevent IPIs from racing with us.
6543         */
6544        local_irq_save(flags);
6545        /*
6546         * Guard against NMI hits inside the critical section;
6547         * see also perf_prepare_sample_aux().
6548         */
6549        WRITE_ONCE(rb->aux_in_sampling, 1);
6550        barrier();
6551
6552        ret = event->pmu->snapshot_aux(event, handle, size);
6553
6554        barrier();
6555        WRITE_ONCE(rb->aux_in_sampling, 0);
6556        local_irq_restore(flags);
6557
6558        return ret;
6559}
6560
6561static void perf_aux_sample_output(struct perf_event *event,
6562                                   struct perf_output_handle *handle,
6563                                   struct perf_sample_data *data)
6564{
6565        struct perf_event *sampler = event->aux_event;
6566        struct perf_buffer *rb;
6567        unsigned long pad;
6568        long size;
6569
6570        if (WARN_ON_ONCE(!sampler || !data->aux_size))
6571                return;
6572
6573        rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6574        if (!rb)
6575                return;
6576
6577        size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6578
6579        /*
6580         * An error here means that perf_output_copy() failed (returned a
6581         * non-zero surplus that it didn't copy), which in its current
6582         * enlightened implementation is not possible. If that changes, we'd
6583         * like to know.
6584         */
6585        if (WARN_ON_ONCE(size < 0))
6586                goto out_put;
6587
6588        /*
6589         * The pad comes from ALIGN()ing data->aux_size up to u64 in
6590         * perf_prepare_sample_aux(), so should not be more than that.
6591         */
6592        pad = data->aux_size - size;
6593        if (WARN_ON_ONCE(pad >= sizeof(u64)))
6594                pad = 8;
6595
6596        if (pad) {
6597                u64 zero = 0;
6598                perf_output_copy(handle, &zero, pad);
6599        }
6600
6601out_put:
6602        ring_buffer_put(rb);
6603}
6604
6605static void __perf_event_header__init_id(struct perf_event_header *header,
6606                                         struct perf_sample_data *data,
6607                                         struct perf_event *event)
6608{
6609        u64 sample_type = event->attr.sample_type;
6610
6611        data->type = sample_type;
6612        header->size += event->id_header_size;
6613
6614        if (sample_type & PERF_SAMPLE_TID) {
6615                /* namespace issues */
6616                data->tid_entry.pid = perf_event_pid(event, current);
6617                data->tid_entry.tid = perf_event_tid(event, current);
6618        }
6619
6620        if (sample_type & PERF_SAMPLE_TIME)
6621                data->time = perf_event_clock(event);
6622
6623        if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6624                data->id = primary_event_id(event);
6625
6626        if (sample_type & PERF_SAMPLE_STREAM_ID)
6627                data->stream_id = event->id;
6628
6629        if (sample_type & PERF_SAMPLE_CPU) {
6630                data->cpu_entry.cpu      = raw_smp_processor_id();
6631                data->cpu_entry.reserved = 0;
6632        }
6633}
6634
6635void perf_event_header__init_id(struct perf_event_header *header,
6636                                struct perf_sample_data *data,
6637                                struct perf_event *event)
6638{
6639        if (event->attr.sample_id_all)
6640                __perf_event_header__init_id(header, data, event);
6641}
6642
6643static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6644                                           struct perf_sample_data *data)
6645{
6646        u64 sample_type = data->type;
6647
6648        if (sample_type & PERF_SAMPLE_TID)
6649                perf_output_put(handle, data->tid_entry);
6650
6651        if (sample_type & PERF_SAMPLE_TIME)
6652                perf_output_put(handle, data->time);
6653
6654        if (sample_type & PERF_SAMPLE_ID)
6655                perf_output_put(handle, data->id);
6656
6657        if (sample_type & PERF_SAMPLE_STREAM_ID)
6658                perf_output_put(handle, data->stream_id);
6659
6660        if (sample_type & PERF_SAMPLE_CPU)
6661                perf_output_put(handle, data->cpu_entry);
6662
6663        if (sample_type & PERF_SAMPLE_IDENTIFIER)
6664                perf_output_put(handle, data->id);
6665}
6666
6667void perf_event__output_id_sample(struct perf_event *event,
6668                                  struct perf_output_handle *handle,
6669                                  struct perf_sample_data *sample)
6670{
6671        if (event->attr.sample_id_all)
6672                __perf_event__output_id_sample(handle, sample);
6673}
6674
6675static void perf_output_read_one(struct perf_output_handle *handle,
6676                                 struct perf_event *event,
6677                                 u64 enabled, u64 running)
6678{
6679        u64 read_format = event->attr.read_format;
6680        u64 values[4];
6681        int n = 0;
6682
6683        values[n++] = perf_event_count(event);
6684        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6685                values[n++] = enabled +
6686                        atomic64_read(&event->child_total_time_enabled);
6687        }
6688        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6689                values[n++] = running +
6690                        atomic64_read(&event->child_total_time_running);
6691        }
6692        if (read_format & PERF_FORMAT_ID)
6693                values[n++] = primary_event_id(event);
6694
6695        __output_copy(handle, values, n * sizeof(u64));
6696}
6697
6698static void perf_output_read_group(struct perf_output_handle *handle,
6699                            struct perf_event *event,
6700                            u64 enabled, u64 running)
6701{
6702        struct perf_event *leader = event->group_leader, *sub;
6703        u64 read_format = event->attr.read_format;
6704        u64 values[5];
6705        int n = 0;
6706
6707        values[n++] = 1 + leader->nr_siblings;
6708
6709        if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6710                values[n++] = enabled;
6711
6712        if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6713                values[n++] = running;
6714
6715        if ((leader != event) &&
6716            (leader->state == PERF_EVENT_STATE_ACTIVE))
6717                leader->pmu->read(leader);
6718
6719        values[n++] = perf_event_count(leader);
6720        if (read_format & PERF_FORMAT_ID)
6721                values[n++] = primary_event_id(leader);
6722
6723        __output_copy(handle, values, n * sizeof(u64));
6724
6725        for_each_sibling_event(sub, leader) {
6726                n = 0;
6727
6728                if ((sub != event) &&
6729                    (sub->state == PERF_EVENT_STATE_ACTIVE))
6730                        sub->pmu->read(sub);
6731
6732                values[n++] = perf_event_count(sub);
6733                if (read_format & PERF_FORMAT_ID)
6734                        values[n++] = primary_event_id(sub);
6735
6736                __output_copy(handle, values, n * sizeof(u64));
6737        }
6738}
6739
6740#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6741                                 PERF_FORMAT_TOTAL_TIME_RUNNING)
6742
6743/*
6744 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6745 *
6746 * The problem is that its both hard and excessively expensive to iterate the
6747 * child list, not to mention that its impossible to IPI the children running
6748 * on another CPU, from interrupt/NMI context.
6749 */
6750static void perf_output_read(struct perf_output_handle *handle,
6751                             struct perf_event *event)
6752{
6753        u64 enabled = 0, running = 0, now;
6754        u64 read_format = event->attr.read_format;
6755
6756        /*
6757         * compute total_time_enabled, total_time_running
6758         * based on snapshot values taken when the event
6759         * was last scheduled in.
6760         *
6761         * we cannot simply called update_context_time()
6762         * because of locking issue as we are called in
6763         * NMI context
6764         */
6765        if (read_format & PERF_FORMAT_TOTAL_TIMES)
6766                calc_timer_values(event, &now, &enabled, &running);
6767
6768        if (event->attr.read_format & PERF_FORMAT_GROUP)
6769                perf_output_read_group(handle, event, enabled, running);
6770        else
6771                perf_output_read_one(handle, event, enabled, running);
6772}
6773
6774static inline bool perf_sample_save_hw_index(struct perf_event *event)
6775{
6776        return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6777}
6778
6779void perf_output_sample(struct perf_output_handle *handle,
6780                        struct perf_event_header *header,
6781                        struct perf_sample_data *data,
6782                        struct perf_event *event)
6783{
6784        u64 sample_type = data->type;
6785
6786        perf_output_put(handle, *header);
6787
6788        if (sample_type & PERF_SAMPLE_IDENTIFIER)
6789                perf_output_put(handle, data->id);
6790
6791        if (sample_type & PERF_SAMPLE_IP)
6792                perf_output_put(handle, data->ip);
6793
6794        if (sample_type & PERF_SAMPLE_TID)
6795                perf_output_put(handle, data->tid_entry);
6796
6797        if (sample_type & PERF_SAMPLE_TIME)
6798                perf_output_put(handle, data->time);
6799
6800        if (sample_type & PERF_SAMPLE_ADDR)
6801                perf_output_put(handle, data->addr);
6802
6803        if (sample_type & PERF_SAMPLE_ID)
6804                perf_output_put(handle, data->id);
6805
6806        if (sample_type & PERF_SAMPLE_STREAM_ID)
6807                perf_output_put(handle, data->stream_id);
6808
6809        if (sample_type & PERF_SAMPLE_CPU)
6810                perf_output_put(handle, data->cpu_entry);
6811
6812        if (sample_type & PERF_SAMPLE_PERIOD)
6813                perf_output_put(handle, data->period);
6814
6815        if (sample_type & PERF_SAMPLE_READ)
6816                perf_output_read(handle, event);
6817
6818        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6819                int size = 1;
6820
6821                size += data->callchain->nr;
6822                size *= sizeof(u64);
6823                __output_copy(handle, data->callchain, size);
6824        }
6825
6826        if (sample_type & PERF_SAMPLE_RAW) {
6827                struct perf_raw_record *raw = data->raw;
6828
6829                if (raw) {
6830                        struct perf_raw_frag *frag = &raw->frag;
6831
6832                        perf_output_put(handle, raw->size);
6833                        do {
6834                                if (frag->copy) {
6835                                        __output_custom(handle, frag->copy,
6836                                                        frag->data, frag->size);
6837                                } else {
6838                                        __output_copy(handle, frag->data,
6839                                                      frag->size);
6840                                }
6841                                if (perf_raw_frag_last(frag))
6842                                        break;
6843                                frag = frag->next;
6844                        } while (1);
6845                        if (frag->pad)
6846                                __output_skip(handle, NULL, frag->pad);
6847                } else {
6848                        struct {
6849                                u32     size;
6850                                u32     data;
6851                        } raw = {
6852                                .size = sizeof(u32),
6853                                .data = 0,
6854                        };
6855                        perf_output_put(handle, raw);
6856                }
6857        }
6858
6859        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6860                if (data->br_stack) {
6861                        size_t size;
6862
6863                        size = data->br_stack->nr
6864                             * sizeof(struct perf_branch_entry);
6865
6866                        perf_output_put(handle, data->br_stack->nr);
6867                        if (perf_sample_save_hw_index(event))
6868                                perf_output_put(handle, data->br_stack->hw_idx);
6869                        perf_output_copy(handle, data->br_stack->entries, size);
6870                } else {
6871                        /*
6872                         * we always store at least the value of nr
6873                         */
6874                        u64 nr = 0;
6875                        perf_output_put(handle, nr);
6876                }
6877        }
6878
6879        if (sample_type & PERF_SAMPLE_REGS_USER) {
6880                u64 abi = data->regs_user.abi;
6881
6882                /*
6883                 * If there are no regs to dump, notice it through
6884                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6885                 */
6886                perf_output_put(handle, abi);
6887
6888                if (abi) {
6889                        u64 mask = event->attr.sample_regs_user;
6890                        perf_output_sample_regs(handle,
6891                                                data->regs_user.regs,
6892                                                mask);
6893                }
6894        }
6895
6896        if (sample_type & PERF_SAMPLE_STACK_USER) {
6897                perf_output_sample_ustack(handle,
6898                                          data->stack_user_size,
6899                                          data->regs_user.regs);
6900        }
6901
6902        if (sample_type & PERF_SAMPLE_WEIGHT)
6903                perf_output_put(handle, data->weight);
6904
6905        if (sample_type & PERF_SAMPLE_DATA_SRC)
6906                perf_output_put(handle, data->data_src.val);
6907
6908        if (sample_type & PERF_SAMPLE_TRANSACTION)
6909                perf_output_put(handle, data->txn);
6910
6911        if (sample_type & PERF_SAMPLE_REGS_INTR) {
6912                u64 abi = data->regs_intr.abi;
6913                /*
6914                 * If there are no regs to dump, notice it through
6915                 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6916                 */
6917                perf_output_put(handle, abi);
6918
6919                if (abi) {
6920                        u64 mask = event->attr.sample_regs_intr;
6921
6922                        perf_output_sample_regs(handle,
6923                                                data->regs_intr.regs,
6924                                                mask);
6925                }
6926        }
6927
6928        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6929                perf_output_put(handle, data->phys_addr);
6930
6931        if (sample_type & PERF_SAMPLE_CGROUP)
6932                perf_output_put(handle, data->cgroup);
6933
6934        if (sample_type & PERF_SAMPLE_AUX) {
6935                perf_output_put(handle, data->aux_size);
6936
6937                if (data->aux_size)
6938                        perf_aux_sample_output(event, handle, data);
6939        }
6940
6941        if (!event->attr.watermark) {
6942                int wakeup_events = event->attr.wakeup_events;
6943
6944                if (wakeup_events) {
6945                        struct perf_buffer *rb = handle->rb;
6946                        int events = local_inc_return(&rb->events);
6947
6948                        if (events >= wakeup_events) {
6949                                local_sub(wakeup_events, &rb->events);
6950                                local_inc(&rb->wakeup);
6951                        }
6952                }
6953        }
6954}
6955
6956static u64 perf_virt_to_phys(u64 virt)
6957{
6958        u64 phys_addr = 0;
6959        struct page *p = NULL;
6960
6961        if (!virt)
6962                return 0;
6963
6964        if (virt >= TASK_SIZE) {
6965                /* If it's vmalloc()d memory, leave phys_addr as 0 */
6966                if (virt_addr_valid((void *)(uintptr_t)virt) &&
6967                    !(virt >= VMALLOC_START && virt < VMALLOC_END))
6968                        phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6969        } else {
6970                /*
6971                 * Walking the pages tables for user address.
6972                 * Interrupts are disabled, so it prevents any tear down
6973                 * of the page tables.
6974                 * Try IRQ-safe get_user_page_fast_only first.
6975                 * If failed, leave phys_addr as 0.
6976                 */
6977                if (current->mm != NULL) {
6978                        pagefault_disable();
6979                        if (get_user_page_fast_only(virt, 0, &p))
6980                                phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6981                        pagefault_enable();
6982                }
6983
6984                if (p)
6985                        put_page(p);
6986        }
6987
6988        return phys_addr;
6989}
6990
6991static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6992
6993struct perf_callchain_entry *
6994perf_callchain(struct perf_event *event, struct pt_regs *regs)
6995{
6996        bool kernel = !event->attr.exclude_callchain_kernel;
6997        bool user   = !event->attr.exclude_callchain_user;
6998        /* Disallow cross-task user callchains. */
6999        bool crosstask = event->ctx->task && event->ctx->task != current;
7000        const u32 max_stack = event->attr.sample_max_stack;
7001        struct perf_callchain_entry *callchain;
7002
7003        if (!kernel && !user)
7004                return &__empty_callchain;
7005
7006        callchain = get_perf_callchain(regs, 0, kernel, user,
7007                                       max_stack, crosstask, true);
7008        return callchain ?: &__empty_callchain;
7009}
7010
7011void perf_prepare_sample(struct perf_event_header *header,
7012                         struct perf_sample_data *data,
7013                         struct perf_event *event,
7014                         struct pt_regs *regs)
7015{
7016        u64 sample_type = event->attr.sample_type;
7017
7018        header->type = PERF_RECORD_SAMPLE;
7019        header->size = sizeof(*header) + event->header_size;
7020
7021        header->misc = 0;
7022        header->misc |= perf_misc_flags(regs);
7023
7024        __perf_event_header__init_id(header, data, event);
7025
7026        if (sample_type & PERF_SAMPLE_IP)
7027                data->ip = perf_instruction_pointer(regs);
7028
7029        if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7030                int size = 1;
7031
7032                if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7033                        data->callchain = perf_callchain(event, regs);
7034
7035                size += data->callchain->nr;
7036
7037                header->size += size * sizeof(u64);
7038        }
7039
7040        if (sample_type & PERF_SAMPLE_RAW) {
7041                struct perf_raw_record *raw = data->raw;
7042                int size;
7043
7044                if (raw) {
7045                        struct perf_raw_frag *frag = &raw->frag;
7046                        u32 sum = 0;
7047
7048                        do {
7049                                sum += frag->size;
7050                                if (perf_raw_frag_last(frag))
7051                                        break;
7052                                frag = frag->next;
7053                        } while (1);
7054
7055                        size = round_up(sum + sizeof(u32), sizeof(u64));
7056                        raw->size = size - sizeof(u32);
7057                        frag->pad = raw->size - sum;
7058                } else {
7059                        size = sizeof(u64);
7060                }
7061
7062                header->size += size;
7063        }
7064
7065        if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7066                int size = sizeof(u64); /* nr */
7067                if (data->br_stack) {
7068                        if (perf_sample_save_hw_index(event))
7069                                size += sizeof(u64);
7070
7071                        size += data->br_stack->nr
7072                              * sizeof(struct perf_branch_entry);
7073                }
7074                header->size += size;
7075        }
7076
7077        if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7078                perf_sample_regs_user(&data->regs_user, regs);
7079
7080        if (sample_type & PERF_SAMPLE_REGS_USER) {
7081                /* regs dump ABI info */
7082                int size = sizeof(u64);
7083
7084                if (data->regs_user.regs) {
7085                        u64 mask = event->attr.sample_regs_user;
7086                        size += hweight64(mask) * sizeof(u64);
7087                }
7088
7089                header->size += size;
7090        }
7091
7092        if (sample_type & PERF_SAMPLE_STACK_USER) {
7093                /*
7094                 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7095                 * processed as the last one or have additional check added
7096                 * in case new sample type is added, because we could eat
7097                 * up the rest of the sample size.
7098                 */
7099                u16 stack_size = event->attr.sample_stack_user;
7100                u16 size = sizeof(u64);
7101
7102                stack_size = perf_sample_ustack_size(stack_size, header->size,
7103                                                     data->regs_user.regs);
7104
7105                /*
7106                 * If there is something to dump, add space for the dump
7107                 * itself and for the field that tells the dynamic size,
7108                 * which is how many have been actually dumped.
7109                 */
7110                if (stack_size)
7111                        size += sizeof(u64) + stack_size;
7112
7113                data->stack_user_size = stack_size;
7114                header->size += size;
7115        }
7116
7117        if (sample_type & PERF_SAMPLE_REGS_INTR) {
7118                /* regs dump ABI info */
7119                int size = sizeof(u64);
7120
7121                perf_sample_regs_intr(&data->regs_intr, regs);
7122
7123                if (data->regs_intr.regs) {
7124                        u64 mask = event->attr.sample_regs_intr;
7125
7126                        size += hweight64(mask) * sizeof(u64);
7127                }
7128
7129                header->size += size;
7130        }
7131
7132        if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7133                data->phys_addr = perf_virt_to_phys(data->addr);
7134
7135#ifdef CONFIG_CGROUP_PERF
7136        if (sample_type & PERF_SAMPLE_CGROUP) {
7137                struct cgroup *cgrp;
7138
7139                /* protected by RCU */
7140                cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7141                data->cgroup = cgroup_id(cgrp);
7142        }
7143#endif
7144
7145        if (sample_type & PERF_SAMPLE_AUX) {
7146                u64 size;
7147
7148                header->size += sizeof(u64); /* size */
7149
7150                /*
7151                 * Given the 16bit nature of header::size, an AUX sample can
7152                 * easily overflow it, what with all the preceding sample bits.
7153                 * Make sure this doesn't happen by using up to U16_MAX bytes
7154                 * per sample in total (rounded down to 8 byte boundary).
7155                 */
7156                size = min_t(size_t, U16_MAX - header->size,
7157                             event->attr.aux_sample_size);
7158                size = rounddown(size, 8);
7159                size = perf_prepare_sample_aux(event, data, size);
7160
7161                WARN_ON_ONCE(size + header->size > U16_MAX);
7162                header->size += size;
7163        }
7164        /*
7165         * If you're adding more sample types here, you likely need to do
7166         * something about the overflowing header::size, like repurpose the
7167         * lowest 3 bits of size, which should be always zero at the moment.
7168         * This raises a more important question, do we really need 512k sized
7169         * samples and why, so good argumentation is in order for whatever you
7170         * do here next.
7171         */
7172        WARN_ON_ONCE(header->size & 7);
7173}
7174
7175static __always_inline int
7176__perf_event_output(struct perf_event *event,
7177                    struct perf_sample_data *data,
7178                    struct pt_regs *regs,
7179                    int (*output_begin)(struct perf_output_handle *,
7180                                        struct perf_sample_data *,
7181                                        struct perf_event *,
7182                                        unsigned int))
7183{
7184        struct perf_output_handle handle;
7185        struct perf_event_header header;
7186        int err;
7187
7188        /* protect the callchain buffers */
7189        rcu_read_lock();
7190
7191        perf_prepare_sample(&header, data, event, regs);
7192
7193        err = output_begin(&handle, data, event, header.size);
7194        if (err)
7195                goto exit;
7196
7197        perf_output_sample(&handle, &header, data, event);
7198
7199        perf_output_end(&handle);
7200
7201exit:
7202        rcu_read_unlock();
7203        return err;
7204}
7205
7206void
7207perf_event_output_forward(struct perf_event *event,
7208                         struct perf_sample_data *data,
7209                         struct pt_regs *regs)
7210{
7211        __perf_event_output(event, data, regs, perf_output_begin_forward);
7212}
7213
7214void
7215perf_event_output_backward(struct perf_event *event,
7216                           struct perf_sample_data *data,
7217                           struct pt_regs *regs)
7218{
7219        __perf_event_output(event, data, regs, perf_output_begin_backward);
7220}
7221
7222int
7223perf_event_output(struct perf_event *event,
7224                  struct perf_sample_data *data,
7225                  struct pt_regs *regs)
7226{
7227        return __perf_event_output(event, data, regs, perf_output_begin);
7228}
7229
7230/*
7231 * read event_id
7232 */
7233
7234struct perf_read_event {
7235        struct perf_event_header        header;
7236
7237        u32                             pid;
7238        u32                             tid;
7239};
7240
7241static void
7242perf_event_read_event(struct perf_event *event,
7243                        struct task_struct *task)
7244{
7245        struct perf_output_handle handle;
7246        struct perf_sample_data sample;
7247        struct perf_read_event read_event = {
7248                .header = {
7249                        .type = PERF_RECORD_READ,
7250                        .misc = 0,
7251                        .size = sizeof(read_event) + event->read_size,
7252                },
7253                .pid = perf_event_pid(event, task),
7254                .tid = perf_event_tid(event, task),
7255        };
7256        int ret;
7257
7258        perf_event_header__init_id(&read_event.header, &sample, event);
7259        ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7260        if (ret)
7261                return;
7262
7263        perf_output_put(&handle, read_event);
7264        perf_output_read(&handle, event);
7265        perf_event__output_id_sample(event, &handle, &sample);
7266
7267        perf_output_end(&handle);
7268}
7269
7270typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7271
7272static void
7273perf_iterate_ctx(struct perf_event_context *ctx,
7274                   perf_iterate_f output,
7275                   void *data, bool all)
7276{
7277        struct perf_event *event;
7278
7279        list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7280                if (!all) {
7281                        if (event->state < PERF_EVENT_STATE_INACTIVE)
7282                                continue;
7283                        if (!event_filter_match(event))
7284                                continue;
7285                }
7286
7287                output(event, data);
7288        }
7289}
7290
7291static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7292{
7293        struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7294        struct perf_event *event;
7295
7296        list_for_each_entry_rcu(event, &pel->list, sb_list) {
7297                /*
7298                 * Skip events that are not fully formed yet; ensure that
7299                 * if we observe event->ctx, both event and ctx will be
7300                 * complete enough. See perf_install_in_context().
7301                 */
7302                if (!smp_load_acquire(&event->ctx))
7303                        continue;
7304
7305                if (event->state < PERF_EVENT_STATE_INACTIVE)
7306                        continue;
7307                if (!event_filter_match(event))
7308                        continue;
7309                output(event, data);
7310        }
7311}
7312
7313/*
7314 * Iterate all events that need to receive side-band events.
7315 *
7316 * For new callers; ensure that account_pmu_sb_event() includes
7317 * your event, otherwise it might not get delivered.
7318 */
7319static void
7320perf_iterate_sb(perf_iterate_f output, void *data,
7321               struct perf_event_context *task_ctx)
7322{
7323        struct perf_event_context *ctx;
7324        int ctxn;
7325
7326        rcu_read_lock();
7327        preempt_disable();
7328
7329        /*
7330         * If we have task_ctx != NULL we only notify the task context itself.
7331         * The task_ctx is set only for EXIT events before releasing task
7332         * context.
7333         */
7334        if (task_ctx) {
7335                perf_iterate_ctx(task_ctx, output, data, false);
7336                goto done;
7337        }
7338
7339        perf_iterate_sb_cpu(output, data);
7340
7341        for_each_task_context_nr(ctxn) {
7342                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7343                if (ctx)
7344                        perf_iterate_ctx(ctx, output, data, false);
7345        }
7346done:
7347        preempt_enable();
7348        rcu_read_unlock();
7349}
7350
7351/*
7352 * Clear all file-based filters at exec, they'll have to be
7353 * re-instated when/if these objects are mmapped again.
7354 */
7355static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7356{
7357        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7358        struct perf_addr_filter *filter;
7359        unsigned int restart = 0, count = 0;
7360        unsigned long flags;
7361
7362        if (!has_addr_filter(event))
7363                return;
7364
7365        raw_spin_lock_irqsave(&ifh->lock, flags);
7366        list_for_each_entry(filter, &ifh->list, entry) {
7367                if (filter->path.dentry) {
7368                        event->addr_filter_ranges[count].start = 0;
7369                        event->addr_filter_ranges[count].size = 0;
7370                        restart++;
7371                }
7372
7373                count++;
7374        }
7375
7376        if (restart)
7377                event->addr_filters_gen++;
7378        raw_spin_unlock_irqrestore(&ifh->lock, flags);
7379
7380        if (restart)
7381                perf_event_stop(event, 1);
7382}
7383
7384void perf_event_exec(void)
7385{
7386        struct perf_event_context *ctx;
7387        int ctxn;
7388
7389        rcu_read_lock();
7390        for_each_task_context_nr(ctxn) {
7391                ctx = current->perf_event_ctxp[ctxn];
7392                if (!ctx)
7393                        continue;
7394
7395                perf_event_enable_on_exec(ctxn);
7396
7397                perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7398                                   true);
7399        }
7400        rcu_read_unlock();
7401}
7402
7403struct remote_output {
7404        struct perf_buffer      *rb;
7405        int                     err;
7406};
7407
7408static void __perf_event_output_stop(struct perf_event *event, void *data)
7409{
7410        struct perf_event *parent = event->parent;
7411        struct remote_output *ro = data;
7412        struct perf_buffer *rb = ro->rb;
7413        struct stop_event_data sd = {
7414                .event  = event,
7415        };
7416
7417        if (!has_aux(event))
7418                return;
7419
7420        if (!parent)
7421                parent = event;
7422
7423        /*
7424         * In case of inheritance, it will be the parent that links to the
7425         * ring-buffer, but it will be the child that's actually using it.
7426         *
7427         * We are using event::rb to determine if the event should be stopped,
7428         * however this may race with ring_buffer_attach() (through set_output),
7429         * which will make us skip the event that actually needs to be stopped.
7430         * So ring_buffer_attach() has to stop an aux event before re-assigning
7431         * its rb pointer.
7432         */
7433        if (rcu_dereference(parent->rb) == rb)
7434                ro->err = __perf_event_stop(&sd);
7435}
7436
7437static int __perf_pmu_output_stop(void *info)
7438{
7439        struct perf_event *event = info;
7440        struct pmu *pmu = event->ctx->pmu;
7441        struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7442        struct remote_output ro = {
7443                .rb     = event->rb,
7444        };
7445
7446        rcu_read_lock();
7447        perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7448        if (cpuctx->task_ctx)
7449                perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7450                                   &ro, false);
7451        rcu_read_unlock();
7452
7453        return ro.err;
7454}
7455
7456static void perf_pmu_output_stop(struct perf_event *event)
7457{
7458        struct perf_event *iter;
7459        int err, cpu;
7460
7461restart:
7462        rcu_read_lock();
7463        list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7464                /*
7465                 * For per-CPU events, we need to make sure that neither they
7466                 * nor their children are running; for cpu==-1 events it's
7467                 * sufficient to stop the event itself if it's active, since
7468                 * it can't have children.
7469                 */
7470                cpu = iter->cpu;
7471                if (cpu == -1)
7472                        cpu = READ_ONCE(iter->oncpu);
7473
7474                if (cpu == -1)
7475                        continue;
7476
7477                err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7478                if (err == -EAGAIN) {
7479                        rcu_read_unlock();
7480                        goto restart;
7481                }
7482        }
7483        rcu_read_unlock();
7484}
7485
7486/*
7487 * task tracking -- fork/exit
7488 *
7489 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7490 */
7491
7492struct perf_task_event {
7493        struct task_struct              *task;
7494        struct perf_event_context       *task_ctx;
7495
7496        struct {
7497                struct perf_event_header        header;
7498
7499                u32                             pid;
7500                u32                             ppid;
7501                u32                             tid;
7502                u32                             ptid;
7503                u64                             time;
7504        } event_id;
7505};
7506
7507static int perf_event_task_match(struct perf_event *event)
7508{
7509        return event->attr.comm  || event->attr.mmap ||
7510               event->attr.mmap2 || event->attr.mmap_data ||
7511               event->attr.task;
7512}
7513
7514static void perf_event_task_output(struct perf_event *event,
7515                                   void *data)
7516{
7517        struct perf_task_event *task_event = data;
7518        struct perf_output_handle handle;
7519        struct perf_sample_data sample;
7520        struct task_struct *task = task_event->task;
7521        int ret, size = task_event->event_id.header.size;
7522
7523        if (!perf_event_task_match(event))
7524                return;
7525
7526        perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7527
7528        ret = perf_output_begin(&handle, &sample, event,
7529                                task_event->event_id.header.size);
7530        if (ret)
7531                goto out;
7532
7533        task_event->event_id.pid = perf_event_pid(event, task);
7534        task_event->event_id.tid = perf_event_tid(event, task);
7535
7536        if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7537                task_event->event_id.ppid = perf_event_pid(event,
7538                                                        task->real_parent);
7539                task_event->event_id.ptid = perf_event_pid(event,
7540                                                        task->real_parent);
7541        } else {  /* PERF_RECORD_FORK */
7542                task_event->event_id.ppid = perf_event_pid(event, current);
7543                task_event->event_id.ptid = perf_event_tid(event, current);
7544        }
7545
7546        task_event->event_id.time = perf_event_clock(event);
7547
7548        perf_output_put(&handle, task_event->event_id);
7549
7550        perf_event__output_id_sample(event, &handle, &sample);
7551
7552        perf_output_end(&handle);
7553out:
7554        task_event->event_id.header.size = size;
7555}
7556
7557static void perf_event_task(struct task_struct *task,
7558                              struct perf_event_context *task_ctx,
7559                              int new)
7560{
7561        struct perf_task_event task_event;
7562
7563        if (!atomic_read(&nr_comm_events) &&
7564            !atomic_read(&nr_mmap_events) &&
7565            !atomic_read(&nr_task_events))
7566                return;
7567
7568        task_event = (struct perf_task_event){
7569                .task     = task,
7570                .task_ctx = task_ctx,
7571                .event_id    = {
7572                        .header = {
7573                                .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7574                                .misc = 0,
7575                                .size = sizeof(task_event.event_id),
7576                        },
7577                        /* .pid  */
7578                        /* .ppid */
7579                        /* .tid  */
7580                        /* .ptid */
7581                        /* .time */
7582                },
7583        };
7584
7585        perf_iterate_sb(perf_event_task_output,
7586                       &task_event,
7587                       task_ctx);
7588}
7589
7590void perf_event_fork(struct task_struct *task)
7591{
7592        perf_event_task(task, NULL, 1);
7593        perf_event_namespaces(task);
7594}
7595
7596/*
7597 * comm tracking
7598 */
7599
7600struct perf_comm_event {
7601        struct task_struct      *task;
7602        char                    *comm;
7603        int                     comm_size;
7604
7605        struct {
7606                struct perf_event_header        header;
7607
7608                u32                             pid;
7609                u32                             tid;
7610        } event_id;
7611};
7612
7613static int perf_event_comm_match(struct perf_event *event)
7614{
7615        return event->attr.comm;
7616}
7617
7618static void perf_event_comm_output(struct perf_event *event,
7619                                   void *data)
7620{
7621        struct perf_comm_event *comm_event = data;
7622        struct perf_output_handle handle;
7623        struct perf_sample_data sample;
7624        int size = comm_event->event_id.header.size;
7625        int ret;
7626
7627        if (!perf_event_comm_match(event))
7628                return;
7629
7630        perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7631        ret = perf_output_begin(&handle, &sample, event,
7632                                comm_event->event_id.header.size);
7633
7634        if (ret)
7635                goto out;
7636
7637        comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7638        comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7639
7640        perf_output_put(&handle, comm_event->event_id);
7641        __output_copy(&handle, comm_event->comm,
7642                                   comm_event->comm_size);
7643
7644        perf_event__output_id_sample(event, &handle, &sample);
7645
7646        perf_output_end(&handle);
7647out:
7648        comm_event->event_id.header.size = size;
7649}
7650
7651static void perf_event_comm_event(struct perf_comm_event *comm_event)
7652{
7653        char comm[TASK_COMM_LEN];
7654        unsigned int size;
7655
7656        memset(comm, 0, sizeof(comm));
7657        strlcpy(comm, comm_event->task->comm, sizeof(comm));
7658        size = ALIGN(strlen(comm)+1, sizeof(u64));
7659
7660        comm_event->comm = comm;
7661        comm_event->comm_size = size;
7662
7663        comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7664
7665        perf_iterate_sb(perf_event_comm_output,
7666                       comm_event,
7667                       NULL);
7668}
7669
7670void perf_event_comm(struct task_struct *task, bool exec)
7671{
7672        struct perf_comm_event comm_event;
7673
7674        if (!atomic_read(&nr_comm_events))
7675                return;
7676
7677        comm_event = (struct perf_comm_event){
7678                .task   = task,
7679                /* .comm      */
7680                /* .comm_size */
7681                .event_id  = {
7682                        .header = {
7683                                .type = PERF_RECORD_COMM,
7684                                .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7685                                /* .size */
7686                        },
7687                        /* .pid */
7688                        /* .tid */
7689                },
7690        };
7691
7692        perf_event_comm_event(&comm_event);
7693}
7694
7695/*
7696 * namespaces tracking
7697 */
7698
7699struct perf_namespaces_event {
7700        struct task_struct              *task;
7701
7702        struct {
7703                struct perf_event_header        header;
7704
7705                u32                             pid;
7706                u32                             tid;
7707                u64                             nr_namespaces;
7708                struct perf_ns_link_info        link_info[NR_NAMESPACES];
7709        } event_id;
7710};
7711
7712static int perf_event_namespaces_match(struct perf_event *event)
7713{
7714        return event->attr.namespaces;
7715}
7716
7717static void perf_event_namespaces_output(struct perf_event *event,
7718                                         void *data)
7719{
7720        struct perf_namespaces_event *namespaces_event = data;
7721        struct perf_output_handle handle;
7722        struct perf_sample_data sample;
7723        u16 header_size = namespaces_event->event_id.header.size;
7724        int ret;
7725
7726        if (!perf_event_namespaces_match(event))
7727                return;
7728
7729        perf_event_header__init_id(&namespaces_event->event_id.header,
7730                                   &sample, event);
7731        ret = perf_output_begin(&handle, &sample, event,
7732                                namespaces_event->event_id.header.size);
7733        if (ret)
7734                goto out;
7735
7736        namespaces_event->event_id.pid = perf_event_pid(event,
7737                                                        namespaces_event->task);
7738        namespaces_event->event_id.tid = perf_event_tid(event,
7739                                                        namespaces_event->task);
7740
7741        perf_output_put(&handle, namespaces_event->event_id);
7742
7743        perf_event__output_id_sample(event, &handle, &sample);
7744
7745        perf_output_end(&handle);
7746out:
7747        namespaces_event->event_id.header.size = header_size;
7748}
7749
7750static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7751                                   struct task_struct *task,
7752                                   const struct proc_ns_operations *ns_ops)
7753{
7754        struct path ns_path;
7755        struct inode *ns_inode;
7756        int error;
7757
7758        error = ns_get_path(&ns_path, task, ns_ops);
7759        if (!error) {
7760                ns_inode = ns_path.dentry->d_inode;
7761                ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7762                ns_link_info->ino = ns_inode->i_ino;
7763                path_put(&ns_path);
7764        }
7765}
7766
7767void perf_event_namespaces(struct task_struct *task)
7768{
7769        struct perf_namespaces_event namespaces_event;
7770        struct perf_ns_link_info *ns_link_info;
7771
7772        if (!atomic_read(&nr_namespaces_events))
7773                return;
7774
7775        namespaces_event = (struct perf_namespaces_event){
7776                .task   = task,
7777                .event_id  = {
7778                        .header = {
7779                                .type = PERF_RECORD_NAMESPACES,
7780                                .misc = 0,
7781                                .size = sizeof(namespaces_event.event_id),
7782                        },
7783                        /* .pid */
7784                        /* .tid */
7785                        .nr_namespaces = NR_NAMESPACES,
7786                        /* .link_info[NR_NAMESPACES] */
7787                },
7788        };
7789
7790        ns_link_info = namespaces_event.event_id.link_info;
7791
7792        perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7793                               task, &mntns_operations);
7794
7795#ifdef CONFIG_USER_NS
7796        perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7797                               task, &userns_operations);
7798#endif
7799#ifdef CONFIG_NET_NS
7800        perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7801                               task, &netns_operations);
7802#endif
7803#ifdef CONFIG_UTS_NS
7804        perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7805                               task, &utsns_operations);
7806#endif
7807#ifdef CONFIG_IPC_NS
7808        perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7809                               task, &ipcns_operations);
7810#endif
7811#ifdef CONFIG_PID_NS
7812        perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7813                               task, &pidns_operations);
7814#endif
7815#ifdef CONFIG_CGROUPS
7816        perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7817                               task, &cgroupns_operations);
7818#endif
7819
7820        perf_iterate_sb(perf_event_namespaces_output,
7821                        &namespaces_event,
7822                        NULL);
7823}
7824
7825/*
7826 * cgroup tracking
7827 */
7828#ifdef CONFIG_CGROUP_PERF
7829
7830struct perf_cgroup_event {
7831        char                            *path;
7832        int                             path_size;
7833        struct {
7834                struct perf_event_header        header;
7835                u64                             id;
7836                char                            path[];
7837        } event_id;
7838};
7839
7840static int perf_event_cgroup_match(struct perf_event *event)
7841{
7842        return event->attr.cgroup;
7843}
7844
7845static void perf_event_cgroup_output(struct perf_event *event, void *data)
7846{
7847        struct perf_cgroup_event *cgroup_event = data;
7848        struct perf_output_handle handle;
7849        struct perf_sample_data sample;
7850        u16 header_size = cgroup_event->event_id.header.size;
7851        int ret;
7852
7853        if (!perf_event_cgroup_match(event))
7854                return;
7855
7856        perf_event_header__init_id(&cgroup_event->event_id.header,
7857                                   &sample, event);
7858        ret = perf_output_begin(&handle, &sample, event,
7859                                cgroup_event->event_id.header.size);
7860        if (ret)
7861                goto out;
7862
7863        perf_output_put(&handle, cgroup_event->event_id);
7864        __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7865
7866        perf_event__output_id_sample(event, &handle, &sample);
7867
7868        perf_output_end(&handle);
7869out:
7870        cgroup_event->event_id.header.size = header_size;
7871}
7872
7873static void perf_event_cgroup(struct cgroup *cgrp)
7874{
7875        struct perf_cgroup_event cgroup_event;
7876        char path_enomem[16] = "//enomem";
7877        char *pathname;
7878        size_t size;
7879
7880        if (!atomic_read(&nr_cgroup_events))
7881                return;
7882
7883        cgroup_event = (struct perf_cgroup_event){
7884                .event_id  = {
7885                        .header = {
7886                                .type = PERF_RECORD_CGROUP,
7887                                .misc = 0,
7888                                .size = sizeof(cgroup_event.event_id),
7889                        },
7890                        .id = cgroup_id(cgrp),
7891                },
7892        };
7893
7894        pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7895        if (pathname == NULL) {
7896                cgroup_event.path = path_enomem;
7897        } else {
7898                /* just to be sure to have enough space for alignment */
7899                cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7900                cgroup_event.path = pathname;
7901        }
7902
7903        /*
7904         * Since our buffer works in 8 byte units we need to align our string
7905         * size to a multiple of 8. However, we must guarantee the tail end is
7906         * zero'd out to avoid leaking random bits to userspace.
7907         */
7908        size = strlen(cgroup_event.path) + 1;
7909        while (!IS_ALIGNED(size, sizeof(u64)))
7910                cgroup_event.path[size++] = '\0';
7911
7912        cgroup_event.event_id.header.size += size;
7913        cgroup_event.path_size = size;
7914
7915        perf_iterate_sb(perf_event_cgroup_output,
7916                        &cgroup_event,
7917                        NULL);
7918
7919        kfree(pathname);
7920}
7921
7922#endif
7923
7924/*
7925 * mmap tracking
7926 */
7927
7928struct perf_mmap_event {
7929        struct vm_area_struct   *vma;
7930
7931        const char              *file_name;
7932        int                     file_size;
7933        int                     maj, min;
7934        u64                     ino;
7935        u64                     ino_generation;
7936        u32                     prot, flags;
7937
7938        struct {
7939                struct perf_event_header        header;
7940
7941                u32                             pid;
7942                u32                             tid;
7943                u64                             start;
7944                u64                             len;
7945                u64                             pgoff;
7946        } event_id;
7947};
7948
7949static int perf_event_mmap_match(struct perf_event *event,
7950                                 void *data)
7951{
7952        struct perf_mmap_event *mmap_event = data;
7953        struct vm_area_struct *vma = mmap_event->vma;
7954        int executable = vma->vm_flags & VM_EXEC;
7955
7956        return (!executable && event->attr.mmap_data) ||
7957               (executable && (event->attr.mmap || event->attr.mmap2));
7958}
7959
7960static void perf_event_mmap_output(struct perf_event *event,
7961                                   void *data)
7962{
7963        struct perf_mmap_event *mmap_event = data;
7964        struct perf_output_handle handle;
7965        struct perf_sample_data sample;
7966        int size = mmap_event->event_id.header.size;
7967        u32 type = mmap_event->event_id.header.type;
7968        int ret;
7969
7970        if (!perf_event_mmap_match(event, data))
7971                return;
7972
7973        if (event->attr.mmap2) {
7974                mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7975                mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7976                mmap_event->event_id.header.size += sizeof(mmap_event->min);
7977                mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7978                mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7979                mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7980                mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7981        }
7982
7983        perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7984        ret = perf_output_begin(&handle, &sample, event,
7985                                mmap_event->event_id.header.size);
7986        if (ret)
7987                goto out;
7988
7989        mmap_event->event_id.pid = perf_event_pid(event, current);
7990        mmap_event->event_id.tid = perf_event_tid(event, current);
7991
7992        perf_output_put(&handle, mmap_event->event_id);
7993
7994        if (event->attr.mmap2) {
7995                perf_output_put(&handle, mmap_event->maj);
7996                perf_output_put(&handle, mmap_event->min);
7997                perf_output_put(&handle, mmap_event->ino);
7998                perf_output_put(&handle, mmap_event->ino_generation);
7999                perf_output_put(&handle, mmap_event->prot);
8000                perf_output_put(&handle, mmap_event->flags);
8001        }
8002
8003        __output_copy(&handle, mmap_event->file_name,
8004                                   mmap_event->file_size);
8005
8006        perf_event__output_id_sample(event, &handle, &sample);
8007
8008        perf_output_end(&handle);
8009out:
8010        mmap_event->event_id.header.size = size;
8011        mmap_event->event_id.header.type = type;
8012}
8013
8014static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8015{
8016        struct vm_area_struct *vma = mmap_event->vma;
8017        struct file *file = vma->vm_file;
8018        int maj = 0, min = 0;
8019        u64 ino = 0, gen = 0;
8020        u32 prot = 0, flags = 0;
8021        unsigned int size;
8022        char tmp[16];
8023        char *buf = NULL;
8024        char *name;
8025
8026        if (vma->vm_flags & VM_READ)
8027                prot |= PROT_READ;
8028        if (vma->vm_flags & VM_WRITE)
8029                prot |= PROT_WRITE;
8030        if (vma->vm_flags & VM_EXEC)
8031                prot |= PROT_EXEC;
8032
8033        if (vma->vm_flags & VM_MAYSHARE)
8034                flags = MAP_SHARED;
8035        else
8036                flags = MAP_PRIVATE;
8037
8038        if (vma->vm_flags & VM_DENYWRITE)
8039                flags |= MAP_DENYWRITE;
8040        if (vma->vm_flags & VM_MAYEXEC)
8041                flags |= MAP_EXECUTABLE;
8042        if (vma->vm_flags & VM_LOCKED)
8043                flags |= MAP_LOCKED;
8044        if (is_vm_hugetlb_page(vma))
8045                flags |= MAP_HUGETLB;
8046
8047        if (file) {
8048                struct inode *inode;
8049                dev_t dev;
8050
8051                buf = kmalloc(PATH_MAX, GFP_KERNEL);
8052                if (!buf) {
8053                        name = "//enomem";
8054                        goto cpy_name;
8055                }
8056                /*
8057                 * d_path() works from the end of the rb backwards, so we
8058                 * need to add enough zero bytes after the string to handle
8059                 * the 64bit alignment we do later.
8060                 */
8061                name = file_path(file, buf, PATH_MAX - sizeof(u64));
8062                if (IS_ERR(name)) {
8063                        name = "//toolong";
8064                        goto cpy_name;
8065                }
8066                inode = file_inode(vma->vm_file);
8067                dev = inode->i_sb->s_dev;
8068                ino = inode->i_ino;
8069                gen = inode->i_generation;
8070                maj = MAJOR(dev);
8071                min = MINOR(dev);
8072
8073                goto got_name;
8074        } else {
8075                if (vma->vm_ops && vma->vm_ops->name) {
8076                        name = (char *) vma->vm_ops->name(vma);
8077                        if (name)
8078                                goto cpy_name;
8079                }
8080
8081                name = (char *)arch_vma_name(vma);
8082                if (name)
8083                        goto cpy_name;
8084
8085                if (vma->vm_start <= vma->vm_mm->start_brk &&
8086                                vma->vm_end >= vma->vm_mm->brk) {
8087                        name = "[heap]";
8088                        goto cpy_name;
8089                }
8090                if (vma->vm_start <= vma->vm_mm->start_stack &&
8091                                vma->vm_end >= vma->vm_mm->start_stack) {
8092                        name = "[stack]";
8093                        goto cpy_name;
8094                }
8095
8096                name = "//anon";
8097                goto cpy_name;
8098        }
8099
8100cpy_name:
8101        strlcpy(tmp, name, sizeof(tmp));
8102        name = tmp;
8103got_name:
8104        /*
8105         * Since our buffer works in 8 byte units we need to align our string
8106         * size to a multiple of 8. However, we must guarantee the tail end is
8107         * zero'd out to avoid leaking random bits to userspace.
8108         */
8109        size = strlen(name)+1;
8110        while (!IS_ALIGNED(size, sizeof(u64)))
8111                name[size++] = '\0';
8112
8113        mmap_event->file_name = name;
8114        mmap_event->file_size = size;
8115        mmap_event->maj = maj;
8116        mmap_event->min = min;
8117        mmap_event->ino = ino;
8118        mmap_event->ino_generation = gen;
8119        mmap_event->prot = prot;
8120        mmap_event->flags = flags;
8121
8122        if (!(vma->vm_flags & VM_EXEC))
8123                mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8124
8125        mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8126
8127        perf_iterate_sb(perf_event_mmap_output,
8128                       mmap_event,
8129                       NULL);
8130
8131        kfree(buf);
8132}
8133
8134/*
8135 * Check whether inode and address range match filter criteria.
8136 */
8137static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8138                                     struct file *file, unsigned long offset,
8139                                     unsigned long size)
8140{
8141        /* d_inode(NULL) won't be equal to any mapped user-space file */
8142        if (!filter->path.dentry)
8143                return false;
8144
8145        if (d_inode(filter->path.dentry) != file_inode(file))
8146                return false;
8147
8148        if (filter->offset > offset + size)
8149                return false;
8150
8151        if (filter->offset + filter->size < offset)
8152                return false;
8153
8154        return true;
8155}
8156
8157static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8158                                        struct vm_area_struct *vma,
8159                                        struct perf_addr_filter_range *fr)
8160{
8161        unsigned long vma_size = vma->vm_end - vma->vm_start;
8162        unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8163        struct file *file = vma->vm_file;
8164
8165        if (!perf_addr_filter_match(filter, file, off, vma_size))
8166                return false;
8167
8168        if (filter->offset < off) {
8169                fr->start = vma->vm_start;
8170                fr->size = min(vma_size, filter->size - (off - filter->offset));
8171        } else {
8172                fr->start = vma->vm_start + filter->offset - off;
8173                fr->size = min(vma->vm_end - fr->start, filter->size);
8174        }
8175
8176        return true;
8177}
8178
8179static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8180{
8181        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8182        struct vm_area_struct *vma = data;
8183        struct perf_addr_filter *filter;
8184        unsigned int restart = 0, count = 0;
8185        unsigned long flags;
8186
8187        if (!has_addr_filter(event))
8188                return;
8189
8190        if (!vma->vm_file)
8191                return;
8192
8193        raw_spin_lock_irqsave(&ifh->lock, flags);
8194        list_for_each_entry(filter, &ifh->list, entry) {
8195                if (perf_addr_filter_vma_adjust(filter, vma,
8196                                                &event->addr_filter_ranges[count]))
8197                        restart++;
8198
8199                count++;
8200        }
8201
8202        if (restart)
8203                event->addr_filters_gen++;
8204        raw_spin_unlock_irqrestore(&ifh->lock, flags);
8205
8206        if (restart)
8207                perf_event_stop(event, 1);
8208}
8209
8210/*
8211 * Adjust all task's events' filters to the new vma
8212 */
8213static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8214{
8215        struct perf_event_context *ctx;
8216        int ctxn;
8217
8218        /*
8219         * Data tracing isn't supported yet and as such there is no need
8220         * to keep track of anything that isn't related to executable code:
8221         */
8222        if (!(vma->vm_flags & VM_EXEC))
8223                return;
8224
8225        rcu_read_lock();
8226        for_each_task_context_nr(ctxn) {
8227                ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8228                if (!ctx)
8229                        continue;
8230
8231                perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8232        }
8233        rcu_read_unlock();
8234}
8235
8236void perf_event_mmap(struct vm_area_struct *vma)
8237{
8238        struct perf_mmap_event mmap_event;
8239
8240        if (!atomic_read(&nr_mmap_events))
8241                return;
8242
8243        mmap_event = (struct perf_mmap_event){
8244                .vma    = vma,
8245                /* .file_name */
8246                /* .file_size */
8247                .event_id  = {
8248                        .header = {
8249                                .type = PERF_RECORD_MMAP,
8250                                .misc = PERF_RECORD_MISC_USER,
8251                                /* .size */
8252                        },
8253                        /* .pid */
8254                        /* .tid */
8255                        .start  = vma->vm_start,
8256                        .len    = vma->vm_end - vma->vm_start,
8257                        .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8258                },
8259                /* .maj (attr_mmap2 only) */
8260                /* .min (attr_mmap2 only) */
8261                /* .ino (attr_mmap2 only) */
8262                /* .ino_generation (attr_mmap2 only) */
8263                /* .prot (attr_mmap2 only) */
8264                /* .flags (attr_mmap2 only) */
8265        };
8266
8267        perf_addr_filters_adjust(vma);
8268        perf_event_mmap_event(&mmap_event);
8269}
8270
8271void perf_event_aux_event(struct perf_event *event, unsigned long head,
8272                          unsigned long size, u64 flags)
8273{
8274        struct perf_output_handle handle;
8275        struct perf_sample_data sample;
8276        struct perf_aux_event {
8277                struct perf_event_header        header;
8278                u64                             offset;
8279                u64                             size;
8280                u64                             flags;
8281        } rec = {
8282                .header = {
8283                        .type = PERF_RECORD_AUX,
8284                        .misc = 0,
8285                        .size = sizeof(rec),
8286                },
8287                .offset         = head,
8288                .size           = size,
8289                .flags          = flags,
8290        };
8291        int ret;
8292
8293        perf_event_header__init_id(&rec.header, &sample, event);
8294        ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8295
8296        if (ret)
8297                return;
8298
8299        perf_output_put(&handle, rec);
8300        perf_event__output_id_sample(event, &handle, &sample);
8301
8302        perf_output_end(&handle);
8303}
8304
8305/*
8306 * Lost/dropped samples logging
8307 */
8308void perf_log_lost_samples(struct perf_event *event, u64 lost)
8309{
8310        struct perf_output_handle handle;
8311        struct perf_sample_data sample;
8312        int ret;
8313
8314        struct {
8315                struct perf_event_header        header;
8316                u64                             lost;
8317        } lost_samples_event = {
8318                .header = {
8319                        .type = PERF_RECORD_LOST_SAMPLES,
8320                        .misc = 0,
8321                        .size = sizeof(lost_samples_event),
8322                },
8323                .lost           = lost,
8324        };
8325
8326        perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8327
8328        ret = perf_output_begin(&handle, &sample, event,
8329                                lost_samples_event.header.size);
8330        if (ret)
8331                return;
8332
8333        perf_output_put(&handle, lost_samples_event);
8334        perf_event__output_id_sample(event, &handle, &sample);
8335        perf_output_end(&handle);
8336}
8337
8338/*
8339 * context_switch tracking
8340 */
8341
8342struct perf_switch_event {
8343        struct task_struct      *task;
8344        struct task_struct      *next_prev;
8345
8346        struct {
8347                struct perf_event_header        header;
8348                u32                             next_prev_pid;
8349                u32                             next_prev_tid;
8350        } event_id;
8351};
8352
8353static int perf_event_switch_match(struct perf_event *event)
8354{
8355        return event->attr.context_switch;
8356}
8357
8358static void perf_event_switch_output(struct perf_event *event, void *data)
8359{
8360        struct perf_switch_event *se = data;
8361        struct perf_output_handle handle;
8362        struct perf_sample_data sample;
8363        int ret;
8364
8365        if (!perf_event_switch_match(event))
8366                return;
8367
8368        /* Only CPU-wide events are allowed to see next/prev pid/tid */
8369        if (event->ctx->task) {
8370                se->event_id.header.type = PERF_RECORD_SWITCH;
8371                se->event_id.header.size = sizeof(se->event_id.header);
8372        } else {
8373                se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8374                se->event_id.header.size = sizeof(se->event_id);
8375                se->event_id.next_prev_pid =
8376                                        perf_event_pid(event, se->next_prev);
8377                se->event_id.next_prev_tid =
8378                                        perf_event_tid(event, se->next_prev);
8379        }
8380
8381        perf_event_header__init_id(&se->event_id.header, &sample, event);
8382
8383        ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8384        if (ret)
8385                return;
8386
8387        if (event->ctx->task)
8388                perf_output_put(&handle, se->event_id.header);
8389        else
8390                perf_output_put(&handle, se->event_id);
8391
8392        perf_event__output_id_sample(event, &handle, &sample);
8393
8394        perf_output_end(&handle);
8395}
8396
8397static void perf_event_switch(struct task_struct *task,
8398                              struct task_struct *next_prev, bool sched_in)
8399{
8400        struct perf_switch_event switch_event;
8401
8402        /* N.B. caller checks nr_switch_events != 0 */
8403
8404        switch_event = (struct perf_switch_event){
8405                .task           = task,
8406                .next_prev      = next_prev,
8407                .event_id       = {
8408                        .header = {
8409                                /* .type */
8410                                .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8411                                /* .size */
8412                        },
8413                        /* .next_prev_pid */
8414                        /* .next_prev_tid */
8415                },
8416        };
8417
8418        if (!sched_in && task->state == TASK_RUNNING)
8419                switch_event.event_id.header.misc |=
8420                                PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8421
8422        perf_iterate_sb(perf_event_switch_output,
8423                       &switch_event,
8424                       NULL);
8425}
8426
8427/*
8428 * IRQ throttle logging
8429 */
8430
8431static void perf_log_throttle(struct perf_event *event, int enable)
8432{
8433        struct perf_output_handle handle;
8434        struct perf_sample_data sample;
8435        int ret;
8436
8437        struct {
8438                struct perf_event_header        header;
8439                u64                             time;
8440                u64                             id;
8441                u64                             stream_id;
8442        } throttle_event = {
8443                .header = {
8444                        .type = PERF_RECORD_THROTTLE,
8445                        .misc = 0,
8446                        .size = sizeof(throttle_event),
8447                },
8448                .time           = perf_event_clock(event),
8449                .id             = primary_event_id(event),
8450                .stream_id      = event->id,
8451        };
8452
8453        if (enable)
8454                throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8455
8456        perf_event_header__init_id(&throttle_event.header, &sample, event);
8457
8458        ret = perf_output_begin(&handle, &sample, event,
8459                                throttle_event.header.size);
8460        if (ret)
8461                return;
8462
8463        perf_output_put(&handle, throttle_event);
8464        perf_event__output_id_sample(event, &handle, &sample);
8465        perf_output_end(&handle);
8466}
8467
8468/*
8469 * ksymbol register/unregister tracking
8470 */
8471
8472struct perf_ksymbol_event {
8473        const char      *name;
8474        int             name_len;
8475        struct {
8476                struct perf_event_header        header;
8477                u64                             addr;
8478                u32                             len;
8479                u16                             ksym_type;
8480                u16                             flags;
8481        } event_id;
8482};
8483
8484static int perf_event_ksymbol_match(struct perf_event *event)
8485{
8486        return event->attr.ksymbol;
8487}
8488
8489static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8490{
8491        struct perf_ksymbol_event *ksymbol_event = data;
8492        struct perf_output_handle handle;
8493        struct perf_sample_data sample;
8494        int ret;
8495
8496        if (!perf_event_ksymbol_match(event))
8497                return;
8498
8499        perf_event_header__init_id(&ksymbol_event->event_id.header,
8500                                   &sample, event);
8501        ret = perf_output_begin(&handle, &sample, event,
8502                                ksymbol_event->event_id.header.size);
8503        if (ret)
8504                return;
8505
8506        perf_output_put(&handle, ksymbol_event->event_id);
8507        __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8508        perf_event__output_id_sample(event, &handle, &sample);
8509
8510        perf_output_end(&handle);
8511}
8512
8513void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8514                        const char *sym)
8515{
8516        struct perf_ksymbol_event ksymbol_event;
8517        char name[KSYM_NAME_LEN];
8518        u16 flags = 0;
8519        int name_len;
8520
8521        if (!atomic_read(&nr_ksymbol_events))
8522                return;
8523
8524        if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8525            ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8526                goto err;
8527
8528        strlcpy(name, sym, KSYM_NAME_LEN);
8529        name_len = strlen(name) + 1;
8530        while (!IS_ALIGNED(name_len, sizeof(u64)))
8531                name[name_len++] = '\0';
8532        BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8533
8534        if (unregister)
8535                flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8536
8537        ksymbol_event = (struct perf_ksymbol_event){
8538                .name = name,
8539                .name_len = name_len,
8540                .event_id = {
8541                        .header = {
8542                                .type = PERF_RECORD_KSYMBOL,
8543                                .size = sizeof(ksymbol_event.event_id) +
8544                                        name_len,
8545                        },
8546                        .addr = addr,
8547                        .len = len,
8548                        .ksym_type = ksym_type,
8549                        .flags = flags,
8550                },
8551        };
8552
8553        perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8554        return;
8555err:
8556        WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8557}
8558
8559/*
8560 * bpf program load/unload tracking
8561 */
8562
8563struct perf_bpf_event {
8564        struct bpf_prog *prog;
8565        struct {
8566                struct perf_event_header        header;
8567                u16                             type;
8568                u16                             flags;
8569                u32                             id;
8570                u8                              tag[BPF_TAG_SIZE];
8571        } event_id;
8572};
8573
8574static int perf_event_bpf_match(struct perf_event *event)
8575{
8576        return event->attr.bpf_event;
8577}
8578
8579static void perf_event_bpf_output(struct perf_event *event, void *data)
8580{
8581        struct perf_bpf_event *bpf_event = data;
8582        struct perf_output_handle handle;
8583        struct perf_sample_data sample;
8584        int ret;
8585
8586        if (!perf_event_bpf_match(event))
8587                return;
8588
8589        perf_event_header__init_id(&bpf_event->event_id.header,
8590                                   &sample, event);
8591        ret = perf_output_begin(&handle, data, event,
8592                                bpf_event->event_id.header.size);
8593        if (ret)
8594                return;
8595
8596        perf_output_put(&handle, bpf_event->event_id);
8597        perf_event__output_id_sample(event, &handle, &sample);
8598
8599        perf_output_end(&handle);
8600}
8601
8602static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8603                                         enum perf_bpf_event_type type)
8604{
8605        bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8606        int i;
8607
8608        if (prog->aux->func_cnt == 0) {
8609                perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8610                                   (u64)(unsigned long)prog->bpf_func,
8611                                   prog->jited_len, unregister,
8612                                   prog->aux->ksym.name);
8613        } else {
8614                for (i = 0; i < prog->aux->func_cnt; i++) {
8615                        struct bpf_prog *subprog = prog->aux->func[i];
8616
8617                        perf_event_ksymbol(
8618                                PERF_RECORD_KSYMBOL_TYPE_BPF,
8619                                (u64)(unsigned long)subprog->bpf_func,
8620                                subprog->jited_len, unregister,
8621                                prog->aux->ksym.name);
8622                }
8623        }
8624}
8625
8626void perf_event_bpf_event(struct bpf_prog *prog,
8627                          enum perf_bpf_event_type type,
8628                          u16 flags)
8629{
8630        struct perf_bpf_event bpf_event;
8631
8632        if (type <= PERF_BPF_EVENT_UNKNOWN ||
8633            type >= PERF_BPF_EVENT_MAX)
8634                return;
8635
8636        switch (type) {
8637        case PERF_BPF_EVENT_PROG_LOAD:
8638        case PERF_BPF_EVENT_PROG_UNLOAD:
8639                if (atomic_read(&nr_ksymbol_events))
8640                        perf_event_bpf_emit_ksymbols(prog, type);
8641                break;
8642        default:
8643                break;
8644        }
8645
8646        if (!atomic_read(&nr_bpf_events))
8647                return;
8648
8649        bpf_event = (struct perf_bpf_event){
8650                .prog = prog,
8651                .event_id = {
8652                        .header = {
8653                                .type = PERF_RECORD_BPF_EVENT,
8654                                .size = sizeof(bpf_event.event_id),
8655                        },
8656                        .type = type,
8657                        .flags = flags,
8658                        .id = prog->aux->id,
8659                },
8660        };
8661
8662        BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8663
8664        memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8665        perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8666}
8667
8668struct perf_text_poke_event {
8669        const void              *old_bytes;
8670        const void              *new_bytes;
8671        size_t                  pad;
8672        u16                     old_len;
8673        u16                     new_len;
8674
8675        struct {
8676                struct perf_event_header        header;
8677
8678                u64                             addr;
8679        } event_id;
8680};
8681
8682static int perf_event_text_poke_match(struct perf_event *event)
8683{
8684        return event->attr.text_poke;
8685}
8686
8687static void perf_event_text_poke_output(struct perf_event *event, void *data)
8688{
8689        struct perf_text_poke_event *text_poke_event = data;
8690        struct perf_output_handle handle;
8691        struct perf_sample_data sample;
8692        u64 padding = 0;
8693        int ret;
8694
8695        if (!perf_event_text_poke_match(event))
8696                return;
8697
8698        perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8699
8700        ret = perf_output_begin(&handle, &sample, event,
8701                                text_poke_event->event_id.header.size);
8702        if (ret)
8703                return;
8704
8705        perf_output_put(&handle, text_poke_event->event_id);
8706        perf_output_put(&handle, text_poke_event->old_len);
8707        perf_output_put(&handle, text_poke_event->new_len);
8708
8709        __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8710        __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8711
8712        if (text_poke_event->pad)
8713                __output_copy(&handle, &padding, text_poke_event->pad);
8714
8715        perf_event__output_id_sample(event, &handle, &sample);
8716
8717        perf_output_end(&handle);
8718}
8719
8720void perf_event_text_poke(const void *addr, const void *old_bytes,
8721                          size_t old_len, const void *new_bytes, size_t new_len)
8722{
8723        struct perf_text_poke_event text_poke_event;
8724        size_t tot, pad;
8725
8726        if (!atomic_read(&nr_text_poke_events))
8727                return;
8728
8729        tot  = sizeof(text_poke_event.old_len) + old_len;
8730        tot += sizeof(text_poke_event.new_len) + new_len;
8731        pad  = ALIGN(tot, sizeof(u64)) - tot;
8732
8733        text_poke_event = (struct perf_text_poke_event){
8734                .old_bytes    = old_bytes,
8735                .new_bytes    = new_bytes,
8736                .pad          = pad,
8737                .old_len      = old_len,
8738                .new_len      = new_len,
8739                .event_id  = {
8740                        .header = {
8741                                .type = PERF_RECORD_TEXT_POKE,
8742                                .misc = PERF_RECORD_MISC_KERNEL,
8743                                .size = sizeof(text_poke_event.event_id) + tot + pad,
8744                        },
8745                        .addr = (unsigned long)addr,
8746                },
8747        };
8748
8749        perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8750}
8751
8752void perf_event_itrace_started(struct perf_event *event)
8753{
8754        event->attach_state |= PERF_ATTACH_ITRACE;
8755}
8756
8757static void perf_log_itrace_start(struct perf_event *event)
8758{
8759        struct perf_output_handle handle;
8760        struct perf_sample_data sample;
8761        struct perf_aux_event {
8762                struct perf_event_header        header;
8763                u32                             pid;
8764                u32                             tid;
8765        } rec;
8766        int ret;
8767
8768        if (event->parent)
8769                event = event->parent;
8770
8771        if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8772            event->attach_state & PERF_ATTACH_ITRACE)
8773                return;
8774
8775        rec.header.type = PERF_RECORD_ITRACE_START;
8776        rec.header.misc = 0;
8777        rec.header.size = sizeof(rec);
8778        rec.pid = perf_event_pid(event, current);
8779        rec.tid = perf_event_tid(event, current);
8780
8781        perf_event_header__init_id(&rec.header, &sample, event);
8782        ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8783
8784        if (ret)
8785                return;
8786
8787        perf_output_put(&handle, rec);
8788        perf_event__output_id_sample(event, &handle, &sample);
8789
8790        perf_output_end(&handle);
8791}
8792
8793static int
8794__perf_event_account_interrupt(struct perf_event *event, int throttle)
8795{
8796        struct hw_perf_event *hwc = &event->hw;
8797        int ret = 0;
8798        u64 seq;
8799
8800        seq = __this_cpu_read(perf_throttled_seq);
8801        if (seq != hwc->interrupts_seq) {
8802                hwc->interrupts_seq = seq;
8803                hwc->interrupts = 1;
8804        } else {
8805                hwc->interrupts++;
8806                if (unlikely(throttle
8807                             && hwc->interrupts >= max_samples_per_tick)) {
8808                        __this_cpu_inc(perf_throttled_count);
8809                        tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8810                        hwc->interrupts = MAX_INTERRUPTS;
8811                        perf_log_throttle(event, 0);
8812                        ret = 1;
8813                }
8814        }
8815
8816        if (event->attr.freq) {
8817                u64 now = perf_clock();
8818                s64 delta = now - hwc->freq_time_stamp;
8819
8820                hwc->freq_time_stamp = now;
8821
8822                if (delta > 0 && delta < 2*TICK_NSEC)
8823                        perf_adjust_period(event, delta, hwc->last_period, true);
8824        }
8825
8826        return ret;
8827}
8828
8829int perf_event_account_interrupt(struct perf_event *event)
8830{
8831        return __perf_event_account_interrupt(event, 1);
8832}
8833
8834/*
8835 * Generic event overflow handling, sampling.
8836 */
8837
8838static int __perf_event_overflow(struct perf_event *event,
8839                                   int throttle, struct perf_sample_data *data,
8840                                   struct pt_regs *regs)
8841{
8842        int events = atomic_read(&event->event_limit);
8843        int ret = 0;
8844
8845        /*
8846         * Non-sampling counters might still use the PMI to fold short
8847         * hardware counters, ignore those.
8848         */
8849        if (unlikely(!is_sampling_event(event)))
8850                return 0;
8851
8852        ret = __perf_event_account_interrupt(event, throttle);
8853
8854        /*
8855         * XXX event_limit might not quite work as expected on inherited
8856         * events
8857         */
8858
8859        event->pending_kill = POLL_IN;
8860        if (events && atomic_dec_and_test(&event->event_limit)) {
8861                ret = 1;
8862                event->pending_kill = POLL_HUP;
8863
8864                perf_event_disable_inatomic(event);
8865        }
8866
8867        READ_ONCE(event->overflow_handler)(event, data, regs);
8868
8869        if (*perf_event_fasync(event) && event->pending_kill) {
8870                event->pending_wakeup = 1;
8871                irq_work_queue(&event->pending);
8872        }
8873
8874        return ret;
8875}
8876
8877int perf_event_overflow(struct perf_event *event,
8878                          struct perf_sample_data *data,
8879                          struct pt_regs *regs)
8880{
8881        return __perf_event_overflow(event, 1, data, regs);
8882}
8883
8884/*
8885 * Generic software event infrastructure
8886 */
8887
8888struct swevent_htable {
8889        struct swevent_hlist            *swevent_hlist;
8890        struct mutex                    hlist_mutex;
8891        int                             hlist_refcount;
8892
8893        /* Recursion avoidance in each contexts */
8894        int                             recursion[PERF_NR_CONTEXTS];
8895};
8896
8897static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8898
8899/*
8900 * We directly increment event->count and keep a second value in
8901 * event->hw.period_left to count intervals. This period event
8902 * is kept in the range [-sample_period, 0] so that we can use the
8903 * sign as trigger.
8904 */
8905
8906u64 perf_swevent_set_period(struct perf_event *event)
8907{
8908        struct hw_perf_event *hwc = &event->hw;
8909        u64 period = hwc->last_period;
8910        u64 nr, offset;
8911        s64 old, val;
8912
8913        hwc->last_period = hwc->sample_period;
8914
8915again:
8916        old = val = local64_read(&hwc->period_left);
8917        if (val < 0)
8918                return 0;
8919
8920        nr = div64_u64(period + val, period);
8921        offset = nr * period;
8922        val -= offset;
8923        if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8924                goto again;
8925
8926        return nr;
8927}
8928
8929static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8930                                    struct perf_sample_data *data,
8931                                    struct pt_regs *regs)
8932{
8933        struct hw_perf_event *hwc = &event->hw;
8934        int throttle = 0;
8935
8936        if (!overflow)
8937                overflow = perf_swevent_set_period(event);
8938
8939        if (hwc->interrupts == MAX_INTERRUPTS)
8940                return;
8941
8942        for (; overflow; overflow--) {
8943                if (__perf_event_overflow(event, throttle,
8944                                            data, regs)) {
8945                        /*
8946                         * We inhibit the overflow from happening when
8947                         * hwc->interrupts == MAX_INTERRUPTS.
8948                         */
8949                        break;
8950                }
8951                throttle = 1;
8952        }
8953}
8954
8955static void perf_swevent_event(struct perf_event *event, u64 nr,
8956                               struct perf_sample_data *data,
8957                               struct pt_regs *regs)
8958{
8959        struct hw_perf_event *hwc = &event->hw;
8960
8961        local64_add(nr, &event->count);
8962
8963        if (!regs)
8964                return;
8965
8966        if (!is_sampling_event(event))
8967                return;
8968
8969        if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8970                data->period = nr;
8971                return perf_swevent_overflow(event, 1, data, regs);
8972        } else
8973                data->period = event->hw.last_period;
8974
8975        if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8976                return perf_swevent_overflow(event, 1, data, regs);
8977
8978        if (local64_add_negative(nr, &hwc->period_left))
8979                return;
8980
8981        perf_swevent_overflow(event, 0, data, regs);
8982}
8983
8984static int perf_exclude_event(struct perf_event *event,
8985                              struct pt_regs *regs)
8986{
8987        if (event->hw.state & PERF_HES_STOPPED)
8988                return 1;
8989
8990        if (regs) {
8991                if (event->attr.exclude_user && user_mode(regs))
8992                        return 1;
8993
8994                if (event->attr.exclude_kernel && !user_mode(regs))
8995                        return 1;
8996        }
8997
8998        return 0;
8999}
9000
9001static int perf_swevent_match(struct perf_event *event,
9002                                enum perf_type_id type,
9003                                u32 event_id,
9004                                struct perf_sample_data *data,
9005                                struct pt_regs *regs)
9006{
9007        if (event->attr.type != type)
9008                return 0;
9009
9010        if (event->attr.config != event_id)
9011                return 0;
9012
9013        if (perf_exclude_event(event, regs))
9014                return 0;
9015
9016        return 1;
9017}
9018
9019static inline u64 swevent_hash(u64 type, u32 event_id)
9020{
9021        u64 val = event_id | (type << 32);
9022
9023        return hash_64(val, SWEVENT_HLIST_BITS);
9024}
9025
9026static inline struct hlist_head *
9027__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9028{
9029        u64 hash = swevent_hash(type, event_id);
9030
9031        return &hlist->heads[hash];
9032}
9033
9034/* For the read side: events when they trigger */
9035static inline struct hlist_head *
9036find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9037{
9038        struct swevent_hlist *hlist;
9039
9040        hlist = rcu_dereference(swhash->swevent_hlist);
9041        if (!hlist)
9042                return NULL;
9043
9044        return __find_swevent_head(hlist, type, event_id);
9045}
9046
9047/* For the event head insertion and removal in the hlist */
9048static inline struct hlist_head *
9049find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9050{
9051        struct swevent_hlist *hlist;
9052        u32 event_id = event->attr.config;
9053        u64 type = event->attr.type;
9054
9055        /*
9056         * Event scheduling is always serialized against hlist allocation
9057         * and release. Which makes the protected version suitable here.
9058         * The context lock guarantees that.
9059         */
9060        hlist = rcu_dereference_protected(swhash->swevent_hlist,
9061                                          lockdep_is_held(&event->ctx->lock));
9062        if (!hlist)
9063                return NULL;
9064
9065        return __find_swevent_head(hlist, type, event_id);
9066}
9067
9068static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9069                                    u64 nr,
9070                                    struct perf_sample_data *data,
9071                                    struct pt_regs *regs)
9072{
9073        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9074        struct perf_event *event;
9075        struct hlist_head *head;
9076
9077        rcu_read_lock();
9078        head = find_swevent_head_rcu(swhash, type, event_id);
9079        if (!head)
9080                goto end;
9081
9082        hlist_for_each_entry_rcu(event, head, hlist_entry) {
9083                if (perf_swevent_match(event, type, event_id, data, regs))
9084                        perf_swevent_event(event, nr, data, regs);
9085        }
9086end:
9087        rcu_read_unlock();
9088}
9089
9090DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9091
9092int perf_swevent_get_recursion_context(void)
9093{
9094        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9095
9096        return get_recursion_context(swhash->recursion);
9097}
9098EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9099
9100void perf_swevent_put_recursion_context(int rctx)
9101{
9102        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9103
9104        put_recursion_context(swhash->recursion, rctx);
9105}
9106
9107void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9108{
9109        struct perf_sample_data data;
9110
9111        if (WARN_ON_ONCE(!regs))
9112                return;
9113
9114        perf_sample_data_init(&data, addr, 0);
9115        do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9116}
9117
9118void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9119{
9120        int rctx;
9121
9122        preempt_disable_notrace();
9123        rctx = perf_swevent_get_recursion_context();
9124        if (unlikely(rctx < 0))
9125                goto fail;
9126
9127        ___perf_sw_event(event_id, nr, regs, addr);
9128
9129        perf_swevent_put_recursion_context(rctx);
9130fail:
9131        preempt_enable_notrace();
9132}
9133
9134static void perf_swevent_read(struct perf_event *event)
9135{
9136}
9137
9138static int perf_swevent_add(struct perf_event *event, int flags)
9139{
9140        struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9141        struct hw_perf_event *hwc = &event->hw;
9142        struct hlist_head *head;
9143
9144        if (is_sampling_event(event)) {
9145                hwc->last_period = hwc->sample_period;
9146                perf_swevent_set_period(event);
9147        }
9148
9149        hwc->state = !(flags & PERF_EF_START);
9150
9151        head = find_swevent_head(swhash, event);
9152        if (WARN_ON_ONCE(!head))
9153                return -EINVAL;
9154
9155        hlist_add_head_rcu(&event->hlist_entry, head);
9156        perf_event_update_userpage(event);
9157
9158        return 0;
9159}
9160
9161static void perf_swevent_del(struct perf_event *event, int flags)
9162{
9163        hlist_del_rcu(&event->hlist_entry);
9164}
9165
9166static void perf_swevent_start(struct perf_event *event, int flags)
9167{
9168        event->hw.state = 0;
9169}
9170
9171static void perf_swevent_stop(struct perf_event *event, int flags)
9172{
9173        event->hw.state = PERF_HES_STOPPED;
9174}
9175
9176/* Deref the hlist from the update side */
9177static inline struct swevent_hlist *
9178swevent_hlist_deref(struct swevent_htable *swhash)
9179{
9180        return rcu_dereference_protected(swhash->swevent_hlist,
9181                                         lockdep_is_held(&swhash->hlist_mutex));
9182}
9183
9184static void swevent_hlist_release(struct swevent_htable *swhash)
9185{
9186        struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9187
9188        if (!hlist)
9189                return;
9190
9191        RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9192        kfree_rcu(hlist, rcu_head);
9193}
9194
9195static void swevent_hlist_put_cpu(int cpu)
9196{
9197        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9198
9199        mutex_lock(&swhash->hlist_mutex);
9200
9201        if (!--swhash->hlist_refcount)
9202                swevent_hlist_release(swhash);
9203
9204        mutex_unlock(&swhash->hlist_mutex);
9205}
9206
9207static void swevent_hlist_put(void)
9208{
9209        int cpu;
9210
9211        for_each_possible_cpu(cpu)
9212                swevent_hlist_put_cpu(cpu);
9213}
9214
9215static int swevent_hlist_get_cpu(int cpu)
9216{
9217        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9218        int err = 0;
9219
9220        mutex_lock(&swhash->hlist_mutex);
9221        if (!swevent_hlist_deref(swhash) &&
9222            cpumask_test_cpu(cpu, perf_online_mask)) {
9223                struct swevent_hlist *hlist;
9224
9225                hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9226                if (!hlist) {
9227                        err = -ENOMEM;
9228                        goto exit;
9229                }
9230                rcu_assign_pointer(swhash->swevent_hlist, hlist);
9231        }
9232        swhash->hlist_refcount++;
9233exit:
9234        mutex_unlock(&swhash->hlist_mutex);
9235
9236        return err;
9237}
9238
9239static int swevent_hlist_get(void)
9240{
9241        int err, cpu, failed_cpu;
9242
9243        mutex_lock(&pmus_lock);
9244        for_each_possible_cpu(cpu) {
9245                err = swevent_hlist_get_cpu(cpu);
9246                if (err) {
9247                        failed_cpu = cpu;
9248                        goto fail;
9249                }
9250        }
9251        mutex_unlock(&pmus_lock);
9252        return 0;
9253fail:
9254        for_each_possible_cpu(cpu) {
9255                if (cpu == failed_cpu)
9256                        break;
9257                swevent_hlist_put_cpu(cpu);
9258        }
9259        mutex_unlock(&pmus_lock);
9260        return err;
9261}
9262
9263struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9264
9265static void sw_perf_event_destroy(struct perf_event *event)
9266{
9267        u64 event_id = event->attr.config;
9268
9269        WARN_ON(event->parent);
9270
9271        static_key_slow_dec(&perf_swevent_enabled[event_id]);
9272        swevent_hlist_put();
9273}
9274
9275static int perf_swevent_init(struct perf_event *event)
9276{
9277        u64 event_id = event->attr.config;
9278
9279        if (event->attr.type != PERF_TYPE_SOFTWARE)
9280                return -ENOENT;
9281
9282        /*
9283         * no branch sampling for software events
9284         */
9285        if (has_branch_stack(event))
9286                return -EOPNOTSUPP;
9287
9288        switch (event_id) {
9289        case PERF_COUNT_SW_CPU_CLOCK:
9290        case PERF_COUNT_SW_TASK_CLOCK:
9291                return -ENOENT;
9292
9293        default:
9294                break;
9295        }
9296
9297        if (event_id >= PERF_COUNT_SW_MAX)
9298                return -ENOENT;
9299
9300        if (!event->parent) {
9301                int err;
9302
9303                err = swevent_hlist_get();
9304                if (err)
9305                        return err;
9306
9307                static_key_slow_inc(&perf_swevent_enabled[event_id]);
9308                event->destroy = sw_perf_event_destroy;
9309        }
9310
9311        return 0;
9312}
9313
9314static struct pmu perf_swevent = {
9315        .task_ctx_nr    = perf_sw_context,
9316
9317        .capabilities   = PERF_PMU_CAP_NO_NMI,
9318
9319        .event_init     = perf_swevent_init,
9320        .add            = perf_swevent_add,
9321        .del            = perf_swevent_del,
9322        .start          = perf_swevent_start,
9323        .stop           = perf_swevent_stop,
9324        .read           = perf_swevent_read,
9325};
9326
9327#ifdef CONFIG_EVENT_TRACING
9328
9329static int perf_tp_filter_match(struct perf_event *event,
9330                                struct perf_sample_data *data)
9331{
9332        void *record = data->raw->frag.data;
9333
9334        /* only top level events have filters set */
9335        if (event->parent)
9336                event = event->parent;
9337
9338        if (likely(!event->filter) || filter_match_preds(event->filter, record))
9339                return 1;
9340        return 0;
9341}
9342
9343static int perf_tp_event_match(struct perf_event *event,
9344                                struct perf_sample_data *data,
9345                                struct pt_regs *regs)
9346{
9347        if (event->hw.state & PERF_HES_STOPPED)
9348                return 0;
9349        /*
9350         * If exclude_kernel, only trace user-space tracepoints (uprobes)
9351         */
9352        if (event->attr.exclude_kernel && !user_mode(regs))
9353                return 0;
9354
9355        if (!perf_tp_filter_match(event, data))
9356                return 0;
9357
9358        return 1;
9359}
9360
9361void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9362                               struct trace_event_call *call, u64 count,
9363                               struct pt_regs *regs, struct hlist_head *head,
9364                               struct task_struct *task)
9365{
9366        if (bpf_prog_array_valid(call)) {
9367                *(struct pt_regs **)raw_data = regs;
9368                if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9369                        perf_swevent_put_recursion_context(rctx);
9370                        return;
9371                }
9372        }
9373        perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9374                      rctx, task);
9375}
9376EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9377
9378void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9379                   struct pt_regs *regs, struct hlist_head *head, int rctx,
9380                   struct task_struct *task)
9381{
9382        struct perf_sample_data data;
9383        struct perf_event *event;
9384
9385        struct perf_raw_record raw = {
9386                .frag = {
9387                        .size = entry_size,
9388                        .data = record,
9389                },
9390        };
9391
9392        perf_sample_data_init(&data, 0, 0);
9393        data.raw = &raw;
9394
9395        perf_trace_buf_update(record, event_type);
9396
9397        hlist_for_each_entry_rcu(event, head, hlist_entry) {
9398                if (perf_tp_event_match(event, &data, regs))
9399                        perf_swevent_event(event, count, &data, regs);
9400        }
9401
9402        /*
9403         * If we got specified a target task, also iterate its context and
9404         * deliver this event there too.
9405         */
9406        if (task && task != current) {
9407                struct perf_event_context *ctx;
9408                struct trace_entry *entry = record;
9409
9410                rcu_read_lock();
9411                ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9412                if (!ctx)
9413                        goto unlock;
9414
9415                list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9416                        if (event->cpu != smp_processor_id())
9417                                continue;
9418                        if (event->attr.type != PERF_TYPE_TRACEPOINT)
9419                                continue;
9420                        if (event->attr.config != entry->type)
9421                                continue;
9422                        if (perf_tp_event_match(event, &data, regs))
9423                                perf_swevent_event(event, count, &data, regs);
9424                }
9425unlock:
9426                rcu_read_unlock();
9427        }
9428
9429        perf_swevent_put_recursion_context(rctx);
9430}
9431EXPORT_SYMBOL_GPL(perf_tp_event);
9432
9433static void tp_perf_event_destroy(struct perf_event *event)
9434{
9435        perf_trace_destroy(event);
9436}
9437
9438static int perf_tp_event_init(struct perf_event *event)
9439{
9440        int err;
9441
9442        if (event->attr.type != PERF_TYPE_TRACEPOINT)
9443                return -ENOENT;
9444
9445        /*
9446         * no branch sampling for tracepoint events
9447         */
9448        if (has_branch_stack(event))
9449                return -EOPNOTSUPP;
9450
9451        err = perf_trace_init(event);
9452        if (err)
9453                return err;
9454
9455        event->destroy = tp_perf_event_destroy;
9456
9457        return 0;
9458}
9459
9460static struct pmu perf_tracepoint = {
9461        .task_ctx_nr    = perf_sw_context,
9462
9463        .event_init     = perf_tp_event_init,
9464        .add            = perf_trace_add,
9465        .del            = perf_trace_del,
9466        .start          = perf_swevent_start,
9467        .stop           = perf_swevent_stop,
9468        .read           = perf_swevent_read,
9469};
9470
9471#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9472/*
9473 * Flags in config, used by dynamic PMU kprobe and uprobe
9474 * The flags should match following PMU_FORMAT_ATTR().
9475 *
9476 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9477 *                               if not set, create kprobe/uprobe
9478 *
9479 * The following values specify a reference counter (or semaphore in the
9480 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9481 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9482 *
9483 * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9484 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9485 */
9486enum perf_probe_config {
9487        PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9488        PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9489        PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9490};
9491
9492PMU_FORMAT_ATTR(retprobe, "config:0");
9493#endif
9494
9495#ifdef CONFIG_KPROBE_EVENTS
9496static struct attribute *kprobe_attrs[] = {
9497        &format_attr_retprobe.attr,
9498        NULL,
9499};
9500
9501static struct attribute_group kprobe_format_group = {
9502        .name = "format",
9503        .attrs = kprobe_attrs,
9504};
9505
9506static const struct attribute_group *kprobe_attr_groups[] = {
9507        &kprobe_format_group,
9508        NULL,
9509};
9510
9511static int perf_kprobe_event_init(struct perf_event *event);
9512static struct pmu perf_kprobe = {
9513        .task_ctx_nr    = perf_sw_context,
9514        .event_init     = perf_kprobe_event_init,
9515        .add            = perf_trace_add,
9516        .del            = perf_trace_del,
9517        .start          = perf_swevent_start,
9518        .stop           = perf_swevent_stop,
9519        .read           = perf_swevent_read,
9520        .attr_groups    = kprobe_attr_groups,
9521};
9522
9523static int perf_kprobe_event_init(struct perf_event *event)
9524{
9525        int err;
9526        bool is_retprobe;
9527
9528        if (event->attr.type != perf_kprobe.type)
9529                return -ENOENT;
9530
9531        if (!perfmon_capable())
9532                return -EACCES;
9533
9534        /*
9535         * no branch sampling for probe events
9536         */
9537        if (has_branch_stack(event))
9538                return -EOPNOTSUPP;
9539
9540        is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9541        err = perf_kprobe_init(event, is_retprobe);
9542        if (err)
9543                return err;
9544
9545        event->destroy = perf_kprobe_destroy;
9546
9547        return 0;
9548}
9549#endif /* CONFIG_KPROBE_EVENTS */
9550
9551#ifdef CONFIG_UPROBE_EVENTS
9552PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9553
9554static struct attribute *uprobe_attrs[] = {
9555        &format_attr_retprobe.attr,
9556        &format_attr_ref_ctr_offset.attr,
9557        NULL,
9558};
9559
9560static struct attribute_group uprobe_format_group = {
9561        .name = "format",
9562        .attrs = uprobe_attrs,
9563};
9564
9565static const struct attribute_group *uprobe_attr_groups[] = {
9566        &uprobe_format_group,
9567        NULL,
9568};
9569
9570static int perf_uprobe_event_init(struct perf_event *event);
9571static struct pmu perf_uprobe = {
9572        .task_ctx_nr    = perf_sw_context,
9573        .event_init     = perf_uprobe_event_init,
9574        .add            = perf_trace_add,
9575        .del            = perf_trace_del,
9576        .start          = perf_swevent_start,
9577        .stop           = perf_swevent_stop,
9578        .read           = perf_swevent_read,
9579        .attr_groups    = uprobe_attr_groups,
9580};
9581
9582static int perf_uprobe_event_init(struct perf_event *event)
9583{
9584        int err;
9585        unsigned long ref_ctr_offset;
9586        bool is_retprobe;
9587
9588        if (event->attr.type != perf_uprobe.type)
9589                return -ENOENT;
9590
9591        if (!perfmon_capable())
9592                return -EACCES;
9593
9594        /*
9595         * no branch sampling for probe events
9596         */
9597        if (has_branch_stack(event))
9598                return -EOPNOTSUPP;
9599
9600        is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9601        ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9602        err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9603        if (err)
9604                return err;
9605
9606        event->destroy = perf_uprobe_destroy;
9607
9608        return 0;
9609}
9610#endif /* CONFIG_UPROBE_EVENTS */
9611
9612static inline void perf_tp_register(void)
9613{
9614        perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9615#ifdef CONFIG_KPROBE_EVENTS
9616        perf_pmu_register(&perf_kprobe, "kprobe", -1);
9617#endif
9618#ifdef CONFIG_UPROBE_EVENTS
9619        perf_pmu_register(&perf_uprobe, "uprobe", -1);
9620#endif
9621}
9622
9623static void perf_event_free_filter(struct perf_event *event)
9624{
9625        ftrace_profile_free_filter(event);
9626}
9627
9628#ifdef CONFIG_BPF_SYSCALL
9629static void bpf_overflow_handler(struct perf_event *event,
9630                                 struct perf_sample_data *data,
9631                                 struct pt_regs *regs)
9632{
9633        struct bpf_perf_event_data_kern ctx = {
9634                .data = data,
9635                .event = event,
9636        };
9637        int ret = 0;
9638
9639        ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9640        if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9641                goto out;
9642        rcu_read_lock();
9643        ret = BPF_PROG_RUN(event->prog, &ctx);
9644        rcu_read_unlock();
9645out:
9646        __this_cpu_dec(bpf_prog_active);
9647        if (!ret)
9648                return;
9649
9650        event->orig_overflow_handler(event, data, regs);
9651}
9652
9653static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9654{
9655        struct bpf_prog *prog;
9656
9657        if (event->overflow_handler_context)
9658                /* hw breakpoint or kernel counter */
9659                return -EINVAL;
9660
9661        if (event->prog)
9662                return -EEXIST;
9663
9664        prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9665        if (IS_ERR(prog))
9666                return PTR_ERR(prog);
9667
9668        if (event->attr.precise_ip &&
9669            prog->call_get_stack &&
9670            (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9671             event->attr.exclude_callchain_kernel ||
9672             event->attr.exclude_callchain_user)) {
9673                /*
9674                 * On perf_event with precise_ip, calling bpf_get_stack()
9675                 * may trigger unwinder warnings and occasional crashes.
9676                 * bpf_get_[stack|stackid] works around this issue by using
9677                 * callchain attached to perf_sample_data. If the
9678                 * perf_event does not full (kernel and user) callchain
9679                 * attached to perf_sample_data, do not allow attaching BPF
9680                 * program that calls bpf_get_[stack|stackid].
9681                 */
9682                bpf_prog_put(prog);
9683                return -EPROTO;
9684        }
9685
9686        event->prog = prog;
9687        event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9688        WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9689        return 0;
9690}
9691
9692static void perf_event_free_bpf_handler(struct perf_event *event)
9693{
9694        struct bpf_prog *prog = event->prog;
9695
9696        if (!prog)
9697                return;
9698
9699        WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9700        event->prog = NULL;
9701        bpf_prog_put(prog);
9702}
9703#else
9704static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9705{
9706        return -EOPNOTSUPP;
9707}
9708static void perf_event_free_bpf_handler(struct perf_event *event)
9709{
9710}
9711#endif
9712
9713/*
9714 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9715 * with perf_event_open()
9716 */
9717static inline bool perf_event_is_tracing(struct perf_event *event)
9718{
9719        if (event->pmu == &perf_tracepoint)
9720                return true;
9721#ifdef CONFIG_KPROBE_EVENTS
9722        if (event->pmu == &perf_kprobe)
9723                return true;
9724#endif
9725#ifdef CONFIG_UPROBE_EVENTS
9726        if (event->pmu == &perf_uprobe)
9727                return true;
9728#endif
9729        return false;
9730}
9731
9732static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9733{
9734        bool is_kprobe, is_tracepoint, is_syscall_tp;
9735        struct bpf_prog *prog;
9736        int ret;
9737
9738        if (!perf_event_is_tracing(event))
9739                return perf_event_set_bpf_handler(event, prog_fd);
9740
9741        is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9742        is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9743        is_syscall_tp = is_syscall_trace_event(event->tp_event);
9744        if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9745                /* bpf programs can only be attached to u/kprobe or tracepoint */
9746                return -EINVAL;
9747
9748        prog = bpf_prog_get(prog_fd);
9749        if (IS_ERR(prog))
9750                return PTR_ERR(prog);
9751
9752        if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9753            (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9754            (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9755                /* valid fd, but invalid bpf program type */
9756                bpf_prog_put(prog);
9757                return -EINVAL;
9758        }
9759
9760        /* Kprobe override only works for kprobes, not uprobes. */
9761        if (prog->kprobe_override &&
9762            !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9763                bpf_prog_put(prog);
9764                return -EINVAL;
9765        }
9766
9767        if (is_tracepoint || is_syscall_tp) {
9768                int off = trace_event_get_offsets(event->tp_event);
9769
9770                if (prog->aux->max_ctx_offset > off) {
9771                        bpf_prog_put(prog);
9772                        return -EACCES;
9773                }
9774        }
9775
9776        ret = perf_event_attach_bpf_prog(event, prog);
9777        if (ret)
9778                bpf_prog_put(prog);
9779        return ret;
9780}
9781
9782static void perf_event_free_bpf_prog(struct perf_event *event)
9783{
9784        if (!perf_event_is_tracing(event)) {
9785                perf_event_free_bpf_handler(event);
9786                return;
9787        }
9788        perf_event_detach_bpf_prog(event);
9789}
9790
9791#else
9792
9793static inline void perf_tp_register(void)
9794{
9795}
9796
9797static void perf_event_free_filter(struct perf_event *event)
9798{
9799}
9800
9801static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9802{
9803        return -ENOENT;
9804}
9805
9806static void perf_event_free_bpf_prog(struct perf_event *event)
9807{
9808}
9809#endif /* CONFIG_EVENT_TRACING */
9810
9811#ifdef CONFIG_HAVE_HW_BREAKPOINT
9812void perf_bp_event(struct perf_event *bp, void *data)
9813{
9814        struct perf_sample_data sample;
9815        struct pt_regs *regs = data;
9816
9817        perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9818
9819        if (!bp->hw.state && !perf_exclude_event(bp, regs))
9820                perf_swevent_event(bp, 1, &sample, regs);
9821}
9822#endif
9823
9824/*
9825 * Allocate a new address filter
9826 */
9827static struct perf_addr_filter *
9828perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9829{
9830        int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9831        struct perf_addr_filter *filter;
9832
9833        filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9834        if (!filter)
9835                return NULL;
9836
9837        INIT_LIST_HEAD(&filter->entry);
9838        list_add_tail(&filter->entry, filters);
9839
9840        return filter;
9841}
9842
9843static void free_filters_list(struct list_head *filters)
9844{
9845        struct perf_addr_filter *filter, *iter;
9846
9847        list_for_each_entry_safe(filter, iter, filters, entry) {
9848                path_put(&filter->path);
9849                list_del(&filter->entry);
9850                kfree(filter);
9851        }
9852}
9853
9854/*
9855 * Free existing address filters and optionally install new ones
9856 */
9857static void perf_addr_filters_splice(struct perf_event *event,
9858                                     struct list_head *head)
9859{
9860        unsigned long flags;
9861        LIST_HEAD(list);
9862
9863        if (!has_addr_filter(event))
9864                return;
9865
9866        /* don't bother with children, they don't have their own filters */
9867        if (event->parent)
9868                return;
9869
9870        raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9871
9872        list_splice_init(&event->addr_filters.list, &list);
9873        if (head)
9874                list_splice(head, &event->addr_filters.list);
9875
9876        raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9877
9878        free_filters_list(&list);
9879}
9880
9881/*
9882 * Scan through mm's vmas and see if one of them matches the
9883 * @filter; if so, adjust filter's address range.
9884 * Called with mm::mmap_lock down for reading.
9885 */
9886static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9887                                   struct mm_struct *mm,
9888                                   struct perf_addr_filter_range *fr)
9889{
9890        struct vm_area_struct *vma;
9891
9892        for (vma = mm->mmap; vma; vma = vma->vm_next) {
9893                if (!vma->vm_file)
9894                        continue;
9895
9896                if (perf_addr_filter_vma_adjust(filter, vma, fr))
9897                        return;
9898        }
9899}
9900
9901/*
9902 * Update event's address range filters based on the
9903 * task's existing mappings, if any.
9904 */
9905static void perf_event_addr_filters_apply(struct perf_event *event)
9906{
9907        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9908        struct task_struct *task = READ_ONCE(event->ctx->task);
9909        struct perf_addr_filter *filter;
9910        struct mm_struct *mm = NULL;
9911        unsigned int count = 0;
9912        unsigned long flags;
9913
9914        /*
9915         * We may observe TASK_TOMBSTONE, which means that the event tear-down
9916         * will stop on the parent's child_mutex that our caller is also holding
9917         */
9918        if (task == TASK_TOMBSTONE)
9919                return;
9920
9921        if (ifh->nr_file_filters) {
9922                mm = get_task_mm(event->ctx->task);
9923                if (!mm)
9924                        goto restart;
9925
9926                mmap_read_lock(mm);
9927        }
9928
9929        raw_spin_lock_irqsave(&ifh->lock, flags);
9930        list_for_each_entry(filter, &ifh->list, entry) {
9931                if (filter->path.dentry) {
9932                        /*
9933                         * Adjust base offset if the filter is associated to a
9934                         * binary that needs to be mapped:
9935                         */
9936                        event->addr_filter_ranges[count].start = 0;
9937                        event->addr_filter_ranges[count].size = 0;
9938
9939                        perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9940                } else {
9941                        event->addr_filter_ranges[count].start = filter->offset;
9942                        event->addr_filter_ranges[count].size  = filter->size;
9943                }
9944
9945                count++;
9946        }
9947
9948        event->addr_filters_gen++;
9949        raw_spin_unlock_irqrestore(&ifh->lock, flags);
9950
9951        if (ifh->nr_file_filters) {
9952                mmap_read_unlock(mm);
9953
9954                mmput(mm);
9955        }
9956
9957restart:
9958        perf_event_stop(event, 1);
9959}
9960
9961/*
9962 * Address range filtering: limiting the data to certain
9963 * instruction address ranges. Filters are ioctl()ed to us from
9964 * userspace as ascii strings.
9965 *
9966 * Filter string format:
9967 *
9968 * ACTION RANGE_SPEC
9969 * where ACTION is one of the
9970 *  * "filter": limit the trace to this region
9971 *  * "start": start tracing from this address
9972 *  * "stop": stop tracing at this address/region;
9973 * RANGE_SPEC is
9974 *  * for kernel addresses: <start address>[/<size>]
9975 *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9976 *
9977 * if <size> is not specified or is zero, the range is treated as a single
9978 * address; not valid for ACTION=="filter".
9979 */
9980enum {
9981        IF_ACT_NONE = -1,
9982        IF_ACT_FILTER,
9983        IF_ACT_START,
9984        IF_ACT_STOP,
9985        IF_SRC_FILE,
9986        IF_SRC_KERNEL,
9987        IF_SRC_FILEADDR,
9988        IF_SRC_KERNELADDR,
9989};
9990
9991enum {
9992        IF_STATE_ACTION = 0,
9993        IF_STATE_SOURCE,
9994        IF_STATE_END,
9995};
9996
9997static const match_table_t if_tokens = {
9998        { IF_ACT_FILTER,        "filter" },
9999        { IF_ACT_START,         "start" },
10000        { IF_ACT_STOP,          "stop" },
10001        { IF_SRC_FILE,          "%u/%u@%s" },
10002        { IF_SRC_KERNEL,        "%u/%u" },
10003        { IF_SRC_FILEADDR,      "%u@%s" },
10004        { IF_SRC_KERNELADDR,    "%u" },
10005        { IF_ACT_NONE,          NULL },
10006};
10007
10008/*
10009 * Address filter string parser
10010 */
10011static int
10012perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10013                             struct list_head *filters)
10014{
10015        struct perf_addr_filter *filter = NULL;
10016        char *start, *orig, *filename = NULL;
10017        substring_t args[MAX_OPT_ARGS];
10018        int state = IF_STATE_ACTION, token;
10019        unsigned int kernel = 0;
10020        int ret = -EINVAL;
10021
10022        orig = fstr = kstrdup(fstr, GFP_KERNEL);
10023        if (!fstr)
10024                return -ENOMEM;
10025
10026        while ((start = strsep(&fstr, " ,\n")) != NULL) {
10027                static const enum perf_addr_filter_action_t actions[] = {
10028                        [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10029                        [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10030                        [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10031                };
10032                ret = -EINVAL;
10033
10034                if (!*start)
10035                        continue;
10036
10037                /* filter definition begins */
10038                if (state == IF_STATE_ACTION) {
10039                        filter = perf_addr_filter_new(event, filters);
10040                        if (!filter)
10041                                goto fail;
10042                }
10043
10044                token = match_token(start, if_tokens, args);
10045                switch (token) {
10046                case IF_ACT_FILTER:
10047                case IF_ACT_START:
10048                case IF_ACT_STOP:
10049                        if (state != IF_STATE_ACTION)
10050                                goto fail;
10051
10052                        filter->action = actions[token];
10053                        state = IF_STATE_SOURCE;
10054                        break;
10055
10056                case IF_SRC_KERNELADDR:
10057                case IF_SRC_KERNEL:
10058                        kernel = 1;
10059                        fallthrough;
10060
10061                case IF_SRC_FILEADDR:
10062                case IF_SRC_FILE:
10063                        if (state != IF_STATE_SOURCE)
10064                                goto fail;
10065
10066                        *args[0].to = 0;
10067                        ret = kstrtoul(args[0].from, 0, &filter->offset);
10068                        if (ret)
10069                                goto fail;
10070
10071                        if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10072                                *args[1].to = 0;
10073                                ret = kstrtoul(args[1].from, 0, &filter->size);
10074                                if (ret)
10075                                        goto fail;
10076                        }
10077
10078                        if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10079                                int fpos = token == IF_SRC_FILE ? 2 : 1;
10080
10081                                kfree(filename);
10082                                filename = match_strdup(&args[fpos]);
10083                                if (!filename) {
10084                                        ret = -ENOMEM;
10085                                        goto fail;
10086                                }
10087                        }
10088
10089                        state = IF_STATE_END;
10090                        break;
10091
10092                default:
10093                        goto fail;
10094                }
10095
10096                /*
10097                 * Filter definition is fully parsed, validate and install it.
10098                 * Make sure that it doesn't contradict itself or the event's
10099                 * attribute.
10100                 */
10101                if (state == IF_STATE_END) {
10102                        ret = -EINVAL;
10103                        if (kernel && event->attr.exclude_kernel)
10104                                goto fail;
10105
10106                        /*
10107                         * ACTION "filter" must have a non-zero length region
10108                         * specified.
10109                         */
10110                        if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10111                            !filter->size)
10112                                goto fail;
10113
10114                        if (!kernel) {
10115                                if (!filename)
10116                                        goto fail;
10117
10118                                /*
10119                                 * For now, we only support file-based filters
10120                                 * in per-task events; doing so for CPU-wide
10121                                 * events requires additional context switching
10122                                 * trickery, since same object code will be
10123                                 * mapped at different virtual addresses in
10124                                 * different processes.
10125                                 */
10126                                ret = -EOPNOTSUPP;
10127                                if (!event->ctx->task)
10128                                        goto fail;
10129
10130                                /* look up the path and grab its inode */
10131                                ret = kern_path(filename, LOOKUP_FOLLOW,
10132                                                &filter->path);
10133                                if (ret)
10134                                        goto fail;
10135
10136                                ret = -EINVAL;
10137                                if (!filter->path.dentry ||
10138                                    !S_ISREG(d_inode(filter->path.dentry)
10139                                             ->i_mode))
10140                                        goto fail;
10141
10142                                event->addr_filters.nr_file_filters++;
10143                        }
10144
10145                        /* ready to consume more filters */
10146                        state = IF_STATE_ACTION;
10147                        filter = NULL;
10148                }
10149        }
10150
10151        if (state != IF_STATE_ACTION)
10152                goto fail;
10153
10154        kfree(filename);
10155        kfree(orig);
10156
10157        return 0;
10158
10159fail:
10160        kfree(filename);
10161        free_filters_list(filters);
10162        kfree(orig);
10163
10164        return ret;
10165}
10166
10167static int
10168perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10169{
10170        LIST_HEAD(filters);
10171        int ret;
10172
10173        /*
10174         * Since this is called in perf_ioctl() path, we're already holding
10175         * ctx::mutex.
10176         */
10177        lockdep_assert_held(&event->ctx->mutex);
10178
10179        if (WARN_ON_ONCE(event->parent))
10180                return -EINVAL;
10181
10182        ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10183        if (ret)
10184                goto fail_clear_files;
10185
10186        ret = event->pmu->addr_filters_validate(&filters);
10187        if (ret)
10188                goto fail_free_filters;
10189
10190        /* remove existing filters, if any */
10191        perf_addr_filters_splice(event, &filters);
10192
10193        /* install new filters */
10194        perf_event_for_each_child(event, perf_event_addr_filters_apply);
10195
10196        return ret;
10197
10198fail_free_filters:
10199        free_filters_list(&filters);
10200
10201fail_clear_files:
10202        event->addr_filters.nr_file_filters = 0;
10203
10204        return ret;
10205}
10206
10207static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10208{
10209        int ret = -EINVAL;
10210        char *filter_str;
10211
10212        filter_str = strndup_user(arg, PAGE_SIZE);
10213        if (IS_ERR(filter_str))
10214                return PTR_ERR(filter_str);
10215
10216#ifdef CONFIG_EVENT_TRACING
10217        if (perf_event_is_tracing(event)) {
10218                struct perf_event_context *ctx = event->ctx;
10219
10220                /*
10221                 * Beware, here be dragons!!
10222                 *
10223                 * the tracepoint muck will deadlock against ctx->mutex, but
10224                 * the tracepoint stuff does not actually need it. So
10225                 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10226                 * already have a reference on ctx.
10227                 *
10228                 * This can result in event getting moved to a different ctx,
10229                 * but that does not affect the tracepoint state.
10230                 */
10231                mutex_unlock(&ctx->mutex);
10232                ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10233                mutex_lock(&ctx->mutex);
10234        } else
10235#endif
10236        if (has_addr_filter(event))
10237                ret = perf_event_set_addr_filter(event, filter_str);
10238
10239        kfree(filter_str);
10240        return ret;
10241}
10242
10243/*
10244 * hrtimer based swevent callback
10245 */
10246
10247static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10248{
10249        enum hrtimer_restart ret = HRTIMER_RESTART;
10250        struct perf_sample_data data;
10251        struct pt_regs *regs;
10252        struct perf_event *event;
10253        u64 period;
10254
10255        event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10256
10257        if (event->state != PERF_EVENT_STATE_ACTIVE)
10258                return HRTIMER_NORESTART;
10259
10260        event->pmu->read(event);
10261
10262        perf_sample_data_init(&data, 0, event->hw.last_period);
10263        regs = get_irq_regs();
10264
10265        if (regs && !perf_exclude_event(event, regs)) {
10266                if (!(event->attr.exclude_idle && is_idle_task(current)))
10267                        if (__perf_event_overflow(event, 1, &data, regs))
10268                                ret = HRTIMER_NORESTART;
10269        }
10270
10271        period = max_t(u64, 10000, event->hw.sample_period);
10272        hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10273
10274        return ret;
10275}
10276
10277static void perf_swevent_start_hrtimer(struct perf_event *event)
10278{
10279        struct hw_perf_event *hwc = &event->hw;
10280        s64 period;
10281
10282        if (!is_sampling_event(event))
10283                return;
10284
10285        period = local64_read(&hwc->period_left);
10286        if (period) {
10287                if (period < 0)
10288                        period = 10000;
10289
10290                local64_set(&hwc->period_left, 0);
10291        } else {
10292                period = max_t(u64, 10000, hwc->sample_period);
10293        }
10294        hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10295                      HRTIMER_MODE_REL_PINNED_HARD);
10296}
10297
10298static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10299{
10300        struct hw_perf_event *hwc = &event->hw;
10301
10302        if (is_sampling_event(event)) {
10303                ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10304                local64_set(&hwc->period_left, ktime_to_ns(remaining));
10305
10306                hrtimer_cancel(&hwc->hrtimer);
10307        }
10308}
10309
10310static void perf_swevent_init_hrtimer(struct perf_event *event)
10311{
10312        struct hw_perf_event *hwc = &event->hw;
10313
10314        if (!is_sampling_event(event))
10315                return;
10316
10317        hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10318        hwc->hrtimer.function = perf_swevent_hrtimer;
10319
10320        /*
10321         * Since hrtimers have a fixed rate, we can do a static freq->period
10322         * mapping and avoid the whole period adjust feedback stuff.
10323         */
10324        if (event->attr.freq) {
10325                long freq = event->attr.sample_freq;
10326
10327                event->attr.sample_period = NSEC_PER_SEC / freq;
10328                hwc->sample_period = event->attr.sample_period;
10329                local64_set(&hwc->period_left, hwc->sample_period);
10330                hwc->last_period = hwc->sample_period;
10331                event->attr.freq = 0;
10332        }
10333}
10334
10335/*
10336 * Software event: cpu wall time clock
10337 */
10338
10339static void cpu_clock_event_update(struct perf_event *event)
10340{
10341        s64 prev;
10342        u64 now;
10343
10344        now = local_clock();
10345        prev = local64_xchg(&event->hw.prev_count, now);
10346        local64_add(now - prev, &event->count);
10347}
10348
10349static void cpu_clock_event_start(struct perf_event *event, int flags)
10350{
10351        local64_set(&event->hw.prev_count, local_clock());
10352        perf_swevent_start_hrtimer(event);
10353}
10354
10355static void cpu_clock_event_stop(struct perf_event *event, int flags)
10356{
10357        perf_swevent_cancel_hrtimer(event);
10358        cpu_clock_event_update(event);
10359}
10360
10361static int cpu_clock_event_add(struct perf_event *event, int flags)
10362{
10363        if (flags & PERF_EF_START)
10364                cpu_clock_event_start(event, flags);
10365        perf_event_update_userpage(event);
10366
10367        return 0;
10368}
10369
10370static void cpu_clock_event_del(struct perf_event *event, int flags)
10371{
10372        cpu_clock_event_stop(event, flags);
10373}
10374
10375static void cpu_clock_event_read(struct perf_event *event)
10376{
10377        cpu_clock_event_update(event);
10378}
10379
10380static int cpu_clock_event_init(struct perf_event *event)
10381{
10382        if (event->attr.type != PERF_TYPE_SOFTWARE)
10383                return -ENOENT;
10384
10385        if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10386                return -ENOENT;
10387
10388        /*
10389         * no branch sampling for software events
10390         */
10391        if (has_branch_stack(event))
10392                return -EOPNOTSUPP;
10393
10394        perf_swevent_init_hrtimer(event);
10395
10396        return 0;
10397}
10398
10399static struct pmu perf_cpu_clock = {
10400        .task_ctx_nr    = perf_sw_context,
10401
10402        .capabilities   = PERF_PMU_CAP_NO_NMI,
10403
10404        .event_init     = cpu_clock_event_init,
10405        .add            = cpu_clock_event_add,
10406        .del            = cpu_clock_event_del,
10407        .start          = cpu_clock_event_start,
10408        .stop           = cpu_clock_event_stop,
10409        .read           = cpu_clock_event_read,
10410};
10411
10412/*
10413 * Software event: task time clock
10414 */
10415
10416static void task_clock_event_update(struct perf_event *event, u64 now)
10417{
10418        u64 prev;
10419        s64 delta;
10420
10421        prev = local64_xchg(&event->hw.prev_count, now);
10422        delta = now - prev;
10423        local64_add(delta, &event->count);
10424}
10425
10426static void task_clock_event_start(struct perf_event *event, int flags)
10427{
10428        local64_set(&event->hw.prev_count, event->ctx->time);
10429        perf_swevent_start_hrtimer(event);
10430}
10431
10432static void task_clock_event_stop(struct perf_event *event, int flags)
10433{
10434        perf_swevent_cancel_hrtimer(event);
10435        task_clock_event_update(event, event->ctx->time);
10436}
10437
10438static int task_clock_event_add(struct perf_event *event, int flags)
10439{
10440        if (flags & PERF_EF_START)
10441                task_clock_event_start(event, flags);
10442        perf_event_update_userpage(event);
10443
10444        return 0;
10445}
10446
10447static void task_clock_event_del(struct perf_event *event, int flags)
10448{
10449        task_clock_event_stop(event, PERF_EF_UPDATE);
10450}
10451
10452static void task_clock_event_read(struct perf_event *event)
10453{
10454        u64 now = perf_clock();
10455        u64 delta = now - event->ctx->timestamp;
10456        u64 time = event->ctx->time + delta;
10457
10458        task_clock_event_update(event, time);
10459}
10460
10461static int task_clock_event_init(struct perf_event *event)
10462{
10463        if (event->attr.type != PERF_TYPE_SOFTWARE)
10464                return -ENOENT;
10465
10466        if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10467                return -ENOENT;
10468
10469        /*
10470         * no branch sampling for software events
10471         */
10472        if (has_branch_stack(event))
10473                return -EOPNOTSUPP;
10474
10475        perf_swevent_init_hrtimer(event);
10476
10477        return 0;
10478}
10479
10480static struct pmu perf_task_clock = {
10481        .task_ctx_nr    = perf_sw_context,
10482
10483        .capabilities   = PERF_PMU_CAP_NO_NMI,
10484
10485        .event_init     = task_clock_event_init,
10486        .add            = task_clock_event_add,
10487        .del            = task_clock_event_del,
10488        .start          = task_clock_event_start,
10489        .stop           = task_clock_event_stop,
10490        .read           = task_clock_event_read,
10491};
10492
10493static void perf_pmu_nop_void(struct pmu *pmu)
10494{
10495}
10496
10497static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10498{
10499}
10500
10501static int perf_pmu_nop_int(struct pmu *pmu)
10502{
10503        return 0;
10504}
10505
10506static int perf_event_nop_int(struct perf_event *event, u64 value)
10507{
10508        return 0;
10509}
10510
10511static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10512
10513static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10514{
10515        __this_cpu_write(nop_txn_flags, flags);
10516
10517        if (flags & ~PERF_PMU_TXN_ADD)
10518                return;
10519
10520        perf_pmu_disable(pmu);
10521}
10522
10523static int perf_pmu_commit_txn(struct pmu *pmu)
10524{
10525        unsigned int flags = __this_cpu_read(nop_txn_flags);
10526
10527        __this_cpu_write(nop_txn_flags, 0);
10528
10529        if (flags & ~PERF_PMU_TXN_ADD)
10530                return 0;
10531
10532        perf_pmu_enable(pmu);
10533        return 0;
10534}
10535
10536static void perf_pmu_cancel_txn(struct pmu *pmu)
10537{
10538        unsigned int flags =  __this_cpu_read(nop_txn_flags);
10539
10540        __this_cpu_write(nop_txn_flags, 0);
10541
10542        if (flags & ~PERF_PMU_TXN_ADD)
10543                return;
10544
10545        perf_pmu_enable(pmu);
10546}
10547
10548static int perf_event_idx_default(struct perf_event *event)
10549{
10550        return 0;
10551}
10552
10553/*
10554 * Ensures all contexts with the same task_ctx_nr have the same
10555 * pmu_cpu_context too.
10556 */
10557static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10558{
10559        struct pmu *pmu;
10560
10561        if (ctxn < 0)
10562                return NULL;
10563
10564        list_for_each_entry(pmu, &pmus, entry) {
10565                if (pmu->task_ctx_nr == ctxn)
10566                        return pmu->pmu_cpu_context;
10567        }
10568
10569        return NULL;
10570}
10571
10572static void free_pmu_context(struct pmu *pmu)
10573{
10574        /*
10575         * Static contexts such as perf_sw_context have a global lifetime
10576         * and may be shared between different PMUs. Avoid freeing them
10577         * when a single PMU is going away.
10578         */
10579        if (pmu->task_ctx_nr > perf_invalid_context)
10580                return;
10581
10582        free_percpu(pmu->pmu_cpu_context);
10583}
10584
10585/*
10586 * Let userspace know that this PMU supports address range filtering:
10587 */
10588static ssize_t nr_addr_filters_show(struct device *dev,
10589                                    struct device_attribute *attr,
10590                                    char *page)
10591{
10592        struct pmu *pmu = dev_get_drvdata(dev);
10593
10594        return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10595}
10596DEVICE_ATTR_RO(nr_addr_filters);
10597
10598static struct idr pmu_idr;
10599
10600static ssize_t
10601type_show(struct device *dev, struct device_attribute *attr, char *page)
10602{
10603        struct pmu *pmu = dev_get_drvdata(dev);
10604
10605        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10606}
10607static DEVICE_ATTR_RO(type);
10608
10609static ssize_t
10610perf_event_mux_interval_ms_show(struct device *dev,
10611                                struct device_attribute *attr,
10612                                char *page)
10613{
10614        struct pmu *pmu = dev_get_drvdata(dev);
10615
10616        return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10617}
10618
10619static DEFINE_MUTEX(mux_interval_mutex);
10620
10621static ssize_t
10622perf_event_mux_interval_ms_store(struct device *dev,
10623                                 struct device_attribute *attr,
10624                                 const char *buf, size_t count)
10625{
10626        struct pmu *pmu = dev_get_drvdata(dev);
10627        int timer, cpu, ret;
10628
10629        ret = kstrtoint(buf, 0, &timer);
10630        if (ret)
10631                return ret;
10632
10633        if (timer < 1)
10634                return -EINVAL;
10635
10636        /* same value, noting to do */
10637        if (timer == pmu->hrtimer_interval_ms)
10638                return count;
10639
10640        mutex_lock(&mux_interval_mutex);
10641        pmu->hrtimer_interval_ms = timer;
10642
10643        /* update all cpuctx for this PMU */
10644        cpus_read_lock();
10645        for_each_online_cpu(cpu) {
10646                struct perf_cpu_context *cpuctx;
10647                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10648                cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10649
10650                cpu_function_call(cpu,
10651                        (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10652        }
10653        cpus_read_unlock();
10654        mutex_unlock(&mux_interval_mutex);
10655
10656        return count;
10657}
10658static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10659
10660static struct attribute *pmu_dev_attrs[] = {
10661        &dev_attr_type.attr,
10662        &dev_attr_perf_event_mux_interval_ms.attr,
10663        NULL,
10664};
10665ATTRIBUTE_GROUPS(pmu_dev);
10666
10667static int pmu_bus_running;
10668static struct bus_type pmu_bus = {
10669        .name           = "event_source",
10670        .dev_groups     = pmu_dev_groups,
10671};
10672
10673static void pmu_dev_release(struct device *dev)
10674{
10675        kfree(dev);
10676}
10677
10678static int pmu_dev_alloc(struct pmu *pmu)
10679{
10680        int ret = -ENOMEM;
10681
10682        pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10683        if (!pmu->dev)
10684                goto out;
10685
10686        pmu->dev->groups = pmu->attr_groups;
10687        device_initialize(pmu->dev);
10688        ret = dev_set_name(pmu->dev, "%s", pmu->name);
10689        if (ret)
10690                goto free_dev;
10691
10692        dev_set_drvdata(pmu->dev, pmu);
10693        pmu->dev->bus = &pmu_bus;
10694        pmu->dev->release = pmu_dev_release;
10695        ret = device_add(pmu->dev);
10696        if (ret)
10697                goto free_dev;
10698
10699        /* For PMUs with address filters, throw in an extra attribute: */
10700        if (pmu->nr_addr_filters)
10701                ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10702
10703        if (ret)
10704                goto del_dev;
10705
10706        if (pmu->attr_update)
10707                ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10708
10709        if (ret)
10710                goto del_dev;
10711
10712out:
10713        return ret;
10714
10715del_dev:
10716        device_del(pmu->dev);
10717
10718free_dev:
10719        put_device(pmu->dev);
10720        goto out;
10721}
10722
10723static struct lock_class_key cpuctx_mutex;
10724static struct lock_class_key cpuctx_lock;
10725
10726int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10727{
10728        int cpu, ret, max = PERF_TYPE_MAX;
10729
10730        mutex_lock(&pmus_lock);
10731        ret = -ENOMEM;
10732        pmu->pmu_disable_count = alloc_percpu(int);
10733        if (!pmu->pmu_disable_count)
10734                goto unlock;
10735
10736        pmu->type = -1;
10737        if (!name)
10738                goto skip_type;
10739        pmu->name = name;
10740
10741        if (type != PERF_TYPE_SOFTWARE) {
10742                if (type >= 0)
10743                        max = type;
10744
10745                ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10746                if (ret < 0)
10747                        goto free_pdc;
10748
10749                WARN_ON(type >= 0 && ret != type);
10750
10751                type = ret;
10752        }
10753        pmu->type = type;
10754
10755        if (pmu_bus_running) {
10756                ret = pmu_dev_alloc(pmu);
10757                if (ret)
10758                        goto free_idr;
10759        }
10760
10761skip_type:
10762        if (pmu->task_ctx_nr == perf_hw_context) {
10763                static int hw_context_taken = 0;
10764
10765                /*
10766                 * Other than systems with heterogeneous CPUs, it never makes
10767                 * sense for two PMUs to share perf_hw_context. PMUs which are
10768                 * uncore must use perf_invalid_context.
10769                 */
10770                if (WARN_ON_ONCE(hw_context_taken &&
10771                    !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10772                        pmu->task_ctx_nr = perf_invalid_context;
10773
10774                hw_context_taken = 1;
10775        }
10776
10777        pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10778        if (pmu->pmu_cpu_context)
10779                goto got_cpu_context;
10780
10781        ret = -ENOMEM;
10782        pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10783        if (!pmu->pmu_cpu_context)
10784                goto free_dev;
10785
10786        for_each_possible_cpu(cpu) {
10787                struct perf_cpu_context *cpuctx;
10788
10789                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10790                __perf_event_init_context(&cpuctx->ctx);
10791                lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10792                lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10793                cpuctx->ctx.pmu = pmu;
10794                cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10795
10796                __perf_mux_hrtimer_init(cpuctx, cpu);
10797
10798                cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10799                cpuctx->heap = cpuctx->heap_default;
10800        }
10801
10802got_cpu_context:
10803        if (!pmu->start_txn) {
10804                if (pmu->pmu_enable) {
10805                        /*
10806                         * If we have pmu_enable/pmu_disable calls, install
10807                         * transaction stubs that use that to try and batch
10808                         * hardware accesses.
10809                         */
10810                        pmu->start_txn  = perf_pmu_start_txn;
10811                        pmu->commit_txn = perf_pmu_commit_txn;
10812                        pmu->cancel_txn = perf_pmu_cancel_txn;
10813                } else {
10814                        pmu->start_txn  = perf_pmu_nop_txn;
10815                        pmu->commit_txn = perf_pmu_nop_int;
10816                        pmu->cancel_txn = perf_pmu_nop_void;
10817                }
10818        }
10819
10820        if (!pmu->pmu_enable) {
10821                pmu->pmu_enable  = perf_pmu_nop_void;
10822                pmu->pmu_disable = perf_pmu_nop_void;
10823        }
10824
10825        if (!pmu->check_period)
10826                pmu->check_period = perf_event_nop_int;
10827
10828        if (!pmu->event_idx)
10829                pmu->event_idx = perf_event_idx_default;
10830
10831        /*
10832         * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10833         * since these cannot be in the IDR. This way the linear search
10834         * is fast, provided a valid software event is provided.
10835         */
10836        if (type == PERF_TYPE_SOFTWARE || !name)
10837                list_add_rcu(&pmu->entry, &pmus);
10838        else
10839                list_add_tail_rcu(&pmu->entry, &pmus);
10840
10841        atomic_set(&pmu->exclusive_cnt, 0);
10842        ret = 0;
10843unlock:
10844        mutex_unlock(&pmus_lock);
10845
10846        return ret;
10847
10848free_dev:
10849        device_del(pmu->dev);
10850        put_device(pmu->dev);
10851
10852free_idr:
10853        if (pmu->type != PERF_TYPE_SOFTWARE)
10854                idr_remove(&pmu_idr, pmu->type);
10855
10856free_pdc:
10857        free_percpu(pmu->pmu_disable_count);
10858        goto unlock;
10859}
10860EXPORT_SYMBOL_GPL(perf_pmu_register);
10861
10862void perf_pmu_unregister(struct pmu *pmu)
10863{
10864        mutex_lock(&pmus_lock);
10865        list_del_rcu(&pmu->entry);
10866
10867        /*
10868         * We dereference the pmu list under both SRCU and regular RCU, so
10869         * synchronize against both of those.
10870         */
10871        synchronize_srcu(&pmus_srcu);
10872        synchronize_rcu();
10873
10874        free_percpu(pmu->pmu_disable_count);
10875        if (pmu->type != PERF_TYPE_SOFTWARE)
10876                idr_remove(&pmu_idr, pmu->type);
10877        if (pmu_bus_running) {
10878                if (pmu->nr_addr_filters)
10879                        device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10880                device_del(pmu->dev);
10881                put_device(pmu->dev);
10882        }
10883        free_pmu_context(pmu);
10884        mutex_unlock(&pmus_lock);
10885}
10886EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10887
10888static inline bool has_extended_regs(struct perf_event *event)
10889{
10890        return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10891               (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10892}
10893
10894static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10895{
10896        struct perf_event_context *ctx = NULL;
10897        int ret;
10898
10899        if (!try_module_get(pmu->module))
10900                return -ENODEV;
10901
10902        /*
10903         * A number of pmu->event_init() methods iterate the sibling_list to,
10904         * for example, validate if the group fits on the PMU. Therefore,
10905         * if this is a sibling event, acquire the ctx->mutex to protect
10906         * the sibling_list.
10907         */
10908        if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10909                /*
10910                 * This ctx->mutex can nest when we're called through
10911                 * inheritance. See the perf_event_ctx_lock_nested() comment.
10912                 */
10913                ctx = perf_event_ctx_lock_nested(event->group_leader,
10914                                                 SINGLE_DEPTH_NESTING);
10915                BUG_ON(!ctx);
10916        }
10917
10918        event->pmu = pmu;
10919        ret = pmu->event_init(event);
10920
10921        if (ctx)
10922                perf_event_ctx_unlock(event->group_leader, ctx);
10923
10924        if (!ret) {
10925                if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10926                    has_extended_regs(event))
10927                        ret = -EOPNOTSUPP;
10928
10929                if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10930                    event_has_any_exclude_flag(event))
10931                        ret = -EINVAL;
10932
10933                if (ret && event->destroy)
10934                        event->destroy(event);
10935        }
10936
10937        if (ret)
10938                module_put(pmu->module);
10939
10940        return ret;
10941}
10942
10943static struct pmu *perf_init_event(struct perf_event *event)
10944{
10945        int idx, type, ret;
10946        struct pmu *pmu;
10947
10948        idx = srcu_read_lock(&pmus_srcu);
10949
10950        /* Try parent's PMU first: */
10951        if (event->parent && event->parent->pmu) {
10952                pmu = event->parent->pmu;
10953                ret = perf_try_init_event(pmu, event);
10954                if (!ret)
10955                        goto unlock;
10956        }
10957
10958        /*
10959         * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10960         * are often aliases for PERF_TYPE_RAW.
10961         */
10962        type = event->attr.type;
10963        if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10964                type = PERF_TYPE_RAW;
10965
10966again:
10967        rcu_read_lock();
10968        pmu = idr_find(&pmu_idr, type);
10969        rcu_read_unlock();
10970        if (pmu) {
10971                ret = perf_try_init_event(pmu, event);
10972                if (ret == -ENOENT && event->attr.type != type) {
10973                        type = event->attr.type;
10974                        goto again;
10975                }
10976
10977                if (ret)
10978                        pmu = ERR_PTR(ret);
10979
10980                goto unlock;
10981        }
10982
10983        list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10984                ret = perf_try_init_event(pmu, event);
10985                if (!ret)
10986                        goto unlock;
10987
10988                if (ret != -ENOENT) {
10989                        pmu = ERR_PTR(ret);
10990                        goto unlock;
10991                }
10992        }
10993        pmu = ERR_PTR(-ENOENT);
10994unlock:
10995        srcu_read_unlock(&pmus_srcu, idx);
10996
10997        return pmu;
10998}
10999
11000static void attach_sb_event(struct perf_event *event)
11001{
11002        struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11003
11004        raw_spin_lock(&pel->lock);
11005        list_add_rcu(&event->sb_list, &pel->list);
11006        raw_spin_unlock(&pel->lock);
11007}
11008
11009/*
11010 * We keep a list of all !task (and therefore per-cpu) events
11011 * that need to receive side-band records.
11012 *
11013 * This avoids having to scan all the various PMU per-cpu contexts
11014 * looking for them.
11015 */
11016static void account_pmu_sb_event(struct perf_event *event)
11017{
11018        if (is_sb_event(event))
11019                attach_sb_event(event);
11020}
11021
11022static void account_event_cpu(struct perf_event *event, int cpu)
11023{
11024        if (event->parent)
11025                return;
11026
11027        if (is_cgroup_event(event))
11028                atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11029}
11030
11031/* Freq events need the tick to stay alive (see perf_event_task_tick). */
11032static void account_freq_event_nohz(void)
11033{
11034#ifdef CONFIG_NO_HZ_FULL
11035        /* Lock so we don't race with concurrent unaccount */
11036        spin_lock(&nr_freq_lock);
11037        if (atomic_inc_return(&nr_freq_events) == 1)
11038                tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11039        spin_unlock(&nr_freq_lock);
11040#endif
11041}
11042
11043static void account_freq_event(void)
11044{
11045        if (tick_nohz_full_enabled())
11046                account_freq_event_nohz();
11047        else
11048                atomic_inc(&nr_freq_events);
11049}
11050
11051
11052static void account_event(struct perf_event *event)
11053{
11054        bool inc = false;
11055
11056        if (event->parent)
11057                return;
11058
11059        if (event->attach_state & PERF_ATTACH_TASK)
11060                inc = true;
11061        if (event->attr.mmap || event->attr.mmap_data)
11062                atomic_inc(&nr_mmap_events);
11063        if (event->attr.comm)
11064                atomic_inc(&nr_comm_events);
11065        if (event->attr.namespaces)
11066                atomic_inc(&nr_namespaces_events);
11067        if (event->attr.cgroup)
11068                atomic_inc(&nr_cgroup_events);
11069        if (event->attr.task)
11070                atomic_inc(&nr_task_events);
11071        if (event->attr.freq)
11072                account_freq_event();
11073        if (event->attr.context_switch) {
11074                atomic_inc(&nr_switch_events);
11075                inc = true;
11076        }
11077        if (has_branch_stack(event))
11078                inc = true;
11079        if (is_cgroup_event(event))
11080                inc = true;
11081        if (event->attr.ksymbol)
11082                atomic_inc(&nr_ksymbol_events);
11083        if (event->attr.bpf_event)
11084                atomic_inc(&nr_bpf_events);
11085        if (event->attr.text_poke)
11086                atomic_inc(&nr_text_poke_events);
11087
11088        if (inc) {
11089                /*
11090                 * We need the mutex here because static_branch_enable()
11091                 * must complete *before* the perf_sched_count increment
11092                 * becomes visible.
11093                 */
11094                if (atomic_inc_not_zero(&perf_sched_count))
11095                        goto enabled;
11096
11097                mutex_lock(&perf_sched_mutex);
11098                if (!atomic_read(&perf_sched_count)) {
11099                        static_branch_enable(&perf_sched_events);
11100                        /*
11101                         * Guarantee that all CPUs observe they key change and
11102                         * call the perf scheduling hooks before proceeding to
11103                         * install events that need them.
11104                         */
11105                        synchronize_rcu();
11106                }
11107                /*
11108                 * Now that we have waited for the sync_sched(), allow further
11109                 * increments to by-pass the mutex.
11110                 */
11111                atomic_inc(&perf_sched_count);
11112                mutex_unlock(&perf_sched_mutex);
11113        }
11114enabled:
11115
11116        account_event_cpu(event, event->cpu);
11117
11118        account_pmu_sb_event(event);
11119}
11120
11121/*
11122 * Allocate and initialize an event structure
11123 */
11124static struct perf_event *
11125perf_event_alloc(struct perf_event_attr *attr, int cpu,
11126                 struct task_struct *task,
11127                 struct perf_event *group_leader,
11128                 struct perf_event *parent_event,
11129                 perf_overflow_handler_t overflow_handler,
11130                 void *context, int cgroup_fd)
11131{
11132        struct pmu *pmu;
11133        struct perf_event *event;
11134        struct hw_perf_event *hwc;
11135        long err = -EINVAL;
11136
11137        if ((unsigned)cpu >= nr_cpu_ids) {
11138                if (!task || cpu != -1)
11139                        return ERR_PTR(-EINVAL);
11140        }
11141
11142        event = kzalloc(sizeof(*event), GFP_KERNEL);
11143        if (!event)
11144                return ERR_PTR(-ENOMEM);
11145
11146        /*
11147         * Single events are their own group leaders, with an
11148         * empty sibling list:
11149         */
11150        if (!group_leader)
11151                group_leader = event;
11152
11153        mutex_init(&event->child_mutex);
11154        INIT_LIST_HEAD(&event->child_list);
11155
11156        INIT_LIST_HEAD(&event->event_entry);
11157        INIT_LIST_HEAD(&event->sibling_list);
11158        INIT_LIST_HEAD(&event->active_list);
11159        init_event_group(event);
11160        INIT_LIST_HEAD(&event->rb_entry);
11161        INIT_LIST_HEAD(&event->active_entry);
11162        INIT_LIST_HEAD(&event->addr_filters.list);
11163        INIT_HLIST_NODE(&event->hlist_entry);
11164
11165
11166        init_waitqueue_head(&event->waitq);
11167        event->pending_disable = -1;
11168        init_irq_work(&event->pending, perf_pending_event);
11169
11170        mutex_init(&event->mmap_mutex);
11171        raw_spin_lock_init(&event->addr_filters.lock);
11172
11173        atomic_long_set(&event->refcount, 1);
11174        event->cpu              = cpu;
11175        event->attr             = *attr;
11176        event->group_leader     = group_leader;
11177        event->pmu              = NULL;
11178        event->oncpu            = -1;
11179
11180        event->parent           = parent_event;
11181
11182        event->ns               = get_pid_ns(task_active_pid_ns(current));
11183        event->id               = atomic64_inc_return(&perf_event_id);
11184
11185        event->state            = PERF_EVENT_STATE_INACTIVE;
11186
11187        if (task) {
11188                event->attach_state = PERF_ATTACH_TASK;
11189                /*
11190                 * XXX pmu::event_init needs to know what task to account to
11191                 * and we cannot use the ctx information because we need the
11192                 * pmu before we get a ctx.
11193                 */
11194                event->hw.target = get_task_struct(task);
11195        }
11196
11197        event->clock = &local_clock;
11198        if (parent_event)
11199                event->clock = parent_event->clock;
11200
11201        if (!overflow_handler && parent_event) {
11202                overflow_handler = parent_event->overflow_handler;
11203                context = parent_event->overflow_handler_context;
11204#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11205                if (overflow_handler == bpf_overflow_handler) {
11206                        struct bpf_prog *prog = parent_event->prog;
11207
11208                        bpf_prog_inc(prog);
11209                        event->prog = prog;
11210                        event->orig_overflow_handler =
11211                                parent_event->orig_overflow_handler;
11212                }
11213#endif
11214        }
11215
11216        if (overflow_handler) {
11217                event->overflow_handler = overflow_handler;
11218                event->overflow_handler_context = context;
11219        } else if (is_write_backward(event)){
11220                event->overflow_handler = perf_event_output_backward;
11221                event->overflow_handler_context = NULL;
11222        } else {
11223                event->overflow_handler = perf_event_output_forward;
11224                event->overflow_handler_context = NULL;
11225        }
11226
11227        perf_event__state_init(event);
11228
11229        pmu = NULL;
11230
11231        hwc = &event->hw;
11232        hwc->sample_period = attr->sample_period;
11233        if (attr->freq && attr->sample_freq)
11234                hwc->sample_period = 1;
11235        hwc->last_period = hwc->sample_period;
11236
11237        local64_set(&hwc->period_left, hwc->sample_period);
11238
11239        /*
11240         * We currently do not support PERF_SAMPLE_READ on inherited events.
11241         * See perf_output_read().
11242         */
11243        if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11244                goto err_ns;
11245
11246        if (!has_branch_stack(event))
11247                event->attr.branch_sample_type = 0;
11248
11249        pmu = perf_init_event(event);
11250        if (IS_ERR(pmu)) {
11251                err = PTR_ERR(pmu);
11252                goto err_ns;
11253        }
11254
11255        /*
11256         * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11257         * be different on other CPUs in the uncore mask.
11258         */
11259        if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11260                err = -EINVAL;
11261                goto err_pmu;
11262        }
11263
11264        if (event->attr.aux_output &&
11265            !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11266                err = -EOPNOTSUPP;
11267                goto err_pmu;
11268        }
11269
11270        if (cgroup_fd != -1) {
11271                err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11272                if (err)
11273                        goto err_pmu;
11274        }
11275
11276        err = exclusive_event_init(event);
11277        if (err)
11278                goto err_pmu;
11279
11280        if (has_addr_filter(event)) {
11281                event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11282                                                    sizeof(struct perf_addr_filter_range),
11283                                                    GFP_KERNEL);
11284                if (!event->addr_filter_ranges) {
11285                        err = -ENOMEM;
11286                        goto err_per_task;
11287                }
11288
11289                /*
11290                 * Clone the parent's vma offsets: they are valid until exec()
11291                 * even if the mm is not shared with the parent.
11292                 */
11293                if (event->parent) {
11294                        struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11295
11296                        raw_spin_lock_irq(&ifh->lock);
11297                        memcpy(event->addr_filter_ranges,
11298                               event->parent->addr_filter_ranges,
11299                               pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11300                        raw_spin_unlock_irq(&ifh->lock);
11301                }
11302
11303                /* force hw sync on the address filters */
11304                event->addr_filters_gen = 1;
11305        }
11306
11307        if (!event->parent) {
11308                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11309                        err = get_callchain_buffers(attr->sample_max_stack);
11310                        if (err)
11311                                goto err_addr_filters;
11312                }
11313        }
11314
11315        err = security_perf_event_alloc(event);
11316        if (err)
11317                goto err_callchain_buffer;
11318
11319        /* symmetric to unaccount_event() in _free_event() */
11320        account_event(event);
11321
11322        return event;
11323
11324err_callchain_buffer:
11325        if (!event->parent) {
11326                if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11327                        put_callchain_buffers();
11328        }
11329err_addr_filters:
11330        kfree(event->addr_filter_ranges);
11331
11332err_per_task:
11333        exclusive_event_destroy(event);
11334
11335err_pmu:
11336        if (is_cgroup_event(event))
11337                perf_detach_cgroup(event);
11338        if (event->destroy)
11339                event->destroy(event);
11340        module_put(pmu->module);
11341err_ns:
11342        if (event->ns)
11343                put_pid_ns(event->ns);
11344        if (event->hw.target)
11345                put_task_struct(event->hw.target);
11346        kfree(event);
11347
11348        return ERR_PTR(err);
11349}
11350
11351static int perf_copy_attr(struct perf_event_attr __user *uattr,
11352                          struct perf_event_attr *attr)
11353{
11354        u32 size;
11355        int ret;
11356
11357        /* Zero the full structure, so that a short copy will be nice. */
11358        memset(attr, 0, sizeof(*attr));
11359
11360        ret = get_user(size, &uattr->size);
11361        if (ret)
11362                return ret;
11363
11364        /* ABI compatibility quirk: */
11365        if (!size)
11366                size = PERF_ATTR_SIZE_VER0;
11367        if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11368                goto err_size;
11369
11370        ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11371        if (ret) {
11372                if (ret == -E2BIG)
11373                        goto err_size;
11374                return ret;
11375        }
11376
11377        attr->size = size;
11378
11379        if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11380                return -EINVAL;
11381
11382        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11383                return -EINVAL;
11384
11385        if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11386                return -EINVAL;
11387
11388        if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11389                u64 mask = attr->branch_sample_type;
11390
11391                /* only using defined bits */
11392                if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11393                        return -EINVAL;
11394
11395                /* at least one branch bit must be set */
11396                if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11397                        return -EINVAL;
11398
11399                /* propagate priv level, when not set for branch */
11400                if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11401
11402                        /* exclude_kernel checked on syscall entry */
11403                        if (!attr->exclude_kernel)
11404                                mask |= PERF_SAMPLE_BRANCH_KERNEL;
11405
11406                        if (!attr->exclude_user)
11407                                mask |= PERF_SAMPLE_BRANCH_USER;
11408
11409                        if (!attr->exclude_hv)
11410                                mask |= PERF_SAMPLE_BRANCH_HV;
11411                        /*
11412                         * adjust user setting (for HW filter setup)
11413                         */
11414                        attr->branch_sample_type = mask;
11415                }
11416                /* privileged levels capture (kernel, hv): check permissions */
11417                if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11418                        ret = perf_allow_kernel(attr);
11419                        if (ret)
11420                                return ret;
11421                }
11422        }
11423
11424        if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11425                ret = perf_reg_validate(attr->sample_regs_user);
11426                if (ret)
11427                        return ret;
11428        }
11429
11430        if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11431                if (!arch_perf_have_user_stack_dump())
11432                        return -ENOSYS;
11433
11434                /*
11435                 * We have __u32 type for the size, but so far
11436                 * we can only use __u16 as maximum due to the
11437                 * __u16 sample size limit.
11438                 */
11439                if (attr->sample_stack_user >= USHRT_MAX)
11440                        return -EINVAL;
11441                else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11442                        return -EINVAL;
11443        }
11444
11445        if (!attr->sample_max_stack)
11446                attr->sample_max_stack = sysctl_perf_event_max_stack;
11447
11448        if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11449                ret = perf_reg_validate(attr->sample_regs_intr);
11450
11451#ifndef CONFIG_CGROUP_PERF
11452        if (attr->sample_type & PERF_SAMPLE_CGROUP)
11453                return -EINVAL;
11454#endif
11455
11456out:
11457        return ret;
11458
11459err_size:
11460        put_user(sizeof(*attr), &uattr->size);
11461        ret = -E2BIG;
11462        goto out;
11463}
11464
11465static int
11466perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11467{
11468        struct perf_buffer *rb = NULL;
11469        int ret = -EINVAL;
11470
11471        if (!output_event)
11472                goto set;
11473
11474        /* don't allow circular references */
11475        if (event == output_event)
11476                goto out;
11477
11478        /*
11479         * Don't allow cross-cpu buffers
11480         */
11481        if (output_event->cpu != event->cpu)
11482                goto out;
11483
11484        /*
11485         * If its not a per-cpu rb, it must be the same task.
11486         */
11487        if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11488                goto out;
11489
11490        /*
11491         * Mixing clocks in the same buffer is trouble you don't need.
11492         */
11493        if (output_event->clock != event->clock)
11494                goto out;
11495
11496        /*
11497         * Either writing ring buffer from beginning or from end.
11498         * Mixing is not allowed.
11499         */
11500        if (is_write_backward(output_event) != is_write_backward(event))
11501                goto out;
11502
11503        /*
11504         * If both events generate aux data, they must be on the same PMU
11505         */
11506        if (has_aux(event) && has_aux(output_event) &&
11507            event->pmu != output_event->pmu)
11508                goto out;
11509
11510set:
11511        mutex_lock(&event->mmap_mutex);
11512        /* Can't redirect output if we've got an active mmap() */
11513        if (atomic_read(&event->mmap_count))
11514                goto unlock;
11515
11516        if (output_event) {
11517                /* get the rb we want to redirect to */
11518                rb = ring_buffer_get(output_event);
11519                if (!rb)
11520                        goto unlock;
11521        }
11522
11523        ring_buffer_attach(event, rb);
11524
11525        ret = 0;
11526unlock:
11527        mutex_unlock(&event->mmap_mutex);
11528
11529out:
11530        return ret;
11531}
11532
11533static void mutex_lock_double(struct mutex *a, struct mutex *b)
11534{
11535        if (b < a)
11536                swap(a, b);
11537
11538        mutex_lock(a);
11539        mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11540}
11541
11542static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11543{
11544        bool nmi_safe = false;
11545
11546        switch (clk_id) {
11547        case CLOCK_MONOTONIC:
11548                event->clock = &ktime_get_mono_fast_ns;
11549                nmi_safe = true;
11550                break;
11551
11552        case CLOCK_MONOTONIC_RAW:
11553                event->clock = &ktime_get_raw_fast_ns;
11554                nmi_safe = true;
11555                break;
11556
11557        case CLOCK_REALTIME:
11558                event->clock = &ktime_get_real_ns;
11559                break;
11560
11561        case CLOCK_BOOTTIME:
11562                event->clock = &ktime_get_boottime_ns;
11563                break;
11564
11565        case CLOCK_TAI:
11566                event->clock = &ktime_get_clocktai_ns;
11567                break;
11568
11569        default:
11570                return -EINVAL;
11571        }
11572
11573        if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11574                return -EINVAL;
11575
11576        return 0;
11577}
11578
11579/*
11580 * Variation on perf_event_ctx_lock_nested(), except we take two context
11581 * mutexes.
11582 */
11583static struct perf_event_context *
11584__perf_event_ctx_lock_double(struct perf_event *group_leader,
11585                             struct perf_event_context *ctx)
11586{
11587        struct perf_event_context *gctx;
11588
11589again:
11590        rcu_read_lock();
11591        gctx = READ_ONCE(group_leader->ctx);
11592        if (!refcount_inc_not_zero(&gctx->refcount)) {
11593                rcu_read_unlock();
11594                goto again;
11595        }
11596        rcu_read_unlock();
11597
11598        mutex_lock_double(&gctx->mutex, &ctx->mutex);
11599
11600        if (group_leader->ctx != gctx) {
11601                mutex_unlock(&ctx->mutex);
11602                mutex_unlock(&gctx->mutex);
11603                put_ctx(gctx);
11604                goto again;
11605        }
11606
11607        return gctx;
11608}
11609
11610/**
11611 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11612 *
11613 * @attr_uptr:  event_id type attributes for monitoring/sampling
11614 * @pid:                target pid
11615 * @cpu:                target cpu
11616 * @group_fd:           group leader event fd
11617 */
11618SYSCALL_DEFINE5(perf_event_open,
11619                struct perf_event_attr __user *, attr_uptr,
11620                pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11621{
11622        struct perf_event *group_leader = NULL, *output_event = NULL;
11623        struct perf_event *event, *sibling;
11624        struct perf_event_attr attr;
11625        struct perf_event_context *ctx, *gctx;
11626        struct file *event_file = NULL;
11627        struct fd group = {NULL, 0};
11628        struct task_struct *task = NULL;
11629        struct pmu *pmu;
11630        int event_fd;
11631        int move_group = 0;
11632        int err;
11633        int f_flags = O_RDWR;
11634        int cgroup_fd = -1;
11635
11636        /* for future expandability... */
11637        if (flags & ~PERF_FLAG_ALL)
11638                return -EINVAL;
11639
11640        /* Do we allow access to perf_event_open(2) ? */
11641        err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11642        if (err)
11643                return err;
11644
11645        err = perf_copy_attr(attr_uptr, &attr);
11646        if (err)
11647                return err;
11648
11649        if (!attr.exclude_kernel) {
11650                err = perf_allow_kernel(&attr);
11651                if (err)
11652                        return err;
11653        }
11654
11655        if (attr.namespaces) {
11656                if (!perfmon_capable())
11657                        return -EACCES;
11658        }
11659
11660        if (attr.freq) {
11661                if (attr.sample_freq > sysctl_perf_event_sample_rate)
11662                        return -EINVAL;
11663        } else {
11664                if (attr.sample_period & (1ULL << 63))
11665                        return -EINVAL;
11666        }
11667
11668        /* Only privileged users can get physical addresses */
11669        if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11670                err = perf_allow_kernel(&attr);
11671                if (err)
11672                        return err;
11673        }
11674
11675        err = security_locked_down(LOCKDOWN_PERF);
11676        if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11677                /* REGS_INTR can leak data, lockdown must prevent this */
11678                return err;
11679
11680        err = 0;
11681
11682        /*
11683         * In cgroup mode, the pid argument is used to pass the fd
11684         * opened to the cgroup directory in cgroupfs. The cpu argument
11685         * designates the cpu on which to monitor threads from that
11686         * cgroup.
11687         */
11688        if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11689                return -EINVAL;
11690
11691        if (flags & PERF_FLAG_FD_CLOEXEC)
11692                f_flags |= O_CLOEXEC;
11693
11694        event_fd = get_unused_fd_flags(f_flags);
11695        if (event_fd < 0)
11696                return event_fd;
11697
11698        if (group_fd != -1) {
11699                err = perf_fget_light(group_fd, &group);
11700                if (err)
11701                        goto err_fd;
11702                group_leader = group.file->private_data;
11703                if (flags & PERF_FLAG_FD_OUTPUT)
11704                        output_event = group_leader;
11705                if (flags & PERF_FLAG_FD_NO_GROUP)
11706                        group_leader = NULL;
11707        }
11708
11709        if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11710                task = find_lively_task_by_vpid(pid);
11711                if (IS_ERR(task)) {
11712                        err = PTR_ERR(task);
11713                        goto err_group_fd;
11714                }
11715        }
11716
11717        if (task && group_leader &&
11718            group_leader->attr.inherit != attr.inherit) {
11719                err = -EINVAL;
11720                goto err_task;
11721        }
11722
11723        if (task) {
11724                err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11725                if (err)
11726                        goto err_task;
11727
11728                /*
11729                 * Preserve ptrace permission check for backwards compatibility.
11730                 *
11731                 * We must hold exec_update_mutex across this and any potential
11732                 * perf_install_in_context() call for this new event to
11733                 * serialize against exec() altering our credentials (and the
11734                 * perf_event_exit_task() that could imply).
11735                 */
11736                err = -EACCES;
11737                if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11738                        goto err_cred;
11739        }
11740
11741        if (flags & PERF_FLAG_PID_CGROUP)
11742                cgroup_fd = pid;
11743
11744        event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11745                                 NULL, NULL, cgroup_fd);
11746        if (IS_ERR(event)) {
11747                err = PTR_ERR(event);
11748                goto err_cred;
11749        }
11750
11751        if (is_sampling_event(event)) {
11752                if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11753                        err = -EOPNOTSUPP;
11754                        goto err_alloc;
11755                }
11756        }
11757
11758        /*
11759         * Special case software events and allow them to be part of
11760         * any hardware group.
11761         */
11762        pmu = event->pmu;
11763
11764        if (attr.use_clockid) {
11765                err = perf_event_set_clock(event, attr.clockid);
11766                if (err)
11767                        goto err_alloc;
11768        }
11769
11770        if (pmu->task_ctx_nr == perf_sw_context)
11771                event->event_caps |= PERF_EV_CAP_SOFTWARE;
11772
11773        if (group_leader) {
11774                if (is_software_event(event) &&
11775                    !in_software_context(group_leader)) {
11776                        /*
11777                         * If the event is a sw event, but the group_leader
11778                         * is on hw context.
11779                         *
11780                         * Allow the addition of software events to hw
11781                         * groups, this is safe because software events
11782                         * never fail to schedule.
11783                         */
11784                        pmu = group_leader->ctx->pmu;
11785                } else if (!is_software_event(event) &&
11786                           is_software_event(group_leader) &&
11787                           (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11788                        /*
11789                         * In case the group is a pure software group, and we
11790                         * try to add a hardware event, move the whole group to
11791                         * the hardware context.
11792                         */
11793                        move_group = 1;
11794                }
11795        }
11796
11797        /*
11798         * Get the target context (task or percpu):
11799         */
11800        ctx = find_get_context(pmu, task, event);
11801        if (IS_ERR(ctx)) {
11802                err = PTR_ERR(ctx);
11803                goto err_alloc;
11804        }
11805
11806        /*
11807         * Look up the group leader (we will attach this event to it):
11808         */
11809        if (group_leader) {
11810                err = -EINVAL;
11811
11812                /*
11813                 * Do not allow a recursive hierarchy (this new sibling
11814                 * becoming part of another group-sibling):
11815                 */
11816                if (group_leader->group_leader != group_leader)
11817                        goto err_context;
11818
11819                /* All events in a group should have the same clock */
11820                if (group_leader->clock != event->clock)
11821                        goto err_context;
11822
11823                /*
11824                 * Make sure we're both events for the same CPU;
11825                 * grouping events for different CPUs is broken; since
11826                 * you can never concurrently schedule them anyhow.
11827                 */
11828                if (group_leader->cpu != event->cpu)
11829                        goto err_context;
11830
11831                /*
11832                 * Make sure we're both on the same task, or both
11833                 * per-CPU events.
11834                 */
11835                if (group_leader->ctx->task != ctx->task)
11836                        goto err_context;
11837
11838                /*
11839                 * Do not allow to attach to a group in a different task
11840                 * or CPU context. If we're moving SW events, we'll fix
11841                 * this up later, so allow that.
11842                 */
11843                if (!move_group && group_leader->ctx != ctx)
11844                        goto err_context;
11845
11846                /*
11847                 * Only a group leader can be exclusive or pinned
11848                 */
11849                if (attr.exclusive || attr.pinned)
11850                        goto err_context;
11851        }
11852
11853        if (output_event) {
11854                err = perf_event_set_output(event, output_event);
11855                if (err)
11856                        goto err_context;
11857        }
11858
11859        event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11860                                        f_flags);
11861        if (IS_ERR(event_file)) {
11862                err = PTR_ERR(event_file);
11863                event_file = NULL;
11864                goto err_context;
11865        }
11866
11867        if (move_group) {
11868                gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11869
11870                if (gctx->task == TASK_TOMBSTONE) {
11871                        err = -ESRCH;
11872                        goto err_locked;
11873                }
11874
11875                /*
11876                 * Check if we raced against another sys_perf_event_open() call
11877                 * moving the software group underneath us.
11878                 */
11879                if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11880                        /*
11881                         * If someone moved the group out from under us, check
11882                         * if this new event wound up on the same ctx, if so
11883                         * its the regular !move_group case, otherwise fail.
11884                         */
11885                        if (gctx != ctx) {
11886                                err = -EINVAL;
11887                                goto err_locked;
11888                        } else {
11889                                perf_event_ctx_unlock(group_leader, gctx);
11890                                move_group = 0;
11891                        }
11892                }
11893
11894                /*
11895                 * Failure to create exclusive events returns -EBUSY.
11896                 */
11897                err = -EBUSY;
11898                if (!exclusive_event_installable(group_leader, ctx))
11899                        goto err_locked;
11900
11901                for_each_sibling_event(sibling, group_leader) {
11902                        if (!exclusive_event_installable(sibling, ctx))
11903                                goto err_locked;
11904                }
11905        } else {
11906                mutex_lock(&ctx->mutex);
11907        }
11908
11909        if (ctx->task == TASK_TOMBSTONE) {
11910                err = -ESRCH;
11911                goto err_locked;
11912        }
11913
11914        if (!perf_event_validate_size(event)) {
11915                err = -E2BIG;
11916                goto err_locked;
11917        }
11918
11919        if (!task) {
11920                /*
11921                 * Check if the @cpu we're creating an event for is online.
11922                 *
11923                 * We use the perf_cpu_context::ctx::mutex to serialize against
11924                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11925                 */
11926                struct perf_cpu_context *cpuctx =
11927                        container_of(ctx, struct perf_cpu_context, ctx);
11928
11929                if (!cpuctx->online) {
11930                        err = -ENODEV;
11931                        goto err_locked;
11932                }
11933        }
11934
11935        if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11936                err = -EINVAL;
11937                goto err_locked;
11938        }
11939
11940        /*
11941         * Must be under the same ctx::mutex as perf_install_in_context(),
11942         * because we need to serialize with concurrent event creation.
11943         */
11944        if (!exclusive_event_installable(event, ctx)) {
11945                err = -EBUSY;
11946                goto err_locked;
11947        }
11948
11949        WARN_ON_ONCE(ctx->parent_ctx);
11950
11951        /*
11952         * This is the point on no return; we cannot fail hereafter. This is
11953         * where we start modifying current state.
11954         */
11955
11956        if (move_group) {
11957                /*
11958                 * See perf_event_ctx_lock() for comments on the details
11959                 * of swizzling perf_event::ctx.
11960                 */
11961                perf_remove_from_context(group_leader, 0);
11962                put_ctx(gctx);
11963
11964                for_each_sibling_event(sibling, group_leader) {
11965                        perf_remove_from_context(sibling, 0);
11966                        put_ctx(gctx);
11967                }
11968
11969                /*
11970                 * Wait for everybody to stop referencing the events through
11971                 * the old lists, before installing it on new lists.
11972                 */
11973                synchronize_rcu();
11974
11975                /*
11976                 * Install the group siblings before the group leader.
11977                 *
11978                 * Because a group leader will try and install the entire group
11979                 * (through the sibling list, which is still in-tact), we can
11980                 * end up with siblings installed in the wrong context.
11981                 *
11982                 * By installing siblings first we NO-OP because they're not
11983                 * reachable through the group lists.
11984                 */
11985                for_each_sibling_event(sibling, group_leader) {
11986                        perf_event__state_init(sibling);
11987                        perf_install_in_context(ctx, sibling, sibling->cpu);
11988                        get_ctx(ctx);
11989                }
11990
11991                /*
11992                 * Removing from the context ends up with disabled
11993                 * event. What we want here is event in the initial
11994                 * startup state, ready to be add into new context.
11995                 */
11996                perf_event__state_init(group_leader);
11997                perf_install_in_context(ctx, group_leader, group_leader->cpu);
11998                get_ctx(ctx);
11999        }
12000
12001        /*
12002         * Precalculate sample_data sizes; do while holding ctx::mutex such
12003         * that we're serialized against further additions and before
12004         * perf_install_in_context() which is the point the event is active and
12005         * can use these values.
12006         */
12007        perf_event__header_size(event);
12008        perf_event__id_header_size(event);
12009
12010        event->owner = current;
12011
12012        perf_install_in_context(ctx, event, event->cpu);
12013        perf_unpin_context(ctx);
12014
12015        if (move_group)
12016                perf_event_ctx_unlock(group_leader, gctx);
12017        mutex_unlock(&ctx->mutex);
12018
12019        if (task) {
12020                mutex_unlock(&task->signal->exec_update_mutex);
12021                put_task_struct(task);
12022        }
12023
12024        mutex_lock(&current->perf_event_mutex);
12025        list_add_tail(&event->owner_entry, &current->perf_event_list);
12026        mutex_unlock(&current->perf_event_mutex);
12027
12028        /*
12029         * Drop the reference on the group_event after placing the
12030         * new event on the sibling_list. This ensures destruction
12031         * of the group leader will find the pointer to itself in
12032         * perf_group_detach().
12033         */
12034        fdput(group);
12035        fd_install(event_fd, event_file);
12036        return event_fd;
12037
12038err_locked:
12039        if (move_group)
12040                perf_event_ctx_unlock(group_leader, gctx);
12041        mutex_unlock(&ctx->mutex);
12042/* err_file: */
12043        fput(event_file);
12044err_context:
12045        perf_unpin_context(ctx);
12046        put_ctx(ctx);
12047err_alloc:
12048        /*
12049         * If event_file is set, the fput() above will have called ->release()
12050         * and that will take care of freeing the event.
12051         */
12052        if (!event_file)
12053                free_event(event);
12054err_cred:
12055        if (task)
12056                mutex_unlock(&task->signal->exec_update_mutex);
12057err_task:
12058        if (task)
12059                put_task_struct(task);
12060err_group_fd:
12061        fdput(group);
12062err_fd:
12063        put_unused_fd(event_fd);
12064        return err;
12065}
12066
12067/**
12068 * perf_event_create_kernel_counter
12069 *
12070 * @attr: attributes of the counter to create
12071 * @cpu: cpu in which the counter is bound
12072 * @task: task to profile (NULL for percpu)
12073 */
12074struct perf_event *
12075perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12076                                 struct task_struct *task,
12077                                 perf_overflow_handler_t overflow_handler,
12078                                 void *context)
12079{
12080        struct perf_event_context *ctx;
12081        struct perf_event *event;
12082        int err;
12083
12084        /*
12085         * Grouping is not supported for kernel events, neither is 'AUX',
12086         * make sure the caller's intentions are adjusted.
12087         */
12088        if (attr->aux_output)
12089                return ERR_PTR(-EINVAL);
12090
12091        event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12092                                 overflow_handler, context, -1);
12093        if (IS_ERR(event)) {
12094                err = PTR_ERR(event);
12095                goto err;
12096        }
12097
12098        /* Mark owner so we could distinguish it from user events. */
12099        event->owner = TASK_TOMBSTONE;
12100
12101        /*
12102         * Get the target context (task or percpu):
12103         */
12104        ctx = find_get_context(event->pmu, task, event);
12105        if (IS_ERR(ctx)) {
12106                err = PTR_ERR(ctx);
12107                goto err_free;
12108        }
12109
12110        WARN_ON_ONCE(ctx->parent_ctx);
12111        mutex_lock(&ctx->mutex);
12112        if (ctx->task == TASK_TOMBSTONE) {
12113                err = -ESRCH;
12114                goto err_unlock;
12115        }
12116
12117        if (!task) {
12118                /*
12119                 * Check if the @cpu we're creating an event for is online.
12120                 *
12121                 * We use the perf_cpu_context::ctx::mutex to serialize against
12122                 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12123                 */
12124                struct perf_cpu_context *cpuctx =
12125                        container_of(ctx, struct perf_cpu_context, ctx);
12126                if (!cpuctx->online) {
12127                        err = -ENODEV;
12128                        goto err_unlock;
12129                }
12130        }
12131
12132        if (!exclusive_event_installable(event, ctx)) {
12133                err = -EBUSY;
12134                goto err_unlock;
12135        }
12136
12137        perf_install_in_context(ctx, event, event->cpu);
12138        perf_unpin_context(ctx);
12139        mutex_unlock(&ctx->mutex);
12140
12141        return event;
12142
12143err_unlock:
12144        mutex_unlock(&ctx->mutex);
12145        perf_unpin_context(ctx);
12146        put_ctx(ctx);
12147err_free:
12148        free_event(event);
12149err:
12150        return ERR_PTR(err);
12151}
12152EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12153
12154void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12155{
12156        struct perf_event_context *src_ctx;
12157        struct perf_event_context *dst_ctx;
12158        struct perf_event *event, *tmp;
12159        LIST_HEAD(events);
12160
12161        src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12162        dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12163
12164        /*
12165         * See perf_event_ctx_lock() for comments on the details
12166         * of swizzling perf_event::ctx.
12167         */
12168        mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12169        list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12170                                 event_entry) {
12171                perf_remove_from_context(event, 0);
12172                unaccount_event_cpu(event, src_cpu);
12173                put_ctx(src_ctx);
12174                list_add(&event->migrate_entry, &events);
12175        }
12176
12177        /*
12178         * Wait for the events to quiesce before re-instating them.
12179         */
12180        synchronize_rcu();
12181
12182        /*
12183         * Re-instate events in 2 passes.
12184         *
12185         * Skip over group leaders and only install siblings on this first
12186         * pass, siblings will not get enabled without a leader, however a
12187         * leader will enable its siblings, even if those are still on the old
12188         * context.
12189         */
12190        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12191                if (event->group_leader == event)
12192                        continue;
12193
12194                list_del(&event->migrate_entry);
12195                if (event->state >= PERF_EVENT_STATE_OFF)
12196                        event->state = PERF_EVENT_STATE_INACTIVE;
12197                account_event_cpu(event, dst_cpu);
12198                perf_install_in_context(dst_ctx, event, dst_cpu);
12199                get_ctx(dst_ctx);
12200        }
12201
12202        /*
12203         * Once all the siblings are setup properly, install the group leaders
12204         * to make it go.
12205         */
12206        list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12207                list_del(&event->migrate_entry);
12208                if (event->state >= PERF_EVENT_STATE_OFF)
12209                        event->state = PERF_EVENT_STATE_INACTIVE;
12210                account_event_cpu(event, dst_cpu);
12211                perf_install_in_context(dst_ctx, event, dst_cpu);
12212                get_ctx(dst_ctx);
12213        }
12214        mutex_unlock(&dst_ctx->mutex);
12215        mutex_unlock(&src_ctx->mutex);
12216}
12217EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12218
12219static void sync_child_event(struct perf_event *child_event,
12220                               struct task_struct *child)
12221{
12222        struct perf_event *parent_event = child_event->parent;
12223        u64 child_val;
12224
12225        if (child_event->attr.inherit_stat)
12226                perf_event_read_event(child_event, child);
12227
12228        child_val = perf_event_count(child_event);
12229
12230        /*
12231         * Add back the child's count to the parent's count:
12232         */
12233        atomic64_add(child_val, &parent_event->child_count);
12234        atomic64_add(child_event->total_time_enabled,
12235                     &parent_event->child_total_time_enabled);
12236        atomic64_add(child_event->total_time_running,
12237                     &parent_event->child_total_time_running);
12238}
12239
12240static void
12241perf_event_exit_event(struct perf_event *child_event,
12242                      struct perf_event_context *child_ctx,
12243                      struct task_struct *child)
12244{
12245        struct perf_event *parent_event = child_event->parent;
12246
12247        /*
12248         * Do not destroy the 'original' grouping; because of the context
12249         * switch optimization the original events could've ended up in a
12250         * random child task.
12251         *
12252         * If we were to destroy the original group, all group related
12253         * operations would cease to function properly after this random
12254         * child dies.
12255         *
12256         * Do destroy all inherited groups, we don't care about those
12257         * and being thorough is better.
12258         */
12259        raw_spin_lock_irq(&child_ctx->lock);
12260        WARN_ON_ONCE(child_ctx->is_active);
12261
12262        if (parent_event)
12263                perf_group_detach(child_event);
12264        list_del_event(child_event, child_ctx);
12265        perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12266        raw_spin_unlock_irq(&child_ctx->lock);
12267
12268        /*
12269         * Parent events are governed by their filedesc, retain them.
12270         */
12271        if (!parent_event) {
12272                perf_event_wakeup(child_event);
12273                return;
12274        }
12275        /*
12276         * Child events can be cleaned up.
12277         */
12278
12279        sync_child_event(child_event, child);
12280
12281        /*
12282         * Remove this event from the parent's list
12283         */
12284        WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12285        mutex_lock(&parent_event->child_mutex);
12286        list_del_init(&child_event->child_list);
12287        mutex_unlock(&parent_event->child_mutex);
12288
12289        /*
12290         * Kick perf_poll() for is_event_hup().
12291         */
12292        perf_event_wakeup(parent_event);
12293        free_event(child_event);
12294        put_event(parent_event);
12295}
12296
12297static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12298{
12299        struct perf_event_context *child_ctx, *clone_ctx = NULL;
12300        struct perf_event *child_event, *next;
12301
12302        WARN_ON_ONCE(child != current);
12303
12304        child_ctx = perf_pin_task_context(child, ctxn);
12305        if (!child_ctx)
12306                return;
12307
12308        /*
12309         * In order to reduce the amount of tricky in ctx tear-down, we hold
12310         * ctx::mutex over the entire thing. This serializes against almost
12311         * everything that wants to access the ctx.
12312         *
12313         * The exception is sys_perf_event_open() /
12314         * perf_event_create_kernel_count() which does find_get_context()
12315         * without ctx::mutex (it cannot because of the move_group double mutex
12316         * lock thing). See the comments in perf_install_in_context().
12317         */
12318        mutex_lock(&child_ctx->mutex);
12319
12320        /*
12321         * In a single ctx::lock section, de-schedule the events and detach the
12322         * context from the task such that we cannot ever get it scheduled back
12323         * in.
12324         */
12325        raw_spin_lock_irq(&child_ctx->lock);
12326        task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12327
12328        /*
12329         * Now that the context is inactive, destroy the task <-> ctx relation
12330         * and mark the context dead.
12331         */
12332        RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12333        put_ctx(child_ctx); /* cannot be last */
12334        WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12335        put_task_struct(current); /* cannot be last */
12336
12337        clone_ctx = unclone_ctx(child_ctx);
12338        raw_spin_unlock_irq(&child_ctx->lock);
12339
12340        if (clone_ctx)
12341                put_ctx(clone_ctx);
12342
12343        /*
12344         * Report the task dead after unscheduling the events so that we
12345         * won't get any samples after PERF_RECORD_EXIT. We can however still
12346         * get a few PERF_RECORD_READ events.
12347         */
12348        perf_event_task(child, child_ctx, 0);
12349
12350        list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12351                perf_event_exit_event(child_event, child_ctx, child);
12352
12353        mutex_unlock(&child_ctx->mutex);
12354
12355        put_ctx(child_ctx);
12356}
12357
12358/*
12359 * When a child task exits, feed back event values to parent events.
12360 *
12361 * Can be called with exec_update_mutex held when called from
12362 * setup_new_exec().
12363 */
12364void perf_event_exit_task(struct task_struct *child)
12365{
12366        struct perf_event *event, *tmp;
12367        int ctxn;
12368
12369        mutex_lock(&child->perf_event_mutex);
12370        list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12371                                 owner_entry) {
12372                list_del_init(&event->owner_entry);
12373
12374                /*
12375                 * Ensure the list deletion is visible before we clear
12376                 * the owner, closes a race against perf_release() where
12377                 * we need to serialize on the owner->perf_event_mutex.
12378                 */
12379                smp_store_release(&event->owner, NULL);
12380        }
12381        mutex_unlock(&child->perf_event_mutex);
12382
12383        for_each_task_context_nr(ctxn)
12384                perf_event_exit_task_context(child, ctxn);
12385
12386        /*
12387         * The perf_event_exit_task_context calls perf_event_task
12388         * with child's task_ctx, which generates EXIT events for
12389         * child contexts and sets child->perf_event_ctxp[] to NULL.
12390         * At this point we need to send EXIT events to cpu contexts.
12391         */
12392        perf_event_task(child, NULL, 0);
12393}
12394
12395static void perf_free_event(struct perf_event *event,
12396                            struct perf_event_context *ctx)
12397{
12398        struct perf_event *parent = event->parent;
12399
12400        if (WARN_ON_ONCE(!parent))
12401                return;
12402
12403        mutex_lock(&parent->child_mutex);
12404        list_del_init(&event->child_list);
12405        mutex_unlock(&parent->child_mutex);
12406
12407        put_event(parent);
12408
12409        raw_spin_lock_irq(&ctx->lock);
12410        perf_group_detach(event);
12411        list_del_event(event, ctx);
12412        raw_spin_unlock_irq(&ctx->lock);
12413        free_event(event);
12414}
12415
12416/*
12417 * Free a context as created by inheritance by perf_event_init_task() below,
12418 * used by fork() in case of fail.
12419 *
12420 * Even though the task has never lived, the context and events have been
12421 * exposed through the child_list, so we must take care tearing it all down.
12422 */
12423void perf_event_free_task(struct task_struct *task)
12424{
12425        struct perf_event_context *ctx;
12426        struct perf_event *event, *tmp;
12427        int ctxn;
12428
12429        for_each_task_context_nr(ctxn) {
12430                ctx = task->perf_event_ctxp[ctxn];
12431                if (!ctx)
12432                        continue;
12433
12434                mutex_lock(&ctx->mutex);
12435                raw_spin_lock_irq(&ctx->lock);
12436                /*
12437                 * Destroy the task <-> ctx relation and mark the context dead.
12438                 *
12439                 * This is important because even though the task hasn't been
12440                 * exposed yet the context has been (through child_list).
12441                 */
12442                RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12443                WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12444                put_task_struct(task); /* cannot be last */
12445                raw_spin_unlock_irq(&ctx->lock);
12446
12447                list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12448                        perf_free_event(event, ctx);
12449
12450                mutex_unlock(&ctx->mutex);
12451
12452                /*
12453                 * perf_event_release_kernel() could've stolen some of our
12454                 * child events and still have them on its free_list. In that
12455                 * case we must wait for these events to have been freed (in
12456                 * particular all their references to this task must've been
12457                 * dropped).
12458                 *
12459                 * Without this copy_process() will unconditionally free this
12460                 * task (irrespective of its reference count) and
12461                 * _free_event()'s put_task_struct(event->hw.target) will be a
12462                 * use-after-free.
12463                 *
12464                 * Wait for all events to drop their context reference.
12465                 */
12466                wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12467                put_ctx(ctx); /* must be last */
12468        }
12469}
12470
12471void perf_event_delayed_put(struct task_struct *task)
12472{
12473        int ctxn;
12474
12475        for_each_task_context_nr(ctxn)
12476                WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12477}
12478
12479struct file *perf_event_get(unsigned int fd)
12480{
12481        struct file *file = fget(fd);
12482        if (!file)
12483                return ERR_PTR(-EBADF);
12484
12485        if (file->f_op != &perf_fops) {
12486                fput(file);
12487                return ERR_PTR(-EBADF);
12488        }
12489
12490        return file;
12491}
12492
12493const struct perf_event *perf_get_event(struct file *file)
12494{
12495        if (file->f_op != &perf_fops)
12496                return ERR_PTR(-EINVAL);
12497
12498        return file->private_data;
12499}
12500
12501const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12502{
12503        if (!event)
12504                return ERR_PTR(-EINVAL);
12505
12506        return &event->attr;
12507}
12508
12509/*
12510 * Inherit an event from parent task to child task.
12511 *
12512 * Returns:
12513 *  - valid pointer on success
12514 *  - NULL for orphaned events
12515 *  - IS_ERR() on error
12516 */
12517static struct perf_event *
12518inherit_event(struct perf_event *parent_event,
12519              struct task_struct *parent,
12520              struct perf_event_context *parent_ctx,
12521              struct task_struct *child,
12522              struct perf_event *group_leader,
12523              struct perf_event_context *child_ctx)
12524{
12525        enum perf_event_state parent_state = parent_event->state;
12526        struct perf_event *child_event;
12527        unsigned long flags;
12528
12529        /*
12530         * Instead of creating recursive hierarchies of events,
12531         * we link inherited events back to the original parent,
12532         * which has a filp for sure, which we use as the reference
12533         * count:
12534         */
12535        if (parent_event->parent)
12536                parent_event = parent_event->parent;
12537
12538        child_event = perf_event_alloc(&parent_event->attr,
12539                                           parent_event->cpu,
12540                                           child,
12541                                           group_leader, parent_event,
12542                                           NULL, NULL, -1);
12543        if (IS_ERR(child_event))
12544                return child_event;
12545
12546
12547        if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12548            !child_ctx->task_ctx_data) {
12549                struct pmu *pmu = child_event->pmu;
12550
12551                child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12552                if (!child_ctx->task_ctx_data) {
12553                        free_event(child_event);
12554                        return ERR_PTR(-ENOMEM);
12555                }
12556        }
12557
12558        /*
12559         * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12560         * must be under the same lock in order to serialize against
12561         * perf_event_release_kernel(), such that either we must observe
12562         * is_orphaned_event() or they will observe us on the child_list.
12563         */
12564        mutex_lock(&parent_event->child_mutex);
12565        if (is_orphaned_event(parent_event) ||
12566            !atomic_long_inc_not_zero(&parent_event->refcount)) {
12567                mutex_unlock(&parent_event->child_mutex);
12568                /* task_ctx_data is freed with child_ctx */
12569                free_event(child_event);
12570                return NULL;
12571        }
12572
12573        get_ctx(child_ctx);
12574
12575        /*
12576         * Make the child state follow the state of the parent event,
12577         * not its attr.disabled bit.  We hold the parent's mutex,
12578         * so we won't race with perf_event_{en, dis}able_family.
12579         */
12580        if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12581                child_event->state = PERF_EVENT_STATE_INACTIVE;
12582        else
12583                child_event->state = PERF_EVENT_STATE_OFF;
12584
12585        if (parent_event->attr.freq) {
12586                u64 sample_period = parent_event->hw.sample_period;
12587                struct hw_perf_event *hwc = &child_event->hw;
12588
12589                hwc->sample_period = sample_period;
12590                hwc->last_period   = sample_period;
12591
12592                local64_set(&hwc->period_left, sample_period);
12593        }
12594
12595        child_event->ctx = child_ctx;
12596        child_event->overflow_handler = parent_event->overflow_handler;
12597        child_event->overflow_handler_context
12598                = parent_event->overflow_handler_context;
12599
12600        /*
12601         * Precalculate sample_data sizes
12602         */
12603        perf_event__header_size(child_event);
12604        perf_event__id_header_size(child_event);
12605
12606        /*
12607         * Link it up in the child's context:
12608         */
12609        raw_spin_lock_irqsave(&child_ctx->lock, flags);
12610        add_event_to_ctx(child_event, child_ctx);
12611        raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12612
12613        /*
12614         * Link this into the parent event's child list
12615         */
12616        list_add_tail(&child_event->child_list, &parent_event->child_list);
12617        mutex_unlock(&parent_event->child_mutex);
12618
12619        return child_event;
12620}
12621
12622/*
12623 * Inherits an event group.
12624 *
12625 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12626 * This matches with perf_event_release_kernel() removing all child events.
12627 *
12628 * Returns:
12629 *  - 0 on success
12630 *  - <0 on error
12631 */
12632static int inherit_group(struct perf_event *parent_event,
12633              struct task_struct *parent,
12634              struct perf_event_context *parent_ctx,
12635              struct task_struct *child,
12636              struct perf_event_context *child_ctx)
12637{
12638        struct perf_event *leader;
12639        struct perf_event *sub;
12640        struct perf_event *child_ctr;
12641
12642        leader = inherit_event(parent_event, parent, parent_ctx,
12643                                 child, NULL, child_ctx);
12644        if (IS_ERR(leader))
12645                return PTR_ERR(leader);
12646        /*
12647         * @leader can be NULL here because of is_orphaned_event(). In this
12648         * case inherit_event() will create individual events, similar to what
12649         * perf_group_detach() would do anyway.
12650         */
12651        for_each_sibling_event(sub, parent_event) {
12652                child_ctr = inherit_event(sub, parent, parent_ctx,
12653                                            child, leader, child_ctx);
12654                if (IS_ERR(child_ctr))
12655                        return PTR_ERR(child_ctr);
12656
12657                if (sub->aux_event == parent_event && child_ctr &&
12658                    !perf_get_aux_event(child_ctr, leader))
12659                        return -EINVAL;
12660        }
12661        return 0;
12662}
12663
12664/*
12665 * Creates the child task context and tries to inherit the event-group.
12666 *
12667 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12668 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12669 * consistent with perf_event_release_kernel() removing all child events.
12670 *
12671 * Returns:
12672 *  - 0 on success
12673 *  - <0 on error
12674 */
12675static int
12676inherit_task_group(struct perf_event *event, struct task_struct *parent,
12677                   struct perf_event_context *parent_ctx,
12678                   struct task_struct *child, int ctxn,
12679                   int *inherited_all)
12680{
12681        int ret;
12682        struct perf_event_context *child_ctx;
12683
12684        if (!event->attr.inherit) {
12685                *inherited_all = 0;
12686                return 0;
12687        }
12688
12689        child_ctx = child->perf_event_ctxp[ctxn];
12690        if (!child_ctx) {
12691                /*
12692                 * This is executed from the parent task context, so
12693                 * inherit events that have been marked for cloning.
12694                 * First allocate and initialize a context for the
12695                 * child.
12696                 */
12697                child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12698                if (!child_ctx)
12699                        return -ENOMEM;
12700
12701                child->perf_event_ctxp[ctxn] = child_ctx;
12702        }
12703
12704        ret = inherit_group(event, parent, parent_ctx,
12705                            child, child_ctx);
12706
12707        if (ret)
12708                *inherited_all = 0;
12709
12710        return ret;
12711}
12712
12713/*
12714 * Initialize the perf_event context in task_struct
12715 */
12716static int perf_event_init_context(struct task_struct *child, int ctxn)
12717{
12718        struct perf_event_context *child_ctx, *parent_ctx;
12719        struct perf_event_context *cloned_ctx;
12720        struct perf_event *event;
12721        struct task_struct *parent = current;
12722        int inherited_all = 1;
12723        unsigned long flags;
12724        int ret = 0;
12725
12726        if (likely(!parent->perf_event_ctxp[ctxn]))
12727                return 0;
12728
12729        /*
12730         * If the parent's context is a clone, pin it so it won't get
12731         * swapped under us.
12732         */
12733        parent_ctx = perf_pin_task_context(parent, ctxn);
12734        if (!parent_ctx)
12735                return 0;
12736
12737        /*
12738         * No need to check if parent_ctx != NULL here; since we saw
12739         * it non-NULL earlier, the only reason for it to become NULL
12740         * is if we exit, and since we're currently in the middle of
12741         * a fork we can't be exiting at the same time.
12742         */
12743
12744        /*
12745         * Lock the parent list. No need to lock the child - not PID
12746         * hashed yet and not running, so nobody can access it.
12747         */
12748        mutex_lock(&parent_ctx->mutex);
12749
12750        /*
12751         * We dont have to disable NMIs - we are only looking at
12752         * the list, not manipulating it:
12753         */
12754        perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12755                ret = inherit_task_group(event, parent, parent_ctx,
12756                                         child, ctxn, &inherited_all);
12757                if (ret)
12758                        goto out_unlock;
12759        }
12760
12761        /*
12762         * We can't hold ctx->lock when iterating the ->flexible_group list due
12763         * to allocations, but we need to prevent rotation because
12764         * rotate_ctx() will change the list from interrupt context.
12765         */
12766        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12767        parent_ctx->rotate_disable = 1;
12768        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12769
12770        perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12771                ret = inherit_task_group(event, parent, parent_ctx,
12772                                         child, ctxn, &inherited_all);
12773                if (ret)
12774                        goto out_unlock;
12775        }
12776
12777        raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12778        parent_ctx->rotate_disable = 0;
12779
12780        child_ctx = child->perf_event_ctxp[ctxn];
12781
12782        if (child_ctx && inherited_all) {
12783                /*
12784                 * Mark the child context as a clone of the parent
12785                 * context, or of whatever the parent is a clone of.
12786                 *
12787                 * Note that if the parent is a clone, the holding of
12788                 * parent_ctx->lock avoids it from being uncloned.
12789                 */
12790                cloned_ctx = parent_ctx->parent_ctx;
12791                if (cloned_ctx) {
12792                        child_ctx->parent_ctx = cloned_ctx;
12793                        child_ctx->parent_gen = parent_ctx->parent_gen;
12794                } else {
12795                        child_ctx->parent_ctx = parent_ctx;
12796                        child_ctx->parent_gen = parent_ctx->generation;
12797                }
12798                get_ctx(child_ctx->parent_ctx);
12799        }
12800
12801        raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12802out_unlock:
12803        mutex_unlock(&parent_ctx->mutex);
12804
12805        perf_unpin_context(parent_ctx);
12806        put_ctx(parent_ctx);
12807
12808        return ret;
12809}
12810
12811/*
12812 * Initialize the perf_event context in task_struct
12813 */
12814int perf_event_init_task(struct task_struct *child)
12815{
12816        int ctxn, ret;
12817
12818        memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12819        mutex_init(&child->perf_event_mutex);
12820        INIT_LIST_HEAD(&child->perf_event_list);
12821
12822        for_each_task_context_nr(ctxn) {
12823                ret = perf_event_init_context(child, ctxn);
12824                if (ret) {
12825                        perf_event_free_task(child);
12826                        return ret;
12827                }
12828        }
12829
12830        return 0;
12831}
12832
12833static void __init perf_event_init_all_cpus(void)
12834{
12835        struct swevent_htable *swhash;
12836        int cpu;
12837
12838        zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12839
12840        for_each_possible_cpu(cpu) {
12841                swhash = &per_cpu(swevent_htable, cpu);
12842                mutex_init(&swhash->hlist_mutex);
12843                INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12844
12845                INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12846                raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12847
12848#ifdef CONFIG_CGROUP_PERF
12849                INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12850#endif
12851        }
12852}
12853
12854static void perf_swevent_init_cpu(unsigned int cpu)
12855{
12856        struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12857
12858        mutex_lock(&swhash->hlist_mutex);
12859        if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12860                struct swevent_hlist *hlist;
12861
12862                hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12863                WARN_ON(!hlist);
12864                rcu_assign_pointer(swhash->swevent_hlist, hlist);
12865        }
12866        mutex_unlock(&swhash->hlist_mutex);
12867}
12868
12869#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12870static void __perf_event_exit_context(void *__info)
12871{
12872        struct perf_event_context *ctx = __info;
12873        struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12874        struct perf_event *event;
12875
12876        raw_spin_lock(&ctx->lock);
12877        ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12878        list_for_each_entry(event, &ctx->event_list, event_entry)
12879                __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12880        raw_spin_unlock(&ctx->lock);
12881}
12882
12883static void perf_event_exit_cpu_context(int cpu)
12884{
12885        struct perf_cpu_context *cpuctx;
12886        struct perf_event_context *ctx;
12887        struct pmu *pmu;
12888
12889        mutex_lock(&pmus_lock);
12890        list_for_each_entry(pmu, &pmus, entry) {
12891                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12892                ctx = &cpuctx->ctx;
12893
12894                mutex_lock(&ctx->mutex);
12895                smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12896                cpuctx->online = 0;
12897                mutex_unlock(&ctx->mutex);
12898        }
12899        cpumask_clear_cpu(cpu, perf_online_mask);
12900        mutex_unlock(&pmus_lock);
12901}
12902#else
12903
12904static void perf_event_exit_cpu_context(int cpu) { }
12905
12906#endif
12907
12908int perf_event_init_cpu(unsigned int cpu)
12909{
12910        struct perf_cpu_context *cpuctx;
12911        struct perf_event_context *ctx;
12912        struct pmu *pmu;
12913
12914        perf_swevent_init_cpu(cpu);
12915
12916        mutex_lock(&pmus_lock);
12917        cpumask_set_cpu(cpu, perf_online_mask);
12918        list_for_each_entry(pmu, &pmus, entry) {
12919                cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12920                ctx = &cpuctx->ctx;
12921
12922                mutex_lock(&ctx->mutex);
12923                cpuctx->online = 1;
12924                mutex_unlock(&ctx->mutex);
12925        }
12926        mutex_unlock(&pmus_lock);
12927
12928        return 0;
12929}
12930
12931int perf_event_exit_cpu(unsigned int cpu)
12932{
12933        perf_event_exit_cpu_context(cpu);
12934        return 0;
12935}
12936
12937static int
12938perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12939{
12940        int cpu;
12941
12942        for_each_online_cpu(cpu)
12943                perf_event_exit_cpu(cpu);
12944
12945        return NOTIFY_OK;
12946}
12947
12948/*
12949 * Run the perf reboot notifier at the very last possible moment so that
12950 * the generic watchdog code runs as long as possible.
12951 */
12952static struct notifier_block perf_reboot_notifier = {
12953        .notifier_call = perf_reboot,
12954        .priority = INT_MIN,
12955};
12956
12957void __init perf_event_init(void)
12958{
12959        int ret;
12960
12961        idr_init(&pmu_idr);
12962
12963        perf_event_init_all_cpus();
12964        init_srcu_struct(&pmus_srcu);
12965        perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12966        perf_pmu_register(&perf_cpu_clock, NULL, -1);
12967        perf_pmu_register(&perf_task_clock, NULL, -1);
12968        perf_tp_register();
12969        perf_event_init_cpu(smp_processor_id());
12970        register_reboot_notifier(&perf_reboot_notifier);
12971
12972        ret = init_hw_breakpoint();
12973        WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12974
12975        /*
12976         * Build time assertion that we keep the data_head at the intended
12977         * location.  IOW, validation we got the __reserved[] size right.
12978         */
12979        BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12980                     != 1024);
12981}
12982
12983ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12984                              char *page)
12985{
12986        struct perf_pmu_events_attr *pmu_attr =
12987                container_of(attr, struct perf_pmu_events_attr, attr);
12988
12989        if (pmu_attr->event_str)
12990                return sprintf(page, "%s\n", pmu_attr->event_str);
12991
12992        return 0;
12993}
12994EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12995
12996static int __init perf_event_sysfs_init(void)
12997{
12998        struct pmu *pmu;
12999        int ret;
13000
13001        mutex_lock(&pmus_lock);
13002
13003        ret = bus_register(&pmu_bus);
13004        if (ret)
13005                goto unlock;
13006
13007        list_for_each_entry(pmu, &pmus, entry) {
13008                if (!pmu->name || pmu->type < 0)
13009                        continue;
13010
13011                ret = pmu_dev_alloc(pmu);
13012                WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13013        }
13014        pmu_bus_running = 1;
13015        ret = 0;
13016
13017unlock:
13018        mutex_unlock(&pmus_lock);
13019
13020        return ret;
13021}
13022device_initcall(perf_event_sysfs_init);
13023
13024#ifdef CONFIG_CGROUP_PERF
13025static struct cgroup_subsys_state *
13026perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13027{
13028        struct perf_cgroup *jc;
13029
13030        jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13031        if (!jc)
13032                return ERR_PTR(-ENOMEM);
13033
13034        jc->info = alloc_percpu(struct perf_cgroup_info);
13035        if (!jc->info) {
13036                kfree(jc);
13037                return ERR_PTR(-ENOMEM);
13038        }
13039
13040        return &jc->css;
13041}
13042
13043static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13044{
13045        struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13046
13047        free_percpu(jc->info);
13048        kfree(jc);
13049}
13050
13051static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13052{
13053        perf_event_cgroup(css->cgroup);
13054        return 0;
13055}
13056
13057static int __perf_cgroup_move(void *info)
13058{
13059        struct task_struct *task = info;
13060        rcu_read_lock();
13061        perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13062        rcu_read_unlock();
13063        return 0;
13064}
13065
13066static void perf_cgroup_attach(struct cgroup_taskset *tset)
13067{
13068        struct task_struct *task;
13069        struct cgroup_subsys_state *css;
13070
13071        cgroup_taskset_for_each(task, css, tset)
13072                task_function_call(task, __perf_cgroup_move, task);
13073}
13074
13075struct cgroup_subsys perf_event_cgrp_subsys = {
13076        .css_alloc      = perf_cgroup_css_alloc,
13077        .css_free       = perf_cgroup_css_free,
13078        .css_online     = perf_cgroup_css_online,
13079        .attach         = perf_cgroup_attach,
13080        /*
13081         * Implicitly enable on dfl hierarchy so that perf events can
13082         * always be filtered by cgroup2 path as long as perf_event
13083         * controller is not mounted on a legacy hierarchy.
13084         */
13085        .implicit_on_dfl = true,
13086        .threaded       = true,
13087};
13088#endif /* CONFIG_CGROUP_PERF */
13089