linux/mm/hugetlb.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic hugetlb support.
   4 * (C) Nadia Yvette Chambers, April 2004
   5 */
   6#include <linux/list.h>
   7#include <linux/init.h>
   8#include <linux/mm.h>
   9#include <linux/seq_file.h>
  10#include <linux/sysctl.h>
  11#include <linux/highmem.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/nodemask.h>
  14#include <linux/pagemap.h>
  15#include <linux/mempolicy.h>
  16#include <linux/compiler.h>
  17#include <linux/cpuset.h>
  18#include <linux/mutex.h>
  19#include <linux/memblock.h>
  20#include <linux/sysfs.h>
  21#include <linux/slab.h>
  22#include <linux/sched/mm.h>
  23#include <linux/mmdebug.h>
  24#include <linux/sched/signal.h>
  25#include <linux/rmap.h>
  26#include <linux/string_helpers.h>
  27#include <linux/swap.h>
  28#include <linux/swapops.h>
  29#include <linux/jhash.h>
  30#include <linux/numa.h>
  31#include <linux/llist.h>
  32#include <linux/cma.h>
  33
  34#include <asm/page.h>
  35#include <asm/pgalloc.h>
  36#include <asm/tlb.h>
  37
  38#include <linux/io.h>
  39#include <linux/hugetlb.h>
  40#include <linux/hugetlb_cgroup.h>
  41#include <linux/node.h>
  42#include <linux/userfaultfd_k.h>
  43#include <linux/page_owner.h>
  44#include "internal.h"
  45
  46int hugetlb_max_hstate __read_mostly;
  47unsigned int default_hstate_idx;
  48struct hstate hstates[HUGE_MAX_HSTATE];
  49
  50#ifdef CONFIG_CMA
  51static struct cma *hugetlb_cma[MAX_NUMNODES];
  52#endif
  53static unsigned long hugetlb_cma_size __initdata;
  54
  55/*
  56 * Minimum page order among possible hugepage sizes, set to a proper value
  57 * at boot time.
  58 */
  59static unsigned int minimum_order __read_mostly = UINT_MAX;
  60
  61__initdata LIST_HEAD(huge_boot_pages);
  62
  63/* for command line parsing */
  64static struct hstate * __initdata parsed_hstate;
  65static unsigned long __initdata default_hstate_max_huge_pages;
  66static bool __initdata parsed_valid_hugepagesz = true;
  67static bool __initdata parsed_default_hugepagesz;
  68
  69/*
  70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
  71 * free_huge_pages, and surplus_huge_pages.
  72 */
  73DEFINE_SPINLOCK(hugetlb_lock);
  74
  75/*
  76 * Serializes faults on the same logical page.  This is used to
  77 * prevent spurious OOMs when the hugepage pool is fully utilized.
  78 */
  79static int num_fault_mutexes;
  80struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
  81
  82/* Forward declaration */
  83static int hugetlb_acct_memory(struct hstate *h, long delta);
  84
  85static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
  86{
  87        bool free = (spool->count == 0) && (spool->used_hpages == 0);
  88
  89        spin_unlock(&spool->lock);
  90
  91        /* If no pages are used, and no other handles to the subpool
  92         * remain, give up any reservations based on minimum size and
  93         * free the subpool */
  94        if (free) {
  95                if (spool->min_hpages != -1)
  96                        hugetlb_acct_memory(spool->hstate,
  97                                                -spool->min_hpages);
  98                kfree(spool);
  99        }
 100}
 101
 102struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
 103                                                long min_hpages)
 104{
 105        struct hugepage_subpool *spool;
 106
 107        spool = kzalloc(sizeof(*spool), GFP_KERNEL);
 108        if (!spool)
 109                return NULL;
 110
 111        spin_lock_init(&spool->lock);
 112        spool->count = 1;
 113        spool->max_hpages = max_hpages;
 114        spool->hstate = h;
 115        spool->min_hpages = min_hpages;
 116
 117        if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
 118                kfree(spool);
 119                return NULL;
 120        }
 121        spool->rsv_hpages = min_hpages;
 122
 123        return spool;
 124}
 125
 126void hugepage_put_subpool(struct hugepage_subpool *spool)
 127{
 128        spin_lock(&spool->lock);
 129        BUG_ON(!spool->count);
 130        spool->count--;
 131        unlock_or_release_subpool(spool);
 132}
 133
 134/*
 135 * Subpool accounting for allocating and reserving pages.
 136 * Return -ENOMEM if there are not enough resources to satisfy the
 137 * request.  Otherwise, return the number of pages by which the
 138 * global pools must be adjusted (upward).  The returned value may
 139 * only be different than the passed value (delta) in the case where
 140 * a subpool minimum size must be maintained.
 141 */
 142static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
 143                                      long delta)
 144{
 145        long ret = delta;
 146
 147        if (!spool)
 148                return ret;
 149
 150        spin_lock(&spool->lock);
 151
 152        if (spool->max_hpages != -1) {          /* maximum size accounting */
 153                if ((spool->used_hpages + delta) <= spool->max_hpages)
 154                        spool->used_hpages += delta;
 155                else {
 156                        ret = -ENOMEM;
 157                        goto unlock_ret;
 158                }
 159        }
 160
 161        /* minimum size accounting */
 162        if (spool->min_hpages != -1 && spool->rsv_hpages) {
 163                if (delta > spool->rsv_hpages) {
 164                        /*
 165                         * Asking for more reserves than those already taken on
 166                         * behalf of subpool.  Return difference.
 167                         */
 168                        ret = delta - spool->rsv_hpages;
 169                        spool->rsv_hpages = 0;
 170                } else {
 171                        ret = 0;        /* reserves already accounted for */
 172                        spool->rsv_hpages -= delta;
 173                }
 174        }
 175
 176unlock_ret:
 177        spin_unlock(&spool->lock);
 178        return ret;
 179}
 180
 181/*
 182 * Subpool accounting for freeing and unreserving pages.
 183 * Return the number of global page reservations that must be dropped.
 184 * The return value may only be different than the passed value (delta)
 185 * in the case where a subpool minimum size must be maintained.
 186 */
 187static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
 188                                       long delta)
 189{
 190        long ret = delta;
 191
 192        if (!spool)
 193                return delta;
 194
 195        spin_lock(&spool->lock);
 196
 197        if (spool->max_hpages != -1)            /* maximum size accounting */
 198                spool->used_hpages -= delta;
 199
 200         /* minimum size accounting */
 201        if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
 202                if (spool->rsv_hpages + delta <= spool->min_hpages)
 203                        ret = 0;
 204                else
 205                        ret = spool->rsv_hpages + delta - spool->min_hpages;
 206
 207                spool->rsv_hpages += delta;
 208                if (spool->rsv_hpages > spool->min_hpages)
 209                        spool->rsv_hpages = spool->min_hpages;
 210        }
 211
 212        /*
 213         * If hugetlbfs_put_super couldn't free spool due to an outstanding
 214         * quota reference, free it now.
 215         */
 216        unlock_or_release_subpool(spool);
 217
 218        return ret;
 219}
 220
 221static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
 222{
 223        return HUGETLBFS_SB(inode->i_sb)->spool;
 224}
 225
 226static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
 227{
 228        return subpool_inode(file_inode(vma->vm_file));
 229}
 230
 231/* Helper that removes a struct file_region from the resv_map cache and returns
 232 * it for use.
 233 */
 234static struct file_region *
 235get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
 236{
 237        struct file_region *nrg = NULL;
 238
 239        VM_BUG_ON(resv->region_cache_count <= 0);
 240
 241        resv->region_cache_count--;
 242        nrg = list_first_entry(&resv->region_cache, struct file_region, link);
 243        list_del(&nrg->link);
 244
 245        nrg->from = from;
 246        nrg->to = to;
 247
 248        return nrg;
 249}
 250
 251static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
 252                                              struct file_region *rg)
 253{
 254#ifdef CONFIG_CGROUP_HUGETLB
 255        nrg->reservation_counter = rg->reservation_counter;
 256        nrg->css = rg->css;
 257        if (rg->css)
 258                css_get(rg->css);
 259#endif
 260}
 261
 262/* Helper that records hugetlb_cgroup uncharge info. */
 263static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
 264                                                struct hstate *h,
 265                                                struct resv_map *resv,
 266                                                struct file_region *nrg)
 267{
 268#ifdef CONFIG_CGROUP_HUGETLB
 269        if (h_cg) {
 270                nrg->reservation_counter =
 271                        &h_cg->rsvd_hugepage[hstate_index(h)];
 272                nrg->css = &h_cg->css;
 273                if (!resv->pages_per_hpage)
 274                        resv->pages_per_hpage = pages_per_huge_page(h);
 275                /* pages_per_hpage should be the same for all entries in
 276                 * a resv_map.
 277                 */
 278                VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
 279        } else {
 280                nrg->reservation_counter = NULL;
 281                nrg->css = NULL;
 282        }
 283#endif
 284}
 285
 286static bool has_same_uncharge_info(struct file_region *rg,
 287                                   struct file_region *org)
 288{
 289#ifdef CONFIG_CGROUP_HUGETLB
 290        return rg && org &&
 291               rg->reservation_counter == org->reservation_counter &&
 292               rg->css == org->css;
 293
 294#else
 295        return true;
 296#endif
 297}
 298
 299static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
 300{
 301        struct file_region *nrg = NULL, *prg = NULL;
 302
 303        prg = list_prev_entry(rg, link);
 304        if (&prg->link != &resv->regions && prg->to == rg->from &&
 305            has_same_uncharge_info(prg, rg)) {
 306                prg->to = rg->to;
 307
 308                list_del(&rg->link);
 309                kfree(rg);
 310
 311                rg = prg;
 312        }
 313
 314        nrg = list_next_entry(rg, link);
 315        if (&nrg->link != &resv->regions && nrg->from == rg->to &&
 316            has_same_uncharge_info(nrg, rg)) {
 317                nrg->from = rg->from;
 318
 319                list_del(&rg->link);
 320                kfree(rg);
 321        }
 322}
 323
 324/*
 325 * Must be called with resv->lock held.
 326 *
 327 * Calling this with regions_needed != NULL will count the number of pages
 328 * to be added but will not modify the linked list. And regions_needed will
 329 * indicate the number of file_regions needed in the cache to carry out to add
 330 * the regions for this range.
 331 */
 332static long add_reservation_in_range(struct resv_map *resv, long f, long t,
 333                                     struct hugetlb_cgroup *h_cg,
 334                                     struct hstate *h, long *regions_needed)
 335{
 336        long add = 0;
 337        struct list_head *head = &resv->regions;
 338        long last_accounted_offset = f;
 339        struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
 340
 341        if (regions_needed)
 342                *regions_needed = 0;
 343
 344        /* In this loop, we essentially handle an entry for the range
 345         * [last_accounted_offset, rg->from), at every iteration, with some
 346         * bounds checking.
 347         */
 348        list_for_each_entry_safe(rg, trg, head, link) {
 349                /* Skip irrelevant regions that start before our range. */
 350                if (rg->from < f) {
 351                        /* If this region ends after the last accounted offset,
 352                         * then we need to update last_accounted_offset.
 353                         */
 354                        if (rg->to > last_accounted_offset)
 355                                last_accounted_offset = rg->to;
 356                        continue;
 357                }
 358
 359                /* When we find a region that starts beyond our range, we've
 360                 * finished.
 361                 */
 362                if (rg->from > t)
 363                        break;
 364
 365                /* Add an entry for last_accounted_offset -> rg->from, and
 366                 * update last_accounted_offset.
 367                 */
 368                if (rg->from > last_accounted_offset) {
 369                        add += rg->from - last_accounted_offset;
 370                        if (!regions_needed) {
 371                                nrg = get_file_region_entry_from_cache(
 372                                        resv, last_accounted_offset, rg->from);
 373                                record_hugetlb_cgroup_uncharge_info(h_cg, h,
 374                                                                    resv, nrg);
 375                                list_add(&nrg->link, rg->link.prev);
 376                                coalesce_file_region(resv, nrg);
 377                        } else
 378                                *regions_needed += 1;
 379                }
 380
 381                last_accounted_offset = rg->to;
 382        }
 383
 384        /* Handle the case where our range extends beyond
 385         * last_accounted_offset.
 386         */
 387        if (last_accounted_offset < t) {
 388                add += t - last_accounted_offset;
 389                if (!regions_needed) {
 390                        nrg = get_file_region_entry_from_cache(
 391                                resv, last_accounted_offset, t);
 392                        record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
 393                        list_add(&nrg->link, rg->link.prev);
 394                        coalesce_file_region(resv, nrg);
 395                } else
 396                        *regions_needed += 1;
 397        }
 398
 399        VM_BUG_ON(add < 0);
 400        return add;
 401}
 402
 403/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
 404 */
 405static int allocate_file_region_entries(struct resv_map *resv,
 406                                        int regions_needed)
 407        __must_hold(&resv->lock)
 408{
 409        struct list_head allocated_regions;
 410        int to_allocate = 0, i = 0;
 411        struct file_region *trg = NULL, *rg = NULL;
 412
 413        VM_BUG_ON(regions_needed < 0);
 414
 415        INIT_LIST_HEAD(&allocated_regions);
 416
 417        /*
 418         * Check for sufficient descriptors in the cache to accommodate
 419         * the number of in progress add operations plus regions_needed.
 420         *
 421         * This is a while loop because when we drop the lock, some other call
 422         * to region_add or region_del may have consumed some region_entries,
 423         * so we keep looping here until we finally have enough entries for
 424         * (adds_in_progress + regions_needed).
 425         */
 426        while (resv->region_cache_count <
 427               (resv->adds_in_progress + regions_needed)) {
 428                to_allocate = resv->adds_in_progress + regions_needed -
 429                              resv->region_cache_count;
 430
 431                /* At this point, we should have enough entries in the cache
 432                 * for all the existings adds_in_progress. We should only be
 433                 * needing to allocate for regions_needed.
 434                 */
 435                VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
 436
 437                spin_unlock(&resv->lock);
 438                for (i = 0; i < to_allocate; i++) {
 439                        trg = kmalloc(sizeof(*trg), GFP_KERNEL);
 440                        if (!trg)
 441                                goto out_of_memory;
 442                        list_add(&trg->link, &allocated_regions);
 443                }
 444
 445                spin_lock(&resv->lock);
 446
 447                list_splice(&allocated_regions, &resv->region_cache);
 448                resv->region_cache_count += to_allocate;
 449        }
 450
 451        return 0;
 452
 453out_of_memory:
 454        list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
 455                list_del(&rg->link);
 456                kfree(rg);
 457        }
 458        return -ENOMEM;
 459}
 460
 461/*
 462 * Add the huge page range represented by [f, t) to the reserve
 463 * map.  Regions will be taken from the cache to fill in this range.
 464 * Sufficient regions should exist in the cache due to the previous
 465 * call to region_chg with the same range, but in some cases the cache will not
 466 * have sufficient entries due to races with other code doing region_add or
 467 * region_del.  The extra needed entries will be allocated.
 468 *
 469 * regions_needed is the out value provided by a previous call to region_chg.
 470 *
 471 * Return the number of new huge pages added to the map.  This number is greater
 472 * than or equal to zero.  If file_region entries needed to be allocated for
 473 * this operation and we were not able to allocate, it returns -ENOMEM.
 474 * region_add of regions of length 1 never allocate file_regions and cannot
 475 * fail; region_chg will always allocate at least 1 entry and a region_add for
 476 * 1 page will only require at most 1 entry.
 477 */
 478static long region_add(struct resv_map *resv, long f, long t,
 479                       long in_regions_needed, struct hstate *h,
 480                       struct hugetlb_cgroup *h_cg)
 481{
 482        long add = 0, actual_regions_needed = 0;
 483
 484        spin_lock(&resv->lock);
 485retry:
 486
 487        /* Count how many regions are actually needed to execute this add. */
 488        add_reservation_in_range(resv, f, t, NULL, NULL,
 489                                 &actual_regions_needed);
 490
 491        /*
 492         * Check for sufficient descriptors in the cache to accommodate
 493         * this add operation. Note that actual_regions_needed may be greater
 494         * than in_regions_needed, as the resv_map may have been modified since
 495         * the region_chg call. In this case, we need to make sure that we
 496         * allocate extra entries, such that we have enough for all the
 497         * existing adds_in_progress, plus the excess needed for this
 498         * operation.
 499         */
 500        if (actual_regions_needed > in_regions_needed &&
 501            resv->region_cache_count <
 502                    resv->adds_in_progress +
 503                            (actual_regions_needed - in_regions_needed)) {
 504                /* region_add operation of range 1 should never need to
 505                 * allocate file_region entries.
 506                 */
 507                VM_BUG_ON(t - f <= 1);
 508
 509                if (allocate_file_region_entries(
 510                            resv, actual_regions_needed - in_regions_needed)) {
 511                        return -ENOMEM;
 512                }
 513
 514                goto retry;
 515        }
 516
 517        add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
 518
 519        resv->adds_in_progress -= in_regions_needed;
 520
 521        spin_unlock(&resv->lock);
 522        VM_BUG_ON(add < 0);
 523        return add;
 524}
 525
 526/*
 527 * Examine the existing reserve map and determine how many
 528 * huge pages in the specified range [f, t) are NOT currently
 529 * represented.  This routine is called before a subsequent
 530 * call to region_add that will actually modify the reserve
 531 * map to add the specified range [f, t).  region_chg does
 532 * not change the number of huge pages represented by the
 533 * map.  A number of new file_region structures is added to the cache as a
 534 * placeholder, for the subsequent region_add call to use. At least 1
 535 * file_region structure is added.
 536 *
 537 * out_regions_needed is the number of regions added to the
 538 * resv->adds_in_progress.  This value needs to be provided to a follow up call
 539 * to region_add or region_abort for proper accounting.
 540 *
 541 * Returns the number of huge pages that need to be added to the existing
 542 * reservation map for the range [f, t).  This number is greater or equal to
 543 * zero.  -ENOMEM is returned if a new file_region structure or cache entry
 544 * is needed and can not be allocated.
 545 */
 546static long region_chg(struct resv_map *resv, long f, long t,
 547                       long *out_regions_needed)
 548{
 549        long chg = 0;
 550
 551        spin_lock(&resv->lock);
 552
 553        /* Count how many hugepages in this range are NOT represented. */
 554        chg = add_reservation_in_range(resv, f, t, NULL, NULL,
 555                                       out_regions_needed);
 556
 557        if (*out_regions_needed == 0)
 558                *out_regions_needed = 1;
 559
 560        if (allocate_file_region_entries(resv, *out_regions_needed))
 561                return -ENOMEM;
 562
 563        resv->adds_in_progress += *out_regions_needed;
 564
 565        spin_unlock(&resv->lock);
 566        return chg;
 567}
 568
 569/*
 570 * Abort the in progress add operation.  The adds_in_progress field
 571 * of the resv_map keeps track of the operations in progress between
 572 * calls to region_chg and region_add.  Operations are sometimes
 573 * aborted after the call to region_chg.  In such cases, region_abort
 574 * is called to decrement the adds_in_progress counter. regions_needed
 575 * is the value returned by the region_chg call, it is used to decrement
 576 * the adds_in_progress counter.
 577 *
 578 * NOTE: The range arguments [f, t) are not needed or used in this
 579 * routine.  They are kept to make reading the calling code easier as
 580 * arguments will match the associated region_chg call.
 581 */
 582static void region_abort(struct resv_map *resv, long f, long t,
 583                         long regions_needed)
 584{
 585        spin_lock(&resv->lock);
 586        VM_BUG_ON(!resv->region_cache_count);
 587        resv->adds_in_progress -= regions_needed;
 588        spin_unlock(&resv->lock);
 589}
 590
 591/*
 592 * Delete the specified range [f, t) from the reserve map.  If the
 593 * t parameter is LONG_MAX, this indicates that ALL regions after f
 594 * should be deleted.  Locate the regions which intersect [f, t)
 595 * and either trim, delete or split the existing regions.
 596 *
 597 * Returns the number of huge pages deleted from the reserve map.
 598 * In the normal case, the return value is zero or more.  In the
 599 * case where a region must be split, a new region descriptor must
 600 * be allocated.  If the allocation fails, -ENOMEM will be returned.
 601 * NOTE: If the parameter t == LONG_MAX, then we will never split
 602 * a region and possibly return -ENOMEM.  Callers specifying
 603 * t == LONG_MAX do not need to check for -ENOMEM error.
 604 */
 605static long region_del(struct resv_map *resv, long f, long t)
 606{
 607        struct list_head *head = &resv->regions;
 608        struct file_region *rg, *trg;
 609        struct file_region *nrg = NULL;
 610        long del = 0;
 611
 612retry:
 613        spin_lock(&resv->lock);
 614        list_for_each_entry_safe(rg, trg, head, link) {
 615                /*
 616                 * Skip regions before the range to be deleted.  file_region
 617                 * ranges are normally of the form [from, to).  However, there
 618                 * may be a "placeholder" entry in the map which is of the form
 619                 * (from, to) with from == to.  Check for placeholder entries
 620                 * at the beginning of the range to be deleted.
 621                 */
 622                if (rg->to <= f && (rg->to != rg->from || rg->to != f))
 623                        continue;
 624
 625                if (rg->from >= t)
 626                        break;
 627
 628                if (f > rg->from && t < rg->to) { /* Must split region */
 629                        /*
 630                         * Check for an entry in the cache before dropping
 631                         * lock and attempting allocation.
 632                         */
 633                        if (!nrg &&
 634                            resv->region_cache_count > resv->adds_in_progress) {
 635                                nrg = list_first_entry(&resv->region_cache,
 636                                                        struct file_region,
 637                                                        link);
 638                                list_del(&nrg->link);
 639                                resv->region_cache_count--;
 640                        }
 641
 642                        if (!nrg) {
 643                                spin_unlock(&resv->lock);
 644                                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
 645                                if (!nrg)
 646                                        return -ENOMEM;
 647                                goto retry;
 648                        }
 649
 650                        del += t - f;
 651                        hugetlb_cgroup_uncharge_file_region(
 652                                resv, rg, t - f);
 653
 654                        /* New entry for end of split region */
 655                        nrg->from = t;
 656                        nrg->to = rg->to;
 657
 658                        copy_hugetlb_cgroup_uncharge_info(nrg, rg);
 659
 660                        INIT_LIST_HEAD(&nrg->link);
 661
 662                        /* Original entry is trimmed */
 663                        rg->to = f;
 664
 665                        list_add(&nrg->link, &rg->link);
 666                        nrg = NULL;
 667                        break;
 668                }
 669
 670                if (f <= rg->from && t >= rg->to) { /* Remove entire region */
 671                        del += rg->to - rg->from;
 672                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 673                                                            rg->to - rg->from);
 674                        list_del(&rg->link);
 675                        kfree(rg);
 676                        continue;
 677                }
 678
 679                if (f <= rg->from) {    /* Trim beginning of region */
 680                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 681                                                            t - rg->from);
 682
 683                        del += t - rg->from;
 684                        rg->from = t;
 685                } else {                /* Trim end of region */
 686                        hugetlb_cgroup_uncharge_file_region(resv, rg,
 687                                                            rg->to - f);
 688
 689                        del += rg->to - f;
 690                        rg->to = f;
 691                }
 692        }
 693
 694        spin_unlock(&resv->lock);
 695        kfree(nrg);
 696        return del;
 697}
 698
 699/*
 700 * A rare out of memory error was encountered which prevented removal of
 701 * the reserve map region for a page.  The huge page itself was free'ed
 702 * and removed from the page cache.  This routine will adjust the subpool
 703 * usage count, and the global reserve count if needed.  By incrementing
 704 * these counts, the reserve map entry which could not be deleted will
 705 * appear as a "reserved" entry instead of simply dangling with incorrect
 706 * counts.
 707 */
 708void hugetlb_fix_reserve_counts(struct inode *inode)
 709{
 710        struct hugepage_subpool *spool = subpool_inode(inode);
 711        long rsv_adjust;
 712
 713        rsv_adjust = hugepage_subpool_get_pages(spool, 1);
 714        if (rsv_adjust) {
 715                struct hstate *h = hstate_inode(inode);
 716
 717                hugetlb_acct_memory(h, 1);
 718        }
 719}
 720
 721/*
 722 * Count and return the number of huge pages in the reserve map
 723 * that intersect with the range [f, t).
 724 */
 725static long region_count(struct resv_map *resv, long f, long t)
 726{
 727        struct list_head *head = &resv->regions;
 728        struct file_region *rg;
 729        long chg = 0;
 730
 731        spin_lock(&resv->lock);
 732        /* Locate each segment we overlap with, and count that overlap. */
 733        list_for_each_entry(rg, head, link) {
 734                long seg_from;
 735                long seg_to;
 736
 737                if (rg->to <= f)
 738                        continue;
 739                if (rg->from >= t)
 740                        break;
 741
 742                seg_from = max(rg->from, f);
 743                seg_to = min(rg->to, t);
 744
 745                chg += seg_to - seg_from;
 746        }
 747        spin_unlock(&resv->lock);
 748
 749        return chg;
 750}
 751
 752/*
 753 * Convert the address within this vma to the page offset within
 754 * the mapping, in pagecache page units; huge pages here.
 755 */
 756static pgoff_t vma_hugecache_offset(struct hstate *h,
 757                        struct vm_area_struct *vma, unsigned long address)
 758{
 759        return ((address - vma->vm_start) >> huge_page_shift(h)) +
 760                        (vma->vm_pgoff >> huge_page_order(h));
 761}
 762
 763pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
 764                                     unsigned long address)
 765{
 766        return vma_hugecache_offset(hstate_vma(vma), vma, address);
 767}
 768EXPORT_SYMBOL_GPL(linear_hugepage_index);
 769
 770/*
 771 * Return the size of the pages allocated when backing a VMA. In the majority
 772 * cases this will be same size as used by the page table entries.
 773 */
 774unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
 775{
 776        if (vma->vm_ops && vma->vm_ops->pagesize)
 777                return vma->vm_ops->pagesize(vma);
 778        return PAGE_SIZE;
 779}
 780EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
 781
 782/*
 783 * Return the page size being used by the MMU to back a VMA. In the majority
 784 * of cases, the page size used by the kernel matches the MMU size. On
 785 * architectures where it differs, an architecture-specific 'strong'
 786 * version of this symbol is required.
 787 */
 788__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 789{
 790        return vma_kernel_pagesize(vma);
 791}
 792
 793/*
 794 * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
 795 * bits of the reservation map pointer, which are always clear due to
 796 * alignment.
 797 */
 798#define HPAGE_RESV_OWNER    (1UL << 0)
 799#define HPAGE_RESV_UNMAPPED (1UL << 1)
 800#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
 801
 802/*
 803 * These helpers are used to track how many pages are reserved for
 804 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
 805 * is guaranteed to have their future faults succeed.
 806 *
 807 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
 808 * the reserve counters are updated with the hugetlb_lock held. It is safe
 809 * to reset the VMA at fork() time as it is not in use yet and there is no
 810 * chance of the global counters getting corrupted as a result of the values.
 811 *
 812 * The private mapping reservation is represented in a subtly different
 813 * manner to a shared mapping.  A shared mapping has a region map associated
 814 * with the underlying file, this region map represents the backing file
 815 * pages which have ever had a reservation assigned which this persists even
 816 * after the page is instantiated.  A private mapping has a region map
 817 * associated with the original mmap which is attached to all VMAs which
 818 * reference it, this region map represents those offsets which have consumed
 819 * reservation ie. where pages have been instantiated.
 820 */
 821static unsigned long get_vma_private_data(struct vm_area_struct *vma)
 822{
 823        return (unsigned long)vma->vm_private_data;
 824}
 825
 826static void set_vma_private_data(struct vm_area_struct *vma,
 827                                                        unsigned long value)
 828{
 829        vma->vm_private_data = (void *)value;
 830}
 831
 832static void
 833resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
 834                                          struct hugetlb_cgroup *h_cg,
 835                                          struct hstate *h)
 836{
 837#ifdef CONFIG_CGROUP_HUGETLB
 838        if (!h_cg || !h) {
 839                resv_map->reservation_counter = NULL;
 840                resv_map->pages_per_hpage = 0;
 841                resv_map->css = NULL;
 842        } else {
 843                resv_map->reservation_counter =
 844                        &h_cg->rsvd_hugepage[hstate_index(h)];
 845                resv_map->pages_per_hpage = pages_per_huge_page(h);
 846                resv_map->css = &h_cg->css;
 847        }
 848#endif
 849}
 850
 851struct resv_map *resv_map_alloc(void)
 852{
 853        struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
 854        struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
 855
 856        if (!resv_map || !rg) {
 857                kfree(resv_map);
 858                kfree(rg);
 859                return NULL;
 860        }
 861
 862        kref_init(&resv_map->refs);
 863        spin_lock_init(&resv_map->lock);
 864        INIT_LIST_HEAD(&resv_map->regions);
 865
 866        resv_map->adds_in_progress = 0;
 867        /*
 868         * Initialize these to 0. On shared mappings, 0's here indicate these
 869         * fields don't do cgroup accounting. On private mappings, these will be
 870         * re-initialized to the proper values, to indicate that hugetlb cgroup
 871         * reservations are to be un-charged from here.
 872         */
 873        resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
 874
 875        INIT_LIST_HEAD(&resv_map->region_cache);
 876        list_add(&rg->link, &resv_map->region_cache);
 877        resv_map->region_cache_count = 1;
 878
 879        return resv_map;
 880}
 881
 882void resv_map_release(struct kref *ref)
 883{
 884        struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
 885        struct list_head *head = &resv_map->region_cache;
 886        struct file_region *rg, *trg;
 887
 888        /* Clear out any active regions before we release the map. */
 889        region_del(resv_map, 0, LONG_MAX);
 890
 891        /* ... and any entries left in the cache */
 892        list_for_each_entry_safe(rg, trg, head, link) {
 893                list_del(&rg->link);
 894                kfree(rg);
 895        }
 896
 897        VM_BUG_ON(resv_map->adds_in_progress);
 898
 899        kfree(resv_map);
 900}
 901
 902static inline struct resv_map *inode_resv_map(struct inode *inode)
 903{
 904        /*
 905         * At inode evict time, i_mapping may not point to the original
 906         * address space within the inode.  This original address space
 907         * contains the pointer to the resv_map.  So, always use the
 908         * address space embedded within the inode.
 909         * The VERY common case is inode->mapping == &inode->i_data but,
 910         * this may not be true for device special inodes.
 911         */
 912        return (struct resv_map *)(&inode->i_data)->private_data;
 913}
 914
 915static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
 916{
 917        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 918        if (vma->vm_flags & VM_MAYSHARE) {
 919                struct address_space *mapping = vma->vm_file->f_mapping;
 920                struct inode *inode = mapping->host;
 921
 922                return inode_resv_map(inode);
 923
 924        } else {
 925                return (struct resv_map *)(get_vma_private_data(vma) &
 926                                                        ~HPAGE_RESV_MASK);
 927        }
 928}
 929
 930static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
 931{
 932        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 933        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 934
 935        set_vma_private_data(vma, (get_vma_private_data(vma) &
 936                                HPAGE_RESV_MASK) | (unsigned long)map);
 937}
 938
 939static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
 940{
 941        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 942        VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
 943
 944        set_vma_private_data(vma, get_vma_private_data(vma) | flags);
 945}
 946
 947static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
 948{
 949        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 950
 951        return (get_vma_private_data(vma) & flag) != 0;
 952}
 953
 954/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
 955void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
 956{
 957        VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
 958        if (!(vma->vm_flags & VM_MAYSHARE))
 959                vma->vm_private_data = (void *)0;
 960}
 961
 962/* Returns true if the VMA has associated reserve pages */
 963static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
 964{
 965        if (vma->vm_flags & VM_NORESERVE) {
 966                /*
 967                 * This address is already reserved by other process(chg == 0),
 968                 * so, we should decrement reserved count. Without decrementing,
 969                 * reserve count remains after releasing inode, because this
 970                 * allocated page will go into page cache and is regarded as
 971                 * coming from reserved pool in releasing step.  Currently, we
 972                 * don't have any other solution to deal with this situation
 973                 * properly, so add work-around here.
 974                 */
 975                if (vma->vm_flags & VM_MAYSHARE && chg == 0)
 976                        return true;
 977                else
 978                        return false;
 979        }
 980
 981        /* Shared mappings always use reserves */
 982        if (vma->vm_flags & VM_MAYSHARE) {
 983                /*
 984                 * We know VM_NORESERVE is not set.  Therefore, there SHOULD
 985                 * be a region map for all pages.  The only situation where
 986                 * there is no region map is if a hole was punched via
 987                 * fallocate.  In this case, there really are no reserves to
 988                 * use.  This situation is indicated if chg != 0.
 989                 */
 990                if (chg)
 991                        return false;
 992                else
 993                        return true;
 994        }
 995
 996        /*
 997         * Only the process that called mmap() has reserves for
 998         * private mappings.
 999         */
1000        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1001                /*
1002                 * Like the shared case above, a hole punch or truncate
1003                 * could have been performed on the private mapping.
1004                 * Examine the value of chg to determine if reserves
1005                 * actually exist or were previously consumed.
1006                 * Very Subtle - The value of chg comes from a previous
1007                 * call to vma_needs_reserves().  The reserve map for
1008                 * private mappings has different (opposite) semantics
1009                 * than that of shared mappings.  vma_needs_reserves()
1010                 * has already taken this difference in semantics into
1011                 * account.  Therefore, the meaning of chg is the same
1012                 * as in the shared case above.  Code could easily be
1013                 * combined, but keeping it separate draws attention to
1014                 * subtle differences.
1015                 */
1016                if (chg)
1017                        return false;
1018                else
1019                        return true;
1020        }
1021
1022        return false;
1023}
1024
1025static void enqueue_huge_page(struct hstate *h, struct page *page)
1026{
1027        int nid = page_to_nid(page);
1028        list_move(&page->lru, &h->hugepage_freelists[nid]);
1029        h->free_huge_pages++;
1030        h->free_huge_pages_node[nid]++;
1031}
1032
1033static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1034{
1035        struct page *page;
1036        bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1037
1038        list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1039                if (nocma && is_migrate_cma_page(page))
1040                        continue;
1041
1042                if (PageHWPoison(page))
1043                        continue;
1044
1045                list_move(&page->lru, &h->hugepage_activelist);
1046                set_page_refcounted(page);
1047                h->free_huge_pages--;
1048                h->free_huge_pages_node[nid]--;
1049                return page;
1050        }
1051
1052        return NULL;
1053}
1054
1055static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1056                nodemask_t *nmask)
1057{
1058        unsigned int cpuset_mems_cookie;
1059        struct zonelist *zonelist;
1060        struct zone *zone;
1061        struct zoneref *z;
1062        int node = NUMA_NO_NODE;
1063
1064        zonelist = node_zonelist(nid, gfp_mask);
1065
1066retry_cpuset:
1067        cpuset_mems_cookie = read_mems_allowed_begin();
1068        for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1069                struct page *page;
1070
1071                if (!cpuset_zone_allowed(zone, gfp_mask))
1072                        continue;
1073                /*
1074                 * no need to ask again on the same node. Pool is node rather than
1075                 * zone aware
1076                 */
1077                if (zone_to_nid(zone) == node)
1078                        continue;
1079                node = zone_to_nid(zone);
1080
1081                page = dequeue_huge_page_node_exact(h, node);
1082                if (page)
1083                        return page;
1084        }
1085        if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1086                goto retry_cpuset;
1087
1088        return NULL;
1089}
1090
1091static struct page *dequeue_huge_page_vma(struct hstate *h,
1092                                struct vm_area_struct *vma,
1093                                unsigned long address, int avoid_reserve,
1094                                long chg)
1095{
1096        struct page *page;
1097        struct mempolicy *mpol;
1098        gfp_t gfp_mask;
1099        nodemask_t *nodemask;
1100        int nid;
1101
1102        /*
1103         * A child process with MAP_PRIVATE mappings created by their parent
1104         * have no page reserves. This check ensures that reservations are
1105         * not "stolen". The child may still get SIGKILLed
1106         */
1107        if (!vma_has_reserves(vma, chg) &&
1108                        h->free_huge_pages - h->resv_huge_pages == 0)
1109                goto err;
1110
1111        /* If reserves cannot be used, ensure enough pages are in the pool */
1112        if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1113                goto err;
1114
1115        gfp_mask = htlb_alloc_mask(h);
1116        nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1117        page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1118        if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1119                SetPagePrivate(page);
1120                h->resv_huge_pages--;
1121        }
1122
1123        mpol_cond_put(mpol);
1124        return page;
1125
1126err:
1127        return NULL;
1128}
1129
1130/*
1131 * common helper functions for hstate_next_node_to_{alloc|free}.
1132 * We may have allocated or freed a huge page based on a different
1133 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1134 * be outside of *nodes_allowed.  Ensure that we use an allowed
1135 * node for alloc or free.
1136 */
1137static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1138{
1139        nid = next_node_in(nid, *nodes_allowed);
1140        VM_BUG_ON(nid >= MAX_NUMNODES);
1141
1142        return nid;
1143}
1144
1145static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1146{
1147        if (!node_isset(nid, *nodes_allowed))
1148                nid = next_node_allowed(nid, nodes_allowed);
1149        return nid;
1150}
1151
1152/*
1153 * returns the previously saved node ["this node"] from which to
1154 * allocate a persistent huge page for the pool and advance the
1155 * next node from which to allocate, handling wrap at end of node
1156 * mask.
1157 */
1158static int hstate_next_node_to_alloc(struct hstate *h,
1159                                        nodemask_t *nodes_allowed)
1160{
1161        int nid;
1162
1163        VM_BUG_ON(!nodes_allowed);
1164
1165        nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1166        h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1167
1168        return nid;
1169}
1170
1171/*
1172 * helper for free_pool_huge_page() - return the previously saved
1173 * node ["this node"] from which to free a huge page.  Advance the
1174 * next node id whether or not we find a free huge page to free so
1175 * that the next attempt to free addresses the next node.
1176 */
1177static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1178{
1179        int nid;
1180
1181        VM_BUG_ON(!nodes_allowed);
1182
1183        nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1184        h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1185
1186        return nid;
1187}
1188
1189#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1190        for (nr_nodes = nodes_weight(*mask);                            \
1191                nr_nodes > 0 &&                                         \
1192                ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1193                nr_nodes--)
1194
1195#define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1196        for (nr_nodes = nodes_weight(*mask);                            \
1197                nr_nodes > 0 &&                                         \
1198                ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1199                nr_nodes--)
1200
1201#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1202static void destroy_compound_gigantic_page(struct page *page,
1203                                        unsigned int order)
1204{
1205        int i;
1206        int nr_pages = 1 << order;
1207        struct page *p = page + 1;
1208
1209        atomic_set(compound_mapcount_ptr(page), 0);
1210        if (hpage_pincount_available(page))
1211                atomic_set(compound_pincount_ptr(page), 0);
1212
1213        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1214                clear_compound_head(p);
1215                set_page_refcounted(p);
1216        }
1217
1218        set_compound_order(page, 0);
1219        page[1].compound_nr = 0;
1220        __ClearPageHead(page);
1221}
1222
1223static void free_gigantic_page(struct page *page, unsigned int order)
1224{
1225        /*
1226         * If the page isn't allocated using the cma allocator,
1227         * cma_release() returns false.
1228         */
1229#ifdef CONFIG_CMA
1230        if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1231                return;
1232#endif
1233
1234        free_contig_range(page_to_pfn(page), 1 << order);
1235}
1236
1237#ifdef CONFIG_CONTIG_ALLOC
1238static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1239                int nid, nodemask_t *nodemask)
1240{
1241        unsigned long nr_pages = 1UL << huge_page_order(h);
1242        if (nid == NUMA_NO_NODE)
1243                nid = numa_mem_id();
1244
1245#ifdef CONFIG_CMA
1246        {
1247                struct page *page;
1248                int node;
1249
1250                if (hugetlb_cma[nid]) {
1251                        page = cma_alloc(hugetlb_cma[nid], nr_pages,
1252                                        huge_page_order(h), true);
1253                        if (page)
1254                                return page;
1255                }
1256
1257                if (!(gfp_mask & __GFP_THISNODE)) {
1258                        for_each_node_mask(node, *nodemask) {
1259                                if (node == nid || !hugetlb_cma[node])
1260                                        continue;
1261
1262                                page = cma_alloc(hugetlb_cma[node], nr_pages,
1263                                                huge_page_order(h), true);
1264                                if (page)
1265                                        return page;
1266                        }
1267                }
1268        }
1269#endif
1270
1271        return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1272}
1273
1274static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1275static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1276#else /* !CONFIG_CONTIG_ALLOC */
1277static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1278                                        int nid, nodemask_t *nodemask)
1279{
1280        return NULL;
1281}
1282#endif /* CONFIG_CONTIG_ALLOC */
1283
1284#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1285static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1286                                        int nid, nodemask_t *nodemask)
1287{
1288        return NULL;
1289}
1290static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1291static inline void destroy_compound_gigantic_page(struct page *page,
1292                                                unsigned int order) { }
1293#endif
1294
1295static void update_and_free_page(struct hstate *h, struct page *page)
1296{
1297        int i;
1298
1299        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1300                return;
1301
1302        h->nr_huge_pages--;
1303        h->nr_huge_pages_node[page_to_nid(page)]--;
1304        for (i = 0; i < pages_per_huge_page(h); i++) {
1305                page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1306                                1 << PG_referenced | 1 << PG_dirty |
1307                                1 << PG_active | 1 << PG_private |
1308                                1 << PG_writeback);
1309        }
1310        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1311        VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1312        set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1313        set_page_refcounted(page);
1314        if (hstate_is_gigantic(h)) {
1315                /*
1316                 * Temporarily drop the hugetlb_lock, because
1317                 * we might block in free_gigantic_page().
1318                 */
1319                spin_unlock(&hugetlb_lock);
1320                destroy_compound_gigantic_page(page, huge_page_order(h));
1321                free_gigantic_page(page, huge_page_order(h));
1322                spin_lock(&hugetlb_lock);
1323        } else {
1324                __free_pages(page, huge_page_order(h));
1325        }
1326}
1327
1328struct hstate *size_to_hstate(unsigned long size)
1329{
1330        struct hstate *h;
1331
1332        for_each_hstate(h) {
1333                if (huge_page_size(h) == size)
1334                        return h;
1335        }
1336        return NULL;
1337}
1338
1339/*
1340 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1341 * to hstate->hugepage_activelist.)
1342 *
1343 * This function can be called for tail pages, but never returns true for them.
1344 */
1345bool page_huge_active(struct page *page)
1346{
1347        VM_BUG_ON_PAGE(!PageHuge(page), page);
1348        return PageHead(page) && PagePrivate(&page[1]);
1349}
1350
1351/* never called for tail page */
1352static void set_page_huge_active(struct page *page)
1353{
1354        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1355        SetPagePrivate(&page[1]);
1356}
1357
1358static void clear_page_huge_active(struct page *page)
1359{
1360        VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1361        ClearPagePrivate(&page[1]);
1362}
1363
1364/*
1365 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1366 * code
1367 */
1368static inline bool PageHugeTemporary(struct page *page)
1369{
1370        if (!PageHuge(page))
1371                return false;
1372
1373        return (unsigned long)page[2].mapping == -1U;
1374}
1375
1376static inline void SetPageHugeTemporary(struct page *page)
1377{
1378        page[2].mapping = (void *)-1U;
1379}
1380
1381static inline void ClearPageHugeTemporary(struct page *page)
1382{
1383        page[2].mapping = NULL;
1384}
1385
1386static void __free_huge_page(struct page *page)
1387{
1388        /*
1389         * Can't pass hstate in here because it is called from the
1390         * compound page destructor.
1391         */
1392        struct hstate *h = page_hstate(page);
1393        int nid = page_to_nid(page);
1394        struct hugepage_subpool *spool =
1395                (struct hugepage_subpool *)page_private(page);
1396        bool restore_reserve;
1397
1398        VM_BUG_ON_PAGE(page_count(page), page);
1399        VM_BUG_ON_PAGE(page_mapcount(page), page);
1400
1401        set_page_private(page, 0);
1402        page->mapping = NULL;
1403        restore_reserve = PagePrivate(page);
1404        ClearPagePrivate(page);
1405
1406        /*
1407         * If PagePrivate() was set on page, page allocation consumed a
1408         * reservation.  If the page was associated with a subpool, there
1409         * would have been a page reserved in the subpool before allocation
1410         * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1411         * reservtion, do not call hugepage_subpool_put_pages() as this will
1412         * remove the reserved page from the subpool.
1413         */
1414        if (!restore_reserve) {
1415                /*
1416                 * A return code of zero implies that the subpool will be
1417                 * under its minimum size if the reservation is not restored
1418                 * after page is free.  Therefore, force restore_reserve
1419                 * operation.
1420                 */
1421                if (hugepage_subpool_put_pages(spool, 1) == 0)
1422                        restore_reserve = true;
1423        }
1424
1425        spin_lock(&hugetlb_lock);
1426        clear_page_huge_active(page);
1427        hugetlb_cgroup_uncharge_page(hstate_index(h),
1428                                     pages_per_huge_page(h), page);
1429        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1430                                          pages_per_huge_page(h), page);
1431        if (restore_reserve)
1432                h->resv_huge_pages++;
1433
1434        if (PageHugeTemporary(page)) {
1435                list_del(&page->lru);
1436                ClearPageHugeTemporary(page);
1437                update_and_free_page(h, page);
1438        } else if (h->surplus_huge_pages_node[nid]) {
1439                /* remove the page from active list */
1440                list_del(&page->lru);
1441                update_and_free_page(h, page);
1442                h->surplus_huge_pages--;
1443                h->surplus_huge_pages_node[nid]--;
1444        } else {
1445                arch_clear_hugepage_flags(page);
1446                enqueue_huge_page(h, page);
1447        }
1448        spin_unlock(&hugetlb_lock);
1449}
1450
1451/*
1452 * As free_huge_page() can be called from a non-task context, we have
1453 * to defer the actual freeing in a workqueue to prevent potential
1454 * hugetlb_lock deadlock.
1455 *
1456 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1457 * be freed and frees them one-by-one. As the page->mapping pointer is
1458 * going to be cleared in __free_huge_page() anyway, it is reused as the
1459 * llist_node structure of a lockless linked list of huge pages to be freed.
1460 */
1461static LLIST_HEAD(hpage_freelist);
1462
1463static void free_hpage_workfn(struct work_struct *work)
1464{
1465        struct llist_node *node;
1466        struct page *page;
1467
1468        node = llist_del_all(&hpage_freelist);
1469
1470        while (node) {
1471                page = container_of((struct address_space **)node,
1472                                     struct page, mapping);
1473                node = node->next;
1474                __free_huge_page(page);
1475        }
1476}
1477static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1478
1479void free_huge_page(struct page *page)
1480{
1481        /*
1482         * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1483         */
1484        if (!in_task()) {
1485                /*
1486                 * Only call schedule_work() if hpage_freelist is previously
1487                 * empty. Otherwise, schedule_work() had been called but the
1488                 * workfn hasn't retrieved the list yet.
1489                 */
1490                if (llist_add((struct llist_node *)&page->mapping,
1491                              &hpage_freelist))
1492                        schedule_work(&free_hpage_work);
1493                return;
1494        }
1495
1496        __free_huge_page(page);
1497}
1498
1499static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1500{
1501        INIT_LIST_HEAD(&page->lru);
1502        set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1503        set_hugetlb_cgroup(page, NULL);
1504        set_hugetlb_cgroup_rsvd(page, NULL);
1505        spin_lock(&hugetlb_lock);
1506        h->nr_huge_pages++;
1507        h->nr_huge_pages_node[nid]++;
1508        spin_unlock(&hugetlb_lock);
1509}
1510
1511static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1512{
1513        int i;
1514        int nr_pages = 1 << order;
1515        struct page *p = page + 1;
1516
1517        /* we rely on prep_new_huge_page to set the destructor */
1518        set_compound_order(page, order);
1519        __ClearPageReserved(page);
1520        __SetPageHead(page);
1521        for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1522                /*
1523                 * For gigantic hugepages allocated through bootmem at
1524                 * boot, it's safer to be consistent with the not-gigantic
1525                 * hugepages and clear the PG_reserved bit from all tail pages
1526                 * too.  Otherwise drivers using get_user_pages() to access tail
1527                 * pages may get the reference counting wrong if they see
1528                 * PG_reserved set on a tail page (despite the head page not
1529                 * having PG_reserved set).  Enforcing this consistency between
1530                 * head and tail pages allows drivers to optimize away a check
1531                 * on the head page when they need know if put_page() is needed
1532                 * after get_user_pages().
1533                 */
1534                __ClearPageReserved(p);
1535                set_page_count(p, 0);
1536                set_compound_head(p, page);
1537        }
1538        atomic_set(compound_mapcount_ptr(page), -1);
1539
1540        if (hpage_pincount_available(page))
1541                atomic_set(compound_pincount_ptr(page), 0);
1542}
1543
1544/*
1545 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1546 * transparent huge pages.  See the PageTransHuge() documentation for more
1547 * details.
1548 */
1549int PageHuge(struct page *page)
1550{
1551        if (!PageCompound(page))
1552                return 0;
1553
1554        page = compound_head(page);
1555        return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1556}
1557EXPORT_SYMBOL_GPL(PageHuge);
1558
1559/*
1560 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1561 * normal or transparent huge pages.
1562 */
1563int PageHeadHuge(struct page *page_head)
1564{
1565        if (!PageHead(page_head))
1566                return 0;
1567
1568        return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1569}
1570
1571/*
1572 * Find and lock address space (mapping) in write mode.
1573 *
1574 * Upon entry, the page is locked which means that page_mapping() is
1575 * stable.  Due to locking order, we can only trylock_write.  If we can
1576 * not get the lock, simply return NULL to caller.
1577 */
1578struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1579{
1580        struct address_space *mapping = page_mapping(hpage);
1581
1582        if (!mapping)
1583                return mapping;
1584
1585        if (i_mmap_trylock_write(mapping))
1586                return mapping;
1587
1588        return NULL;
1589}
1590
1591pgoff_t __basepage_index(struct page *page)
1592{
1593        struct page *page_head = compound_head(page);
1594        pgoff_t index = page_index(page_head);
1595        unsigned long compound_idx;
1596
1597        if (!PageHuge(page_head))
1598                return page_index(page);
1599
1600        if (compound_order(page_head) >= MAX_ORDER)
1601                compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1602        else
1603                compound_idx = page - page_head;
1604
1605        return (index << compound_order(page_head)) + compound_idx;
1606}
1607
1608static struct page *alloc_buddy_huge_page(struct hstate *h,
1609                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1610                nodemask_t *node_alloc_noretry)
1611{
1612        int order = huge_page_order(h);
1613        struct page *page;
1614        bool alloc_try_hard = true;
1615
1616        /*
1617         * By default we always try hard to allocate the page with
1618         * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1619         * a loop (to adjust global huge page counts) and previous allocation
1620         * failed, do not continue to try hard on the same node.  Use the
1621         * node_alloc_noretry bitmap to manage this state information.
1622         */
1623        if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1624                alloc_try_hard = false;
1625        gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1626        if (alloc_try_hard)
1627                gfp_mask |= __GFP_RETRY_MAYFAIL;
1628        if (nid == NUMA_NO_NODE)
1629                nid = numa_mem_id();
1630        page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1631        if (page)
1632                __count_vm_event(HTLB_BUDDY_PGALLOC);
1633        else
1634                __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1635
1636        /*
1637         * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1638         * indicates an overall state change.  Clear bit so that we resume
1639         * normal 'try hard' allocations.
1640         */
1641        if (node_alloc_noretry && page && !alloc_try_hard)
1642                node_clear(nid, *node_alloc_noretry);
1643
1644        /*
1645         * If we tried hard to get a page but failed, set bit so that
1646         * subsequent attempts will not try as hard until there is an
1647         * overall state change.
1648         */
1649        if (node_alloc_noretry && !page && alloc_try_hard)
1650                node_set(nid, *node_alloc_noretry);
1651
1652        return page;
1653}
1654
1655/*
1656 * Common helper to allocate a fresh hugetlb page. All specific allocators
1657 * should use this function to get new hugetlb pages
1658 */
1659static struct page *alloc_fresh_huge_page(struct hstate *h,
1660                gfp_t gfp_mask, int nid, nodemask_t *nmask,
1661                nodemask_t *node_alloc_noretry)
1662{
1663        struct page *page;
1664
1665        if (hstate_is_gigantic(h))
1666                page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1667        else
1668                page = alloc_buddy_huge_page(h, gfp_mask,
1669                                nid, nmask, node_alloc_noretry);
1670        if (!page)
1671                return NULL;
1672
1673        if (hstate_is_gigantic(h))
1674                prep_compound_gigantic_page(page, huge_page_order(h));
1675        prep_new_huge_page(h, page, page_to_nid(page));
1676
1677        return page;
1678}
1679
1680/*
1681 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1682 * manner.
1683 */
1684static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1685                                nodemask_t *node_alloc_noretry)
1686{
1687        struct page *page;
1688        int nr_nodes, node;
1689        gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1690
1691        for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1692                page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1693                                                node_alloc_noretry);
1694                if (page)
1695                        break;
1696        }
1697
1698        if (!page)
1699                return 0;
1700
1701        put_page(page); /* free it into the hugepage allocator */
1702
1703        return 1;
1704}
1705
1706/*
1707 * Free huge page from pool from next node to free.
1708 * Attempt to keep persistent huge pages more or less
1709 * balanced over allowed nodes.
1710 * Called with hugetlb_lock locked.
1711 */
1712static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1713                                                         bool acct_surplus)
1714{
1715        int nr_nodes, node;
1716        int ret = 0;
1717
1718        for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1719                /*
1720                 * If we're returning unused surplus pages, only examine
1721                 * nodes with surplus pages.
1722                 */
1723                if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1724                    !list_empty(&h->hugepage_freelists[node])) {
1725                        struct page *page =
1726                                list_entry(h->hugepage_freelists[node].next,
1727                                          struct page, lru);
1728                        list_del(&page->lru);
1729                        h->free_huge_pages--;
1730                        h->free_huge_pages_node[node]--;
1731                        if (acct_surplus) {
1732                                h->surplus_huge_pages--;
1733                                h->surplus_huge_pages_node[node]--;
1734                        }
1735                        update_and_free_page(h, page);
1736                        ret = 1;
1737                        break;
1738                }
1739        }
1740
1741        return ret;
1742}
1743
1744/*
1745 * Dissolve a given free hugepage into free buddy pages. This function does
1746 * nothing for in-use hugepages and non-hugepages.
1747 * This function returns values like below:
1748 *
1749 *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1750 *          (allocated or reserved.)
1751 *       0: successfully dissolved free hugepages or the page is not a
1752 *          hugepage (considered as already dissolved)
1753 */
1754int dissolve_free_huge_page(struct page *page)
1755{
1756        int rc = -EBUSY;
1757
1758        /* Not to disrupt normal path by vainly holding hugetlb_lock */
1759        if (!PageHuge(page))
1760                return 0;
1761
1762        spin_lock(&hugetlb_lock);
1763        if (!PageHuge(page)) {
1764                rc = 0;
1765                goto out;
1766        }
1767
1768        if (!page_count(page)) {
1769                struct page *head = compound_head(page);
1770                struct hstate *h = page_hstate(head);
1771                int nid = page_to_nid(head);
1772                if (h->free_huge_pages - h->resv_huge_pages == 0)
1773                        goto out;
1774                /*
1775                 * Move PageHWPoison flag from head page to the raw error page,
1776                 * which makes any subpages rather than the error page reusable.
1777                 */
1778                if (PageHWPoison(head) && page != head) {
1779                        SetPageHWPoison(page);
1780                        ClearPageHWPoison(head);
1781                }
1782                list_del(&head->lru);
1783                h->free_huge_pages--;
1784                h->free_huge_pages_node[nid]--;
1785                h->max_huge_pages--;
1786                update_and_free_page(h, head);
1787                rc = 0;
1788        }
1789out:
1790        spin_unlock(&hugetlb_lock);
1791        return rc;
1792}
1793
1794/*
1795 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1796 * make specified memory blocks removable from the system.
1797 * Note that this will dissolve a free gigantic hugepage completely, if any
1798 * part of it lies within the given range.
1799 * Also note that if dissolve_free_huge_page() returns with an error, all
1800 * free hugepages that were dissolved before that error are lost.
1801 */
1802int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1803{
1804        unsigned long pfn;
1805        struct page *page;
1806        int rc = 0;
1807
1808        if (!hugepages_supported())
1809                return rc;
1810
1811        for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1812                page = pfn_to_page(pfn);
1813                rc = dissolve_free_huge_page(page);
1814                if (rc)
1815                        break;
1816        }
1817
1818        return rc;
1819}
1820
1821/*
1822 * Allocates a fresh surplus page from the page allocator.
1823 */
1824static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1825                int nid, nodemask_t *nmask)
1826{
1827        struct page *page = NULL;
1828
1829        if (hstate_is_gigantic(h))
1830                return NULL;
1831
1832        spin_lock(&hugetlb_lock);
1833        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1834                goto out_unlock;
1835        spin_unlock(&hugetlb_lock);
1836
1837        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1838        if (!page)
1839                return NULL;
1840
1841        spin_lock(&hugetlb_lock);
1842        /*
1843         * We could have raced with the pool size change.
1844         * Double check that and simply deallocate the new page
1845         * if we would end up overcommiting the surpluses. Abuse
1846         * temporary page to workaround the nasty free_huge_page
1847         * codeflow
1848         */
1849        if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1850                SetPageHugeTemporary(page);
1851                spin_unlock(&hugetlb_lock);
1852                put_page(page);
1853                return NULL;
1854        } else {
1855                h->surplus_huge_pages++;
1856                h->surplus_huge_pages_node[page_to_nid(page)]++;
1857        }
1858
1859out_unlock:
1860        spin_unlock(&hugetlb_lock);
1861
1862        return page;
1863}
1864
1865static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1866                                     int nid, nodemask_t *nmask)
1867{
1868        struct page *page;
1869
1870        if (hstate_is_gigantic(h))
1871                return NULL;
1872
1873        page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1874        if (!page)
1875                return NULL;
1876
1877        /*
1878         * We do not account these pages as surplus because they are only
1879         * temporary and will be released properly on the last reference
1880         */
1881        SetPageHugeTemporary(page);
1882
1883        return page;
1884}
1885
1886/*
1887 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1888 */
1889static
1890struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1891                struct vm_area_struct *vma, unsigned long addr)
1892{
1893        struct page *page;
1894        struct mempolicy *mpol;
1895        gfp_t gfp_mask = htlb_alloc_mask(h);
1896        int nid;
1897        nodemask_t *nodemask;
1898
1899        nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1900        page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1901        mpol_cond_put(mpol);
1902
1903        return page;
1904}
1905
1906/* page migration callback function */
1907struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1908                nodemask_t *nmask, gfp_t gfp_mask)
1909{
1910        spin_lock(&hugetlb_lock);
1911        if (h->free_huge_pages - h->resv_huge_pages > 0) {
1912                struct page *page;
1913
1914                page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1915                if (page) {
1916                        spin_unlock(&hugetlb_lock);
1917                        return page;
1918                }
1919        }
1920        spin_unlock(&hugetlb_lock);
1921
1922        return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1923}
1924
1925/* mempolicy aware migration callback */
1926struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1927                unsigned long address)
1928{
1929        struct mempolicy *mpol;
1930        nodemask_t *nodemask;
1931        struct page *page;
1932        gfp_t gfp_mask;
1933        int node;
1934
1935        gfp_mask = htlb_alloc_mask(h);
1936        node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1937        page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1938        mpol_cond_put(mpol);
1939
1940        return page;
1941}
1942
1943/*
1944 * Increase the hugetlb pool such that it can accommodate a reservation
1945 * of size 'delta'.
1946 */
1947static int gather_surplus_pages(struct hstate *h, int delta)
1948        __must_hold(&hugetlb_lock)
1949{
1950        struct list_head surplus_list;
1951        struct page *page, *tmp;
1952        int ret, i;
1953        int needed, allocated;
1954        bool alloc_ok = true;
1955
1956        needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1957        if (needed <= 0) {
1958                h->resv_huge_pages += delta;
1959                return 0;
1960        }
1961
1962        allocated = 0;
1963        INIT_LIST_HEAD(&surplus_list);
1964
1965        ret = -ENOMEM;
1966retry:
1967        spin_unlock(&hugetlb_lock);
1968        for (i = 0; i < needed; i++) {
1969                page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1970                                NUMA_NO_NODE, NULL);
1971                if (!page) {
1972                        alloc_ok = false;
1973                        break;
1974                }
1975                list_add(&page->lru, &surplus_list);
1976                cond_resched();
1977        }
1978        allocated += i;
1979
1980        /*
1981         * After retaking hugetlb_lock, we need to recalculate 'needed'
1982         * because either resv_huge_pages or free_huge_pages may have changed.
1983         */
1984        spin_lock(&hugetlb_lock);
1985        needed = (h->resv_huge_pages + delta) -
1986                        (h->free_huge_pages + allocated);
1987        if (needed > 0) {
1988                if (alloc_ok)
1989                        goto retry;
1990                /*
1991                 * We were not able to allocate enough pages to
1992                 * satisfy the entire reservation so we free what
1993                 * we've allocated so far.
1994                 */
1995                goto free;
1996        }
1997        /*
1998         * The surplus_list now contains _at_least_ the number of extra pages
1999         * needed to accommodate the reservation.  Add the appropriate number
2000         * of pages to the hugetlb pool and free the extras back to the buddy
2001         * allocator.  Commit the entire reservation here to prevent another
2002         * process from stealing the pages as they are added to the pool but
2003         * before they are reserved.
2004         */
2005        needed += allocated;
2006        h->resv_huge_pages += delta;
2007        ret = 0;
2008
2009        /* Free the needed pages to the hugetlb pool */
2010        list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2011                if ((--needed) < 0)
2012                        break;
2013                /*
2014                 * This page is now managed by the hugetlb allocator and has
2015                 * no users -- drop the buddy allocator's reference.
2016                 */
2017                put_page_testzero(page);
2018                VM_BUG_ON_PAGE(page_count(page), page);
2019                enqueue_huge_page(h, page);
2020        }
2021free:
2022        spin_unlock(&hugetlb_lock);
2023
2024        /* Free unnecessary surplus pages to the buddy allocator */
2025        list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2026                put_page(page);
2027        spin_lock(&hugetlb_lock);
2028
2029        return ret;
2030}
2031
2032/*
2033 * This routine has two main purposes:
2034 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2035 *    in unused_resv_pages.  This corresponds to the prior adjustments made
2036 *    to the associated reservation map.
2037 * 2) Free any unused surplus pages that may have been allocated to satisfy
2038 *    the reservation.  As many as unused_resv_pages may be freed.
2039 *
2040 * Called with hugetlb_lock held.  However, the lock could be dropped (and
2041 * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2042 * we must make sure nobody else can claim pages we are in the process of
2043 * freeing.  Do this by ensuring resv_huge_page always is greater than the
2044 * number of huge pages we plan to free when dropping the lock.
2045 */
2046static void return_unused_surplus_pages(struct hstate *h,
2047                                        unsigned long unused_resv_pages)
2048{
2049        unsigned long nr_pages;
2050
2051        /* Cannot return gigantic pages currently */
2052        if (hstate_is_gigantic(h))
2053                goto out;
2054
2055        /*
2056         * Part (or even all) of the reservation could have been backed
2057         * by pre-allocated pages. Only free surplus pages.
2058         */
2059        nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2060
2061        /*
2062         * We want to release as many surplus pages as possible, spread
2063         * evenly across all nodes with memory. Iterate across these nodes
2064         * until we can no longer free unreserved surplus pages. This occurs
2065         * when the nodes with surplus pages have no free pages.
2066         * free_pool_huge_page() will balance the freed pages across the
2067         * on-line nodes with memory and will handle the hstate accounting.
2068         *
2069         * Note that we decrement resv_huge_pages as we free the pages.  If
2070         * we drop the lock, resv_huge_pages will still be sufficiently large
2071         * to cover subsequent pages we may free.
2072         */
2073        while (nr_pages--) {
2074                h->resv_huge_pages--;
2075                unused_resv_pages--;
2076                if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2077                        goto out;
2078                cond_resched_lock(&hugetlb_lock);
2079        }
2080
2081out:
2082        /* Fully uncommit the reservation */
2083        h->resv_huge_pages -= unused_resv_pages;
2084}
2085
2086
2087/*
2088 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2089 * are used by the huge page allocation routines to manage reservations.
2090 *
2091 * vma_needs_reservation is called to determine if the huge page at addr
2092 * within the vma has an associated reservation.  If a reservation is
2093 * needed, the value 1 is returned.  The caller is then responsible for
2094 * managing the global reservation and subpool usage counts.  After
2095 * the huge page has been allocated, vma_commit_reservation is called
2096 * to add the page to the reservation map.  If the page allocation fails,
2097 * the reservation must be ended instead of committed.  vma_end_reservation
2098 * is called in such cases.
2099 *
2100 * In the normal case, vma_commit_reservation returns the same value
2101 * as the preceding vma_needs_reservation call.  The only time this
2102 * is not the case is if a reserve map was changed between calls.  It
2103 * is the responsibility of the caller to notice the difference and
2104 * take appropriate action.
2105 *
2106 * vma_add_reservation is used in error paths where a reservation must
2107 * be restored when a newly allocated huge page must be freed.  It is
2108 * to be called after calling vma_needs_reservation to determine if a
2109 * reservation exists.
2110 */
2111enum vma_resv_mode {
2112        VMA_NEEDS_RESV,
2113        VMA_COMMIT_RESV,
2114        VMA_END_RESV,
2115        VMA_ADD_RESV,
2116};
2117static long __vma_reservation_common(struct hstate *h,
2118                                struct vm_area_struct *vma, unsigned long addr,
2119                                enum vma_resv_mode mode)
2120{
2121        struct resv_map *resv;
2122        pgoff_t idx;
2123        long ret;
2124        long dummy_out_regions_needed;
2125
2126        resv = vma_resv_map(vma);
2127        if (!resv)
2128                return 1;
2129
2130        idx = vma_hugecache_offset(h, vma, addr);
2131        switch (mode) {
2132        case VMA_NEEDS_RESV:
2133                ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2134                /* We assume that vma_reservation_* routines always operate on
2135                 * 1 page, and that adding to resv map a 1 page entry can only
2136                 * ever require 1 region.
2137                 */
2138                VM_BUG_ON(dummy_out_regions_needed != 1);
2139                break;
2140        case VMA_COMMIT_RESV:
2141                ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2142                /* region_add calls of range 1 should never fail. */
2143                VM_BUG_ON(ret < 0);
2144                break;
2145        case VMA_END_RESV:
2146                region_abort(resv, idx, idx + 1, 1);
2147                ret = 0;
2148                break;
2149        case VMA_ADD_RESV:
2150                if (vma->vm_flags & VM_MAYSHARE) {
2151                        ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2152                        /* region_add calls of range 1 should never fail. */
2153                        VM_BUG_ON(ret < 0);
2154                } else {
2155                        region_abort(resv, idx, idx + 1, 1);
2156                        ret = region_del(resv, idx, idx + 1);
2157                }
2158                break;
2159        default:
2160                BUG();
2161        }
2162
2163        if (vma->vm_flags & VM_MAYSHARE)
2164                return ret;
2165        else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2166                /*
2167                 * In most cases, reserves always exist for private mappings.
2168                 * However, a file associated with mapping could have been
2169                 * hole punched or truncated after reserves were consumed.
2170                 * As subsequent fault on such a range will not use reserves.
2171                 * Subtle - The reserve map for private mappings has the
2172                 * opposite meaning than that of shared mappings.  If NO
2173                 * entry is in the reserve map, it means a reservation exists.
2174                 * If an entry exists in the reserve map, it means the
2175                 * reservation has already been consumed.  As a result, the
2176                 * return value of this routine is the opposite of the
2177                 * value returned from reserve map manipulation routines above.
2178                 */
2179                if (ret)
2180                        return 0;
2181                else
2182                        return 1;
2183        }
2184        else
2185                return ret < 0 ? ret : 0;
2186}
2187
2188static long vma_needs_reservation(struct hstate *h,
2189                        struct vm_area_struct *vma, unsigned long addr)
2190{
2191        return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2192}
2193
2194static long vma_commit_reservation(struct hstate *h,
2195                        struct vm_area_struct *vma, unsigned long addr)
2196{
2197        return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2198}
2199
2200static void vma_end_reservation(struct hstate *h,
2201                        struct vm_area_struct *vma, unsigned long addr)
2202{
2203        (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2204}
2205
2206static long vma_add_reservation(struct hstate *h,
2207                        struct vm_area_struct *vma, unsigned long addr)
2208{
2209        return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2210}
2211
2212/*
2213 * This routine is called to restore a reservation on error paths.  In the
2214 * specific error paths, a huge page was allocated (via alloc_huge_page)
2215 * and is about to be freed.  If a reservation for the page existed,
2216 * alloc_huge_page would have consumed the reservation and set PagePrivate
2217 * in the newly allocated page.  When the page is freed via free_huge_page,
2218 * the global reservation count will be incremented if PagePrivate is set.
2219 * However, free_huge_page can not adjust the reserve map.  Adjust the
2220 * reserve map here to be consistent with global reserve count adjustments
2221 * to be made by free_huge_page.
2222 */
2223static void restore_reserve_on_error(struct hstate *h,
2224                        struct vm_area_struct *vma, unsigned long address,
2225                        struct page *page)
2226{
2227        if (unlikely(PagePrivate(page))) {
2228                long rc = vma_needs_reservation(h, vma, address);
2229
2230                if (unlikely(rc < 0)) {
2231                        /*
2232                         * Rare out of memory condition in reserve map
2233                         * manipulation.  Clear PagePrivate so that
2234                         * global reserve count will not be incremented
2235                         * by free_huge_page.  This will make it appear
2236                         * as though the reservation for this page was
2237                         * consumed.  This may prevent the task from
2238                         * faulting in the page at a later time.  This
2239                         * is better than inconsistent global huge page
2240                         * accounting of reserve counts.
2241                         */
2242                        ClearPagePrivate(page);
2243                } else if (rc) {
2244                        rc = vma_add_reservation(h, vma, address);
2245                        if (unlikely(rc < 0))
2246                                /*
2247                                 * See above comment about rare out of
2248                                 * memory condition.
2249                                 */
2250                                ClearPagePrivate(page);
2251                } else
2252                        vma_end_reservation(h, vma, address);
2253        }
2254}
2255
2256struct page *alloc_huge_page(struct vm_area_struct *vma,
2257                                    unsigned long addr, int avoid_reserve)
2258{
2259        struct hugepage_subpool *spool = subpool_vma(vma);
2260        struct hstate *h = hstate_vma(vma);
2261        struct page *page;
2262        long map_chg, map_commit;
2263        long gbl_chg;
2264        int ret, idx;
2265        struct hugetlb_cgroup *h_cg;
2266        bool deferred_reserve;
2267
2268        idx = hstate_index(h);
2269        /*
2270         * Examine the region/reserve map to determine if the process
2271         * has a reservation for the page to be allocated.  A return
2272         * code of zero indicates a reservation exists (no change).
2273         */
2274        map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2275        if (map_chg < 0)
2276                return ERR_PTR(-ENOMEM);
2277
2278        /*
2279         * Processes that did not create the mapping will have no
2280         * reserves as indicated by the region/reserve map. Check
2281         * that the allocation will not exceed the subpool limit.
2282         * Allocations for MAP_NORESERVE mappings also need to be
2283         * checked against any subpool limit.
2284         */
2285        if (map_chg || avoid_reserve) {
2286                gbl_chg = hugepage_subpool_get_pages(spool, 1);
2287                if (gbl_chg < 0) {
2288                        vma_end_reservation(h, vma, addr);
2289                        return ERR_PTR(-ENOSPC);
2290                }
2291
2292                /*
2293                 * Even though there was no reservation in the region/reserve
2294                 * map, there could be reservations associated with the
2295                 * subpool that can be used.  This would be indicated if the
2296                 * return value of hugepage_subpool_get_pages() is zero.
2297                 * However, if avoid_reserve is specified we still avoid even
2298                 * the subpool reservations.
2299                 */
2300                if (avoid_reserve)
2301                        gbl_chg = 1;
2302        }
2303
2304        /* If this allocation is not consuming a reservation, charge it now.
2305         */
2306        deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2307        if (deferred_reserve) {
2308                ret = hugetlb_cgroup_charge_cgroup_rsvd(
2309                        idx, pages_per_huge_page(h), &h_cg);
2310                if (ret)
2311                        goto out_subpool_put;
2312        }
2313
2314        ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2315        if (ret)
2316                goto out_uncharge_cgroup_reservation;
2317
2318        spin_lock(&hugetlb_lock);
2319        /*
2320         * glb_chg is passed to indicate whether or not a page must be taken
2321         * from the global free pool (global change).  gbl_chg == 0 indicates
2322         * a reservation exists for the allocation.
2323         */
2324        page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2325        if (!page) {
2326                spin_unlock(&hugetlb_lock);
2327                page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2328                if (!page)
2329                        goto out_uncharge_cgroup;
2330                if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2331                        SetPagePrivate(page);
2332                        h->resv_huge_pages--;
2333                }
2334                spin_lock(&hugetlb_lock);
2335                list_add(&page->lru, &h->hugepage_activelist);
2336                /* Fall through */
2337        }
2338        hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2339        /* If allocation is not consuming a reservation, also store the
2340         * hugetlb_cgroup pointer on the page.
2341         */
2342        if (deferred_reserve) {
2343                hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2344                                                  h_cg, page);
2345        }
2346
2347        spin_unlock(&hugetlb_lock);
2348
2349        set_page_private(page, (unsigned long)spool);
2350
2351        map_commit = vma_commit_reservation(h, vma, addr);
2352        if (unlikely(map_chg > map_commit)) {
2353                /*
2354                 * The page was added to the reservation map between
2355                 * vma_needs_reservation and vma_commit_reservation.
2356                 * This indicates a race with hugetlb_reserve_pages.
2357                 * Adjust for the subpool count incremented above AND
2358                 * in hugetlb_reserve_pages for the same page.  Also,
2359                 * the reservation count added in hugetlb_reserve_pages
2360                 * no longer applies.
2361                 */
2362                long rsv_adjust;
2363
2364                rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2365                hugetlb_acct_memory(h, -rsv_adjust);
2366                if (deferred_reserve)
2367                        hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2368                                        pages_per_huge_page(h), page);
2369        }
2370        return page;
2371
2372out_uncharge_cgroup:
2373        hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2374out_uncharge_cgroup_reservation:
2375        if (deferred_reserve)
2376                hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2377                                                    h_cg);
2378out_subpool_put:
2379        if (map_chg || avoid_reserve)
2380                hugepage_subpool_put_pages(spool, 1);
2381        vma_end_reservation(h, vma, addr);
2382        return ERR_PTR(-ENOSPC);
2383}
2384
2385int alloc_bootmem_huge_page(struct hstate *h)
2386        __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2387int __alloc_bootmem_huge_page(struct hstate *h)
2388{
2389        struct huge_bootmem_page *m;
2390        int nr_nodes, node;
2391
2392        for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2393                void *addr;
2394
2395                addr = memblock_alloc_try_nid_raw(
2396                                huge_page_size(h), huge_page_size(h),
2397                                0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2398                if (addr) {
2399                        /*
2400                         * Use the beginning of the huge page to store the
2401                         * huge_bootmem_page struct (until gather_bootmem
2402                         * puts them into the mem_map).
2403                         */
2404                        m = addr;
2405                        goto found;
2406                }
2407        }
2408        return 0;
2409
2410found:
2411        BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2412        /* Put them into a private list first because mem_map is not up yet */
2413        INIT_LIST_HEAD(&m->list);
2414        list_add(&m->list, &huge_boot_pages);
2415        m->hstate = h;
2416        return 1;
2417}
2418
2419static void __init prep_compound_huge_page(struct page *page,
2420                unsigned int order)
2421{
2422        if (unlikely(order > (MAX_ORDER - 1)))
2423                prep_compound_gigantic_page(page, order);
2424        else
2425                prep_compound_page(page, order);
2426}
2427
2428/* Put bootmem huge pages into the standard lists after mem_map is up */
2429static void __init gather_bootmem_prealloc(void)
2430{
2431        struct huge_bootmem_page *m;
2432
2433        list_for_each_entry(m, &huge_boot_pages, list) {
2434                struct page *page = virt_to_page(m);
2435                struct hstate *h = m->hstate;
2436
2437                WARN_ON(page_count(page) != 1);
2438                prep_compound_huge_page(page, h->order);
2439                WARN_ON(PageReserved(page));
2440                prep_new_huge_page(h, page, page_to_nid(page));
2441                put_page(page); /* free it into the hugepage allocator */
2442
2443                /*
2444                 * If we had gigantic hugepages allocated at boot time, we need
2445                 * to restore the 'stolen' pages to totalram_pages in order to
2446                 * fix confusing memory reports from free(1) and another
2447                 * side-effects, like CommitLimit going negative.
2448                 */
2449                if (hstate_is_gigantic(h))
2450                        adjust_managed_page_count(page, 1 << h->order);
2451                cond_resched();
2452        }
2453}
2454
2455static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2456{
2457        unsigned long i;
2458        nodemask_t *node_alloc_noretry;
2459
2460        if (!hstate_is_gigantic(h)) {
2461                /*
2462                 * Bit mask controlling how hard we retry per-node allocations.
2463                 * Ignore errors as lower level routines can deal with
2464                 * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2465                 * time, we are likely in bigger trouble.
2466                 */
2467                node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2468                                                GFP_KERNEL);
2469        } else {
2470                /* allocations done at boot time */
2471                node_alloc_noretry = NULL;
2472        }
2473
2474        /* bit mask controlling how hard we retry per-node allocations */
2475        if (node_alloc_noretry)
2476                nodes_clear(*node_alloc_noretry);
2477
2478        for (i = 0; i < h->max_huge_pages; ++i) {
2479                if (hstate_is_gigantic(h)) {
2480                        if (hugetlb_cma_size) {
2481                                pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2482                                break;
2483                        }
2484                        if (!alloc_bootmem_huge_page(h))
2485                                break;
2486                } else if (!alloc_pool_huge_page(h,
2487                                         &node_states[N_MEMORY],
2488                                         node_alloc_noretry))
2489                        break;
2490                cond_resched();
2491        }
2492        if (i < h->max_huge_pages) {
2493                char buf[32];
2494
2495                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2496                pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2497                        h->max_huge_pages, buf, i);
2498                h->max_huge_pages = i;
2499        }
2500
2501        kfree(node_alloc_noretry);
2502}
2503
2504static void __init hugetlb_init_hstates(void)
2505{
2506        struct hstate *h;
2507
2508        for_each_hstate(h) {
2509                if (minimum_order > huge_page_order(h))
2510                        minimum_order = huge_page_order(h);
2511
2512                /* oversize hugepages were init'ed in early boot */
2513                if (!hstate_is_gigantic(h))
2514                        hugetlb_hstate_alloc_pages(h);
2515        }
2516        VM_BUG_ON(minimum_order == UINT_MAX);
2517}
2518
2519static void __init report_hugepages(void)
2520{
2521        struct hstate *h;
2522
2523        for_each_hstate(h) {
2524                char buf[32];
2525
2526                string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2527                pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2528                        buf, h->free_huge_pages);
2529        }
2530}
2531
2532#ifdef CONFIG_HIGHMEM
2533static void try_to_free_low(struct hstate *h, unsigned long count,
2534                                                nodemask_t *nodes_allowed)
2535{
2536        int i;
2537
2538        if (hstate_is_gigantic(h))
2539                return;
2540
2541        for_each_node_mask(i, *nodes_allowed) {
2542                struct page *page, *next;
2543                struct list_head *freel = &h->hugepage_freelists[i];
2544                list_for_each_entry_safe(page, next, freel, lru) {
2545                        if (count >= h->nr_huge_pages)
2546                                return;
2547                        if (PageHighMem(page))
2548                                continue;
2549                        list_del(&page->lru);
2550                        update_and_free_page(h, page);
2551                        h->free_huge_pages--;
2552                        h->free_huge_pages_node[page_to_nid(page)]--;
2553                }
2554        }
2555}
2556#else
2557static inline void try_to_free_low(struct hstate *h, unsigned long count,
2558                                                nodemask_t *nodes_allowed)
2559{
2560}
2561#endif
2562
2563/*
2564 * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2565 * balanced by operating on them in a round-robin fashion.
2566 * Returns 1 if an adjustment was made.
2567 */
2568static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2569                                int delta)
2570{
2571        int nr_nodes, node;
2572
2573        VM_BUG_ON(delta != -1 && delta != 1);
2574
2575        if (delta < 0) {
2576                for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2577                        if (h->surplus_huge_pages_node[node])
2578                                goto found;
2579                }
2580        } else {
2581                for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2582                        if (h->surplus_huge_pages_node[node] <
2583                                        h->nr_huge_pages_node[node])
2584                                goto found;
2585                }
2586        }
2587        return 0;
2588
2589found:
2590        h->surplus_huge_pages += delta;
2591        h->surplus_huge_pages_node[node] += delta;
2592        return 1;
2593}
2594
2595#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2596static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2597                              nodemask_t *nodes_allowed)
2598{
2599        unsigned long min_count, ret;
2600        NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2601
2602        /*
2603         * Bit mask controlling how hard we retry per-node allocations.
2604         * If we can not allocate the bit mask, do not attempt to allocate
2605         * the requested huge pages.
2606         */
2607        if (node_alloc_noretry)
2608                nodes_clear(*node_alloc_noretry);
2609        else
2610                return -ENOMEM;
2611
2612        spin_lock(&hugetlb_lock);
2613
2614        /*
2615         * Check for a node specific request.
2616         * Changing node specific huge page count may require a corresponding
2617         * change to the global count.  In any case, the passed node mask
2618         * (nodes_allowed) will restrict alloc/free to the specified node.
2619         */
2620        if (nid != NUMA_NO_NODE) {
2621                unsigned long old_count = count;
2622
2623                count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2624                /*
2625                 * User may have specified a large count value which caused the
2626                 * above calculation to overflow.  In this case, they wanted
2627                 * to allocate as many huge pages as possible.  Set count to
2628                 * largest possible value to align with their intention.
2629                 */
2630                if (count < old_count)
2631                        count = ULONG_MAX;
2632        }
2633
2634        /*
2635         * Gigantic pages runtime allocation depend on the capability for large
2636         * page range allocation.
2637         * If the system does not provide this feature, return an error when
2638         * the user tries to allocate gigantic pages but let the user free the
2639         * boottime allocated gigantic pages.
2640         */
2641        if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2642                if (count > persistent_huge_pages(h)) {
2643                        spin_unlock(&hugetlb_lock);
2644                        NODEMASK_FREE(node_alloc_noretry);
2645                        return -EINVAL;
2646                }
2647                /* Fall through to decrease pool */
2648        }
2649
2650        /*
2651         * Increase the pool size
2652         * First take pages out of surplus state.  Then make up the
2653         * remaining difference by allocating fresh huge pages.
2654         *
2655         * We might race with alloc_surplus_huge_page() here and be unable
2656         * to convert a surplus huge page to a normal huge page. That is
2657         * not critical, though, it just means the overall size of the
2658         * pool might be one hugepage larger than it needs to be, but
2659         * within all the constraints specified by the sysctls.
2660         */
2661        while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2662                if (!adjust_pool_surplus(h, nodes_allowed, -1))
2663                        break;
2664        }
2665
2666        while (count > persistent_huge_pages(h)) {
2667                /*
2668                 * If this allocation races such that we no longer need the
2669                 * page, free_huge_page will handle it by freeing the page
2670                 * and reducing the surplus.
2671                 */
2672                spin_unlock(&hugetlb_lock);
2673
2674                /* yield cpu to avoid soft lockup */
2675                cond_resched();
2676
2677                ret = alloc_pool_huge_page(h, nodes_allowed,
2678                                                node_alloc_noretry);
2679                spin_lock(&hugetlb_lock);
2680                if (!ret)
2681                        goto out;
2682
2683                /* Bail for signals. Probably ctrl-c from user */
2684                if (signal_pending(current))
2685                        goto out;
2686        }
2687
2688        /*
2689         * Decrease the pool size
2690         * First return free pages to the buddy allocator (being careful
2691         * to keep enough around to satisfy reservations).  Then place
2692         * pages into surplus state as needed so the pool will shrink
2693         * to the desired size as pages become free.
2694         *
2695         * By placing pages into the surplus state independent of the
2696         * overcommit value, we are allowing the surplus pool size to
2697         * exceed overcommit. There are few sane options here. Since
2698         * alloc_surplus_huge_page() is checking the global counter,
2699         * though, we'll note that we're not allowed to exceed surplus
2700         * and won't grow the pool anywhere else. Not until one of the
2701         * sysctls are changed, or the surplus pages go out of use.
2702         */
2703        min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2704        min_count = max(count, min_count);
2705        try_to_free_low(h, min_count, nodes_allowed);
2706        while (min_count < persistent_huge_pages(h)) {
2707                if (!free_pool_huge_page(h, nodes_allowed, 0))
2708                        break;
2709                cond_resched_lock(&hugetlb_lock);
2710        }
2711        while (count < persistent_huge_pages(h)) {
2712                if (!adjust_pool_surplus(h, nodes_allowed, 1))
2713                        break;
2714        }
2715out:
2716        h->max_huge_pages = persistent_huge_pages(h);
2717        spin_unlock(&hugetlb_lock);
2718
2719        NODEMASK_FREE(node_alloc_noretry);
2720
2721        return 0;
2722}
2723
2724#define HSTATE_ATTR_RO(_name) \
2725        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2726
2727#define HSTATE_ATTR(_name) \
2728        static struct kobj_attribute _name##_attr = \
2729                __ATTR(_name, 0644, _name##_show, _name##_store)
2730
2731static struct kobject *hugepages_kobj;
2732static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2733
2734static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2735
2736static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2737{
2738        int i;
2739
2740        for (i = 0; i < HUGE_MAX_HSTATE; i++)
2741                if (hstate_kobjs[i] == kobj) {
2742                        if (nidp)
2743                                *nidp = NUMA_NO_NODE;
2744                        return &hstates[i];
2745                }
2746
2747        return kobj_to_node_hstate(kobj, nidp);
2748}
2749
2750static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2751                                        struct kobj_attribute *attr, char *buf)
2752{
2753        struct hstate *h;
2754        unsigned long nr_huge_pages;
2755        int nid;
2756
2757        h = kobj_to_hstate(kobj, &nid);
2758        if (nid == NUMA_NO_NODE)
2759                nr_huge_pages = h->nr_huge_pages;
2760        else
2761                nr_huge_pages = h->nr_huge_pages_node[nid];
2762
2763        return sprintf(buf, "%lu\n", nr_huge_pages);
2764}
2765
2766static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2767                                           struct hstate *h, int nid,
2768                                           unsigned long count, size_t len)
2769{
2770        int err;
2771        nodemask_t nodes_allowed, *n_mask;
2772
2773        if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2774                return -EINVAL;
2775
2776        if (nid == NUMA_NO_NODE) {
2777                /*
2778                 * global hstate attribute
2779                 */
2780                if (!(obey_mempolicy &&
2781                                init_nodemask_of_mempolicy(&nodes_allowed)))
2782                        n_mask = &node_states[N_MEMORY];
2783                else
2784                        n_mask = &nodes_allowed;
2785        } else {
2786                /*
2787                 * Node specific request.  count adjustment happens in
2788                 * set_max_huge_pages() after acquiring hugetlb_lock.
2789                 */
2790                init_nodemask_of_node(&nodes_allowed, nid);
2791                n_mask = &nodes_allowed;
2792        }
2793
2794        err = set_max_huge_pages(h, count, nid, n_mask);
2795
2796        return err ? err : len;
2797}
2798
2799static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2800                                         struct kobject *kobj, const char *buf,
2801                                         size_t len)
2802{
2803        struct hstate *h;
2804        unsigned long count;
2805        int nid;
2806        int err;
2807
2808        err = kstrtoul(buf, 10, &count);
2809        if (err)
2810                return err;
2811
2812        h = kobj_to_hstate(kobj, &nid);
2813        return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2814}
2815
2816static ssize_t nr_hugepages_show(struct kobject *kobj,
2817                                       struct kobj_attribute *attr, char *buf)
2818{
2819        return nr_hugepages_show_common(kobj, attr, buf);
2820}
2821
2822static ssize_t nr_hugepages_store(struct kobject *kobj,
2823               struct kobj_attribute *attr, const char *buf, size_t len)
2824{
2825        return nr_hugepages_store_common(false, kobj, buf, len);
2826}
2827HSTATE_ATTR(nr_hugepages);
2828
2829#ifdef CONFIG_NUMA
2830
2831/*
2832 * hstate attribute for optionally mempolicy-based constraint on persistent
2833 * huge page alloc/free.
2834 */
2835static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2836                                       struct kobj_attribute *attr, char *buf)
2837{
2838        return nr_hugepages_show_common(kobj, attr, buf);
2839}
2840
2841static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2842               struct kobj_attribute *attr, const char *buf, size_t len)
2843{
2844        return nr_hugepages_store_common(true, kobj, buf, len);
2845}
2846HSTATE_ATTR(nr_hugepages_mempolicy);
2847#endif
2848
2849
2850static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2851                                        struct kobj_attribute *attr, char *buf)
2852{
2853        struct hstate *h = kobj_to_hstate(kobj, NULL);
2854        return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2855}
2856
2857static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2858                struct kobj_attribute *attr, const char *buf, size_t count)
2859{
2860        int err;
2861        unsigned long input;
2862        struct hstate *h = kobj_to_hstate(kobj, NULL);
2863
2864        if (hstate_is_gigantic(h))
2865                return -EINVAL;
2866
2867        err = kstrtoul(buf, 10, &input);
2868        if (err)
2869                return err;
2870
2871        spin_lock(&hugetlb_lock);
2872        h->nr_overcommit_huge_pages = input;
2873        spin_unlock(&hugetlb_lock);
2874
2875        return count;
2876}
2877HSTATE_ATTR(nr_overcommit_hugepages);
2878
2879static ssize_t free_hugepages_show(struct kobject *kobj,
2880                                        struct kobj_attribute *attr, char *buf)
2881{
2882        struct hstate *h;
2883        unsigned long free_huge_pages;
2884        int nid;
2885
2886        h = kobj_to_hstate(kobj, &nid);
2887        if (nid == NUMA_NO_NODE)
2888                free_huge_pages = h->free_huge_pages;
2889        else
2890                free_huge_pages = h->free_huge_pages_node[nid];
2891
2892        return sprintf(buf, "%lu\n", free_huge_pages);
2893}
2894HSTATE_ATTR_RO(free_hugepages);
2895
2896static ssize_t resv_hugepages_show(struct kobject *kobj,
2897                                        struct kobj_attribute *attr, char *buf)
2898{
2899        struct hstate *h = kobj_to_hstate(kobj, NULL);
2900        return sprintf(buf, "%lu\n", h->resv_huge_pages);
2901}
2902HSTATE_ATTR_RO(resv_hugepages);
2903
2904static ssize_t surplus_hugepages_show(struct kobject *kobj,
2905                                        struct kobj_attribute *attr, char *buf)
2906{
2907        struct hstate *h;
2908        unsigned long surplus_huge_pages;
2909        int nid;
2910
2911        h = kobj_to_hstate(kobj, &nid);
2912        if (nid == NUMA_NO_NODE)
2913                surplus_huge_pages = h->surplus_huge_pages;
2914        else
2915                surplus_huge_pages = h->surplus_huge_pages_node[nid];
2916
2917        return sprintf(buf, "%lu\n", surplus_huge_pages);
2918}
2919HSTATE_ATTR_RO(surplus_hugepages);
2920
2921static struct attribute *hstate_attrs[] = {
2922        &nr_hugepages_attr.attr,
2923        &nr_overcommit_hugepages_attr.attr,
2924        &free_hugepages_attr.attr,
2925        &resv_hugepages_attr.attr,
2926        &surplus_hugepages_attr.attr,
2927#ifdef CONFIG_NUMA
2928        &nr_hugepages_mempolicy_attr.attr,
2929#endif
2930        NULL,
2931};
2932
2933static const struct attribute_group hstate_attr_group = {
2934        .attrs = hstate_attrs,
2935};
2936
2937static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2938                                    struct kobject **hstate_kobjs,
2939                                    const struct attribute_group *hstate_attr_group)
2940{
2941        int retval;
2942        int hi = hstate_index(h);
2943
2944        hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2945        if (!hstate_kobjs[hi])
2946                return -ENOMEM;
2947
2948        retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2949        if (retval)
2950                kobject_put(hstate_kobjs[hi]);
2951
2952        return retval;
2953}
2954
2955static void __init hugetlb_sysfs_init(void)
2956{
2957        struct hstate *h;
2958        int err;
2959
2960        hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2961        if (!hugepages_kobj)
2962                return;
2963
2964        for_each_hstate(h) {
2965                err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2966                                         hstate_kobjs, &hstate_attr_group);
2967                if (err)
2968                        pr_err("HugeTLB: Unable to add hstate %s", h->name);
2969        }
2970}
2971
2972#ifdef CONFIG_NUMA
2973
2974/*
2975 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2976 * with node devices in node_devices[] using a parallel array.  The array
2977 * index of a node device or _hstate == node id.
2978 * This is here to avoid any static dependency of the node device driver, in
2979 * the base kernel, on the hugetlb module.
2980 */
2981struct node_hstate {
2982        struct kobject          *hugepages_kobj;
2983        struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2984};
2985static struct node_hstate node_hstates[MAX_NUMNODES];
2986
2987/*
2988 * A subset of global hstate attributes for node devices
2989 */
2990static struct attribute *per_node_hstate_attrs[] = {
2991        &nr_hugepages_attr.attr,
2992        &free_hugepages_attr.attr,
2993        &surplus_hugepages_attr.attr,
2994        NULL,
2995};
2996
2997static const struct attribute_group per_node_hstate_attr_group = {
2998        .attrs = per_node_hstate_attrs,
2999};
3000
3001/*
3002 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3003 * Returns node id via non-NULL nidp.
3004 */
3005static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3006{
3007        int nid;
3008
3009        for (nid = 0; nid < nr_node_ids; nid++) {
3010                struct node_hstate *nhs = &node_hstates[nid];
3011                int i;
3012                for (i = 0; i < HUGE_MAX_HSTATE; i++)
3013                        if (nhs->hstate_kobjs[i] == kobj) {
3014                                if (nidp)
3015                                        *nidp = nid;
3016                                return &hstates[i];
3017                        }
3018        }
3019
3020        BUG();
3021        return NULL;
3022}
3023
3024/*
3025 * Unregister hstate attributes from a single node device.
3026 * No-op if no hstate attributes attached.
3027 */
3028static void hugetlb_unregister_node(struct node *node)
3029{
3030        struct hstate *h;
3031        struct node_hstate *nhs = &node_hstates[node->dev.id];
3032
3033        if (!nhs->hugepages_kobj)
3034                return;         /* no hstate attributes */
3035
3036        for_each_hstate(h) {
3037                int idx = hstate_index(h);
3038                if (nhs->hstate_kobjs[idx]) {
3039                        kobject_put(nhs->hstate_kobjs[idx]);
3040                        nhs->hstate_kobjs[idx] = NULL;
3041                }
3042        }
3043
3044        kobject_put(nhs->hugepages_kobj);
3045        nhs->hugepages_kobj = NULL;
3046}
3047
3048
3049/*
3050 * Register hstate attributes for a single node device.
3051 * No-op if attributes already registered.
3052 */
3053static void hugetlb_register_node(struct node *node)
3054{
3055        struct hstate *h;
3056        struct node_hstate *nhs = &node_hstates[node->dev.id];
3057        int err;
3058
3059        if (nhs->hugepages_kobj)
3060                return;         /* already allocated */
3061
3062        nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3063                                                        &node->dev.kobj);
3064        if (!nhs->hugepages_kobj)
3065                return;
3066
3067        for_each_hstate(h) {
3068                err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3069                                                nhs->hstate_kobjs,
3070                                                &per_node_hstate_attr_group);
3071                if (err) {
3072                        pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3073                                h->name, node->dev.id);
3074                        hugetlb_unregister_node(node);
3075                        break;
3076                }
3077        }
3078}
3079
3080/*
3081 * hugetlb init time:  register hstate attributes for all registered node
3082 * devices of nodes that have memory.  All on-line nodes should have
3083 * registered their associated device by this time.
3084 */
3085static void __init hugetlb_register_all_nodes(void)
3086{
3087        int nid;
3088
3089        for_each_node_state(nid, N_MEMORY) {
3090                struct node *node = node_devices[nid];
3091                if (node->dev.id == nid)
3092                        hugetlb_register_node(node);
3093        }
3094
3095        /*
3096         * Let the node device driver know we're here so it can
3097         * [un]register hstate attributes on node hotplug.
3098         */
3099        register_hugetlbfs_with_node(hugetlb_register_node,
3100                                     hugetlb_unregister_node);
3101}
3102#else   /* !CONFIG_NUMA */
3103
3104static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3105{
3106        BUG();
3107        if (nidp)
3108                *nidp = -1;
3109        return NULL;
3110}
3111
3112static void hugetlb_register_all_nodes(void) { }
3113
3114#endif
3115
3116static int __init hugetlb_init(void)
3117{
3118        int i;
3119
3120        if (!hugepages_supported()) {
3121                if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3122                        pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3123                return 0;
3124        }
3125
3126        /*
3127         * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3128         * architectures depend on setup being done here.
3129         */
3130        hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3131        if (!parsed_default_hugepagesz) {
3132                /*
3133                 * If we did not parse a default huge page size, set
3134                 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3135                 * number of huge pages for this default size was implicitly
3136                 * specified, set that here as well.
3137                 * Note that the implicit setting will overwrite an explicit
3138                 * setting.  A warning will be printed in this case.
3139                 */
3140                default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3141                if (default_hstate_max_huge_pages) {
3142                        if (default_hstate.max_huge_pages) {
3143                                char buf[32];
3144
3145                                string_get_size(huge_page_size(&default_hstate),
3146                                        1, STRING_UNITS_2, buf, 32);
3147                                pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3148                                        default_hstate.max_huge_pages, buf);
3149                                pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3150                                        default_hstate_max_huge_pages);
3151                        }
3152                        default_hstate.max_huge_pages =
3153                                default_hstate_max_huge_pages;
3154                }
3155        }
3156
3157        hugetlb_cma_check();
3158        hugetlb_init_hstates();
3159        gather_bootmem_prealloc();
3160        report_hugepages();
3161
3162        hugetlb_sysfs_init();
3163        hugetlb_register_all_nodes();
3164        hugetlb_cgroup_file_init();
3165
3166#ifdef CONFIG_SMP
3167        num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3168#else
3169        num_fault_mutexes = 1;
3170#endif
3171        hugetlb_fault_mutex_table =
3172                kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3173                              GFP_KERNEL);
3174        BUG_ON(!hugetlb_fault_mutex_table);
3175
3176        for (i = 0; i < num_fault_mutexes; i++)
3177                mutex_init(&hugetlb_fault_mutex_table[i]);
3178        return 0;
3179}
3180subsys_initcall(hugetlb_init);
3181
3182/* Overwritten by architectures with more huge page sizes */
3183bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3184{
3185        return size == HPAGE_SIZE;
3186}
3187
3188void __init hugetlb_add_hstate(unsigned int order)
3189{
3190        struct hstate *h;
3191        unsigned long i;
3192
3193        if (size_to_hstate(PAGE_SIZE << order)) {
3194                return;
3195        }
3196        BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3197        BUG_ON(order == 0);
3198        h = &hstates[hugetlb_max_hstate++];
3199        h->order = order;
3200        h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3201        h->nr_huge_pages = 0;
3202        h->free_huge_pages = 0;
3203        for (i = 0; i < MAX_NUMNODES; ++i)
3204                INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3205        INIT_LIST_HEAD(&h->hugepage_activelist);
3206        h->next_nid_to_alloc = first_memory_node;
3207        h->next_nid_to_free = first_memory_node;
3208        snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3209                                        huge_page_size(h)/1024);
3210
3211        parsed_hstate = h;
3212}
3213
3214/*
3215 * hugepages command line processing
3216 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3217 * specification.  If not, ignore the hugepages value.  hugepages can also
3218 * be the first huge page command line  option in which case it implicitly
3219 * specifies the number of huge pages for the default size.
3220 */
3221static int __init hugepages_setup(char *s)
3222{
3223        unsigned long *mhp;
3224        static unsigned long *last_mhp;
3225
3226        if (!parsed_valid_hugepagesz) {
3227                pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3228                parsed_valid_hugepagesz = true;
3229                return 0;
3230        }
3231
3232        /*
3233         * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3234         * yet, so this hugepages= parameter goes to the "default hstate".
3235         * Otherwise, it goes with the previously parsed hugepagesz or
3236         * default_hugepagesz.
3237         */
3238        else if (!hugetlb_max_hstate)
3239                mhp = &default_hstate_max_huge_pages;
3240        else
3241                mhp = &parsed_hstate->max_huge_pages;
3242
3243        if (mhp == last_mhp) {
3244                pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3245                return 0;
3246        }
3247
3248        if (sscanf(s, "%lu", mhp) <= 0)
3249                *mhp = 0;
3250
3251        /*
3252         * Global state is always initialized later in hugetlb_init.
3253         * But we need to allocate >= MAX_ORDER hstates here early to still
3254         * use the bootmem allocator.
3255         */
3256        if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3257                hugetlb_hstate_alloc_pages(parsed_hstate);
3258
3259        last_mhp = mhp;
3260
3261        return 1;
3262}
3263__setup("hugepages=", hugepages_setup);
3264
3265/*
3266 * hugepagesz command line processing
3267 * A specific huge page size can only be specified once with hugepagesz.
3268 * hugepagesz is followed by hugepages on the command line.  The global
3269 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3270 * hugepagesz argument was valid.
3271 */
3272static int __init hugepagesz_setup(char *s)
3273{
3274        unsigned long size;
3275        struct hstate *h;
3276
3277        parsed_valid_hugepagesz = false;
3278        size = (unsigned long)memparse(s, NULL);
3279
3280        if (!arch_hugetlb_valid_size(size)) {
3281                pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3282                return 0;
3283        }
3284
3285        h = size_to_hstate(size);
3286        if (h) {
3287                /*
3288                 * hstate for this size already exists.  This is normally
3289                 * an error, but is allowed if the existing hstate is the
3290                 * default hstate.  More specifically, it is only allowed if
3291                 * the number of huge pages for the default hstate was not
3292                 * previously specified.
3293                 */
3294                if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3295                    default_hstate.max_huge_pages) {
3296                        pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3297                        return 0;
3298                }
3299
3300                /*
3301                 * No need to call hugetlb_add_hstate() as hstate already
3302                 * exists.  But, do set parsed_hstate so that a following
3303                 * hugepages= parameter will be applied to this hstate.
3304                 */
3305                parsed_hstate = h;
3306                parsed_valid_hugepagesz = true;
3307                return 1;
3308        }
3309
3310        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3311        parsed_valid_hugepagesz = true;
3312        return 1;
3313}
3314__setup("hugepagesz=", hugepagesz_setup);
3315
3316/*
3317 * default_hugepagesz command line input
3318 * Only one instance of default_hugepagesz allowed on command line.
3319 */
3320static int __init default_hugepagesz_setup(char *s)
3321{
3322        unsigned long size;
3323
3324        parsed_valid_hugepagesz = false;
3325        if (parsed_default_hugepagesz) {
3326                pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3327                return 0;
3328        }
3329
3330        size = (unsigned long)memparse(s, NULL);
3331
3332        if (!arch_hugetlb_valid_size(size)) {
3333                pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3334                return 0;
3335        }
3336
3337        hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3338        parsed_valid_hugepagesz = true;
3339        parsed_default_hugepagesz = true;
3340        default_hstate_idx = hstate_index(size_to_hstate(size));
3341
3342        /*
3343         * The number of default huge pages (for this size) could have been
3344         * specified as the first hugetlb parameter: hugepages=X.  If so,
3345         * then default_hstate_max_huge_pages is set.  If the default huge
3346         * page size is gigantic (>= MAX_ORDER), then the pages must be
3347         * allocated here from bootmem allocator.
3348         */
3349        if (default_hstate_max_huge_pages) {
3350                default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3351                if (hstate_is_gigantic(&default_hstate))
3352                        hugetlb_hstate_alloc_pages(&default_hstate);
3353                default_hstate_max_huge_pages = 0;
3354        }
3355
3356        return 1;
3357}
3358__setup("default_hugepagesz=", default_hugepagesz_setup);
3359
3360static unsigned int allowed_mems_nr(struct hstate *h)
3361{
3362        int node;
3363        unsigned int nr = 0;
3364        nodemask_t *mpol_allowed;
3365        unsigned int *array = h->free_huge_pages_node;
3366        gfp_t gfp_mask = htlb_alloc_mask(h);
3367
3368        mpol_allowed = policy_nodemask_current(gfp_mask);
3369
3370        for_each_node_mask(node, cpuset_current_mems_allowed) {
3371                if (!mpol_allowed ||
3372                    (mpol_allowed && node_isset(node, *mpol_allowed)))
3373                        nr += array[node];
3374        }
3375
3376        return nr;
3377}
3378
3379#ifdef CONFIG_SYSCTL
3380static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3381                                          void *buffer, size_t *length,
3382                                          loff_t *ppos, unsigned long *out)
3383{
3384        struct ctl_table dup_table;
3385
3386        /*
3387         * In order to avoid races with __do_proc_doulongvec_minmax(), we
3388         * can duplicate the @table and alter the duplicate of it.
3389         */
3390        dup_table = *table;
3391        dup_table.data = out;
3392
3393        return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3394}
3395
3396static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3397                         struct ctl_table *table, int write,
3398                         void *buffer, size_t *length, loff_t *ppos)
3399{
3400        struct hstate *h = &default_hstate;
3401        unsigned long tmp = h->max_huge_pages;
3402        int ret;
3403
3404        if (!hugepages_supported())
3405                return -EOPNOTSUPP;
3406
3407        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3408                                             &tmp);
3409        if (ret)
3410                goto out;
3411
3412        if (write)
3413                ret = __nr_hugepages_store_common(obey_mempolicy, h,
3414                                                  NUMA_NO_NODE, tmp, *length);
3415out:
3416        return ret;
3417}
3418
3419int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3420                          void *buffer, size_t *length, loff_t *ppos)
3421{
3422
3423        return hugetlb_sysctl_handler_common(false, table, write,
3424                                                        buffer, length, ppos);
3425}
3426
3427#ifdef CONFIG_NUMA
3428int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3429                          void *buffer, size_t *length, loff_t *ppos)
3430{
3431        return hugetlb_sysctl_handler_common(true, table, write,
3432                                                        buffer, length, ppos);
3433}
3434#endif /* CONFIG_NUMA */
3435
3436int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3437                void *buffer, size_t *length, loff_t *ppos)
3438{
3439        struct hstate *h = &default_hstate;
3440        unsigned long tmp;
3441        int ret;
3442
3443        if (!hugepages_supported())
3444                return -EOPNOTSUPP;
3445
3446        tmp = h->nr_overcommit_huge_pages;
3447
3448        if (write && hstate_is_gigantic(h))
3449                return -EINVAL;
3450
3451        ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3452                                             &tmp);
3453        if (ret)
3454                goto out;
3455
3456        if (write) {
3457                spin_lock(&hugetlb_lock);
3458                h->nr_overcommit_huge_pages = tmp;
3459                spin_unlock(&hugetlb_lock);
3460        }
3461out:
3462        return ret;
3463}
3464
3465#endif /* CONFIG_SYSCTL */
3466
3467void hugetlb_report_meminfo(struct seq_file *m)
3468{
3469        struct hstate *h;
3470        unsigned long total = 0;
3471
3472        if (!hugepages_supported())
3473                return;
3474
3475        for_each_hstate(h) {
3476                unsigned long count = h->nr_huge_pages;
3477
3478                total += (PAGE_SIZE << huge_page_order(h)) * count;
3479
3480                if (h == &default_hstate)
3481                        seq_printf(m,
3482                                   "HugePages_Total:   %5lu\n"
3483                                   "HugePages_Free:    %5lu\n"
3484                                   "HugePages_Rsvd:    %5lu\n"
3485                                   "HugePages_Surp:    %5lu\n"
3486                                   "Hugepagesize:   %8lu kB\n",
3487                                   count,
3488                                   h->free_huge_pages,
3489                                   h->resv_huge_pages,
3490                                   h->surplus_huge_pages,
3491                                   (PAGE_SIZE << huge_page_order(h)) / 1024);
3492        }
3493
3494        seq_printf(m, "Hugetlb:        %8lu kB\n", total / 1024);
3495}
3496
3497int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3498{
3499        struct hstate *h = &default_hstate;
3500
3501        if (!hugepages_supported())
3502                return 0;
3503
3504        return sysfs_emit_at(buf, len,
3505                             "Node %d HugePages_Total: %5u\n"
3506                             "Node %d HugePages_Free:  %5u\n"
3507                             "Node %d HugePages_Surp:  %5u\n",
3508                             nid, h->nr_huge_pages_node[nid],
3509                             nid, h->free_huge_pages_node[nid],
3510                             nid, h->surplus_huge_pages_node[nid]);
3511}
3512
3513void hugetlb_show_meminfo(void)
3514{
3515        struct hstate *h;
3516        int nid;
3517
3518        if (!hugepages_supported())
3519                return;
3520
3521        for_each_node_state(nid, N_MEMORY)
3522                for_each_hstate(h)
3523                        pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3524                                nid,
3525                                h->nr_huge_pages_node[nid],
3526                                h->free_huge_pages_node[nid],
3527                                h->surplus_huge_pages_node[nid],
3528                                1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3529}
3530
3531void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3532{
3533        seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3534                   atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3535}
3536
3537/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3538unsigned long hugetlb_total_pages(void)
3539{
3540        struct hstate *h;
3541        unsigned long nr_total_pages = 0;
3542
3543        for_each_hstate(h)
3544                nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3545        return nr_total_pages;
3546}
3547
3548static int hugetlb_acct_memory(struct hstate *h, long delta)
3549{
3550        int ret = -ENOMEM;
3551
3552        spin_lock(&hugetlb_lock);
3553        /*
3554         * When cpuset is configured, it breaks the strict hugetlb page
3555         * reservation as the accounting is done on a global variable. Such
3556         * reservation is completely rubbish in the presence of cpuset because
3557         * the reservation is not checked against page availability for the
3558         * current cpuset. Application can still potentially OOM'ed by kernel
3559         * with lack of free htlb page in cpuset that the task is in.
3560         * Attempt to enforce strict accounting with cpuset is almost
3561         * impossible (or too ugly) because cpuset is too fluid that
3562         * task or memory node can be dynamically moved between cpusets.
3563         *
3564         * The change of semantics for shared hugetlb mapping with cpuset is
3565         * undesirable. However, in order to preserve some of the semantics,
3566         * we fall back to check against current free page availability as
3567         * a best attempt and hopefully to minimize the impact of changing
3568         * semantics that cpuset has.
3569         *
3570         * Apart from cpuset, we also have memory policy mechanism that
3571         * also determines from which node the kernel will allocate memory
3572         * in a NUMA system. So similar to cpuset, we also should consider
3573         * the memory policy of the current task. Similar to the description
3574         * above.
3575         */
3576        if (delta > 0) {
3577                if (gather_surplus_pages(h, delta) < 0)
3578                        goto out;
3579
3580                if (delta > allowed_mems_nr(h)) {
3581                        return_unused_surplus_pages(h, delta);
3582                        goto out;
3583                }
3584        }
3585
3586        ret = 0;
3587        if (delta < 0)
3588                return_unused_surplus_pages(h, (unsigned long) -delta);
3589
3590out:
3591        spin_unlock(&hugetlb_lock);
3592        return ret;
3593}
3594
3595static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3596{
3597        struct resv_map *resv = vma_resv_map(vma);
3598
3599        /*
3600         * This new VMA should share its siblings reservation map if present.
3601         * The VMA will only ever have a valid reservation map pointer where
3602         * it is being copied for another still existing VMA.  As that VMA
3603         * has a reference to the reservation map it cannot disappear until
3604         * after this open call completes.  It is therefore safe to take a
3605         * new reference here without additional locking.
3606         */
3607        if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3608                kref_get(&resv->refs);
3609}
3610
3611static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3612{
3613        struct hstate *h = hstate_vma(vma);
3614        struct resv_map *resv = vma_resv_map(vma);
3615        struct hugepage_subpool *spool = subpool_vma(vma);
3616        unsigned long reserve, start, end;
3617        long gbl_reserve;
3618
3619        if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3620                return;
3621
3622        start = vma_hugecache_offset(h, vma, vma->vm_start);
3623        end = vma_hugecache_offset(h, vma, vma->vm_end);
3624
3625        reserve = (end - start) - region_count(resv, start, end);
3626        hugetlb_cgroup_uncharge_counter(resv, start, end);
3627        if (reserve) {
3628                /*
3629                 * Decrement reserve counts.  The global reserve count may be
3630                 * adjusted if the subpool has a minimum size.
3631                 */
3632                gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3633                hugetlb_acct_memory(h, -gbl_reserve);
3634        }
3635
3636        kref_put(&resv->refs, resv_map_release);
3637}
3638
3639static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3640{
3641        if (addr & ~(huge_page_mask(hstate_vma(vma))))
3642                return -EINVAL;
3643        return 0;
3644}
3645
3646static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3647{
3648        struct hstate *hstate = hstate_vma(vma);
3649
3650        return 1UL << huge_page_shift(hstate);
3651}
3652
3653/*
3654 * We cannot handle pagefaults against hugetlb pages at all.  They cause
3655 * handle_mm_fault() to try to instantiate regular-sized pages in the
3656 * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3657 * this far.
3658 */
3659static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3660{
3661        BUG();
3662        return 0;
3663}
3664
3665/*
3666 * When a new function is introduced to vm_operations_struct and added
3667 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3668 * This is because under System V memory model, mappings created via
3669 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3670 * their original vm_ops are overwritten with shm_vm_ops.
3671 */
3672const struct vm_operations_struct hugetlb_vm_ops = {
3673        .fault = hugetlb_vm_op_fault,
3674        .open = hugetlb_vm_op_open,
3675        .close = hugetlb_vm_op_close,
3676        .split = hugetlb_vm_op_split,
3677        .pagesize = hugetlb_vm_op_pagesize,
3678};
3679
3680static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3681                                int writable)
3682{
3683        pte_t entry;
3684
3685        if (writable) {
3686                entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3687                                         vma->vm_page_prot)));
3688        } else {
3689                entry = huge_pte_wrprotect(mk_huge_pte(page,
3690                                           vma->vm_page_prot));
3691        }
3692        entry = pte_mkyoung(entry);
3693        entry = pte_mkhuge(entry);
3694        entry = arch_make_huge_pte(entry, vma, page, writable);
3695
3696        return entry;
3697}
3698
3699static void set_huge_ptep_writable(struct vm_area_struct *vma,
3700                                   unsigned long address, pte_t *ptep)
3701{
3702        pte_t entry;
3703
3704        entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3705        if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3706                update_mmu_cache(vma, address, ptep);
3707}
3708
3709bool is_hugetlb_entry_migration(pte_t pte)
3710{
3711        swp_entry_t swp;
3712
3713        if (huge_pte_none(pte) || pte_present(pte))
3714                return false;
3715        swp = pte_to_swp_entry(pte);
3716        if (is_migration_entry(swp))
3717                return true;
3718        else
3719                return false;
3720}
3721
3722static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3723{
3724        swp_entry_t swp;
3725
3726        if (huge_pte_none(pte) || pte_present(pte))
3727                return false;
3728        swp = pte_to_swp_entry(pte);
3729        if (is_hwpoison_entry(swp))
3730                return true;
3731        else
3732                return false;
3733}
3734
3735int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3736                            struct vm_area_struct *vma)
3737{
3738        pte_t *src_pte, *dst_pte, entry, dst_entry;
3739        struct page *ptepage;
3740        unsigned long addr;
3741        int cow;
3742        struct hstate *h = hstate_vma(vma);
3743        unsigned long sz = huge_page_size(h);
3744        struct address_space *mapping = vma->vm_file->f_mapping;
3745        struct mmu_notifier_range range;
3746        int ret = 0;
3747
3748        cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3749
3750        if (cow) {
3751                mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3752                                        vma->vm_start,
3753                                        vma->vm_end);
3754                mmu_notifier_invalidate_range_start(&range);
3755        } else {
3756                /*
3757                 * For shared mappings i_mmap_rwsem must be held to call
3758                 * huge_pte_alloc, otherwise the returned ptep could go
3759                 * away if part of a shared pmd and another thread calls
3760                 * huge_pmd_unshare.
3761                 */
3762                i_mmap_lock_read(mapping);
3763        }
3764
3765        for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3766                spinlock_t *src_ptl, *dst_ptl;
3767                src_pte = huge_pte_offset(src, addr, sz);
3768                if (!src_pte)
3769                        continue;
3770                dst_pte = huge_pte_alloc(dst, addr, sz);
3771                if (!dst_pte) {
3772                        ret = -ENOMEM;
3773                        break;
3774                }
3775
3776                /*
3777                 * If the pagetables are shared don't copy or take references.
3778                 * dst_pte == src_pte is the common case of src/dest sharing.
3779                 *
3780                 * However, src could have 'unshared' and dst shares with
3781                 * another vma.  If dst_pte !none, this implies sharing.
3782                 * Check here before taking page table lock, and once again
3783                 * after taking the lock below.
3784                 */
3785                dst_entry = huge_ptep_get(dst_pte);
3786                if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3787                        continue;
3788
3789                dst_ptl = huge_pte_lock(h, dst, dst_pte);
3790                src_ptl = huge_pte_lockptr(h, src, src_pte);
3791                spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3792                entry = huge_ptep_get(src_pte);
3793                dst_entry = huge_ptep_get(dst_pte);
3794                if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3795                        /*
3796                         * Skip if src entry none.  Also, skip in the
3797                         * unlikely case dst entry !none as this implies
3798                         * sharing with another vma.
3799                         */
3800                        ;
3801                } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3802                                    is_hugetlb_entry_hwpoisoned(entry))) {
3803                        swp_entry_t swp_entry = pte_to_swp_entry(entry);
3804
3805                        if (is_write_migration_entry(swp_entry) && cow) {
3806                                /*
3807                                 * COW mappings require pages in both
3808                                 * parent and child to be set to read.
3809                                 */
3810                                make_migration_entry_read(&swp_entry);
3811                                entry = swp_entry_to_pte(swp_entry);
3812                                set_huge_swap_pte_at(src, addr, src_pte,
3813                                                     entry, sz);
3814                        }
3815                        set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3816                } else {
3817                        if (cow) {
3818                                /*
3819                                 * No need to notify as we are downgrading page
3820                                 * table protection not changing it to point
3821                                 * to a new page.
3822                                 *
3823                                 * See Documentation/vm/mmu_notifier.rst
3824                                 */
3825                                huge_ptep_set_wrprotect(src, addr, src_pte);
3826                        }
3827                        entry = huge_ptep_get(src_pte);
3828                        ptepage = pte_page(entry);
3829                        get_page(ptepage);
3830                        page_dup_rmap(ptepage, true);
3831                        set_huge_pte_at(dst, addr, dst_pte, entry);
3832                        hugetlb_count_add(pages_per_huge_page(h), dst);
3833                }
3834                spin_unlock(src_ptl);
3835                spin_unlock(dst_ptl);
3836        }
3837
3838        if (cow)
3839                mmu_notifier_invalidate_range_end(&range);
3840        else
3841                i_mmap_unlock_read(mapping);
3842
3843        return ret;
3844}
3845
3846void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3847                            unsigned long start, unsigned long end,
3848                            struct page *ref_page)
3849{
3850        struct mm_struct *mm = vma->vm_mm;
3851        unsigned long address;
3852        pte_t *ptep;
3853        pte_t pte;
3854        spinlock_t *ptl;
3855        struct page *page;
3856        struct hstate *h = hstate_vma(vma);
3857        unsigned long sz = huge_page_size(h);
3858        struct mmu_notifier_range range;
3859
3860        WARN_ON(!is_vm_hugetlb_page(vma));
3861        BUG_ON(start & ~huge_page_mask(h));
3862        BUG_ON(end & ~huge_page_mask(h));
3863
3864        /*
3865         * This is a hugetlb vma, all the pte entries should point
3866         * to huge page.
3867         */
3868        tlb_change_page_size(tlb, sz);
3869        tlb_start_vma(tlb, vma);
3870
3871        /*
3872         * If sharing possible, alert mmu notifiers of worst case.
3873         */
3874        mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3875                                end);
3876        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3877        mmu_notifier_invalidate_range_start(&range);
3878        address = start;
3879        for (; address < end; address += sz) {
3880                ptep = huge_pte_offset(mm, address, sz);
3881                if (!ptep)
3882                        continue;
3883
3884                ptl = huge_pte_lock(h, mm, ptep);
3885                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3886                        spin_unlock(ptl);
3887                        /*
3888                         * We just unmapped a page of PMDs by clearing a PUD.
3889                         * The caller's TLB flush range should cover this area.
3890                         */
3891                        continue;
3892                }
3893
3894                pte = huge_ptep_get(ptep);
3895                if (huge_pte_none(pte)) {
3896                        spin_unlock(ptl);
3897                        continue;
3898                }
3899
3900                /*
3901                 * Migrating hugepage or HWPoisoned hugepage is already
3902                 * unmapped and its refcount is dropped, so just clear pte here.
3903                 */
3904                if (unlikely(!pte_present(pte))) {
3905                        huge_pte_clear(mm, address, ptep, sz);
3906                        spin_unlock(ptl);
3907                        continue;
3908                }
3909
3910                page = pte_page(pte);
3911                /*
3912                 * If a reference page is supplied, it is because a specific
3913                 * page is being unmapped, not a range. Ensure the page we
3914                 * are about to unmap is the actual page of interest.
3915                 */
3916                if (ref_page) {
3917                        if (page != ref_page) {
3918                                spin_unlock(ptl);
3919                                continue;
3920                        }
3921                        /*
3922                         * Mark the VMA as having unmapped its page so that
3923                         * future faults in this VMA will fail rather than
3924                         * looking like data was lost
3925                         */
3926                        set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3927                }
3928
3929                pte = huge_ptep_get_and_clear(mm, address, ptep);
3930                tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3931                if (huge_pte_dirty(pte))
3932                        set_page_dirty(page);
3933
3934                hugetlb_count_sub(pages_per_huge_page(h), mm);
3935                page_remove_rmap(page, true);
3936
3937                spin_unlock(ptl);
3938                tlb_remove_page_size(tlb, page, huge_page_size(h));
3939                /*
3940                 * Bail out after unmapping reference page if supplied
3941                 */
3942                if (ref_page)
3943                        break;
3944        }
3945        mmu_notifier_invalidate_range_end(&range);
3946        tlb_end_vma(tlb, vma);
3947}
3948
3949void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3950                          struct vm_area_struct *vma, unsigned long start,
3951                          unsigned long end, struct page *ref_page)
3952{
3953        __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3954
3955        /*
3956         * Clear this flag so that x86's huge_pmd_share page_table_shareable
3957         * test will fail on a vma being torn down, and not grab a page table
3958         * on its way out.  We're lucky that the flag has such an appropriate
3959         * name, and can in fact be safely cleared here. We could clear it
3960         * before the __unmap_hugepage_range above, but all that's necessary
3961         * is to clear it before releasing the i_mmap_rwsem. This works
3962         * because in the context this is called, the VMA is about to be
3963         * destroyed and the i_mmap_rwsem is held.
3964         */
3965        vma->vm_flags &= ~VM_MAYSHARE;
3966}
3967
3968void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3969                          unsigned long end, struct page *ref_page)
3970{
3971        struct mm_struct *mm;
3972        struct mmu_gather tlb;
3973        unsigned long tlb_start = start;
3974        unsigned long tlb_end = end;
3975
3976        /*
3977         * If shared PMDs were possibly used within this vma range, adjust
3978         * start/end for worst case tlb flushing.
3979         * Note that we can not be sure if PMDs are shared until we try to
3980         * unmap pages.  However, we want to make sure TLB flushing covers
3981         * the largest possible range.
3982         */
3983        adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
3984
3985        mm = vma->vm_mm;
3986
3987        tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
3988        __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3989        tlb_finish_mmu(&tlb, tlb_start, tlb_end);
3990}
3991
3992/*
3993 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3994 * mappping it owns the reserve page for. The intention is to unmap the page
3995 * from other VMAs and let the children be SIGKILLed if they are faulting the
3996 * same region.
3997 */
3998static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3999                              struct page *page, unsigned long address)
4000{
4001        struct hstate *h = hstate_vma(vma);
4002        struct vm_area_struct *iter_vma;
4003        struct address_space *mapping;
4004        pgoff_t pgoff;
4005
4006        /*
4007         * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4008         * from page cache lookup which is in HPAGE_SIZE units.
4009         */
4010        address = address & huge_page_mask(h);
4011        pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4012                        vma->vm_pgoff;
4013        mapping = vma->vm_file->f_mapping;
4014
4015        /*
4016         * Take the mapping lock for the duration of the table walk. As
4017         * this mapping should be shared between all the VMAs,
4018         * __unmap_hugepage_range() is called as the lock is already held
4019         */
4020        i_mmap_lock_write(mapping);
4021        vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4022                /* Do not unmap the current VMA */
4023                if (iter_vma == vma)
4024                        continue;
4025
4026                /*
4027                 * Shared VMAs have their own reserves and do not affect
4028                 * MAP_PRIVATE accounting but it is possible that a shared
4029                 * VMA is using the same page so check and skip such VMAs.
4030                 */
4031                if (iter_vma->vm_flags & VM_MAYSHARE)
4032                        continue;
4033
4034                /*
4035                 * Unmap the page from other VMAs without their own reserves.
4036                 * They get marked to be SIGKILLed if they fault in these
4037                 * areas. This is because a future no-page fault on this VMA
4038                 * could insert a zeroed page instead of the data existing
4039                 * from the time of fork. This would look like data corruption
4040                 */
4041                if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4042                        unmap_hugepage_range(iter_vma, address,
4043                                             address + huge_page_size(h), page);
4044        }
4045        i_mmap_unlock_write(mapping);
4046}
4047
4048/*
4049 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4050 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4051 * cannot race with other handlers or page migration.
4052 * Keep the pte_same checks anyway to make transition from the mutex easier.
4053 */
4054static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4055                       unsigned long address, pte_t *ptep,
4056                       struct page *pagecache_page, spinlock_t *ptl)
4057{
4058        pte_t pte;
4059        struct hstate *h = hstate_vma(vma);
4060        struct page *old_page, *new_page;
4061        int outside_reserve = 0;
4062        vm_fault_t ret = 0;
4063        unsigned long haddr = address & huge_page_mask(h);
4064        struct mmu_notifier_range range;
4065
4066        pte = huge_ptep_get(ptep);
4067        old_page = pte_page(pte);
4068
4069retry_avoidcopy:
4070        /* If no-one else is actually using this page, avoid the copy
4071         * and just make the page writable */
4072        if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4073                page_move_anon_rmap(old_page, vma);
4074                set_huge_ptep_writable(vma, haddr, ptep);
4075                return 0;
4076        }
4077
4078        /*
4079         * If the process that created a MAP_PRIVATE mapping is about to
4080         * perform a COW due to a shared page count, attempt to satisfy
4081         * the allocation without using the existing reserves. The pagecache
4082         * page is used to determine if the reserve at this address was
4083         * consumed or not. If reserves were used, a partial faulted mapping
4084         * at the time of fork() could consume its reserves on COW instead
4085         * of the full address range.
4086         */
4087        if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4088                        old_page != pagecache_page)
4089                outside_reserve = 1;
4090
4091        get_page(old_page);
4092
4093        /*
4094         * Drop page table lock as buddy allocator may be called. It will
4095         * be acquired again before returning to the caller, as expected.
4096         */
4097        spin_unlock(ptl);
4098        new_page = alloc_huge_page(vma, haddr, outside_reserve);
4099
4100        if (IS_ERR(new_page)) {
4101                /*
4102                 * If a process owning a MAP_PRIVATE mapping fails to COW,
4103                 * it is due to references held by a child and an insufficient
4104                 * huge page pool. To guarantee the original mappers
4105                 * reliability, unmap the page from child processes. The child
4106                 * may get SIGKILLed if it later faults.
4107                 */
4108                if (outside_reserve) {
4109                        put_page(old_page);
4110                        BUG_ON(huge_pte_none(pte));
4111                        unmap_ref_private(mm, vma, old_page, haddr);
4112                        BUG_ON(huge_pte_none(pte));
4113                        spin_lock(ptl);
4114                        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4115                        if (likely(ptep &&
4116                                   pte_same(huge_ptep_get(ptep), pte)))
4117                                goto retry_avoidcopy;
4118                        /*
4119                         * race occurs while re-acquiring page table
4120                         * lock, and our job is done.
4121                         */
4122                        return 0;
4123                }
4124
4125                ret = vmf_error(PTR_ERR(new_page));
4126                goto out_release_old;
4127        }
4128
4129        /*
4130         * When the original hugepage is shared one, it does not have
4131         * anon_vma prepared.
4132         */
4133        if (unlikely(anon_vma_prepare(vma))) {
4134                ret = VM_FAULT_OOM;
4135                goto out_release_all;
4136        }
4137
4138        copy_user_huge_page(new_page, old_page, address, vma,
4139                            pages_per_huge_page(h));
4140        __SetPageUptodate(new_page);
4141
4142        mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4143                                haddr + huge_page_size(h));
4144        mmu_notifier_invalidate_range_start(&range);
4145
4146        /*
4147         * Retake the page table lock to check for racing updates
4148         * before the page tables are altered
4149         */
4150        spin_lock(ptl);
4151        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4152        if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4153                ClearPagePrivate(new_page);
4154
4155                /* Break COW */
4156                huge_ptep_clear_flush(vma, haddr, ptep);
4157                mmu_notifier_invalidate_range(mm, range.start, range.end);
4158                set_huge_pte_at(mm, haddr, ptep,
4159                                make_huge_pte(vma, new_page, 1));
4160                page_remove_rmap(old_page, true);
4161                hugepage_add_new_anon_rmap(new_page, vma, haddr);
4162                set_page_huge_active(new_page);
4163                /* Make the old page be freed below */
4164                new_page = old_page;
4165        }
4166        spin_unlock(ptl);
4167        mmu_notifier_invalidate_range_end(&range);
4168out_release_all:
4169        restore_reserve_on_error(h, vma, haddr, new_page);
4170        put_page(new_page);
4171out_release_old:
4172        put_page(old_page);
4173
4174        spin_lock(ptl); /* Caller expects lock to be held */
4175        return ret;
4176}
4177
4178/* Return the pagecache page at a given address within a VMA */
4179static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4180                        struct vm_area_struct *vma, unsigned long address)
4181{
4182        struct address_space *mapping;
4183        pgoff_t idx;
4184
4185        mapping = vma->vm_file->f_mapping;
4186        idx = vma_hugecache_offset(h, vma, address);
4187
4188        return find_lock_page(mapping, idx);
4189}
4190
4191/*
4192 * Return whether there is a pagecache page to back given address within VMA.
4193 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4194 */
4195static bool hugetlbfs_pagecache_present(struct hstate *h,
4196                        struct vm_area_struct *vma, unsigned long address)
4197{
4198        struct address_space *mapping;
4199        pgoff_t idx;
4200        struct page *page;
4201
4202        mapping = vma->vm_file->f_mapping;
4203        idx = vma_hugecache_offset(h, vma, address);
4204
4205        page = find_get_page(mapping, idx);
4206        if (page)
4207                put_page(page);
4208        return page != NULL;
4209}
4210
4211int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4212                           pgoff_t idx)
4213{
4214        struct inode *inode = mapping->host;
4215        struct hstate *h = hstate_inode(inode);
4216        int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4217
4218        if (err)
4219                return err;
4220        ClearPagePrivate(page);
4221
4222        /*
4223         * set page dirty so that it will not be removed from cache/file
4224         * by non-hugetlbfs specific code paths.
4225         */
4226        set_page_dirty(page);
4227
4228        spin_lock(&inode->i_lock);
4229        inode->i_blocks += blocks_per_huge_page(h);
4230        spin_unlock(&inode->i_lock);
4231        return 0;
4232}
4233
4234static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4235                        struct vm_area_struct *vma,
4236                        struct address_space *mapping, pgoff_t idx,
4237                        unsigned long address, pte_t *ptep, unsigned int flags)
4238{
4239        struct hstate *h = hstate_vma(vma);
4240        vm_fault_t ret = VM_FAULT_SIGBUS;
4241        int anon_rmap = 0;
4242        unsigned long size;
4243        struct page *page;
4244        pte_t new_pte;
4245        spinlock_t *ptl;
4246        unsigned long haddr = address & huge_page_mask(h);
4247        bool new_page = false;
4248
4249        /*
4250         * Currently, we are forced to kill the process in the event the
4251         * original mapper has unmapped pages from the child due to a failed
4252         * COW. Warn that such a situation has occurred as it may not be obvious
4253         */
4254        if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4255                pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4256                           current->pid);
4257                return ret;
4258        }
4259
4260        /*
4261         * We can not race with truncation due to holding i_mmap_rwsem.
4262         * i_size is modified when holding i_mmap_rwsem, so check here
4263         * once for faults beyond end of file.
4264         */
4265        size = i_size_read(mapping->host) >> huge_page_shift(h);
4266        if (idx >= size)
4267                goto out;
4268
4269retry:
4270        page = find_lock_page(mapping, idx);
4271        if (!page) {
4272                /*
4273                 * Check for page in userfault range
4274                 */
4275                if (userfaultfd_missing(vma)) {
4276                        u32 hash;
4277                        struct vm_fault vmf = {
4278                                .vma = vma,
4279                                .address = haddr,
4280                                .flags = flags,
4281                                /*
4282                                 * Hard to debug if it ends up being
4283                                 * used by a callee that assumes
4284                                 * something about the other
4285                                 * uninitialized fields... same as in
4286                                 * memory.c
4287                                 */
4288                        };
4289
4290                        /*
4291                         * hugetlb_fault_mutex and i_mmap_rwsem must be
4292                         * dropped before handling userfault.  Reacquire
4293                         * after handling fault to make calling code simpler.
4294                         */
4295                        hash = hugetlb_fault_mutex_hash(mapping, idx);
4296                        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4297                        i_mmap_unlock_read(mapping);
4298                        ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4299                        i_mmap_lock_read(mapping);
4300                        mutex_lock(&hugetlb_fault_mutex_table[hash]);
4301                        goto out;
4302                }
4303
4304                page = alloc_huge_page(vma, haddr, 0);
4305                if (IS_ERR(page)) {
4306                        /*
4307                         * Returning error will result in faulting task being
4308                         * sent SIGBUS.  The hugetlb fault mutex prevents two
4309                         * tasks from racing to fault in the same page which
4310                         * could result in false unable to allocate errors.
4311                         * Page migration does not take the fault mutex, but
4312                         * does a clear then write of pte's under page table
4313                         * lock.  Page fault code could race with migration,
4314                         * notice the clear pte and try to allocate a page
4315                         * here.  Before returning error, get ptl and make
4316                         * sure there really is no pte entry.
4317                         */
4318                        ptl = huge_pte_lock(h, mm, ptep);
4319                        if (!huge_pte_none(huge_ptep_get(ptep))) {
4320                                ret = 0;
4321                                spin_unlock(ptl);
4322                                goto out;
4323                        }
4324                        spin_unlock(ptl);
4325                        ret = vmf_error(PTR_ERR(page));
4326                        goto out;
4327                }
4328                clear_huge_page(page, address, pages_per_huge_page(h));
4329                __SetPageUptodate(page);
4330                new_page = true;
4331
4332                if (vma->vm_flags & VM_MAYSHARE) {
4333                        int err = huge_add_to_page_cache(page, mapping, idx);
4334                        if (err) {
4335                                put_page(page);
4336                                if (err == -EEXIST)
4337                                        goto retry;
4338                                goto out;
4339                        }
4340                } else {
4341                        lock_page(page);
4342                        if (unlikely(anon_vma_prepare(vma))) {
4343                                ret = VM_FAULT_OOM;
4344                                goto backout_unlocked;
4345                        }
4346                        anon_rmap = 1;
4347                }
4348        } else {
4349                /*
4350                 * If memory error occurs between mmap() and fault, some process
4351                 * don't have hwpoisoned swap entry for errored virtual address.
4352                 * So we need to block hugepage fault by PG_hwpoison bit check.
4353                 */
4354                if (unlikely(PageHWPoison(page))) {
4355                        ret = VM_FAULT_HWPOISON |
4356                                VM_FAULT_SET_HINDEX(hstate_index(h));
4357                        goto backout_unlocked;
4358                }
4359        }
4360
4361        /*
4362         * If we are going to COW a private mapping later, we examine the
4363         * pending reservations for this page now. This will ensure that
4364         * any allocations necessary to record that reservation occur outside
4365         * the spinlock.
4366         */
4367        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4368                if (vma_needs_reservation(h, vma, haddr) < 0) {
4369                        ret = VM_FAULT_OOM;
4370                        goto backout_unlocked;
4371                }
4372                /* Just decrements count, does not deallocate */
4373                vma_end_reservation(h, vma, haddr);
4374        }
4375
4376        ptl = huge_pte_lock(h, mm, ptep);
4377        ret = 0;
4378        if (!huge_pte_none(huge_ptep_get(ptep)))
4379                goto backout;
4380
4381        if (anon_rmap) {
4382                ClearPagePrivate(page);
4383                hugepage_add_new_anon_rmap(page, vma, haddr);
4384        } else
4385                page_dup_rmap(page, true);
4386        new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4387                                && (vma->vm_flags & VM_SHARED)));
4388        set_huge_pte_at(mm, haddr, ptep, new_pte);
4389
4390        hugetlb_count_add(pages_per_huge_page(h), mm);
4391        if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4392                /* Optimization, do the COW without a second fault */
4393                ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4394        }
4395
4396        spin_unlock(ptl);
4397
4398        /*
4399         * Only make newly allocated pages active.  Existing pages found
4400         * in the pagecache could be !page_huge_active() if they have been
4401         * isolated for migration.
4402         */
4403        if (new_page)
4404                set_page_huge_active(page);
4405
4406        unlock_page(page);
4407out:
4408        return ret;
4409
4410backout:
4411        spin_unlock(ptl);
4412backout_unlocked:
4413        unlock_page(page);
4414        restore_reserve_on_error(h, vma, haddr, page);
4415        put_page(page);
4416        goto out;
4417}
4418
4419#ifdef CONFIG_SMP
4420u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4421{
4422        unsigned long key[2];
4423        u32 hash;
4424
4425        key[0] = (unsigned long) mapping;
4426        key[1] = idx;
4427
4428        hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4429
4430        return hash & (num_fault_mutexes - 1);
4431}
4432#else
4433/*
4434 * For uniprocesor systems we always use a single mutex, so just
4435 * return 0 and avoid the hashing overhead.
4436 */
4437u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4438{
4439        return 0;
4440}
4441#endif
4442
4443vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4444                        unsigned long address, unsigned int flags)
4445{
4446        pte_t *ptep, entry;
4447        spinlock_t *ptl;
4448        vm_fault_t ret;
4449        u32 hash;
4450        pgoff_t idx;
4451        struct page *page = NULL;
4452        struct page *pagecache_page = NULL;
4453        struct hstate *h = hstate_vma(vma);
4454        struct address_space *mapping;
4455        int need_wait_lock = 0;
4456        unsigned long haddr = address & huge_page_mask(h);
4457
4458        ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4459        if (ptep) {
4460                /*
4461                 * Since we hold no locks, ptep could be stale.  That is
4462                 * OK as we are only making decisions based on content and
4463                 * not actually modifying content here.
4464                 */
4465                entry = huge_ptep_get(ptep);
4466                if (unlikely(is_hugetlb_entry_migration(entry))) {
4467                        migration_entry_wait_huge(vma, mm, ptep);
4468                        return 0;
4469                } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4470                        return VM_FAULT_HWPOISON_LARGE |
4471                                VM_FAULT_SET_HINDEX(hstate_index(h));
4472        }
4473
4474        /*
4475         * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4476         * until finished with ptep.  This serves two purposes:
4477         * 1) It prevents huge_pmd_unshare from being called elsewhere
4478         *    and making the ptep no longer valid.
4479         * 2) It synchronizes us with i_size modifications during truncation.
4480         *
4481         * ptep could have already be assigned via huge_pte_offset.  That
4482         * is OK, as huge_pte_alloc will return the same value unless
4483         * something has changed.
4484         */
4485        mapping = vma->vm_file->f_mapping;
4486        i_mmap_lock_read(mapping);
4487        ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4488        if (!ptep) {
4489                i_mmap_unlock_read(mapping);
4490                return VM_FAULT_OOM;
4491        }
4492
4493        /*
4494         * Serialize hugepage allocation and instantiation, so that we don't
4495         * get spurious allocation failures if two CPUs race to instantiate
4496         * the same page in the page cache.
4497         */
4498        idx = vma_hugecache_offset(h, vma, haddr);
4499        hash = hugetlb_fault_mutex_hash(mapping, idx);
4500        mutex_lock(&hugetlb_fault_mutex_table[hash]);
4501
4502        entry = huge_ptep_get(ptep);
4503        if (huge_pte_none(entry)) {
4504                ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4505                goto out_mutex;
4506        }
4507
4508        ret = 0;
4509
4510        /*
4511         * entry could be a migration/hwpoison entry at this point, so this
4512         * check prevents the kernel from going below assuming that we have
4513         * an active hugepage in pagecache. This goto expects the 2nd page
4514         * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4515         * properly handle it.
4516         */
4517        if (!pte_present(entry))
4518                goto out_mutex;
4519
4520        /*
4521         * If we are going to COW the mapping later, we examine the pending
4522         * reservations for this page now. This will ensure that any
4523         * allocations necessary to record that reservation occur outside the
4524         * spinlock. For private mappings, we also lookup the pagecache
4525         * page now as it is used to determine if a reservation has been
4526         * consumed.
4527         */
4528        if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4529                if (vma_needs_reservation(h, vma, haddr) < 0) {
4530                        ret = VM_FAULT_OOM;
4531                        goto out_mutex;
4532                }
4533                /* Just decrements count, does not deallocate */
4534                vma_end_reservation(h, vma, haddr);
4535
4536                if (!(vma->vm_flags & VM_MAYSHARE))
4537                        pagecache_page = hugetlbfs_pagecache_page(h,
4538                                                                vma, haddr);
4539        }
4540
4541        ptl = huge_pte_lock(h, mm, ptep);
4542
4543        /* Check for a racing update before calling hugetlb_cow */
4544        if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4545                goto out_ptl;
4546
4547        /*
4548         * hugetlb_cow() requires page locks of pte_page(entry) and
4549         * pagecache_page, so here we need take the former one
4550         * when page != pagecache_page or !pagecache_page.
4551         */
4552        page = pte_page(entry);
4553        if (page != pagecache_page)
4554                if (!trylock_page(page)) {
4555                        need_wait_lock = 1;
4556                        goto out_ptl;
4557                }
4558
4559        get_page(page);
4560
4561        if (flags & FAULT_FLAG_WRITE) {
4562                if (!huge_pte_write(entry)) {
4563                        ret = hugetlb_cow(mm, vma, address, ptep,
4564                                          pagecache_page, ptl);
4565                        goto out_put_page;
4566                }
4567                entry = huge_pte_mkdirty(entry);
4568        }
4569        entry = pte_mkyoung(entry);
4570        if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4571                                                flags & FAULT_FLAG_WRITE))
4572                update_mmu_cache(vma, haddr, ptep);
4573out_put_page:
4574        if (page != pagecache_page)
4575                unlock_page(page);
4576        put_page(page);
4577out_ptl:
4578        spin_unlock(ptl);
4579
4580        if (pagecache_page) {
4581                unlock_page(pagecache_page);
4582                put_page(pagecache_page);
4583        }
4584out_mutex:
4585        mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4586        i_mmap_unlock_read(mapping);
4587        /*
4588         * Generally it's safe to hold refcount during waiting page lock. But
4589         * here we just wait to defer the next page fault to avoid busy loop and
4590         * the page is not used after unlocked before returning from the current
4591         * page fault. So we are safe from accessing freed page, even if we wait
4592         * here without taking refcount.
4593         */
4594        if (need_wait_lock)
4595                wait_on_page_locked(page);
4596        return ret;
4597}
4598
4599/*
4600 * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4601 * modifications for huge pages.
4602 */
4603int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4604                            pte_t *dst_pte,
4605                            struct vm_area_struct *dst_vma,
4606                            unsigned long dst_addr,
4607                            unsigned long src_addr,
4608                            struct page **pagep)
4609{
4610        struct address_space *mapping;
4611        pgoff_t idx;
4612        unsigned long size;
4613        int vm_shared = dst_vma->vm_flags & VM_SHARED;
4614        struct hstate *h = hstate_vma(dst_vma);
4615        pte_t _dst_pte;
4616        spinlock_t *ptl;
4617        int ret;
4618        struct page *page;
4619
4620        if (!*pagep) {
4621                ret = -ENOMEM;
4622                page = alloc_huge_page(dst_vma, dst_addr, 0);
4623                if (IS_ERR(page))
4624                        goto out;
4625
4626                ret = copy_huge_page_from_user(page,
4627                                                (const void __user *) src_addr,
4628                                                pages_per_huge_page(h), false);
4629
4630                /* fallback to copy_from_user outside mmap_lock */
4631                if (unlikely(ret)) {
4632                        ret = -ENOENT;
4633                        *pagep = page;
4634                        /* don't free the page */
4635                        goto out;
4636                }
4637        } else {
4638                page = *pagep;
4639                *pagep = NULL;
4640        }
4641
4642        /*
4643         * The memory barrier inside __SetPageUptodate makes sure that
4644         * preceding stores to the page contents become visible before
4645         * the set_pte_at() write.
4646         */
4647        __SetPageUptodate(page);
4648
4649        mapping = dst_vma->vm_file->f_mapping;
4650        idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4651
4652        /*
4653         * If shared, add to page cache
4654         */
4655        if (vm_shared) {
4656                size = i_size_read(mapping->host) >> huge_page_shift(h);
4657                ret = -EFAULT;
4658                if (idx >= size)
4659                        goto out_release_nounlock;
4660
4661                /*
4662                 * Serialization between remove_inode_hugepages() and
4663                 * huge_add_to_page_cache() below happens through the
4664                 * hugetlb_fault_mutex_table that here must be hold by
4665                 * the caller.
4666                 */
4667                ret = huge_add_to_page_cache(page, mapping, idx);
4668                if (ret)
4669                        goto out_release_nounlock;
4670        }
4671
4672        ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4673        spin_lock(ptl);
4674
4675        /*
4676         * Recheck the i_size after holding PT lock to make sure not
4677         * to leave any page mapped (as page_mapped()) beyond the end
4678         * of the i_size (remove_inode_hugepages() is strict about
4679         * enforcing that). If we bail out here, we'll also leave a
4680         * page in the radix tree in the vm_shared case beyond the end
4681         * of the i_size, but remove_inode_hugepages() will take care
4682         * of it as soon as we drop the hugetlb_fault_mutex_table.
4683         */
4684        size = i_size_read(mapping->host) >> huge_page_shift(h);
4685        ret = -EFAULT;
4686        if (idx >= size)
4687                goto out_release_unlock;
4688
4689        ret = -EEXIST;
4690        if (!huge_pte_none(huge_ptep_get(dst_pte)))
4691                goto out_release_unlock;
4692
4693        if (vm_shared) {
4694                page_dup_rmap(page, true);
4695        } else {
4696                ClearPagePrivate(page);
4697                hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4698        }
4699
4700        _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4701        if (dst_vma->vm_flags & VM_WRITE)
4702                _dst_pte = huge_pte_mkdirty(_dst_pte);
4703        _dst_pte = pte_mkyoung(_dst_pte);
4704
4705        set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4706
4707        (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4708                                        dst_vma->vm_flags & VM_WRITE);
4709        hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4710
4711        /* No need to invalidate - it was non-present before */
4712        update_mmu_cache(dst_vma, dst_addr, dst_pte);
4713
4714        spin_unlock(ptl);
4715        set_page_huge_active(page);
4716        if (vm_shared)
4717                unlock_page(page);
4718        ret = 0;
4719out:
4720        return ret;
4721out_release_unlock:
4722        spin_unlock(ptl);
4723        if (vm_shared)
4724                unlock_page(page);
4725out_release_nounlock:
4726        put_page(page);
4727        goto out;
4728}
4729
4730long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4731                         struct page **pages, struct vm_area_struct **vmas,
4732                         unsigned long *position, unsigned long *nr_pages,
4733                         long i, unsigned int flags, int *locked)
4734{
4735        unsigned long pfn_offset;
4736        unsigned long vaddr = *position;
4737        unsigned long remainder = *nr_pages;
4738        struct hstate *h = hstate_vma(vma);
4739        int err = -EFAULT;
4740
4741        while (vaddr < vma->vm_end && remainder) {
4742                pte_t *pte;
4743                spinlock_t *ptl = NULL;
4744                int absent;
4745                struct page *page;
4746
4747                /*
4748                 * If we have a pending SIGKILL, don't keep faulting pages and
4749                 * potentially allocating memory.
4750                 */
4751                if (fatal_signal_pending(current)) {
4752                        remainder = 0;
4753                        break;
4754                }
4755
4756                /*
4757                 * Some archs (sparc64, sh*) have multiple pte_ts to
4758                 * each hugepage.  We have to make sure we get the
4759                 * first, for the page indexing below to work.
4760                 *
4761                 * Note that page table lock is not held when pte is null.
4762                 */
4763                pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4764                                      huge_page_size(h));
4765                if (pte)
4766                        ptl = huge_pte_lock(h, mm, pte);
4767                absent = !pte || huge_pte_none(huge_ptep_get(pte));
4768
4769                /*
4770                 * When coredumping, it suits get_dump_page if we just return
4771                 * an error where there's an empty slot with no huge pagecache
4772                 * to back it.  This way, we avoid allocating a hugepage, and
4773                 * the sparse dumpfile avoids allocating disk blocks, but its
4774                 * huge holes still show up with zeroes where they need to be.
4775                 */
4776                if (absent && (flags & FOLL_DUMP) &&
4777                    !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4778                        if (pte)
4779                                spin_unlock(ptl);
4780                        remainder = 0;
4781                        break;
4782                }
4783
4784                /*
4785                 * We need call hugetlb_fault for both hugepages under migration
4786                 * (in which case hugetlb_fault waits for the migration,) and
4787                 * hwpoisoned hugepages (in which case we need to prevent the
4788                 * caller from accessing to them.) In order to do this, we use
4789                 * here is_swap_pte instead of is_hugetlb_entry_migration and
4790                 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4791                 * both cases, and because we can't follow correct pages
4792                 * directly from any kind of swap entries.
4793                 */
4794                if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4795                    ((flags & FOLL_WRITE) &&
4796                      !huge_pte_write(huge_ptep_get(pte)))) {
4797                        vm_fault_t ret;
4798                        unsigned int fault_flags = 0;
4799
4800                        if (pte)
4801                                spin_unlock(ptl);
4802                        if (flags & FOLL_WRITE)
4803                                fault_flags |= FAULT_FLAG_WRITE;
4804                        if (locked)
4805                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4806                                        FAULT_FLAG_KILLABLE;
4807                        if (flags & FOLL_NOWAIT)
4808                                fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4809                                        FAULT_FLAG_RETRY_NOWAIT;
4810                        if (flags & FOLL_TRIED) {
4811                                /*
4812                                 * Note: FAULT_FLAG_ALLOW_RETRY and
4813                                 * FAULT_FLAG_TRIED can co-exist
4814                                 */
4815                                fault_flags |= FAULT_FLAG_TRIED;
4816                        }
4817                        ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4818                        if (ret & VM_FAULT_ERROR) {
4819                                err = vm_fault_to_errno(ret, flags);
4820                                remainder = 0;
4821                                break;
4822                        }
4823                        if (ret & VM_FAULT_RETRY) {
4824                                if (locked &&
4825                                    !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4826                                        *locked = 0;
4827                                *nr_pages = 0;
4828                                /*
4829                                 * VM_FAULT_RETRY must not return an
4830                                 * error, it will return zero
4831                                 * instead.
4832                                 *
4833                                 * No need to update "position" as the
4834                                 * caller will not check it after
4835                                 * *nr_pages is set to 0.
4836                                 */
4837                                return i;
4838                        }
4839                        continue;
4840                }
4841
4842                pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4843                page = pte_page(huge_ptep_get(pte));
4844
4845                /*
4846                 * If subpage information not requested, update counters
4847                 * and skip the same_page loop below.
4848                 */
4849                if (!pages && !vmas && !pfn_offset &&
4850                    (vaddr + huge_page_size(h) < vma->vm_end) &&
4851                    (remainder >= pages_per_huge_page(h))) {
4852                        vaddr += huge_page_size(h);
4853                        remainder -= pages_per_huge_page(h);
4854                        i += pages_per_huge_page(h);
4855                        spin_unlock(ptl);
4856                        continue;
4857                }
4858
4859same_page:
4860                if (pages) {
4861                        pages[i] = mem_map_offset(page, pfn_offset);
4862                        /*
4863                         * try_grab_page() should always succeed here, because:
4864                         * a) we hold the ptl lock, and b) we've just checked
4865                         * that the huge page is present in the page tables. If
4866                         * the huge page is present, then the tail pages must
4867                         * also be present. The ptl prevents the head page and
4868                         * tail pages from being rearranged in any way. So this
4869                         * page must be available at this point, unless the page
4870                         * refcount overflowed:
4871                         */
4872                        if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4873                                spin_unlock(ptl);
4874                                remainder = 0;
4875                                err = -ENOMEM;
4876                                break;
4877                        }
4878                }
4879
4880                if (vmas)
4881                        vmas[i] = vma;
4882
4883                vaddr += PAGE_SIZE;
4884                ++pfn_offset;
4885                --remainder;
4886                ++i;
4887                if (vaddr < vma->vm_end && remainder &&
4888                                pfn_offset < pages_per_huge_page(h)) {
4889                        /*
4890                         * We use pfn_offset to avoid touching the pageframes
4891                         * of this compound page.
4892                         */
4893                        goto same_page;
4894                }
4895                spin_unlock(ptl);
4896        }
4897        *nr_pages = remainder;
4898        /*
4899         * setting position is actually required only if remainder is
4900         * not zero but it's faster not to add a "if (remainder)"
4901         * branch.
4902         */
4903        *position = vaddr;
4904
4905        return i ? i : err;
4906}
4907
4908#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4909/*
4910 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4911 * implement this.
4912 */
4913#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4914#endif
4915
4916unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4917                unsigned long address, unsigned long end, pgprot_t newprot)
4918{
4919        struct mm_struct *mm = vma->vm_mm;
4920        unsigned long start = address;
4921        pte_t *ptep;
4922        pte_t pte;
4923        struct hstate *h = hstate_vma(vma);
4924        unsigned long pages = 0;
4925        bool shared_pmd = false;
4926        struct mmu_notifier_range range;
4927
4928        /*
4929         * In the case of shared PMDs, the area to flush could be beyond
4930         * start/end.  Set range.start/range.end to cover the maximum possible
4931         * range if PMD sharing is possible.
4932         */
4933        mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4934                                0, vma, mm, start, end);
4935        adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4936
4937        BUG_ON(address >= end);
4938        flush_cache_range(vma, range.start, range.end);
4939
4940        mmu_notifier_invalidate_range_start(&range);
4941        i_mmap_lock_write(vma->vm_file->f_mapping);
4942        for (; address < end; address += huge_page_size(h)) {
4943                spinlock_t *ptl;
4944                ptep = huge_pte_offset(mm, address, huge_page_size(h));
4945                if (!ptep)
4946                        continue;
4947                ptl = huge_pte_lock(h, mm, ptep);
4948                if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4949                        pages++;
4950                        spin_unlock(ptl);
4951                        shared_pmd = true;
4952                        continue;
4953                }
4954                pte = huge_ptep_get(ptep);
4955                if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4956                        spin_unlock(ptl);
4957                        continue;
4958                }
4959                if (unlikely(is_hugetlb_entry_migration(pte))) {
4960                        swp_entry_t entry = pte_to_swp_entry(pte);
4961
4962                        if (is_write_migration_entry(entry)) {
4963                                pte_t newpte;
4964
4965                                make_migration_entry_read(&entry);
4966                                newpte = swp_entry_to_pte(entry);
4967                                set_huge_swap_pte_at(mm, address, ptep,
4968                                                     newpte, huge_page_size(h));
4969                                pages++;
4970                        }
4971                        spin_unlock(ptl);
4972                        continue;
4973                }
4974                if (!huge_pte_none(pte)) {
4975                        pte_t old_pte;
4976
4977                        old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4978                        pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4979                        pte = arch_make_huge_pte(pte, vma, NULL, 0);
4980                        huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4981                        pages++;
4982                }
4983                spin_unlock(ptl);
4984        }
4985        /*
4986         * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4987         * may have cleared our pud entry and done put_page on the page table:
4988         * once we release i_mmap_rwsem, another task can do the final put_page
4989         * and that page table be reused and filled with junk.  If we actually
4990         * did unshare a page of pmds, flush the range corresponding to the pud.
4991         */
4992        if (shared_pmd)
4993                flush_hugetlb_tlb_range(vma, range.start, range.end);
4994        else
4995                flush_hugetlb_tlb_range(vma, start, end);
4996        /*
4997         * No need to call mmu_notifier_invalidate_range() we are downgrading
4998         * page table protection not changing it to point to a new page.
4999         *
5000         * See Documentation/vm/mmu_notifier.rst
5001         */
5002        i_mmap_unlock_write(vma->vm_file->f_mapping);
5003        mmu_notifier_invalidate_range_end(&range);
5004
5005        return pages << h->order;
5006}
5007
5008int hugetlb_reserve_pages(struct inode *inode,
5009                                        long from, long to,
5010                                        struct vm_area_struct *vma,
5011                                        vm_flags_t vm_flags)
5012{
5013        long ret, chg, add = -1;
5014        struct hstate *h = hstate_inode(inode);
5015        struct hugepage_subpool *spool = subpool_inode(inode);
5016        struct resv_map *resv_map;
5017        struct hugetlb_cgroup *h_cg = NULL;
5018        long gbl_reserve, regions_needed = 0;
5019
5020        /* This should never happen */
5021        if (from > to) {
5022                VM_WARN(1, "%s called with a negative range\n", __func__);
5023                return -EINVAL;
5024        }
5025
5026        /*
5027         * Only apply hugepage reservation if asked. At fault time, an
5028         * attempt will be made for VM_NORESERVE to allocate a page
5029         * without using reserves
5030         */
5031        if (vm_flags & VM_NORESERVE)
5032                return 0;
5033
5034        /*
5035         * Shared mappings base their reservation on the number of pages that
5036         * are already allocated on behalf of the file. Private mappings need
5037         * to reserve the full area even if read-only as mprotect() may be
5038         * called to make the mapping read-write. Assume !vma is a shm mapping
5039         */
5040        if (!vma || vma->vm_flags & VM_MAYSHARE) {
5041                /*
5042                 * resv_map can not be NULL as hugetlb_reserve_pages is only
5043                 * called for inodes for which resv_maps were created (see
5044                 * hugetlbfs_get_inode).
5045                 */
5046                resv_map = inode_resv_map(inode);
5047
5048                chg = region_chg(resv_map, from, to, &regions_needed);
5049
5050        } else {
5051                /* Private mapping. */
5052                resv_map = resv_map_alloc();
5053                if (!resv_map)
5054                        return -ENOMEM;
5055
5056                chg = to - from;
5057
5058                set_vma_resv_map(vma, resv_map);
5059                set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5060        }
5061
5062        if (chg < 0) {
5063                ret = chg;
5064                goto out_err;
5065        }
5066
5067        ret = hugetlb_cgroup_charge_cgroup_rsvd(
5068                hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5069
5070        if (ret < 0) {
5071                ret = -ENOMEM;
5072                goto out_err;
5073        }
5074
5075        if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5076                /* For private mappings, the hugetlb_cgroup uncharge info hangs
5077                 * of the resv_map.
5078                 */
5079                resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5080        }
5081
5082        /*
5083         * There must be enough pages in the subpool for the mapping. If
5084         * the subpool has a minimum size, there may be some global
5085         * reservations already in place (gbl_reserve).
5086         */
5087        gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5088        if (gbl_reserve < 0) {
5089                ret = -ENOSPC;
5090                goto out_uncharge_cgroup;
5091        }
5092
5093        /*
5094         * Check enough hugepages are available for the reservation.
5095         * Hand the pages back to the subpool if there are not
5096         */
5097        ret = hugetlb_acct_memory(h, gbl_reserve);
5098        if (ret < 0) {
5099                goto out_put_pages;
5100        }
5101
5102        /*
5103         * Account for the reservations made. Shared mappings record regions
5104         * that have reservations as they are shared by multiple VMAs.
5105         * When the last VMA disappears, the region map says how much
5106         * the reservation was and the page cache tells how much of
5107         * the reservation was consumed. Private mappings are per-VMA and
5108         * only the consumed reservations are tracked. When the VMA
5109         * disappears, the original reservation is the VMA size and the
5110         * consumed reservations are stored in the map. Hence, nothing
5111         * else has to be done for private mappings here
5112         */
5113        if (!vma || vma->vm_flags & VM_MAYSHARE) {
5114                add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5115
5116                if (unlikely(add < 0)) {
5117                        hugetlb_acct_memory(h, -gbl_reserve);
5118                        goto out_put_pages;
5119                } else if (unlikely(chg > add)) {
5120                        /*
5121                         * pages in this range were added to the reserve
5122                         * map between region_chg and region_add.  This
5123                         * indicates a race with alloc_huge_page.  Adjust
5124                         * the subpool and reserve counts modified above
5125                         * based on the difference.
5126                         */
5127                        long rsv_adjust;
5128
5129                        hugetlb_cgroup_uncharge_cgroup_rsvd(
5130                                hstate_index(h),
5131                                (chg - add) * pages_per_huge_page(h), h_cg);
5132
5133                        rsv_adjust = hugepage_subpool_put_pages(spool,
5134                                                                chg - add);
5135                        hugetlb_acct_memory(h, -rsv_adjust);
5136                }
5137        }
5138        return 0;
5139out_put_pages:
5140        /* put back original number of pages, chg */
5141        (void)hugepage_subpool_put_pages(spool, chg);
5142out_uncharge_cgroup:
5143        hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5144                                            chg * pages_per_huge_page(h), h_cg);
5145out_err:
5146        if (!vma || vma->vm_flags & VM_MAYSHARE)
5147                /* Only call region_abort if the region_chg succeeded but the
5148                 * region_add failed or didn't run.
5149                 */
5150                if (chg >= 0 && add < 0)
5151                        region_abort(resv_map, from, to, regions_needed);
5152        if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5153                kref_put(&resv_map->refs, resv_map_release);
5154        return ret;
5155}
5156
5157long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5158                                                                long freed)
5159{
5160        struct hstate *h = hstate_inode(inode);
5161        struct resv_map *resv_map = inode_resv_map(inode);
5162        long chg = 0;
5163        struct hugepage_subpool *spool = subpool_inode(inode);
5164        long gbl_reserve;
5165
5166        /*
5167         * Since this routine can be called in the evict inode path for all
5168         * hugetlbfs inodes, resv_map could be NULL.
5169         */
5170        if (resv_map) {
5171                chg = region_del(resv_map, start, end);
5172                /*
5173                 * region_del() can fail in the rare case where a region
5174                 * must be split and another region descriptor can not be
5175                 * allocated.  If end == LONG_MAX, it will not fail.
5176                 */
5177                if (chg < 0)
5178                        return chg;
5179        }
5180
5181        spin_lock(&inode->i_lock);
5182        inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5183        spin_unlock(&inode->i_lock);
5184
5185        /*
5186         * If the subpool has a minimum size, the number of global
5187         * reservations to be released may be adjusted.
5188         */
5189        gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5190        hugetlb_acct_memory(h, -gbl_reserve);
5191
5192        return 0;
5193}
5194
5195#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5196static unsigned long page_table_shareable(struct vm_area_struct *svma,
5197                                struct vm_area_struct *vma,
5198                                unsigned long addr, pgoff_t idx)
5199{
5200        unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5201                                svma->vm_start;
5202        unsigned long sbase = saddr & PUD_MASK;
5203        unsigned long s_end = sbase + PUD_SIZE;
5204
5205        /* Allow segments to share if only one is marked locked */
5206        unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5207        unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5208
5209        /*
5210         * match the virtual addresses, permission and the alignment of the
5211         * page table page.
5212         */
5213        if (pmd_index(addr) != pmd_index(saddr) ||
5214            vm_flags != svm_flags ||
5215            sbase < svma->vm_start || svma->vm_end < s_end)
5216                return 0;
5217
5218        return saddr;
5219}
5220
5221static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5222{
5223        unsigned long base = addr & PUD_MASK;
5224        unsigned long end = base + PUD_SIZE;
5225
5226        /*
5227         * check on proper vm_flags and page table alignment
5228         */
5229        if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5230                return true;
5231        return false;
5232}
5233
5234/*
5235 * Determine if start,end range within vma could be mapped by shared pmd.
5236 * If yes, adjust start and end to cover range associated with possible
5237 * shared pmd mappings.
5238 */
5239void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5240                                unsigned long *start, unsigned long *end)
5241{
5242        unsigned long a_start, a_end;
5243
5244        if (!(vma->vm_flags & VM_MAYSHARE))
5245                return;
5246
5247        /* Extend the range to be PUD aligned for a worst case scenario */
5248        a_start = ALIGN_DOWN(*start, PUD_SIZE);
5249        a_end = ALIGN(*end, PUD_SIZE);
5250
5251        /*
5252         * Intersect the range with the vma range, since pmd sharing won't be
5253         * across vma after all
5254         */
5255        *start = max(vma->vm_start, a_start);
5256        *end = min(vma->vm_end, a_end);
5257}
5258
5259/*
5260 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5261 * and returns the corresponding pte. While this is not necessary for the
5262 * !shared pmd case because we can allocate the pmd later as well, it makes the
5263 * code much cleaner.
5264 *
5265 * This routine must be called with i_mmap_rwsem held in at least read mode if
5266 * sharing is possible.  For hugetlbfs, this prevents removal of any page
5267 * table entries associated with the address space.  This is important as we
5268 * are setting up sharing based on existing page table entries (mappings).
5269 *
5270 * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5271 * huge_pte_alloc know that sharing is not possible and do not take
5272 * i_mmap_rwsem as a performance optimization.  This is handled by the
5273 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5274 * only required for subsequent processing.
5275 */
5276pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5277{
5278        struct vm_area_struct *vma = find_vma(mm, addr);
5279        struct address_space *mapping = vma->vm_file->f_mapping;
5280        pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5281                        vma->vm_pgoff;
5282        struct vm_area_struct *svma;
5283        unsigned long saddr;
5284        pte_t *spte = NULL;
5285        pte_t *pte;
5286        spinlock_t *ptl;
5287
5288        if (!vma_shareable(vma, addr))
5289                return (pte_t *)pmd_alloc(mm, pud, addr);
5290
5291        i_mmap_assert_locked(mapping);
5292        vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5293                if (svma == vma)
5294                        continue;
5295
5296                saddr = page_table_shareable(svma, vma, addr, idx);
5297                if (saddr) {
5298                        spte = huge_pte_offset(svma->vm_mm, saddr,
5299                                               vma_mmu_pagesize(svma));
5300                        if (spte) {
5301                                get_page(virt_to_page(spte));
5302                                break;
5303                        }
5304                }
5305        }
5306
5307        if (!spte)
5308                goto out;
5309
5310        ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5311        if (pud_none(*pud)) {
5312                pud_populate(mm, pud,
5313                                (pmd_t *)((unsigned long)spte & PAGE_MASK));
5314                mm_inc_nr_pmds(mm);
5315        } else {
5316                put_page(virt_to_page(spte));
5317        }
5318        spin_unlock(ptl);
5319out:
5320        pte = (pte_t *)pmd_alloc(mm, pud, addr);
5321        return pte;
5322}
5323
5324/*
5325 * unmap huge page backed by shared pte.
5326 *
5327 * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5328 * indicated by page_count > 1, unmap is achieved by clearing pud and
5329 * decrementing the ref count. If count == 1, the pte page is not shared.
5330 *
5331 * Called with page table lock held and i_mmap_rwsem held in write mode.
5332 *
5333 * returns: 1 successfully unmapped a shared pte page
5334 *          0 the underlying pte page is not shared, or it is the last user
5335 */
5336int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5337                                        unsigned long *addr, pte_t *ptep)
5338{
5339        pgd_t *pgd = pgd_offset(mm, *addr);
5340        p4d_t *p4d = p4d_offset(pgd, *addr);
5341        pud_t *pud = pud_offset(p4d, *addr);
5342
5343        i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5344        BUG_ON(page_count(virt_to_page(ptep)) == 0);
5345        if (page_count(virt_to_page(ptep)) == 1)
5346                return 0;
5347
5348        pud_clear(pud);
5349        put_page(virt_to_page(ptep));
5350        mm_dec_nr_pmds(mm);
5351        *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5352        return 1;
5353}
5354#define want_pmd_share()        (1)
5355#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5356pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5357{
5358        return NULL;
5359}
5360
5361int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5362                                unsigned long *addr, pte_t *ptep)
5363{
5364        return 0;
5365}
5366
5367void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5368                                unsigned long *start, unsigned long *end)
5369{
5370}
5371#define want_pmd_share()        (0)
5372#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5373
5374#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5375pte_t *huge_pte_alloc(struct mm_struct *mm,
5376                        unsigned long addr, unsigned long sz)
5377{
5378        pgd_t *pgd;
5379        p4d_t *p4d;
5380        pud_t *pud;
5381        pte_t *pte = NULL;
5382
5383        pgd = pgd_offset(mm, addr);
5384        p4d = p4d_alloc(mm, pgd, addr);
5385        if (!p4d)
5386                return NULL;
5387        pud = pud_alloc(mm, p4d, addr);
5388        if (pud) {
5389                if (sz == PUD_SIZE) {
5390                        pte = (pte_t *)pud;
5391                } else {
5392                        BUG_ON(sz != PMD_SIZE);
5393                        if (want_pmd_share() && pud_none(*pud))
5394                                pte = huge_pmd_share(mm, addr, pud);
5395                        else
5396                                pte = (pte_t *)pmd_alloc(mm, pud, addr);
5397                }
5398        }
5399        BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5400
5401        return pte;
5402}
5403
5404/*
5405 * huge_pte_offset() - Walk the page table to resolve the hugepage
5406 * entry at address @addr
5407 *
5408 * Return: Pointer to page table entry (PUD or PMD) for
5409 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5410 * size @sz doesn't match the hugepage size at this level of the page
5411 * table.
5412 */
5413pte_t *huge_pte_offset(struct mm_struct *mm,
5414                       unsigned long addr, unsigned long sz)
5415{
5416        pgd_t *pgd;
5417        p4d_t *p4d;
5418        pud_t *pud;
5419        pmd_t *pmd;
5420
5421        pgd = pgd_offset(mm, addr);
5422        if (!pgd_present(*pgd))
5423                return NULL;
5424        p4d = p4d_offset(pgd, addr);
5425        if (!p4d_present(*p4d))
5426                return NULL;
5427
5428        pud = pud_offset(p4d, addr);
5429        if (sz == PUD_SIZE)
5430                /* must be pud huge, non-present or none */
5431                return (pte_t *)pud;
5432        if (!pud_present(*pud))
5433                return NULL;
5434        /* must have a valid entry and size to go further */
5435
5436        pmd = pmd_offset(pud, addr);
5437        /* must be pmd huge, non-present or none */
5438        return (pte_t *)pmd;
5439}
5440
5441#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5442
5443/*
5444 * These functions are overwritable if your architecture needs its own
5445 * behavior.
5446 */
5447struct page * __weak
5448follow_huge_addr(struct mm_struct *mm, unsigned long address,
5449                              int write)
5450{
5451        return ERR_PTR(-EINVAL);
5452}
5453
5454struct page * __weak
5455follow_huge_pd(struct vm_area_struct *vma,
5456               unsigned long address, hugepd_t hpd, int flags, int pdshift)
5457{
5458        WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5459        return NULL;
5460}
5461
5462struct page * __weak
5463follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5464                pmd_t *pmd, int flags)
5465{
5466        struct page *page = NULL;
5467        spinlock_t *ptl;
5468        pte_t pte;
5469
5470        /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5471        if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5472                         (FOLL_PIN | FOLL_GET)))
5473                return NULL;
5474
5475retry:
5476        ptl = pmd_lockptr(mm, pmd);
5477        spin_lock(ptl);
5478        /*
5479         * make sure that the address range covered by this pmd is not
5480         * unmapped from other threads.
5481         */
5482        if (!pmd_huge(*pmd))
5483                goto out;
5484        pte = huge_ptep_get((pte_t *)pmd);
5485        if (pte_present(pte)) {
5486                page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5487                /*
5488                 * try_grab_page() should always succeed here, because: a) we
5489                 * hold the pmd (ptl) lock, and b) we've just checked that the
5490                 * huge pmd (head) page is present in the page tables. The ptl
5491                 * prevents the head page and tail pages from being rearranged
5492                 * in any way. So this page must be available at this point,
5493                 * unless the page refcount overflowed:
5494                 */
5495                if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5496                        page = NULL;
5497                        goto out;
5498                }
5499        } else {
5500                if (is_hugetlb_entry_migration(pte)) {
5501                        spin_unlock(ptl);
5502                        __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5503                        goto retry;
5504                }
5505                /*
5506                 * hwpoisoned entry is treated as no_page_table in
5507                 * follow_page_mask().
5508                 */
5509        }
5510out:
5511        spin_unlock(ptl);
5512        return page;
5513}
5514
5515struct page * __weak
5516follow_huge_pud(struct mm_struct *mm, unsigned long address,
5517                pud_t *pud, int flags)
5518{
5519        if (flags & (FOLL_GET | FOLL_PIN))
5520                return NULL;
5521
5522        return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5523}
5524
5525struct page * __weak
5526follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5527{
5528        if (flags & (FOLL_GET | FOLL_PIN))
5529                return NULL;
5530
5531        return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5532}
5533
5534bool isolate_huge_page(struct page *page, struct list_head *list)
5535{
5536        bool ret = true;
5537
5538        VM_BUG_ON_PAGE(!PageHead(page), page);
5539        spin_lock(&hugetlb_lock);
5540        if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5541                ret = false;
5542                goto unlock;
5543        }
5544        clear_page_huge_active(page);
5545        list_move_tail(&page->lru, list);
5546unlock:
5547        spin_unlock(&hugetlb_lock);
5548        return ret;
5549}
5550
5551void putback_active_hugepage(struct page *page)
5552{
5553        VM_BUG_ON_PAGE(!PageHead(page), page);
5554        spin_lock(&hugetlb_lock);
5555        set_page_huge_active(page);
5556        list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5557        spin_unlock(&hugetlb_lock);
5558        put_page(page);
5559}
5560
5561void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5562{
5563        struct hstate *h = page_hstate(oldpage);
5564
5565        hugetlb_cgroup_migrate(oldpage, newpage);
5566        set_page_owner_migrate_reason(newpage, reason);
5567
5568        /*
5569         * transfer temporary state of the new huge page. This is
5570         * reverse to other transitions because the newpage is going to
5571         * be final while the old one will be freed so it takes over
5572         * the temporary status.
5573         *
5574         * Also note that we have to transfer the per-node surplus state
5575         * here as well otherwise the global surplus count will not match
5576         * the per-node's.
5577         */
5578        if (PageHugeTemporary(newpage)) {
5579                int old_nid = page_to_nid(oldpage);
5580                int new_nid = page_to_nid(newpage);
5581
5582                SetPageHugeTemporary(oldpage);
5583                ClearPageHugeTemporary(newpage);
5584
5585                spin_lock(&hugetlb_lock);
5586                if (h->surplus_huge_pages_node[old_nid]) {
5587                        h->surplus_huge_pages_node[old_nid]--;
5588                        h->surplus_huge_pages_node[new_nid]++;
5589                }
5590                spin_unlock(&hugetlb_lock);
5591        }
5592}
5593
5594#ifdef CONFIG_CMA
5595static bool cma_reserve_called __initdata;
5596
5597static int __init cmdline_parse_hugetlb_cma(char *p)
5598{
5599        hugetlb_cma_size = memparse(p, &p);
5600        return 0;
5601}
5602
5603early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5604
5605void __init hugetlb_cma_reserve(int order)
5606{
5607        unsigned long size, reserved, per_node;
5608        int nid;
5609
5610        cma_reserve_called = true;
5611
5612        if (!hugetlb_cma_size)
5613                return;
5614
5615        if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5616                pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5617                        (PAGE_SIZE << order) / SZ_1M);
5618                return;
5619        }
5620
5621        /*
5622         * If 3 GB area is requested on a machine with 4 numa nodes,
5623         * let's allocate 1 GB on first three nodes and ignore the last one.
5624         */
5625        per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5626        pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5627                hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5628
5629        reserved = 0;
5630        for_each_node_state(nid, N_ONLINE) {
5631                int res;
5632                char name[CMA_MAX_NAME];
5633
5634                size = min(per_node, hugetlb_cma_size - reserved);
5635                size = round_up(size, PAGE_SIZE << order);
5636
5637                snprintf(name, sizeof(name), "hugetlb%d", nid);
5638                res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5639                                                 0, false, name,
5640                                                 &hugetlb_cma[nid], nid);
5641                if (res) {
5642                        pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5643                                res, nid);
5644                        continue;
5645                }
5646
5647                reserved += size;
5648                pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5649                        size / SZ_1M, nid);
5650
5651                if (reserved >= hugetlb_cma_size)
5652                        break;
5653        }
5654}
5655
5656void __init hugetlb_cma_check(void)
5657{
5658        if (!hugetlb_cma_size || cma_reserve_called)
5659                return;
5660
5661        pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5662}
5663
5664#endif /* CONFIG_CMA */
5665