linux/kernel/relay.c
<<
>>
Prefs
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.rst for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 *      (mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/export.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35        struct rchan_buf *buf = vma->vm_private_data;
  36        buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * fault() vm_op implementation for relay file mapping.
  41 */
  42static vm_fault_t relay_buf_fault(struct vm_fault *vmf)
  43{
  44        struct page *page;
  45        struct rchan_buf *buf = vmf->vma->vm_private_data;
  46        pgoff_t pgoff = vmf->pgoff;
  47
  48        if (!buf)
  49                return VM_FAULT_OOM;
  50
  51        page = vmalloc_to_page(buf->start + (pgoff << PAGE_SHIFT));
  52        if (!page)
  53                return VM_FAULT_SIGBUS;
  54        get_page(page);
  55        vmf->page = page;
  56
  57        return 0;
  58}
  59
  60/*
  61 * vm_ops for relay file mappings.
  62 */
  63static const struct vm_operations_struct relay_file_mmap_ops = {
  64        .fault = relay_buf_fault,
  65        .close = relay_file_mmap_close,
  66};
  67
  68/*
  69 * allocate an array of pointers of struct page
  70 */
  71static struct page **relay_alloc_page_array(unsigned int n_pages)
  72{
  73        const size_t pa_size = n_pages * sizeof(struct page *);
  74        if (pa_size > PAGE_SIZE)
  75                return vzalloc(pa_size);
  76        return kzalloc(pa_size, GFP_KERNEL);
  77}
  78
  79/*
  80 * free an array of pointers of struct page
  81 */
  82static void relay_free_page_array(struct page **array)
  83{
  84        kvfree(array);
  85}
  86
  87/**
  88 *      relay_mmap_buf: - mmap channel buffer to process address space
  89 *      @buf: relay channel buffer
  90 *      @vma: vm_area_struct describing memory to be mapped
  91 *
  92 *      Returns 0 if ok, negative on error
  93 *
  94 *      Caller should already have grabbed mmap_lock.
  95 */
  96static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  97{
  98        unsigned long length = vma->vm_end - vma->vm_start;
  99        struct file *filp = vma->vm_file;
 100
 101        if (!buf)
 102                return -EBADF;
 103
 104        if (length != (unsigned long)buf->chan->alloc_size)
 105                return -EINVAL;
 106
 107        vma->vm_ops = &relay_file_mmap_ops;
 108        vma->vm_flags |= VM_DONTEXPAND;
 109        vma->vm_private_data = buf;
 110        buf->chan->cb->buf_mapped(buf, filp);
 111
 112        return 0;
 113}
 114
 115/**
 116 *      relay_alloc_buf - allocate a channel buffer
 117 *      @buf: the buffer struct
 118 *      @size: total size of the buffer
 119 *
 120 *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 121 *      passed in size will get page aligned, if it isn't already.
 122 */
 123static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 124{
 125        void *mem;
 126        unsigned int i, j, n_pages;
 127
 128        *size = PAGE_ALIGN(*size);
 129        n_pages = *size >> PAGE_SHIFT;
 130
 131        buf->page_array = relay_alloc_page_array(n_pages);
 132        if (!buf->page_array)
 133                return NULL;
 134
 135        for (i = 0; i < n_pages; i++) {
 136                buf->page_array[i] = alloc_page(GFP_KERNEL);
 137                if (unlikely(!buf->page_array[i]))
 138                        goto depopulate;
 139                set_page_private(buf->page_array[i], (unsigned long)buf);
 140        }
 141        mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 142        if (!mem)
 143                goto depopulate;
 144
 145        memset(mem, 0, *size);
 146        buf->page_count = n_pages;
 147        return mem;
 148
 149depopulate:
 150        for (j = 0; j < i; j++)
 151                __free_page(buf->page_array[j]);
 152        relay_free_page_array(buf->page_array);
 153        return NULL;
 154}
 155
 156/**
 157 *      relay_create_buf - allocate and initialize a channel buffer
 158 *      @chan: the relay channel
 159 *
 160 *      Returns channel buffer if successful, %NULL otherwise.
 161 */
 162static struct rchan_buf *relay_create_buf(struct rchan *chan)
 163{
 164        struct rchan_buf *buf;
 165
 166        if (chan->n_subbufs > KMALLOC_MAX_SIZE / sizeof(size_t *))
 167                return NULL;
 168
 169        buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 170        if (!buf)
 171                return NULL;
 172        buf->padding = kmalloc_array(chan->n_subbufs, sizeof(size_t *),
 173                                     GFP_KERNEL);
 174        if (!buf->padding)
 175                goto free_buf;
 176
 177        buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 178        if (!buf->start)
 179                goto free_buf;
 180
 181        buf->chan = chan;
 182        kref_get(&buf->chan->kref);
 183        return buf;
 184
 185free_buf:
 186        kfree(buf->padding);
 187        kfree(buf);
 188        return NULL;
 189}
 190
 191/**
 192 *      relay_destroy_channel - free the channel struct
 193 *      @kref: target kernel reference that contains the relay channel
 194 *
 195 *      Should only be called from kref_put().
 196 */
 197static void relay_destroy_channel(struct kref *kref)
 198{
 199        struct rchan *chan = container_of(kref, struct rchan, kref);
 200        free_percpu(chan->buf);
 201        kfree(chan);
 202}
 203
 204/**
 205 *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 206 *      @buf: the buffer struct
 207 */
 208static void relay_destroy_buf(struct rchan_buf *buf)
 209{
 210        struct rchan *chan = buf->chan;
 211        unsigned int i;
 212
 213        if (likely(buf->start)) {
 214                vunmap(buf->start);
 215                for (i = 0; i < buf->page_count; i++)
 216                        __free_page(buf->page_array[i]);
 217                relay_free_page_array(buf->page_array);
 218        }
 219        *per_cpu_ptr(chan->buf, buf->cpu) = NULL;
 220        kfree(buf->padding);
 221        kfree(buf);
 222        kref_put(&chan->kref, relay_destroy_channel);
 223}
 224
 225/**
 226 *      relay_remove_buf - remove a channel buffer
 227 *      @kref: target kernel reference that contains the relay buffer
 228 *
 229 *      Removes the file from the filesystem, which also frees the
 230 *      rchan_buf_struct and the channel buffer.  Should only be called from
 231 *      kref_put().
 232 */
 233static void relay_remove_buf(struct kref *kref)
 234{
 235        struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 236        relay_destroy_buf(buf);
 237}
 238
 239/**
 240 *      relay_buf_empty - boolean, is the channel buffer empty?
 241 *      @buf: channel buffer
 242 *
 243 *      Returns 1 if the buffer is empty, 0 otherwise.
 244 */
 245static int relay_buf_empty(struct rchan_buf *buf)
 246{
 247        return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 248}
 249
 250/**
 251 *      relay_buf_full - boolean, is the channel buffer full?
 252 *      @buf: channel buffer
 253 *
 254 *      Returns 1 if the buffer is full, 0 otherwise.
 255 */
 256int relay_buf_full(struct rchan_buf *buf)
 257{
 258        size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 259        return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 260}
 261EXPORT_SYMBOL_GPL(relay_buf_full);
 262
 263/*
 264 * High-level relay kernel API and associated functions.
 265 */
 266
 267/*
 268 * rchan_callback implementations defining default channel behavior.  Used
 269 * in place of corresponding NULL values in client callback struct.
 270 */
 271
 272/*
 273 * subbuf_start() default callback.  Does nothing.
 274 */
 275static int subbuf_start_default_callback (struct rchan_buf *buf,
 276                                          void *subbuf,
 277                                          void *prev_subbuf,
 278                                          size_t prev_padding)
 279{
 280        if (relay_buf_full(buf))
 281                return 0;
 282
 283        return 1;
 284}
 285
 286/*
 287 * buf_mapped() default callback.  Does nothing.
 288 */
 289static void buf_mapped_default_callback(struct rchan_buf *buf,
 290                                        struct file *filp)
 291{
 292}
 293
 294/*
 295 * buf_unmapped() default callback.  Does nothing.
 296 */
 297static void buf_unmapped_default_callback(struct rchan_buf *buf,
 298                                          struct file *filp)
 299{
 300}
 301
 302/*
 303 * create_buf_file_create() default callback.  Does nothing.
 304 */
 305static struct dentry *create_buf_file_default_callback(const char *filename,
 306                                                       struct dentry *parent,
 307                                                       umode_t mode,
 308                                                       struct rchan_buf *buf,
 309                                                       int *is_global)
 310{
 311        return NULL;
 312}
 313
 314/*
 315 * remove_buf_file() default callback.  Does nothing.
 316 */
 317static int remove_buf_file_default_callback(struct dentry *dentry)
 318{
 319        return -EINVAL;
 320}
 321
 322/* relay channel default callbacks */
 323static struct rchan_callbacks default_channel_callbacks = {
 324        .subbuf_start = subbuf_start_default_callback,
 325        .buf_mapped = buf_mapped_default_callback,
 326        .buf_unmapped = buf_unmapped_default_callback,
 327        .create_buf_file = create_buf_file_default_callback,
 328        .remove_buf_file = remove_buf_file_default_callback,
 329};
 330
 331/**
 332 *      wakeup_readers - wake up readers waiting on a channel
 333 *      @work: contains the channel buffer
 334 *
 335 *      This is the function used to defer reader waking
 336 */
 337static void wakeup_readers(struct irq_work *work)
 338{
 339        struct rchan_buf *buf;
 340
 341        buf = container_of(work, struct rchan_buf, wakeup_work);
 342        wake_up_interruptible(&buf->read_wait);
 343}
 344
 345/**
 346 *      __relay_reset - reset a channel buffer
 347 *      @buf: the channel buffer
 348 *      @init: 1 if this is a first-time initialization
 349 *
 350 *      See relay_reset() for description of effect.
 351 */
 352static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 353{
 354        size_t i;
 355
 356        if (init) {
 357                init_waitqueue_head(&buf->read_wait);
 358                kref_init(&buf->kref);
 359                init_irq_work(&buf->wakeup_work, wakeup_readers);
 360        } else {
 361                irq_work_sync(&buf->wakeup_work);
 362        }
 363
 364        buf->subbufs_produced = 0;
 365        buf->subbufs_consumed = 0;
 366        buf->bytes_consumed = 0;
 367        buf->finalized = 0;
 368        buf->data = buf->start;
 369        buf->offset = 0;
 370
 371        for (i = 0; i < buf->chan->n_subbufs; i++)
 372                buf->padding[i] = 0;
 373
 374        buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 375}
 376
 377/**
 378 *      relay_reset - reset the channel
 379 *      @chan: the channel
 380 *
 381 *      This has the effect of erasing all data from all channel buffers
 382 *      and restarting the channel in its initial state.  The buffers
 383 *      are not freed, so any mappings are still in effect.
 384 *
 385 *      NOTE. Care should be taken that the channel isn't actually
 386 *      being used by anything when this call is made.
 387 */
 388void relay_reset(struct rchan *chan)
 389{
 390        struct rchan_buf *buf;
 391        unsigned int i;
 392
 393        if (!chan)
 394                return;
 395
 396        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 397                __relay_reset(buf, 0);
 398                return;
 399        }
 400
 401        mutex_lock(&relay_channels_mutex);
 402        for_each_possible_cpu(i)
 403                if ((buf = *per_cpu_ptr(chan->buf, i)))
 404                        __relay_reset(buf, 0);
 405        mutex_unlock(&relay_channels_mutex);
 406}
 407EXPORT_SYMBOL_GPL(relay_reset);
 408
 409static inline void relay_set_buf_dentry(struct rchan_buf *buf,
 410                                        struct dentry *dentry)
 411{
 412        buf->dentry = dentry;
 413        d_inode(buf->dentry)->i_size = buf->early_bytes;
 414}
 415
 416static struct dentry *relay_create_buf_file(struct rchan *chan,
 417                                            struct rchan_buf *buf,
 418                                            unsigned int cpu)
 419{
 420        struct dentry *dentry;
 421        char *tmpname;
 422
 423        tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 424        if (!tmpname)
 425                return NULL;
 426        snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 427
 428        /* Create file in fs */
 429        dentry = chan->cb->create_buf_file(tmpname, chan->parent,
 430                                           S_IRUSR, buf,
 431                                           &chan->is_global);
 432        if (IS_ERR(dentry))
 433                dentry = NULL;
 434
 435        kfree(tmpname);
 436
 437        return dentry;
 438}
 439
 440/*
 441 *      relay_open_buf - create a new relay channel buffer
 442 *
 443 *      used by relay_open() and CPU hotplug.
 444 */
 445static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 446{
 447        struct rchan_buf *buf = NULL;
 448        struct dentry *dentry;
 449
 450        if (chan->is_global)
 451                return *per_cpu_ptr(chan->buf, 0);
 452
 453        buf = relay_create_buf(chan);
 454        if (!buf)
 455                return NULL;
 456
 457        if (chan->has_base_filename) {
 458                dentry = relay_create_buf_file(chan, buf, cpu);
 459                if (!dentry)
 460                        goto free_buf;
 461                relay_set_buf_dentry(buf, dentry);
 462        } else {
 463                /* Only retrieve global info, nothing more, nothing less */
 464                dentry = chan->cb->create_buf_file(NULL, NULL,
 465                                                   S_IRUSR, buf,
 466                                                   &chan->is_global);
 467                if (IS_ERR_OR_NULL(dentry))
 468                        goto free_buf;
 469        }
 470
 471        buf->cpu = cpu;
 472        __relay_reset(buf, 1);
 473
 474        if(chan->is_global) {
 475                *per_cpu_ptr(chan->buf, 0) = buf;
 476                buf->cpu = 0;
 477        }
 478
 479        return buf;
 480
 481free_buf:
 482        relay_destroy_buf(buf);
 483        return NULL;
 484}
 485
 486/**
 487 *      relay_close_buf - close a channel buffer
 488 *      @buf: channel buffer
 489 *
 490 *      Marks the buffer finalized and restores the default callbacks.
 491 *      The channel buffer and channel buffer data structure are then freed
 492 *      automatically when the last reference is given up.
 493 */
 494static void relay_close_buf(struct rchan_buf *buf)
 495{
 496        buf->finalized = 1;
 497        irq_work_sync(&buf->wakeup_work);
 498        buf->chan->cb->remove_buf_file(buf->dentry);
 499        kref_put(&buf->kref, relay_remove_buf);
 500}
 501
 502static void setup_callbacks(struct rchan *chan,
 503                                   struct rchan_callbacks *cb)
 504{
 505        if (!cb) {
 506                chan->cb = &default_channel_callbacks;
 507                return;
 508        }
 509
 510        if (!cb->subbuf_start)
 511                cb->subbuf_start = subbuf_start_default_callback;
 512        if (!cb->buf_mapped)
 513                cb->buf_mapped = buf_mapped_default_callback;
 514        if (!cb->buf_unmapped)
 515                cb->buf_unmapped = buf_unmapped_default_callback;
 516        if (!cb->create_buf_file)
 517                cb->create_buf_file = create_buf_file_default_callback;
 518        if (!cb->remove_buf_file)
 519                cb->remove_buf_file = remove_buf_file_default_callback;
 520        chan->cb = cb;
 521}
 522
 523int relay_prepare_cpu(unsigned int cpu)
 524{
 525        struct rchan *chan;
 526        struct rchan_buf *buf;
 527
 528        mutex_lock(&relay_channels_mutex);
 529        list_for_each_entry(chan, &relay_channels, list) {
 530                if ((buf = *per_cpu_ptr(chan->buf, cpu)))
 531                        continue;
 532                buf = relay_open_buf(chan, cpu);
 533                if (!buf) {
 534                        pr_err("relay: cpu %d buffer creation failed\n", cpu);
 535                        mutex_unlock(&relay_channels_mutex);
 536                        return -ENOMEM;
 537                }
 538                *per_cpu_ptr(chan->buf, cpu) = buf;
 539        }
 540        mutex_unlock(&relay_channels_mutex);
 541        return 0;
 542}
 543
 544/**
 545 *      relay_open - create a new relay channel
 546 *      @base_filename: base name of files to create, %NULL for buffering only
 547 *      @parent: dentry of parent directory, %NULL for root directory or buffer
 548 *      @subbuf_size: size of sub-buffers
 549 *      @n_subbufs: number of sub-buffers
 550 *      @cb: client callback functions
 551 *      @private_data: user-defined data
 552 *
 553 *      Returns channel pointer if successful, %NULL otherwise.
 554 *
 555 *      Creates a channel buffer for each cpu using the sizes and
 556 *      attributes specified.  The created channel buffer files
 557 *      will be named base_filename0...base_filenameN-1.  File
 558 *      permissions will be %S_IRUSR.
 559 *
 560 *      If opening a buffer (@parent = NULL) that you later wish to register
 561 *      in a filesystem, call relay_late_setup_files() once the @parent dentry
 562 *      is available.
 563 */
 564struct rchan *relay_open(const char *base_filename,
 565                         struct dentry *parent,
 566                         size_t subbuf_size,
 567                         size_t n_subbufs,
 568                         struct rchan_callbacks *cb,
 569                         void *private_data)
 570{
 571        unsigned int i;
 572        struct rchan *chan;
 573        struct rchan_buf *buf;
 574
 575        if (!(subbuf_size && n_subbufs))
 576                return NULL;
 577        if (subbuf_size > UINT_MAX / n_subbufs)
 578                return NULL;
 579
 580        chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 581        if (!chan)
 582                return NULL;
 583
 584        chan->buf = alloc_percpu(struct rchan_buf *);
 585        if (!chan->buf) {
 586                kfree(chan);
 587                return NULL;
 588        }
 589
 590        chan->version = RELAYFS_CHANNEL_VERSION;
 591        chan->n_subbufs = n_subbufs;
 592        chan->subbuf_size = subbuf_size;
 593        chan->alloc_size = PAGE_ALIGN(subbuf_size * n_subbufs);
 594        chan->parent = parent;
 595        chan->private_data = private_data;
 596        if (base_filename) {
 597                chan->has_base_filename = 1;
 598                strlcpy(chan->base_filename, base_filename, NAME_MAX);
 599        }
 600        setup_callbacks(chan, cb);
 601        kref_init(&chan->kref);
 602
 603        mutex_lock(&relay_channels_mutex);
 604        for_each_online_cpu(i) {
 605                buf = relay_open_buf(chan, i);
 606                if (!buf)
 607                        goto free_bufs;
 608                *per_cpu_ptr(chan->buf, i) = buf;
 609        }
 610        list_add(&chan->list, &relay_channels);
 611        mutex_unlock(&relay_channels_mutex);
 612
 613        return chan;
 614
 615free_bufs:
 616        for_each_possible_cpu(i) {
 617                if ((buf = *per_cpu_ptr(chan->buf, i)))
 618                        relay_close_buf(buf);
 619        }
 620
 621        kref_put(&chan->kref, relay_destroy_channel);
 622        mutex_unlock(&relay_channels_mutex);
 623        return NULL;
 624}
 625EXPORT_SYMBOL_GPL(relay_open);
 626
 627struct rchan_percpu_buf_dispatcher {
 628        struct rchan_buf *buf;
 629        struct dentry *dentry;
 630};
 631
 632/* Called in atomic context. */
 633static void __relay_set_buf_dentry(void *info)
 634{
 635        struct rchan_percpu_buf_dispatcher *p = info;
 636
 637        relay_set_buf_dentry(p->buf, p->dentry);
 638}
 639
 640/**
 641 *      relay_late_setup_files - triggers file creation
 642 *      @chan: channel to operate on
 643 *      @base_filename: base name of files to create
 644 *      @parent: dentry of parent directory, %NULL for root directory
 645 *
 646 *      Returns 0 if successful, non-zero otherwise.
 647 *
 648 *      Use to setup files for a previously buffer-only channel created
 649 *      by relay_open() with a NULL parent dentry.
 650 *
 651 *      For example, this is useful for perfomring early tracing in kernel,
 652 *      before VFS is up and then exposing the early results once the dentry
 653 *      is available.
 654 */
 655int relay_late_setup_files(struct rchan *chan,
 656                           const char *base_filename,
 657                           struct dentry *parent)
 658{
 659        int err = 0;
 660        unsigned int i, curr_cpu;
 661        unsigned long flags;
 662        struct dentry *dentry;
 663        struct rchan_buf *buf;
 664        struct rchan_percpu_buf_dispatcher disp;
 665
 666        if (!chan || !base_filename)
 667                return -EINVAL;
 668
 669        strlcpy(chan->base_filename, base_filename, NAME_MAX);
 670
 671        mutex_lock(&relay_channels_mutex);
 672        /* Is chan already set up? */
 673        if (unlikely(chan->has_base_filename)) {
 674                mutex_unlock(&relay_channels_mutex);
 675                return -EEXIST;
 676        }
 677        chan->has_base_filename = 1;
 678        chan->parent = parent;
 679
 680        if (chan->is_global) {
 681                err = -EINVAL;
 682                buf = *per_cpu_ptr(chan->buf, 0);
 683                if (!WARN_ON_ONCE(!buf)) {
 684                        dentry = relay_create_buf_file(chan, buf, 0);
 685                        if (dentry && !WARN_ON_ONCE(!chan->is_global)) {
 686                                relay_set_buf_dentry(buf, dentry);
 687                                err = 0;
 688                        }
 689                }
 690                mutex_unlock(&relay_channels_mutex);
 691                return err;
 692        }
 693
 694        curr_cpu = get_cpu();
 695        /*
 696         * The CPU hotplug notifier ran before us and created buffers with
 697         * no files associated. So it's safe to call relay_setup_buf_file()
 698         * on all currently online CPUs.
 699         */
 700        for_each_online_cpu(i) {
 701                buf = *per_cpu_ptr(chan->buf, i);
 702                if (unlikely(!buf)) {
 703                        WARN_ONCE(1, KERN_ERR "CPU has no buffer!\n");
 704                        err = -EINVAL;
 705                        break;
 706                }
 707
 708                dentry = relay_create_buf_file(chan, buf, i);
 709                if (unlikely(!dentry)) {
 710                        err = -EINVAL;
 711                        break;
 712                }
 713
 714                if (curr_cpu == i) {
 715                        local_irq_save(flags);
 716                        relay_set_buf_dentry(buf, dentry);
 717                        local_irq_restore(flags);
 718                } else {
 719                        disp.buf = buf;
 720                        disp.dentry = dentry;
 721                        smp_mb();
 722                        /* relay_channels_mutex must be held, so wait. */
 723                        err = smp_call_function_single(i,
 724                                                       __relay_set_buf_dentry,
 725                                                       &disp, 1);
 726                }
 727                if (unlikely(err))
 728                        break;
 729        }
 730        put_cpu();
 731        mutex_unlock(&relay_channels_mutex);
 732
 733        return err;
 734}
 735EXPORT_SYMBOL_GPL(relay_late_setup_files);
 736
 737/**
 738 *      relay_switch_subbuf - switch to a new sub-buffer
 739 *      @buf: channel buffer
 740 *      @length: size of current event
 741 *
 742 *      Returns either the length passed in or 0 if full.
 743 *
 744 *      Performs sub-buffer-switch tasks such as invoking callbacks,
 745 *      updating padding counts, waking up readers, etc.
 746 */
 747size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 748{
 749        void *old, *new;
 750        size_t old_subbuf, new_subbuf;
 751
 752        if (unlikely(length > buf->chan->subbuf_size))
 753                goto toobig;
 754
 755        if (buf->offset != buf->chan->subbuf_size + 1) {
 756                buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 757                old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 758                buf->padding[old_subbuf] = buf->prev_padding;
 759                buf->subbufs_produced++;
 760                if (buf->dentry)
 761                        d_inode(buf->dentry)->i_size +=
 762                                buf->chan->subbuf_size -
 763                                buf->padding[old_subbuf];
 764                else
 765                        buf->early_bytes += buf->chan->subbuf_size -
 766                                            buf->padding[old_subbuf];
 767                smp_mb();
 768                if (waitqueue_active(&buf->read_wait)) {
 769                        /*
 770                         * Calling wake_up_interruptible() from here
 771                         * will deadlock if we happen to be logging
 772                         * from the scheduler (trying to re-grab
 773                         * rq->lock), so defer it.
 774                         */
 775                        irq_work_queue(&buf->wakeup_work);
 776                }
 777        }
 778
 779        old = buf->data;
 780        new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 781        new = buf->start + new_subbuf * buf->chan->subbuf_size;
 782        buf->offset = 0;
 783        if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 784                buf->offset = buf->chan->subbuf_size + 1;
 785                return 0;
 786        }
 787        buf->data = new;
 788        buf->padding[new_subbuf] = 0;
 789
 790        if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 791                goto toobig;
 792
 793        return length;
 794
 795toobig:
 796        buf->chan->last_toobig = length;
 797        return 0;
 798}
 799EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 800
 801/**
 802 *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 803 *      @chan: the channel
 804 *      @cpu: the cpu associated with the channel buffer to update
 805 *      @subbufs_consumed: number of sub-buffers to add to current buf's count
 806 *
 807 *      Adds to the channel buffer's consumed sub-buffer count.
 808 *      subbufs_consumed should be the number of sub-buffers newly consumed,
 809 *      not the total consumed.
 810 *
 811 *      NOTE. Kernel clients don't need to call this function if the channel
 812 *      mode is 'overwrite'.
 813 */
 814void relay_subbufs_consumed(struct rchan *chan,
 815                            unsigned int cpu,
 816                            size_t subbufs_consumed)
 817{
 818        struct rchan_buf *buf;
 819
 820        if (!chan || cpu >= NR_CPUS)
 821                return;
 822
 823        buf = *per_cpu_ptr(chan->buf, cpu);
 824        if (!buf || subbufs_consumed > chan->n_subbufs)
 825                return;
 826
 827        if (subbufs_consumed > buf->subbufs_produced - buf->subbufs_consumed)
 828                buf->subbufs_consumed = buf->subbufs_produced;
 829        else
 830                buf->subbufs_consumed += subbufs_consumed;
 831}
 832EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 833
 834/**
 835 *      relay_close - close the channel
 836 *      @chan: the channel
 837 *
 838 *      Closes all channel buffers and frees the channel.
 839 */
 840void relay_close(struct rchan *chan)
 841{
 842        struct rchan_buf *buf;
 843        unsigned int i;
 844
 845        if (!chan)
 846                return;
 847
 848        mutex_lock(&relay_channels_mutex);
 849        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0)))
 850                relay_close_buf(buf);
 851        else
 852                for_each_possible_cpu(i)
 853                        if ((buf = *per_cpu_ptr(chan->buf, i)))
 854                                relay_close_buf(buf);
 855
 856        if (chan->last_toobig)
 857                printk(KERN_WARNING "relay: one or more items not logged "
 858                       "[item size (%zd) > sub-buffer size (%zd)]\n",
 859                       chan->last_toobig, chan->subbuf_size);
 860
 861        list_del(&chan->list);
 862        kref_put(&chan->kref, relay_destroy_channel);
 863        mutex_unlock(&relay_channels_mutex);
 864}
 865EXPORT_SYMBOL_GPL(relay_close);
 866
 867/**
 868 *      relay_flush - close the channel
 869 *      @chan: the channel
 870 *
 871 *      Flushes all channel buffers, i.e. forces buffer switch.
 872 */
 873void relay_flush(struct rchan *chan)
 874{
 875        struct rchan_buf *buf;
 876        unsigned int i;
 877
 878        if (!chan)
 879                return;
 880
 881        if (chan->is_global && (buf = *per_cpu_ptr(chan->buf, 0))) {
 882                relay_switch_subbuf(buf, 0);
 883                return;
 884        }
 885
 886        mutex_lock(&relay_channels_mutex);
 887        for_each_possible_cpu(i)
 888                if ((buf = *per_cpu_ptr(chan->buf, i)))
 889                        relay_switch_subbuf(buf, 0);
 890        mutex_unlock(&relay_channels_mutex);
 891}
 892EXPORT_SYMBOL_GPL(relay_flush);
 893
 894/**
 895 *      relay_file_open - open file op for relay files
 896 *      @inode: the inode
 897 *      @filp: the file
 898 *
 899 *      Increments the channel buffer refcount.
 900 */
 901static int relay_file_open(struct inode *inode, struct file *filp)
 902{
 903        struct rchan_buf *buf = inode->i_private;
 904        kref_get(&buf->kref);
 905        filp->private_data = buf;
 906
 907        return nonseekable_open(inode, filp);
 908}
 909
 910/**
 911 *      relay_file_mmap - mmap file op for relay files
 912 *      @filp: the file
 913 *      @vma: the vma describing what to map
 914 *
 915 *      Calls upon relay_mmap_buf() to map the file into user space.
 916 */
 917static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 918{
 919        struct rchan_buf *buf = filp->private_data;
 920        return relay_mmap_buf(buf, vma);
 921}
 922
 923/**
 924 *      relay_file_poll - poll file op for relay files
 925 *      @filp: the file
 926 *      @wait: poll table
 927 *
 928 *      Poll implemention.
 929 */
 930static __poll_t relay_file_poll(struct file *filp, poll_table *wait)
 931{
 932        __poll_t mask = 0;
 933        struct rchan_buf *buf = filp->private_data;
 934
 935        if (buf->finalized)
 936                return EPOLLERR;
 937
 938        if (filp->f_mode & FMODE_READ) {
 939                poll_wait(filp, &buf->read_wait, wait);
 940                if (!relay_buf_empty(buf))
 941                        mask |= EPOLLIN | EPOLLRDNORM;
 942        }
 943
 944        return mask;
 945}
 946
 947/**
 948 *      relay_file_release - release file op for relay files
 949 *      @inode: the inode
 950 *      @filp: the file
 951 *
 952 *      Decrements the channel refcount, as the filesystem is
 953 *      no longer using it.
 954 */
 955static int relay_file_release(struct inode *inode, struct file *filp)
 956{
 957        struct rchan_buf *buf = filp->private_data;
 958        kref_put(&buf->kref, relay_remove_buf);
 959
 960        return 0;
 961}
 962
 963/*
 964 *      relay_file_read_consume - update the consumed count for the buffer
 965 */
 966static void relay_file_read_consume(struct rchan_buf *buf,
 967                                    size_t read_pos,
 968                                    size_t bytes_consumed)
 969{
 970        size_t subbuf_size = buf->chan->subbuf_size;
 971        size_t n_subbufs = buf->chan->n_subbufs;
 972        size_t read_subbuf;
 973
 974        if (buf->subbufs_produced == buf->subbufs_consumed &&
 975            buf->offset == buf->bytes_consumed)
 976                return;
 977
 978        if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 979                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 980                buf->bytes_consumed = 0;
 981        }
 982
 983        buf->bytes_consumed += bytes_consumed;
 984        if (!read_pos)
 985                read_subbuf = buf->subbufs_consumed % n_subbufs;
 986        else
 987                read_subbuf = read_pos / buf->chan->subbuf_size;
 988        if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 989                if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 990                    (buf->offset == subbuf_size))
 991                        return;
 992                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 993                buf->bytes_consumed = 0;
 994        }
 995}
 996
 997/*
 998 *      relay_file_read_avail - boolean, are there unconsumed bytes available?
 999 */
1000static int relay_file_read_avail(struct rchan_buf *buf)
1001{
1002        size_t subbuf_size = buf->chan->subbuf_size;
1003        size_t n_subbufs = buf->chan->n_subbufs;
1004        size_t produced = buf->subbufs_produced;
1005        size_t consumed;
1006
1007        relay_file_read_consume(buf, 0, 0);
1008
1009        consumed = buf->subbufs_consumed;
1010
1011        if (unlikely(buf->offset > subbuf_size)) {
1012                if (produced == consumed)
1013                        return 0;
1014                return 1;
1015        }
1016
1017        if (unlikely(produced - consumed >= n_subbufs)) {
1018                consumed = produced - n_subbufs + 1;
1019                buf->subbufs_consumed = consumed;
1020                buf->bytes_consumed = 0;
1021        }
1022
1023        produced = (produced % n_subbufs) * subbuf_size + buf->offset;
1024        consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
1025
1026        if (consumed > produced)
1027                produced += n_subbufs * subbuf_size;
1028
1029        if (consumed == produced) {
1030                if (buf->offset == subbuf_size &&
1031                    buf->subbufs_produced > buf->subbufs_consumed)
1032                        return 1;
1033                return 0;
1034        }
1035
1036        return 1;
1037}
1038
1039/**
1040 *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
1041 *      @read_pos: file read position
1042 *      @buf: relay channel buffer
1043 */
1044static size_t relay_file_read_subbuf_avail(size_t read_pos,
1045                                           struct rchan_buf *buf)
1046{
1047        size_t padding, avail = 0;
1048        size_t read_subbuf, read_offset, write_subbuf, write_offset;
1049        size_t subbuf_size = buf->chan->subbuf_size;
1050
1051        write_subbuf = (buf->data - buf->start) / subbuf_size;
1052        write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
1053        read_subbuf = read_pos / subbuf_size;
1054        read_offset = read_pos % subbuf_size;
1055        padding = buf->padding[read_subbuf];
1056
1057        if (read_subbuf == write_subbuf) {
1058                if (read_offset + padding < write_offset)
1059                        avail = write_offset - (read_offset + padding);
1060        } else
1061                avail = (subbuf_size - padding) - read_offset;
1062
1063        return avail;
1064}
1065
1066/**
1067 *      relay_file_read_start_pos - find the first available byte to read
1068 *      @buf: relay channel buffer
1069 *
1070 *      If the read_pos is in the middle of padding, return the
1071 *      position of the first actually available byte, otherwise
1072 *      return the original value.
1073 */
1074static size_t relay_file_read_start_pos(struct rchan_buf *buf)
1075{
1076        size_t read_subbuf, padding, padding_start, padding_end;
1077        size_t subbuf_size = buf->chan->subbuf_size;
1078        size_t n_subbufs = buf->chan->n_subbufs;
1079        size_t consumed = buf->subbufs_consumed % n_subbufs;
1080        size_t read_pos = consumed * subbuf_size + buf->bytes_consumed;
1081
1082        read_subbuf = read_pos / subbuf_size;
1083        padding = buf->padding[read_subbuf];
1084        padding_start = (read_subbuf + 1) * subbuf_size - padding;
1085        padding_end = (read_subbuf + 1) * subbuf_size;
1086        if (read_pos >= padding_start && read_pos < padding_end) {
1087                read_subbuf = (read_subbuf + 1) % n_subbufs;
1088                read_pos = read_subbuf * subbuf_size;
1089        }
1090
1091        return read_pos;
1092}
1093
1094/**
1095 *      relay_file_read_end_pos - return the new read position
1096 *      @read_pos: file read position
1097 *      @buf: relay channel buffer
1098 *      @count: number of bytes to be read
1099 */
1100static size_t relay_file_read_end_pos(struct rchan_buf *buf,
1101                                      size_t read_pos,
1102                                      size_t count)
1103{
1104        size_t read_subbuf, padding, end_pos;
1105        size_t subbuf_size = buf->chan->subbuf_size;
1106        size_t n_subbufs = buf->chan->n_subbufs;
1107
1108        read_subbuf = read_pos / subbuf_size;
1109        padding = buf->padding[read_subbuf];
1110        if (read_pos % subbuf_size + count + padding == subbuf_size)
1111                end_pos = (read_subbuf + 1) * subbuf_size;
1112        else
1113                end_pos = read_pos + count;
1114        if (end_pos >= subbuf_size * n_subbufs)
1115                end_pos = 0;
1116
1117        return end_pos;
1118}
1119
1120static ssize_t relay_file_read(struct file *filp,
1121                               char __user *buffer,
1122                               size_t count,
1123                               loff_t *ppos)
1124{
1125        struct rchan_buf *buf = filp->private_data;
1126        size_t read_start, avail;
1127        size_t written = 0;
1128        int ret;
1129
1130        if (!count)
1131                return 0;
1132
1133        inode_lock(file_inode(filp));
1134        do {
1135                void *from;
1136
1137                if (!relay_file_read_avail(buf))
1138                        break;
1139
1140                read_start = relay_file_read_start_pos(buf);
1141                avail = relay_file_read_subbuf_avail(read_start, buf);
1142                if (!avail)
1143                        break;
1144
1145                avail = min(count, avail);
1146                from = buf->start + read_start;
1147                ret = avail;
1148                if (copy_to_user(buffer, from, avail))
1149                        break;
1150
1151                buffer += ret;
1152                written += ret;
1153                count -= ret;
1154
1155                relay_file_read_consume(buf, read_start, ret);
1156                *ppos = relay_file_read_end_pos(buf, read_start, ret);
1157        } while (count);
1158        inode_unlock(file_inode(filp));
1159
1160        return written;
1161}
1162
1163static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1164{
1165        rbuf->bytes_consumed += bytes_consumed;
1166
1167        if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1168                relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1169                rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1170        }
1171}
1172
1173static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1174                                   struct pipe_buffer *buf)
1175{
1176        struct rchan_buf *rbuf;
1177
1178        rbuf = (struct rchan_buf *)page_private(buf->page);
1179        relay_consume_bytes(rbuf, buf->private);
1180}
1181
1182static const struct pipe_buf_operations relay_pipe_buf_ops = {
1183        .release        = relay_pipe_buf_release,
1184        .try_steal      = generic_pipe_buf_try_steal,
1185        .get            = generic_pipe_buf_get,
1186};
1187
1188static void relay_page_release(struct splice_pipe_desc *spd, unsigned int i)
1189{
1190}
1191
1192/*
1193 *      subbuf_splice_actor - splice up to one subbuf's worth of data
1194 */
1195static ssize_t subbuf_splice_actor(struct file *in,
1196                               loff_t *ppos,
1197                               struct pipe_inode_info *pipe,
1198                               size_t len,
1199                               unsigned int flags,
1200                               int *nonpad_ret)
1201{
1202        unsigned int pidx, poff, total_len, subbuf_pages, nr_pages;
1203        struct rchan_buf *rbuf = in->private_data;
1204        unsigned int subbuf_size = rbuf->chan->subbuf_size;
1205        uint64_t pos = (uint64_t) *ppos;
1206        uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1207        size_t read_start = (size_t) do_div(pos, alloc_size);
1208        size_t read_subbuf = read_start / subbuf_size;
1209        size_t padding = rbuf->padding[read_subbuf];
1210        size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1211        struct page *pages[PIPE_DEF_BUFFERS];
1212        struct partial_page partial[PIPE_DEF_BUFFERS];
1213        struct splice_pipe_desc spd = {
1214                .pages = pages,
1215                .nr_pages = 0,
1216                .nr_pages_max = PIPE_DEF_BUFFERS,
1217                .partial = partial,
1218                .ops = &relay_pipe_buf_ops,
1219                .spd_release = relay_page_release,
1220        };
1221        ssize_t ret;
1222
1223        if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1224                return 0;
1225        if (splice_grow_spd(pipe, &spd))
1226                return -ENOMEM;
1227
1228        /*
1229         * Adjust read len, if longer than what is available
1230         */
1231        if (len > (subbuf_size - read_start % subbuf_size))
1232                len = subbuf_size - read_start % subbuf_size;
1233
1234        subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1235        pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1236        poff = read_start & ~PAGE_MASK;
1237        nr_pages = min_t(unsigned int, subbuf_pages, spd.nr_pages_max);
1238
1239        for (total_len = 0; spd.nr_pages < nr_pages; spd.nr_pages++) {
1240                unsigned int this_len, this_end, private;
1241                unsigned int cur_pos = read_start + total_len;
1242
1243                if (!len)
1244                        break;
1245
1246                this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1247                private = this_len;
1248
1249                spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1250                spd.partial[spd.nr_pages].offset = poff;
1251
1252                this_end = cur_pos + this_len;
1253                if (this_end >= nonpad_end) {
1254                        this_len = nonpad_end - cur_pos;
1255                        private = this_len + padding;
1256                }
1257                spd.partial[spd.nr_pages].len = this_len;
1258                spd.partial[spd.nr_pages].private = private;
1259
1260                len -= this_len;
1261                total_len += this_len;
1262                poff = 0;
1263                pidx = (pidx + 1) % subbuf_pages;
1264
1265                if (this_end >= nonpad_end) {
1266                        spd.nr_pages++;
1267                        break;
1268                }
1269        }
1270
1271        ret = 0;
1272        if (!spd.nr_pages)
1273                goto out;
1274
1275        ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1276        if (ret < 0 || ret < total_len)
1277                goto out;
1278
1279        if (read_start + ret == nonpad_end)
1280                ret += padding;
1281
1282out:
1283        splice_shrink_spd(&spd);
1284        return ret;
1285}
1286
1287static ssize_t relay_file_splice_read(struct file *in,
1288                                      loff_t *ppos,
1289                                      struct pipe_inode_info *pipe,
1290                                      size_t len,
1291                                      unsigned int flags)
1292{
1293        ssize_t spliced;
1294        int ret;
1295        int nonpad_ret = 0;
1296
1297        ret = 0;
1298        spliced = 0;
1299
1300        while (len && !spliced) {
1301                ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1302                if (ret < 0)
1303                        break;
1304                else if (!ret) {
1305                        if (flags & SPLICE_F_NONBLOCK)
1306                                ret = -EAGAIN;
1307                        break;
1308                }
1309
1310                *ppos += ret;
1311                if (ret > len)
1312                        len = 0;
1313                else
1314                        len -= ret;
1315                spliced += nonpad_ret;
1316                nonpad_ret = 0;
1317        }
1318
1319        if (spliced)
1320                return spliced;
1321
1322        return ret;
1323}
1324
1325const struct file_operations relay_file_operations = {
1326        .open           = relay_file_open,
1327        .poll           = relay_file_poll,
1328        .mmap           = relay_file_mmap,
1329        .read           = relay_file_read,
1330        .llseek         = no_llseek,
1331        .release        = relay_file_release,
1332        .splice_read    = relay_file_splice_read,
1333};
1334EXPORT_SYMBOL_GPL(relay_file_operations);
1335