linux/mm/vmalloc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1993  Linus Torvalds
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   6 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   7 *  Numa awareness, Christoph Lameter, SGI, June 2005
   8 *  Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/set_memory.h>
  22#include <linux/debugobjects.h>
  23#include <linux/kallsyms.h>
  24#include <linux/list.h>
  25#include <linux/notifier.h>
  26#include <linux/rbtree.h>
  27#include <linux/xarray.h>
  28#include <linux/rcupdate.h>
  29#include <linux/pfn.h>
  30#include <linux/kmemleak.h>
  31#include <linux/atomic.h>
  32#include <linux/compiler.h>
  33#include <linux/llist.h>
  34#include <linux/bitops.h>
  35#include <linux/rbtree_augmented.h>
  36#include <linux/overflow.h>
  37
  38#include <linux/uaccess.h>
  39#include <asm/tlbflush.h>
  40#include <asm/shmparam.h>
  41
  42#include "internal.h"
  43#include "pgalloc-track.h"
  44
  45bool is_vmalloc_addr(const void *x)
  46{
  47        unsigned long addr = (unsigned long)x;
  48
  49        return addr >= VMALLOC_START && addr < VMALLOC_END;
  50}
  51EXPORT_SYMBOL(is_vmalloc_addr);
  52
  53struct vfree_deferred {
  54        struct llist_head list;
  55        struct work_struct wq;
  56};
  57static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  58
  59static void __vunmap(const void *, int);
  60
  61static void free_work(struct work_struct *w)
  62{
  63        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  64        struct llist_node *t, *llnode;
  65
  66        llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  67                __vunmap((void *)llnode, 1);
  68}
  69
  70/*** Page table manipulation functions ***/
  71
  72static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  73                             pgtbl_mod_mask *mask)
  74{
  75        pte_t *pte;
  76
  77        pte = pte_offset_kernel(pmd, addr);
  78        do {
  79                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  80                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  81        } while (pte++, addr += PAGE_SIZE, addr != end);
  82        *mask |= PGTBL_PTE_MODIFIED;
  83}
  84
  85static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
  86                             pgtbl_mod_mask *mask)
  87{
  88        pmd_t *pmd;
  89        unsigned long next;
  90        int cleared;
  91
  92        pmd = pmd_offset(pud, addr);
  93        do {
  94                next = pmd_addr_end(addr, end);
  95
  96                cleared = pmd_clear_huge(pmd);
  97                if (cleared || pmd_bad(*pmd))
  98                        *mask |= PGTBL_PMD_MODIFIED;
  99
 100                if (cleared)
 101                        continue;
 102                if (pmd_none_or_clear_bad(pmd))
 103                        continue;
 104                vunmap_pte_range(pmd, addr, next, mask);
 105
 106                cond_resched();
 107        } while (pmd++, addr = next, addr != end);
 108}
 109
 110static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
 111                             pgtbl_mod_mask *mask)
 112{
 113        pud_t *pud;
 114        unsigned long next;
 115        int cleared;
 116
 117        pud = pud_offset(p4d, addr);
 118        do {
 119                next = pud_addr_end(addr, end);
 120
 121                cleared = pud_clear_huge(pud);
 122                if (cleared || pud_bad(*pud))
 123                        *mask |= PGTBL_PUD_MODIFIED;
 124
 125                if (cleared)
 126                        continue;
 127                if (pud_none_or_clear_bad(pud))
 128                        continue;
 129                vunmap_pmd_range(pud, addr, next, mask);
 130        } while (pud++, addr = next, addr != end);
 131}
 132
 133static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
 134                             pgtbl_mod_mask *mask)
 135{
 136        p4d_t *p4d;
 137        unsigned long next;
 138        int cleared;
 139
 140        p4d = p4d_offset(pgd, addr);
 141        do {
 142                next = p4d_addr_end(addr, end);
 143
 144                cleared = p4d_clear_huge(p4d);
 145                if (cleared || p4d_bad(*p4d))
 146                        *mask |= PGTBL_P4D_MODIFIED;
 147
 148                if (cleared)
 149                        continue;
 150                if (p4d_none_or_clear_bad(p4d))
 151                        continue;
 152                vunmap_pud_range(p4d, addr, next, mask);
 153        } while (p4d++, addr = next, addr != end);
 154}
 155
 156/**
 157 * unmap_kernel_range_noflush - unmap kernel VM area
 158 * @start: start of the VM area to unmap
 159 * @size: size of the VM area to unmap
 160 *
 161 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify
 162 * should have been allocated using get_vm_area() and its friends.
 163 *
 164 * NOTE:
 165 * This function does NOT do any cache flushing.  The caller is responsible
 166 * for calling flush_cache_vunmap() on to-be-mapped areas before calling this
 167 * function and flush_tlb_kernel_range() after.
 168 */
 169void unmap_kernel_range_noflush(unsigned long start, unsigned long size)
 170{
 171        unsigned long end = start + size;
 172        unsigned long next;
 173        pgd_t *pgd;
 174        unsigned long addr = start;
 175        pgtbl_mod_mask mask = 0;
 176
 177        BUG_ON(addr >= end);
 178        pgd = pgd_offset_k(addr);
 179        do {
 180                next = pgd_addr_end(addr, end);
 181                if (pgd_bad(*pgd))
 182                        mask |= PGTBL_PGD_MODIFIED;
 183                if (pgd_none_or_clear_bad(pgd))
 184                        continue;
 185                vunmap_p4d_range(pgd, addr, next, &mask);
 186        } while (pgd++, addr = next, addr != end);
 187
 188        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 189                arch_sync_kernel_mappings(start, end);
 190}
 191
 192static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 193                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 194                pgtbl_mod_mask *mask)
 195{
 196        pte_t *pte;
 197
 198        /*
 199         * nr is a running index into the array which helps higher level
 200         * callers keep track of where we're up to.
 201         */
 202
 203        pte = pte_alloc_kernel_track(pmd, addr, mask);
 204        if (!pte)
 205                return -ENOMEM;
 206        do {
 207                struct page *page = pages[*nr];
 208
 209                if (WARN_ON(!pte_none(*pte)))
 210                        return -EBUSY;
 211                if (WARN_ON(!page))
 212                        return -ENOMEM;
 213                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 214                (*nr)++;
 215        } while (pte++, addr += PAGE_SIZE, addr != end);
 216        *mask |= PGTBL_PTE_MODIFIED;
 217        return 0;
 218}
 219
 220static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 221                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 222                pgtbl_mod_mask *mask)
 223{
 224        pmd_t *pmd;
 225        unsigned long next;
 226
 227        pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
 228        if (!pmd)
 229                return -ENOMEM;
 230        do {
 231                next = pmd_addr_end(addr, end);
 232                if (vmap_pte_range(pmd, addr, next, prot, pages, nr, mask))
 233                        return -ENOMEM;
 234        } while (pmd++, addr = next, addr != end);
 235        return 0;
 236}
 237
 238static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 239                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 240                pgtbl_mod_mask *mask)
 241{
 242        pud_t *pud;
 243        unsigned long next;
 244
 245        pud = pud_alloc_track(&init_mm, p4d, addr, mask);
 246        if (!pud)
 247                return -ENOMEM;
 248        do {
 249                next = pud_addr_end(addr, end);
 250                if (vmap_pmd_range(pud, addr, next, prot, pages, nr, mask))
 251                        return -ENOMEM;
 252        } while (pud++, addr = next, addr != end);
 253        return 0;
 254}
 255
 256static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 257                unsigned long end, pgprot_t prot, struct page **pages, int *nr,
 258                pgtbl_mod_mask *mask)
 259{
 260        p4d_t *p4d;
 261        unsigned long next;
 262
 263        p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
 264        if (!p4d)
 265                return -ENOMEM;
 266        do {
 267                next = p4d_addr_end(addr, end);
 268                if (vmap_pud_range(p4d, addr, next, prot, pages, nr, mask))
 269                        return -ENOMEM;
 270        } while (p4d++, addr = next, addr != end);
 271        return 0;
 272}
 273
 274/**
 275 * map_kernel_range_noflush - map kernel VM area with the specified pages
 276 * @addr: start of the VM area to map
 277 * @size: size of the VM area to map
 278 * @prot: page protection flags to use
 279 * @pages: pages to map
 280 *
 281 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size specify should
 282 * have been allocated using get_vm_area() and its friends.
 283 *
 284 * NOTE:
 285 * This function does NOT do any cache flushing.  The caller is responsible for
 286 * calling flush_cache_vmap() on to-be-mapped areas before calling this
 287 * function.
 288 *
 289 * RETURNS:
 290 * 0 on success, -errno on failure.
 291 */
 292int map_kernel_range_noflush(unsigned long addr, unsigned long size,
 293                             pgprot_t prot, struct page **pages)
 294{
 295        unsigned long start = addr;
 296        unsigned long end = addr + size;
 297        unsigned long next;
 298        pgd_t *pgd;
 299        int err = 0;
 300        int nr = 0;
 301        pgtbl_mod_mask mask = 0;
 302
 303        BUG_ON(addr >= end);
 304        pgd = pgd_offset_k(addr);
 305        do {
 306                next = pgd_addr_end(addr, end);
 307                if (pgd_bad(*pgd))
 308                        mask |= PGTBL_PGD_MODIFIED;
 309                err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
 310                if (err)
 311                        return err;
 312        } while (pgd++, addr = next, addr != end);
 313
 314        if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
 315                arch_sync_kernel_mappings(start, end);
 316
 317        return 0;
 318}
 319
 320int map_kernel_range(unsigned long start, unsigned long size, pgprot_t prot,
 321                struct page **pages)
 322{
 323        int ret;
 324
 325        ret = map_kernel_range_noflush(start, size, prot, pages);
 326        flush_cache_vmap(start, start + size);
 327        return ret;
 328}
 329
 330int is_vmalloc_or_module_addr(const void *x)
 331{
 332        /*
 333         * ARM, x86-64 and sparc64 put modules in a special place,
 334         * and fall back on vmalloc() if that fails. Others
 335         * just put it in the vmalloc space.
 336         */
 337#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 338        unsigned long addr = (unsigned long)x;
 339        if (addr >= MODULES_VADDR && addr < MODULES_END)
 340                return 1;
 341#endif
 342        return is_vmalloc_addr(x);
 343}
 344
 345/*
 346 * Walk a vmap address to the struct page it maps.
 347 */
 348struct page *vmalloc_to_page(const void *vmalloc_addr)
 349{
 350        unsigned long addr = (unsigned long) vmalloc_addr;
 351        struct page *page = NULL;
 352        pgd_t *pgd = pgd_offset_k(addr);
 353        p4d_t *p4d;
 354        pud_t *pud;
 355        pmd_t *pmd;
 356        pte_t *ptep, pte;
 357
 358        /*
 359         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 360         * architectures that do not vmalloc module space
 361         */
 362        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 363
 364        if (pgd_none(*pgd))
 365                return NULL;
 366        p4d = p4d_offset(pgd, addr);
 367        if (p4d_none(*p4d))
 368                return NULL;
 369        pud = pud_offset(p4d, addr);
 370
 371        /*
 372         * Don't dereference bad PUD or PMD (below) entries. This will also
 373         * identify huge mappings, which we may encounter on architectures
 374         * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 375         * identified as vmalloc addresses by is_vmalloc_addr(), but are
 376         * not [unambiguously] associated with a struct page, so there is
 377         * no correct value to return for them.
 378         */
 379        WARN_ON_ONCE(pud_bad(*pud));
 380        if (pud_none(*pud) || pud_bad(*pud))
 381                return NULL;
 382        pmd = pmd_offset(pud, addr);
 383        WARN_ON_ONCE(pmd_bad(*pmd));
 384        if (pmd_none(*pmd) || pmd_bad(*pmd))
 385                return NULL;
 386
 387        ptep = pte_offset_map(pmd, addr);
 388        pte = *ptep;
 389        if (pte_present(pte))
 390                page = pte_page(pte);
 391        pte_unmap(ptep);
 392        return page;
 393}
 394EXPORT_SYMBOL(vmalloc_to_page);
 395
 396/*
 397 * Map a vmalloc()-space virtual address to the physical page frame number.
 398 */
 399unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 400{
 401        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 402}
 403EXPORT_SYMBOL(vmalloc_to_pfn);
 404
 405
 406/*** Global kva allocator ***/
 407
 408#define DEBUG_AUGMENT_PROPAGATE_CHECK 0
 409#define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
 410
 411
 412static DEFINE_SPINLOCK(vmap_area_lock);
 413static DEFINE_SPINLOCK(free_vmap_area_lock);
 414/* Export for kexec only */
 415LIST_HEAD(vmap_area_list);
 416static LLIST_HEAD(vmap_purge_list);
 417static struct rb_root vmap_area_root = RB_ROOT;
 418static bool vmap_initialized __read_mostly;
 419
 420/*
 421 * This kmem_cache is used for vmap_area objects. Instead of
 422 * allocating from slab we reuse an object from this cache to
 423 * make things faster. Especially in "no edge" splitting of
 424 * free block.
 425 */
 426static struct kmem_cache *vmap_area_cachep;
 427
 428/*
 429 * This linked list is used in pair with free_vmap_area_root.
 430 * It gives O(1) access to prev/next to perform fast coalescing.
 431 */
 432static LIST_HEAD(free_vmap_area_list);
 433
 434/*
 435 * This augment red-black tree represents the free vmap space.
 436 * All vmap_area objects in this tree are sorted by va->va_start
 437 * address. It is used for allocation and merging when a vmap
 438 * object is released.
 439 *
 440 * Each vmap_area node contains a maximum available free block
 441 * of its sub-tree, right or left. Therefore it is possible to
 442 * find a lowest match of free area.
 443 */
 444static struct rb_root free_vmap_area_root = RB_ROOT;
 445
 446/*
 447 * Preload a CPU with one object for "no edge" split case. The
 448 * aim is to get rid of allocations from the atomic context, thus
 449 * to use more permissive allocation masks.
 450 */
 451static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
 452
 453static __always_inline unsigned long
 454va_size(struct vmap_area *va)
 455{
 456        return (va->va_end - va->va_start);
 457}
 458
 459static __always_inline unsigned long
 460get_subtree_max_size(struct rb_node *node)
 461{
 462        struct vmap_area *va;
 463
 464        va = rb_entry_safe(node, struct vmap_area, rb_node);
 465        return va ? va->subtree_max_size : 0;
 466}
 467
 468/*
 469 * Gets called when remove the node and rotate.
 470 */
 471static __always_inline unsigned long
 472compute_subtree_max_size(struct vmap_area *va)
 473{
 474        return max3(va_size(va),
 475                get_subtree_max_size(va->rb_node.rb_left),
 476                get_subtree_max_size(va->rb_node.rb_right));
 477}
 478
 479RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
 480        struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
 481
 482static void purge_vmap_area_lazy(void);
 483static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 484static unsigned long lazy_max_pages(void);
 485
 486static atomic_long_t nr_vmalloc_pages;
 487
 488unsigned long vmalloc_nr_pages(void)
 489{
 490        return atomic_long_read(&nr_vmalloc_pages);
 491}
 492
 493static struct vmap_area *__find_vmap_area(unsigned long addr)
 494{
 495        struct rb_node *n = vmap_area_root.rb_node;
 496
 497        while (n) {
 498                struct vmap_area *va;
 499
 500                va = rb_entry(n, struct vmap_area, rb_node);
 501                if (addr < va->va_start)
 502                        n = n->rb_left;
 503                else if (addr >= va->va_end)
 504                        n = n->rb_right;
 505                else
 506                        return va;
 507        }
 508
 509        return NULL;
 510}
 511
 512/*
 513 * This function returns back addresses of parent node
 514 * and its left or right link for further processing.
 515 *
 516 * Otherwise NULL is returned. In that case all further
 517 * steps regarding inserting of conflicting overlap range
 518 * have to be declined and actually considered as a bug.
 519 */
 520static __always_inline struct rb_node **
 521find_va_links(struct vmap_area *va,
 522        struct rb_root *root, struct rb_node *from,
 523        struct rb_node **parent)
 524{
 525        struct vmap_area *tmp_va;
 526        struct rb_node **link;
 527
 528        if (root) {
 529                link = &root->rb_node;
 530                if (unlikely(!*link)) {
 531                        *parent = NULL;
 532                        return link;
 533                }
 534        } else {
 535                link = &from;
 536        }
 537
 538        /*
 539         * Go to the bottom of the tree. When we hit the last point
 540         * we end up with parent rb_node and correct direction, i name
 541         * it link, where the new va->rb_node will be attached to.
 542         */
 543        do {
 544                tmp_va = rb_entry(*link, struct vmap_area, rb_node);
 545
 546                /*
 547                 * During the traversal we also do some sanity check.
 548                 * Trigger the BUG() if there are sides(left/right)
 549                 * or full overlaps.
 550                 */
 551                if (va->va_start < tmp_va->va_end &&
 552                                va->va_end <= tmp_va->va_start)
 553                        link = &(*link)->rb_left;
 554                else if (va->va_end > tmp_va->va_start &&
 555                                va->va_start >= tmp_va->va_end)
 556                        link = &(*link)->rb_right;
 557                else {
 558                        WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
 559                                va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
 560
 561                        return NULL;
 562                }
 563        } while (*link);
 564
 565        *parent = &tmp_va->rb_node;
 566        return link;
 567}
 568
 569static __always_inline struct list_head *
 570get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
 571{
 572        struct list_head *list;
 573
 574        if (unlikely(!parent))
 575                /*
 576                 * The red-black tree where we try to find VA neighbors
 577                 * before merging or inserting is empty, i.e. it means
 578                 * there is no free vmap space. Normally it does not
 579                 * happen but we handle this case anyway.
 580                 */
 581                return NULL;
 582
 583        list = &rb_entry(parent, struct vmap_area, rb_node)->list;
 584        return (&parent->rb_right == link ? list->next : list);
 585}
 586
 587static __always_inline void
 588link_va(struct vmap_area *va, struct rb_root *root,
 589        struct rb_node *parent, struct rb_node **link, struct list_head *head)
 590{
 591        /*
 592         * VA is still not in the list, but we can
 593         * identify its future previous list_head node.
 594         */
 595        if (likely(parent)) {
 596                head = &rb_entry(parent, struct vmap_area, rb_node)->list;
 597                if (&parent->rb_right != link)
 598                        head = head->prev;
 599        }
 600
 601        /* Insert to the rb-tree */
 602        rb_link_node(&va->rb_node, parent, link);
 603        if (root == &free_vmap_area_root) {
 604                /*
 605                 * Some explanation here. Just perform simple insertion
 606                 * to the tree. We do not set va->subtree_max_size to
 607                 * its current size before calling rb_insert_augmented().
 608                 * It is because of we populate the tree from the bottom
 609                 * to parent levels when the node _is_ in the tree.
 610                 *
 611                 * Therefore we set subtree_max_size to zero after insertion,
 612                 * to let __augment_tree_propagate_from() puts everything to
 613                 * the correct order later on.
 614                 */
 615                rb_insert_augmented(&va->rb_node,
 616                        root, &free_vmap_area_rb_augment_cb);
 617                va->subtree_max_size = 0;
 618        } else {
 619                rb_insert_color(&va->rb_node, root);
 620        }
 621
 622        /* Address-sort this list */
 623        list_add(&va->list, head);
 624}
 625
 626static __always_inline void
 627unlink_va(struct vmap_area *va, struct rb_root *root)
 628{
 629        if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
 630                return;
 631
 632        if (root == &free_vmap_area_root)
 633                rb_erase_augmented(&va->rb_node,
 634                        root, &free_vmap_area_rb_augment_cb);
 635        else
 636                rb_erase(&va->rb_node, root);
 637
 638        list_del(&va->list);
 639        RB_CLEAR_NODE(&va->rb_node);
 640}
 641
 642#if DEBUG_AUGMENT_PROPAGATE_CHECK
 643static void
 644augment_tree_propagate_check(void)
 645{
 646        struct vmap_area *va;
 647        unsigned long computed_size;
 648
 649        list_for_each_entry(va, &free_vmap_area_list, list) {
 650                computed_size = compute_subtree_max_size(va);
 651                if (computed_size != va->subtree_max_size)
 652                        pr_emerg("tree is corrupted: %lu, %lu\n",
 653                                va_size(va), va->subtree_max_size);
 654        }
 655}
 656#endif
 657
 658/*
 659 * This function populates subtree_max_size from bottom to upper
 660 * levels starting from VA point. The propagation must be done
 661 * when VA size is modified by changing its va_start/va_end. Or
 662 * in case of newly inserting of VA to the tree.
 663 *
 664 * It means that __augment_tree_propagate_from() must be called:
 665 * - After VA has been inserted to the tree(free path);
 666 * - After VA has been shrunk(allocation path);
 667 * - After VA has been increased(merging path).
 668 *
 669 * Please note that, it does not mean that upper parent nodes
 670 * and their subtree_max_size are recalculated all the time up
 671 * to the root node.
 672 *
 673 *       4--8
 674 *        /\
 675 *       /  \
 676 *      /    \
 677 *    2--2  8--8
 678 *
 679 * For example if we modify the node 4, shrinking it to 2, then
 680 * no any modification is required. If we shrink the node 2 to 1
 681 * its subtree_max_size is updated only, and set to 1. If we shrink
 682 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
 683 * node becomes 4--6.
 684 */
 685static __always_inline void
 686augment_tree_propagate_from(struct vmap_area *va)
 687{
 688        /*
 689         * Populate the tree from bottom towards the root until
 690         * the calculated maximum available size of checked node
 691         * is equal to its current one.
 692         */
 693        free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
 694
 695#if DEBUG_AUGMENT_PROPAGATE_CHECK
 696        augment_tree_propagate_check();
 697#endif
 698}
 699
 700static void
 701insert_vmap_area(struct vmap_area *va,
 702        struct rb_root *root, struct list_head *head)
 703{
 704        struct rb_node **link;
 705        struct rb_node *parent;
 706
 707        link = find_va_links(va, root, NULL, &parent);
 708        if (link)
 709                link_va(va, root, parent, link, head);
 710}
 711
 712static void
 713insert_vmap_area_augment(struct vmap_area *va,
 714        struct rb_node *from, struct rb_root *root,
 715        struct list_head *head)
 716{
 717        struct rb_node **link;
 718        struct rb_node *parent;
 719
 720        if (from)
 721                link = find_va_links(va, NULL, from, &parent);
 722        else
 723                link = find_va_links(va, root, NULL, &parent);
 724
 725        if (link) {
 726                link_va(va, root, parent, link, head);
 727                augment_tree_propagate_from(va);
 728        }
 729}
 730
 731/*
 732 * Merge de-allocated chunk of VA memory with previous
 733 * and next free blocks. If coalesce is not done a new
 734 * free area is inserted. If VA has been merged, it is
 735 * freed.
 736 *
 737 * Please note, it can return NULL in case of overlap
 738 * ranges, followed by WARN() report. Despite it is a
 739 * buggy behaviour, a system can be alive and keep
 740 * ongoing.
 741 */
 742static __always_inline struct vmap_area *
 743merge_or_add_vmap_area(struct vmap_area *va,
 744        struct rb_root *root, struct list_head *head)
 745{
 746        struct vmap_area *sibling;
 747        struct list_head *next;
 748        struct rb_node **link;
 749        struct rb_node *parent;
 750        bool merged = false;
 751
 752        /*
 753         * Find a place in the tree where VA potentially will be
 754         * inserted, unless it is merged with its sibling/siblings.
 755         */
 756        link = find_va_links(va, root, NULL, &parent);
 757        if (!link)
 758                return NULL;
 759
 760        /*
 761         * Get next node of VA to check if merging can be done.
 762         */
 763        next = get_va_next_sibling(parent, link);
 764        if (unlikely(next == NULL))
 765                goto insert;
 766
 767        /*
 768         * start            end
 769         * |                |
 770         * |<------VA------>|<-----Next----->|
 771         *                  |                |
 772         *                  start            end
 773         */
 774        if (next != head) {
 775                sibling = list_entry(next, struct vmap_area, list);
 776                if (sibling->va_start == va->va_end) {
 777                        sibling->va_start = va->va_start;
 778
 779                        /* Free vmap_area object. */
 780                        kmem_cache_free(vmap_area_cachep, va);
 781
 782                        /* Point to the new merged area. */
 783                        va = sibling;
 784                        merged = true;
 785                }
 786        }
 787
 788        /*
 789         * start            end
 790         * |                |
 791         * |<-----Prev----->|<------VA------>|
 792         *                  |                |
 793         *                  start            end
 794         */
 795        if (next->prev != head) {
 796                sibling = list_entry(next->prev, struct vmap_area, list);
 797                if (sibling->va_end == va->va_start) {
 798                        /*
 799                         * If both neighbors are coalesced, it is important
 800                         * to unlink the "next" node first, followed by merging
 801                         * with "previous" one. Otherwise the tree might not be
 802                         * fully populated if a sibling's augmented value is
 803                         * "normalized" because of rotation operations.
 804                         */
 805                        if (merged)
 806                                unlink_va(va, root);
 807
 808                        sibling->va_end = va->va_end;
 809
 810                        /* Free vmap_area object. */
 811                        kmem_cache_free(vmap_area_cachep, va);
 812
 813                        /* Point to the new merged area. */
 814                        va = sibling;
 815                        merged = true;
 816                }
 817        }
 818
 819insert:
 820        if (!merged)
 821                link_va(va, root, parent, link, head);
 822
 823        /*
 824         * Last step is to check and update the tree.
 825         */
 826        augment_tree_propagate_from(va);
 827        return va;
 828}
 829
 830static __always_inline bool
 831is_within_this_va(struct vmap_area *va, unsigned long size,
 832        unsigned long align, unsigned long vstart)
 833{
 834        unsigned long nva_start_addr;
 835
 836        if (va->va_start > vstart)
 837                nva_start_addr = ALIGN(va->va_start, align);
 838        else
 839                nva_start_addr = ALIGN(vstart, align);
 840
 841        /* Can be overflowed due to big size or alignment. */
 842        if (nva_start_addr + size < nva_start_addr ||
 843                        nva_start_addr < vstart)
 844                return false;
 845
 846        return (nva_start_addr + size <= va->va_end);
 847}
 848
 849/*
 850 * Find the first free block(lowest start address) in the tree,
 851 * that will accomplish the request corresponding to passing
 852 * parameters.
 853 */
 854static __always_inline struct vmap_area *
 855find_vmap_lowest_match(unsigned long size,
 856        unsigned long align, unsigned long vstart)
 857{
 858        struct vmap_area *va;
 859        struct rb_node *node;
 860        unsigned long length;
 861
 862        /* Start from the root. */
 863        node = free_vmap_area_root.rb_node;
 864
 865        /* Adjust the search size for alignment overhead. */
 866        length = size + align - 1;
 867
 868        while (node) {
 869                va = rb_entry(node, struct vmap_area, rb_node);
 870
 871                if (get_subtree_max_size(node->rb_left) >= length &&
 872                                vstart < va->va_start) {
 873                        node = node->rb_left;
 874                } else {
 875                        if (is_within_this_va(va, size, align, vstart))
 876                                return va;
 877
 878                        /*
 879                         * Does not make sense to go deeper towards the right
 880                         * sub-tree if it does not have a free block that is
 881                         * equal or bigger to the requested search length.
 882                         */
 883                        if (get_subtree_max_size(node->rb_right) >= length) {
 884                                node = node->rb_right;
 885                                continue;
 886                        }
 887
 888                        /*
 889                         * OK. We roll back and find the first right sub-tree,
 890                         * that will satisfy the search criteria. It can happen
 891                         * only once due to "vstart" restriction.
 892                         */
 893                        while ((node = rb_parent(node))) {
 894                                va = rb_entry(node, struct vmap_area, rb_node);
 895                                if (is_within_this_va(va, size, align, vstart))
 896                                        return va;
 897
 898                                if (get_subtree_max_size(node->rb_right) >= length &&
 899                                                vstart <= va->va_start) {
 900                                        node = node->rb_right;
 901                                        break;
 902                                }
 903                        }
 904                }
 905        }
 906
 907        return NULL;
 908}
 909
 910#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
 911#include <linux/random.h>
 912
 913static struct vmap_area *
 914find_vmap_lowest_linear_match(unsigned long size,
 915        unsigned long align, unsigned long vstart)
 916{
 917        struct vmap_area *va;
 918
 919        list_for_each_entry(va, &free_vmap_area_list, list) {
 920                if (!is_within_this_va(va, size, align, vstart))
 921                        continue;
 922
 923                return va;
 924        }
 925
 926        return NULL;
 927}
 928
 929static void
 930find_vmap_lowest_match_check(unsigned long size)
 931{
 932        struct vmap_area *va_1, *va_2;
 933        unsigned long vstart;
 934        unsigned int rnd;
 935
 936        get_random_bytes(&rnd, sizeof(rnd));
 937        vstart = VMALLOC_START + rnd;
 938
 939        va_1 = find_vmap_lowest_match(size, 1, vstart);
 940        va_2 = find_vmap_lowest_linear_match(size, 1, vstart);
 941
 942        if (va_1 != va_2)
 943                pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
 944                        va_1, va_2, vstart);
 945}
 946#endif
 947
 948enum fit_type {
 949        NOTHING_FIT = 0,
 950        FL_FIT_TYPE = 1,        /* full fit */
 951        LE_FIT_TYPE = 2,        /* left edge fit */
 952        RE_FIT_TYPE = 3,        /* right edge fit */
 953        NE_FIT_TYPE = 4         /* no edge fit */
 954};
 955
 956static __always_inline enum fit_type
 957classify_va_fit_type(struct vmap_area *va,
 958        unsigned long nva_start_addr, unsigned long size)
 959{
 960        enum fit_type type;
 961
 962        /* Check if it is within VA. */
 963        if (nva_start_addr < va->va_start ||
 964                        nva_start_addr + size > va->va_end)
 965                return NOTHING_FIT;
 966
 967        /* Now classify. */
 968        if (va->va_start == nva_start_addr) {
 969                if (va->va_end == nva_start_addr + size)
 970                        type = FL_FIT_TYPE;
 971                else
 972                        type = LE_FIT_TYPE;
 973        } else if (va->va_end == nva_start_addr + size) {
 974                type = RE_FIT_TYPE;
 975        } else {
 976                type = NE_FIT_TYPE;
 977        }
 978
 979        return type;
 980}
 981
 982static __always_inline int
 983adjust_va_to_fit_type(struct vmap_area *va,
 984        unsigned long nva_start_addr, unsigned long size,
 985        enum fit_type type)
 986{
 987        struct vmap_area *lva = NULL;
 988
 989        if (type == FL_FIT_TYPE) {
 990                /*
 991                 * No need to split VA, it fully fits.
 992                 *
 993                 * |               |
 994                 * V      NVA      V
 995                 * |---------------|
 996                 */
 997                unlink_va(va, &free_vmap_area_root);
 998                kmem_cache_free(vmap_area_cachep, va);
 999        } else if (type == LE_FIT_TYPE) {
1000                /*
1001                 * Split left edge of fit VA.
1002                 *
1003                 * |       |
1004                 * V  NVA  V   R
1005                 * |-------|-------|
1006                 */
1007                va->va_start += size;
1008        } else if (type == RE_FIT_TYPE) {
1009                /*
1010                 * Split right edge of fit VA.
1011                 *
1012                 *         |       |
1013                 *     L   V  NVA  V
1014                 * |-------|-------|
1015                 */
1016                va->va_end = nva_start_addr;
1017        } else if (type == NE_FIT_TYPE) {
1018                /*
1019                 * Split no edge of fit VA.
1020                 *
1021                 *     |       |
1022                 *   L V  NVA  V R
1023                 * |---|-------|---|
1024                 */
1025                lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1026                if (unlikely(!lva)) {
1027                        /*
1028                         * For percpu allocator we do not do any pre-allocation
1029                         * and leave it as it is. The reason is it most likely
1030                         * never ends up with NE_FIT_TYPE splitting. In case of
1031                         * percpu allocations offsets and sizes are aligned to
1032                         * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1033                         * are its main fitting cases.
1034                         *
1035                         * There are a few exceptions though, as an example it is
1036                         * a first allocation (early boot up) when we have "one"
1037                         * big free space that has to be split.
1038                         *
1039                         * Also we can hit this path in case of regular "vmap"
1040                         * allocations, if "this" current CPU was not preloaded.
1041                         * See the comment in alloc_vmap_area() why. If so, then
1042                         * GFP_NOWAIT is used instead to get an extra object for
1043                         * split purpose. That is rare and most time does not
1044                         * occur.
1045                         *
1046                         * What happens if an allocation gets failed. Basically,
1047                         * an "overflow" path is triggered to purge lazily freed
1048                         * areas to free some memory, then, the "retry" path is
1049                         * triggered to repeat one more time. See more details
1050                         * in alloc_vmap_area() function.
1051                         */
1052                        lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1053                        if (!lva)
1054                                return -1;
1055                }
1056
1057                /*
1058                 * Build the remainder.
1059                 */
1060                lva->va_start = va->va_start;
1061                lva->va_end = nva_start_addr;
1062
1063                /*
1064                 * Shrink this VA to remaining size.
1065                 */
1066                va->va_start = nva_start_addr + size;
1067        } else {
1068                return -1;
1069        }
1070
1071        if (type != FL_FIT_TYPE) {
1072                augment_tree_propagate_from(va);
1073
1074                if (lva)        /* type == NE_FIT_TYPE */
1075                        insert_vmap_area_augment(lva, &va->rb_node,
1076                                &free_vmap_area_root, &free_vmap_area_list);
1077        }
1078
1079        return 0;
1080}
1081
1082/*
1083 * Returns a start address of the newly allocated area, if success.
1084 * Otherwise a vend is returned that indicates failure.
1085 */
1086static __always_inline unsigned long
1087__alloc_vmap_area(unsigned long size, unsigned long align,
1088        unsigned long vstart, unsigned long vend)
1089{
1090        unsigned long nva_start_addr;
1091        struct vmap_area *va;
1092        enum fit_type type;
1093        int ret;
1094
1095        va = find_vmap_lowest_match(size, align, vstart);
1096        if (unlikely(!va))
1097                return vend;
1098
1099        if (va->va_start > vstart)
1100                nva_start_addr = ALIGN(va->va_start, align);
1101        else
1102                nva_start_addr = ALIGN(vstart, align);
1103
1104        /* Check the "vend" restriction. */
1105        if (nva_start_addr + size > vend)
1106                return vend;
1107
1108        /* Classify what we have found. */
1109        type = classify_va_fit_type(va, nva_start_addr, size);
1110        if (WARN_ON_ONCE(type == NOTHING_FIT))
1111                return vend;
1112
1113        /* Update the free vmap_area. */
1114        ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1115        if (ret)
1116                return vend;
1117
1118#if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1119        find_vmap_lowest_match_check(size);
1120#endif
1121
1122        return nva_start_addr;
1123}
1124
1125/*
1126 * Free a region of KVA allocated by alloc_vmap_area
1127 */
1128static void free_vmap_area(struct vmap_area *va)
1129{
1130        /*
1131         * Remove from the busy tree/list.
1132         */
1133        spin_lock(&vmap_area_lock);
1134        unlink_va(va, &vmap_area_root);
1135        spin_unlock(&vmap_area_lock);
1136
1137        /*
1138         * Insert/Merge it back to the free tree/list.
1139         */
1140        spin_lock(&free_vmap_area_lock);
1141        merge_or_add_vmap_area(va, &free_vmap_area_root, &free_vmap_area_list);
1142        spin_unlock(&free_vmap_area_lock);
1143}
1144
1145/*
1146 * Allocate a region of KVA of the specified size and alignment, within the
1147 * vstart and vend.
1148 */
1149static struct vmap_area *alloc_vmap_area(unsigned long size,
1150                                unsigned long align,
1151                                unsigned long vstart, unsigned long vend,
1152                                int node, gfp_t gfp_mask)
1153{
1154        struct vmap_area *va, *pva;
1155        unsigned long addr;
1156        int purged = 0;
1157        int ret;
1158
1159        BUG_ON(!size);
1160        BUG_ON(offset_in_page(size));
1161        BUG_ON(!is_power_of_2(align));
1162
1163        if (unlikely(!vmap_initialized))
1164                return ERR_PTR(-EBUSY);
1165
1166        might_sleep();
1167        gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1168
1169        va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1170        if (unlikely(!va))
1171                return ERR_PTR(-ENOMEM);
1172
1173        /*
1174         * Only scan the relevant parts containing pointers to other objects
1175         * to avoid false negatives.
1176         */
1177        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1178
1179retry:
1180        /*
1181         * Preload this CPU with one extra vmap_area object. It is used
1182         * when fit type of free area is NE_FIT_TYPE. Please note, it
1183         * does not guarantee that an allocation occurs on a CPU that
1184         * is preloaded, instead we minimize the case when it is not.
1185         * It can happen because of cpu migration, because there is a
1186         * race until the below spinlock is taken.
1187         *
1188         * The preload is done in non-atomic context, thus it allows us
1189         * to use more permissive allocation masks to be more stable under
1190         * low memory condition and high memory pressure. In rare case,
1191         * if not preloaded, GFP_NOWAIT is used.
1192         *
1193         * Set "pva" to NULL here, because of "retry" path.
1194         */
1195        pva = NULL;
1196
1197        if (!this_cpu_read(ne_fit_preload_node))
1198                /*
1199                 * Even if it fails we do not really care about that.
1200                 * Just proceed as it is. If needed "overflow" path
1201                 * will refill the cache we allocate from.
1202                 */
1203                pva = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1204
1205        spin_lock(&free_vmap_area_lock);
1206
1207        if (pva && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, pva))
1208                kmem_cache_free(vmap_area_cachep, pva);
1209
1210        /*
1211         * If an allocation fails, the "vend" address is
1212         * returned. Therefore trigger the overflow path.
1213         */
1214        addr = __alloc_vmap_area(size, align, vstart, vend);
1215        spin_unlock(&free_vmap_area_lock);
1216
1217        if (unlikely(addr == vend))
1218                goto overflow;
1219
1220        va->va_start = addr;
1221        va->va_end = addr + size;
1222        va->vm = NULL;
1223
1224
1225        spin_lock(&vmap_area_lock);
1226        insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1227        spin_unlock(&vmap_area_lock);
1228
1229        BUG_ON(!IS_ALIGNED(va->va_start, align));
1230        BUG_ON(va->va_start < vstart);
1231        BUG_ON(va->va_end > vend);
1232
1233        ret = kasan_populate_vmalloc(addr, size);
1234        if (ret) {
1235                free_vmap_area(va);
1236                return ERR_PTR(ret);
1237        }
1238
1239        return va;
1240
1241overflow:
1242        if (!purged) {
1243                purge_vmap_area_lazy();
1244                purged = 1;
1245                goto retry;
1246        }
1247
1248        if (gfpflags_allow_blocking(gfp_mask)) {
1249                unsigned long freed = 0;
1250                blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1251                if (freed > 0) {
1252                        purged = 0;
1253                        goto retry;
1254                }
1255        }
1256
1257        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1258                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1259                        size);
1260
1261        kmem_cache_free(vmap_area_cachep, va);
1262        return ERR_PTR(-EBUSY);
1263}
1264
1265int register_vmap_purge_notifier(struct notifier_block *nb)
1266{
1267        return blocking_notifier_chain_register(&vmap_notify_list, nb);
1268}
1269EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1270
1271int unregister_vmap_purge_notifier(struct notifier_block *nb)
1272{
1273        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1274}
1275EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1276
1277/*
1278 * lazy_max_pages is the maximum amount of virtual address space we gather up
1279 * before attempting to purge with a TLB flush.
1280 *
1281 * There is a tradeoff here: a larger number will cover more kernel page tables
1282 * and take slightly longer to purge, but it will linearly reduce the number of
1283 * global TLB flushes that must be performed. It would seem natural to scale
1284 * this number up linearly with the number of CPUs (because vmapping activity
1285 * could also scale linearly with the number of CPUs), however it is likely
1286 * that in practice, workloads might be constrained in other ways that mean
1287 * vmap activity will not scale linearly with CPUs. Also, I want to be
1288 * conservative and not introduce a big latency on huge systems, so go with
1289 * a less aggressive log scale. It will still be an improvement over the old
1290 * code, and it will be simple to change the scale factor if we find that it
1291 * becomes a problem on bigger systems.
1292 */
1293static unsigned long lazy_max_pages(void)
1294{
1295        unsigned int log;
1296
1297        log = fls(num_online_cpus());
1298
1299        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1300}
1301
1302static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1303
1304/*
1305 * Serialize vmap purging.  There is no actual criticial section protected
1306 * by this look, but we want to avoid concurrent calls for performance
1307 * reasons and to make the pcpu_get_vm_areas more deterministic.
1308 */
1309static DEFINE_MUTEX(vmap_purge_lock);
1310
1311/* for per-CPU blocks */
1312static void purge_fragmented_blocks_allcpus(void);
1313
1314/*
1315 * called before a call to iounmap() if the caller wants vm_area_struct's
1316 * immediately freed.
1317 */
1318void set_iounmap_nonlazy(void)
1319{
1320        atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1321}
1322
1323/*
1324 * Purges all lazily-freed vmap areas.
1325 */
1326static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1327{
1328        unsigned long resched_threshold;
1329        struct llist_node *valist;
1330        struct vmap_area *va;
1331        struct vmap_area *n_va;
1332
1333        lockdep_assert_held(&vmap_purge_lock);
1334
1335        valist = llist_del_all(&vmap_purge_list);
1336        if (unlikely(valist == NULL))
1337                return false;
1338
1339        /*
1340         * TODO: to calculate a flush range without looping.
1341         * The list can be up to lazy_max_pages() elements.
1342         */
1343        llist_for_each_entry(va, valist, purge_list) {
1344                if (va->va_start < start)
1345                        start = va->va_start;
1346                if (va->va_end > end)
1347                        end = va->va_end;
1348        }
1349
1350        flush_tlb_kernel_range(start, end);
1351        resched_threshold = lazy_max_pages() << 1;
1352
1353        spin_lock(&free_vmap_area_lock);
1354        llist_for_each_entry_safe(va, n_va, valist, purge_list) {
1355                unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1356                unsigned long orig_start = va->va_start;
1357                unsigned long orig_end = va->va_end;
1358
1359                /*
1360                 * Finally insert or merge lazily-freed area. It is
1361                 * detached and there is no need to "unlink" it from
1362                 * anything.
1363                 */
1364                va = merge_or_add_vmap_area(va, &free_vmap_area_root,
1365                                            &free_vmap_area_list);
1366
1367                if (!va)
1368                        continue;
1369
1370                if (is_vmalloc_or_module_addr((void *)orig_start))
1371                        kasan_release_vmalloc(orig_start, orig_end,
1372                                              va->va_start, va->va_end);
1373
1374                atomic_long_sub(nr, &vmap_lazy_nr);
1375
1376                if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1377                        cond_resched_lock(&free_vmap_area_lock);
1378        }
1379        spin_unlock(&free_vmap_area_lock);
1380        return true;
1381}
1382
1383/*
1384 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1385 * is already purging.
1386 */
1387static void try_purge_vmap_area_lazy(void)
1388{
1389        if (mutex_trylock(&vmap_purge_lock)) {
1390                __purge_vmap_area_lazy(ULONG_MAX, 0);
1391                mutex_unlock(&vmap_purge_lock);
1392        }
1393}
1394
1395/*
1396 * Kick off a purge of the outstanding lazy areas.
1397 */
1398static void purge_vmap_area_lazy(void)
1399{
1400        mutex_lock(&vmap_purge_lock);
1401        purge_fragmented_blocks_allcpus();
1402        __purge_vmap_area_lazy(ULONG_MAX, 0);
1403        mutex_unlock(&vmap_purge_lock);
1404}
1405
1406/*
1407 * Free a vmap area, caller ensuring that the area has been unmapped
1408 * and flush_cache_vunmap had been called for the correct range
1409 * previously.
1410 */
1411static void free_vmap_area_noflush(struct vmap_area *va)
1412{
1413        unsigned long nr_lazy;
1414
1415        spin_lock(&vmap_area_lock);
1416        unlink_va(va, &vmap_area_root);
1417        spin_unlock(&vmap_area_lock);
1418
1419        nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1420                                PAGE_SHIFT, &vmap_lazy_nr);
1421
1422        /* After this point, we may free va at any time */
1423        llist_add(&va->purge_list, &vmap_purge_list);
1424
1425        if (unlikely(nr_lazy > lazy_max_pages()))
1426                try_purge_vmap_area_lazy();
1427}
1428
1429/*
1430 * Free and unmap a vmap area
1431 */
1432static void free_unmap_vmap_area(struct vmap_area *va)
1433{
1434        flush_cache_vunmap(va->va_start, va->va_end);
1435        unmap_kernel_range_noflush(va->va_start, va->va_end - va->va_start);
1436        if (debug_pagealloc_enabled_static())
1437                flush_tlb_kernel_range(va->va_start, va->va_end);
1438
1439        free_vmap_area_noflush(va);
1440}
1441
1442static struct vmap_area *find_vmap_area(unsigned long addr)
1443{
1444        struct vmap_area *va;
1445
1446        spin_lock(&vmap_area_lock);
1447        va = __find_vmap_area(addr);
1448        spin_unlock(&vmap_area_lock);
1449
1450        return va;
1451}
1452
1453/*** Per cpu kva allocator ***/
1454
1455/*
1456 * vmap space is limited especially on 32 bit architectures. Ensure there is
1457 * room for at least 16 percpu vmap blocks per CPU.
1458 */
1459/*
1460 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1461 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
1462 * instead (we just need a rough idea)
1463 */
1464#if BITS_PER_LONG == 32
1465#define VMALLOC_SPACE           (128UL*1024*1024)
1466#else
1467#define VMALLOC_SPACE           (128UL*1024*1024*1024)
1468#endif
1469
1470#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
1471#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
1472#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
1473#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
1474#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
1475#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
1476#define VMAP_BBMAP_BITS         \
1477                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
1478                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
1479                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1480
1481#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
1482
1483struct vmap_block_queue {
1484        spinlock_t lock;
1485        struct list_head free;
1486};
1487
1488struct vmap_block {
1489        spinlock_t lock;
1490        struct vmap_area *va;
1491        unsigned long free, dirty;
1492        unsigned long dirty_min, dirty_max; /*< dirty range */
1493        struct list_head free_list;
1494        struct rcu_head rcu_head;
1495        struct list_head purge;
1496};
1497
1498/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1499static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1500
1501/*
1502 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1503 * in the free path. Could get rid of this if we change the API to return a
1504 * "cookie" from alloc, to be passed to free. But no big deal yet.
1505 */
1506static DEFINE_XARRAY(vmap_blocks);
1507
1508/*
1509 * We should probably have a fallback mechanism to allocate virtual memory
1510 * out of partially filled vmap blocks. However vmap block sizing should be
1511 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1512 * big problem.
1513 */
1514
1515static unsigned long addr_to_vb_idx(unsigned long addr)
1516{
1517        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1518        addr /= VMAP_BLOCK_SIZE;
1519        return addr;
1520}
1521
1522static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1523{
1524        unsigned long addr;
1525
1526        addr = va_start + (pages_off << PAGE_SHIFT);
1527        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1528        return (void *)addr;
1529}
1530
1531/**
1532 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1533 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
1534 * @order:    how many 2^order pages should be occupied in newly allocated block
1535 * @gfp_mask: flags for the page level allocator
1536 *
1537 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1538 */
1539static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1540{
1541        struct vmap_block_queue *vbq;
1542        struct vmap_block *vb;
1543        struct vmap_area *va;
1544        unsigned long vb_idx;
1545        int node, err;
1546        void *vaddr;
1547
1548        node = numa_node_id();
1549
1550        vb = kmalloc_node(sizeof(struct vmap_block),
1551                        gfp_mask & GFP_RECLAIM_MASK, node);
1552        if (unlikely(!vb))
1553                return ERR_PTR(-ENOMEM);
1554
1555        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1556                                        VMALLOC_START, VMALLOC_END,
1557                                        node, gfp_mask);
1558        if (IS_ERR(va)) {
1559                kfree(vb);
1560                return ERR_CAST(va);
1561        }
1562
1563        vaddr = vmap_block_vaddr(va->va_start, 0);
1564        spin_lock_init(&vb->lock);
1565        vb->va = va;
1566        /* At least something should be left free */
1567        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1568        vb->free = VMAP_BBMAP_BITS - (1UL << order);
1569        vb->dirty = 0;
1570        vb->dirty_min = VMAP_BBMAP_BITS;
1571        vb->dirty_max = 0;
1572        INIT_LIST_HEAD(&vb->free_list);
1573
1574        vb_idx = addr_to_vb_idx(va->va_start);
1575        err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1576        if (err) {
1577                kfree(vb);
1578                free_vmap_area(va);
1579                return ERR_PTR(err);
1580        }
1581
1582        vbq = &get_cpu_var(vmap_block_queue);
1583        spin_lock(&vbq->lock);
1584        list_add_tail_rcu(&vb->free_list, &vbq->free);
1585        spin_unlock(&vbq->lock);
1586        put_cpu_var(vmap_block_queue);
1587
1588        return vaddr;
1589}
1590
1591static void free_vmap_block(struct vmap_block *vb)
1592{
1593        struct vmap_block *tmp;
1594
1595        tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1596        BUG_ON(tmp != vb);
1597
1598        free_vmap_area_noflush(vb->va);
1599        kfree_rcu(vb, rcu_head);
1600}
1601
1602static void purge_fragmented_blocks(int cpu)
1603{
1604        LIST_HEAD(purge);
1605        struct vmap_block *vb;
1606        struct vmap_block *n_vb;
1607        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1608
1609        rcu_read_lock();
1610        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1611
1612                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1613                        continue;
1614
1615                spin_lock(&vb->lock);
1616                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1617                        vb->free = 0; /* prevent further allocs after releasing lock */
1618                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1619                        vb->dirty_min = 0;
1620                        vb->dirty_max = VMAP_BBMAP_BITS;
1621                        spin_lock(&vbq->lock);
1622                        list_del_rcu(&vb->free_list);
1623                        spin_unlock(&vbq->lock);
1624                        spin_unlock(&vb->lock);
1625                        list_add_tail(&vb->purge, &purge);
1626                } else
1627                        spin_unlock(&vb->lock);
1628        }
1629        rcu_read_unlock();
1630
1631        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1632                list_del(&vb->purge);
1633                free_vmap_block(vb);
1634        }
1635}
1636
1637static void purge_fragmented_blocks_allcpus(void)
1638{
1639        int cpu;
1640
1641        for_each_possible_cpu(cpu)
1642                purge_fragmented_blocks(cpu);
1643}
1644
1645static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1646{
1647        struct vmap_block_queue *vbq;
1648        struct vmap_block *vb;
1649        void *vaddr = NULL;
1650        unsigned int order;
1651
1652        BUG_ON(offset_in_page(size));
1653        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1654        if (WARN_ON(size == 0)) {
1655                /*
1656                 * Allocating 0 bytes isn't what caller wants since
1657                 * get_order(0) returns funny result. Just warn and terminate
1658                 * early.
1659                 */
1660                return NULL;
1661        }
1662        order = get_order(size);
1663
1664        rcu_read_lock();
1665        vbq = &get_cpu_var(vmap_block_queue);
1666        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1667                unsigned long pages_off;
1668
1669                spin_lock(&vb->lock);
1670                if (vb->free < (1UL << order)) {
1671                        spin_unlock(&vb->lock);
1672                        continue;
1673                }
1674
1675                pages_off = VMAP_BBMAP_BITS - vb->free;
1676                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
1677                vb->free -= 1UL << order;
1678                if (vb->free == 0) {
1679                        spin_lock(&vbq->lock);
1680                        list_del_rcu(&vb->free_list);
1681                        spin_unlock(&vbq->lock);
1682                }
1683
1684                spin_unlock(&vb->lock);
1685                break;
1686        }
1687
1688        put_cpu_var(vmap_block_queue);
1689        rcu_read_unlock();
1690
1691        /* Allocate new block if nothing was found */
1692        if (!vaddr)
1693                vaddr = new_vmap_block(order, gfp_mask);
1694
1695        return vaddr;
1696}
1697
1698static void vb_free(unsigned long addr, unsigned long size)
1699{
1700        unsigned long offset;
1701        unsigned int order;
1702        struct vmap_block *vb;
1703
1704        BUG_ON(offset_in_page(size));
1705        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1706
1707        flush_cache_vunmap(addr, addr + size);
1708
1709        order = get_order(size);
1710        offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
1711        vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
1712
1713        unmap_kernel_range_noflush(addr, size);
1714
1715        if (debug_pagealloc_enabled_static())
1716                flush_tlb_kernel_range(addr, addr + size);
1717
1718        spin_lock(&vb->lock);
1719
1720        /* Expand dirty range */
1721        vb->dirty_min = min(vb->dirty_min, offset);
1722        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1723
1724        vb->dirty += 1UL << order;
1725        if (vb->dirty == VMAP_BBMAP_BITS) {
1726                BUG_ON(vb->free);
1727                spin_unlock(&vb->lock);
1728                free_vmap_block(vb);
1729        } else
1730                spin_unlock(&vb->lock);
1731}
1732
1733static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
1734{
1735        int cpu;
1736
1737        if (unlikely(!vmap_initialized))
1738                return;
1739
1740        might_sleep();
1741
1742        for_each_possible_cpu(cpu) {
1743                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1744                struct vmap_block *vb;
1745
1746                rcu_read_lock();
1747                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1748                        spin_lock(&vb->lock);
1749                        if (vb->dirty) {
1750                                unsigned long va_start = vb->va->va_start;
1751                                unsigned long s, e;
1752
1753                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1754                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1755
1756                                start = min(s, start);
1757                                end   = max(e, end);
1758
1759                                flush = 1;
1760                        }
1761                        spin_unlock(&vb->lock);
1762                }
1763                rcu_read_unlock();
1764        }
1765
1766        mutex_lock(&vmap_purge_lock);
1767        purge_fragmented_blocks_allcpus();
1768        if (!__purge_vmap_area_lazy(start, end) && flush)
1769                flush_tlb_kernel_range(start, end);
1770        mutex_unlock(&vmap_purge_lock);
1771}
1772
1773/**
1774 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1775 *
1776 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1777 * to amortize TLB flushing overheads. What this means is that any page you
1778 * have now, may, in a former life, have been mapped into kernel virtual
1779 * address by the vmap layer and so there might be some CPUs with TLB entries
1780 * still referencing that page (additional to the regular 1:1 kernel mapping).
1781 *
1782 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1783 * be sure that none of the pages we have control over will have any aliases
1784 * from the vmap layer.
1785 */
1786void vm_unmap_aliases(void)
1787{
1788        unsigned long start = ULONG_MAX, end = 0;
1789        int flush = 0;
1790
1791        _vm_unmap_aliases(start, end, flush);
1792}
1793EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1794
1795/**
1796 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1797 * @mem: the pointer returned by vm_map_ram
1798 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1799 */
1800void vm_unmap_ram(const void *mem, unsigned int count)
1801{
1802        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1803        unsigned long addr = (unsigned long)mem;
1804        struct vmap_area *va;
1805
1806        might_sleep();
1807        BUG_ON(!addr);
1808        BUG_ON(addr < VMALLOC_START);
1809        BUG_ON(addr > VMALLOC_END);
1810        BUG_ON(!PAGE_ALIGNED(addr));
1811
1812        kasan_poison_vmalloc(mem, size);
1813
1814        if (likely(count <= VMAP_MAX_ALLOC)) {
1815                debug_check_no_locks_freed(mem, size);
1816                vb_free(addr, size);
1817                return;
1818        }
1819
1820        va = find_vmap_area(addr);
1821        BUG_ON(!va);
1822        debug_check_no_locks_freed((void *)va->va_start,
1823                                    (va->va_end - va->va_start));
1824        free_unmap_vmap_area(va);
1825}
1826EXPORT_SYMBOL(vm_unmap_ram);
1827
1828/**
1829 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1830 * @pages: an array of pointers to the pages to be mapped
1831 * @count: number of pages
1832 * @node: prefer to allocate data structures on this node
1833 *
1834 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1835 * faster than vmap so it's good.  But if you mix long-life and short-life
1836 * objects with vm_map_ram(), it could consume lots of address space through
1837 * fragmentation (especially on a 32bit machine).  You could see failures in
1838 * the end.  Please use this function for short-lived objects.
1839 *
1840 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1841 */
1842void *vm_map_ram(struct page **pages, unsigned int count, int node)
1843{
1844        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1845        unsigned long addr;
1846        void *mem;
1847
1848        if (likely(count <= VMAP_MAX_ALLOC)) {
1849                mem = vb_alloc(size, GFP_KERNEL);
1850                if (IS_ERR(mem))
1851                        return NULL;
1852                addr = (unsigned long)mem;
1853        } else {
1854                struct vmap_area *va;
1855                va = alloc_vmap_area(size, PAGE_SIZE,
1856                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1857                if (IS_ERR(va))
1858                        return NULL;
1859
1860                addr = va->va_start;
1861                mem = (void *)addr;
1862        }
1863
1864        kasan_unpoison_vmalloc(mem, size);
1865
1866        if (map_kernel_range(addr, size, PAGE_KERNEL, pages) < 0) {
1867                vm_unmap_ram(mem, count);
1868                return NULL;
1869        }
1870        return mem;
1871}
1872EXPORT_SYMBOL(vm_map_ram);
1873
1874static struct vm_struct *vmlist __initdata;
1875
1876/**
1877 * vm_area_add_early - add vmap area early during boot
1878 * @vm: vm_struct to add
1879 *
1880 * This function is used to add fixed kernel vm area to vmlist before
1881 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1882 * should contain proper values and the other fields should be zero.
1883 *
1884 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1885 */
1886void __init vm_area_add_early(struct vm_struct *vm)
1887{
1888        struct vm_struct *tmp, **p;
1889
1890        BUG_ON(vmap_initialized);
1891        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1892                if (tmp->addr >= vm->addr) {
1893                        BUG_ON(tmp->addr < vm->addr + vm->size);
1894                        break;
1895                } else
1896                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1897        }
1898        vm->next = *p;
1899        *p = vm;
1900}
1901
1902/**
1903 * vm_area_register_early - register vmap area early during boot
1904 * @vm: vm_struct to register
1905 * @align: requested alignment
1906 *
1907 * This function is used to register kernel vm area before
1908 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1909 * proper values on entry and other fields should be zero.  On return,
1910 * vm->addr contains the allocated address.
1911 *
1912 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1913 */
1914void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1915{
1916        static size_t vm_init_off __initdata;
1917        unsigned long addr;
1918
1919        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1920        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1921
1922        vm->addr = (void *)addr;
1923
1924        vm_area_add_early(vm);
1925}
1926
1927static void vmap_init_free_space(void)
1928{
1929        unsigned long vmap_start = 1;
1930        const unsigned long vmap_end = ULONG_MAX;
1931        struct vmap_area *busy, *free;
1932
1933        /*
1934         *     B     F     B     B     B     F
1935         * -|-----|.....|-----|-----|-----|.....|-
1936         *  |           The KVA space           |
1937         *  |<--------------------------------->|
1938         */
1939        list_for_each_entry(busy, &vmap_area_list, list) {
1940                if (busy->va_start - vmap_start > 0) {
1941                        free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1942                        if (!WARN_ON_ONCE(!free)) {
1943                                free->va_start = vmap_start;
1944                                free->va_end = busy->va_start;
1945
1946                                insert_vmap_area_augment(free, NULL,
1947                                        &free_vmap_area_root,
1948                                                &free_vmap_area_list);
1949                        }
1950                }
1951
1952                vmap_start = busy->va_end;
1953        }
1954
1955        if (vmap_end - vmap_start > 0) {
1956                free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1957                if (!WARN_ON_ONCE(!free)) {
1958                        free->va_start = vmap_start;
1959                        free->va_end = vmap_end;
1960
1961                        insert_vmap_area_augment(free, NULL,
1962                                &free_vmap_area_root,
1963                                        &free_vmap_area_list);
1964                }
1965        }
1966}
1967
1968void __init vmalloc_init(void)
1969{
1970        struct vmap_area *va;
1971        struct vm_struct *tmp;
1972        int i;
1973
1974        /*
1975         * Create the cache for vmap_area objects.
1976         */
1977        vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
1978
1979        for_each_possible_cpu(i) {
1980                struct vmap_block_queue *vbq;
1981                struct vfree_deferred *p;
1982
1983                vbq = &per_cpu(vmap_block_queue, i);
1984                spin_lock_init(&vbq->lock);
1985                INIT_LIST_HEAD(&vbq->free);
1986                p = &per_cpu(vfree_deferred, i);
1987                init_llist_head(&p->list);
1988                INIT_WORK(&p->wq, free_work);
1989        }
1990
1991        /* Import existing vmlist entries. */
1992        for (tmp = vmlist; tmp; tmp = tmp->next) {
1993                va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
1994                if (WARN_ON_ONCE(!va))
1995                        continue;
1996
1997                va->va_start = (unsigned long)tmp->addr;
1998                va->va_end = va->va_start + tmp->size;
1999                va->vm = tmp;
2000                insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2001        }
2002
2003        /*
2004         * Now we can initialize a free vmap space.
2005         */
2006        vmap_init_free_space();
2007        vmap_initialized = true;
2008}
2009
2010/**
2011 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
2012 * @addr: start of the VM area to unmap
2013 * @size: size of the VM area to unmap
2014 *
2015 * Similar to unmap_kernel_range_noflush() but flushes vcache before
2016 * the unmapping and tlb after.
2017 */
2018void unmap_kernel_range(unsigned long addr, unsigned long size)
2019{
2020        unsigned long end = addr + size;
2021
2022        flush_cache_vunmap(addr, end);
2023        unmap_kernel_range_noflush(addr, size);
2024        flush_tlb_kernel_range(addr, end);
2025}
2026
2027static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2028        struct vmap_area *va, unsigned long flags, const void *caller)
2029{
2030        vm->flags = flags;
2031        vm->addr = (void *)va->va_start;
2032        vm->size = va->va_end - va->va_start;
2033        vm->caller = caller;
2034        va->vm = vm;
2035}
2036
2037static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2038                              unsigned long flags, const void *caller)
2039{
2040        spin_lock(&vmap_area_lock);
2041        setup_vmalloc_vm_locked(vm, va, flags, caller);
2042        spin_unlock(&vmap_area_lock);
2043}
2044
2045static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2046{
2047        /*
2048         * Before removing VM_UNINITIALIZED,
2049         * we should make sure that vm has proper values.
2050         * Pair with smp_rmb() in show_numa_info().
2051         */
2052        smp_wmb();
2053        vm->flags &= ~VM_UNINITIALIZED;
2054}
2055
2056static struct vm_struct *__get_vm_area_node(unsigned long size,
2057                unsigned long align, unsigned long flags, unsigned long start,
2058                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
2059{
2060        struct vmap_area *va;
2061        struct vm_struct *area;
2062        unsigned long requested_size = size;
2063
2064        BUG_ON(in_interrupt());
2065        size = PAGE_ALIGN(size);
2066        if (unlikely(!size))
2067                return NULL;
2068
2069        if (flags & VM_IOREMAP)
2070                align = 1ul << clamp_t(int, get_count_order_long(size),
2071                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
2072
2073        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2074        if (unlikely(!area))
2075                return NULL;
2076
2077        if (!(flags & VM_NO_GUARD))
2078                size += PAGE_SIZE;
2079
2080        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2081        if (IS_ERR(va)) {
2082                kfree(area);
2083                return NULL;
2084        }
2085
2086        kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2087
2088        setup_vmalloc_vm(area, va, flags, caller);
2089
2090        return area;
2091}
2092
2093struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2094                                       unsigned long start, unsigned long end,
2095                                       const void *caller)
2096{
2097        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
2098                                  GFP_KERNEL, caller);
2099}
2100
2101/**
2102 * get_vm_area - reserve a contiguous kernel virtual area
2103 * @size:        size of the area
2104 * @flags:       %VM_IOREMAP for I/O mappings or VM_ALLOC
2105 *
2106 * Search an area of @size in the kernel virtual mapping area,
2107 * and reserved it for out purposes.  Returns the area descriptor
2108 * on success or %NULL on failure.
2109 *
2110 * Return: the area descriptor on success or %NULL on failure.
2111 */
2112struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2113{
2114        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2115                                  NUMA_NO_NODE, GFP_KERNEL,
2116                                  __builtin_return_address(0));
2117}
2118
2119struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2120                                const void *caller)
2121{
2122        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
2123                                  NUMA_NO_NODE, GFP_KERNEL, caller);
2124}
2125
2126/**
2127 * find_vm_area - find a continuous kernel virtual area
2128 * @addr:         base address
2129 *
2130 * Search for the kernel VM area starting at @addr, and return it.
2131 * It is up to the caller to do all required locking to keep the returned
2132 * pointer valid.
2133 *
2134 * Return: the area descriptor on success or %NULL on failure.
2135 */
2136struct vm_struct *find_vm_area(const void *addr)
2137{
2138        struct vmap_area *va;
2139
2140        va = find_vmap_area((unsigned long)addr);
2141        if (!va)
2142                return NULL;
2143
2144        return va->vm;
2145}
2146
2147/**
2148 * remove_vm_area - find and remove a continuous kernel virtual area
2149 * @addr:           base address
2150 *
2151 * Search for the kernel VM area starting at @addr, and remove it.
2152 * This function returns the found VM area, but using it is NOT safe
2153 * on SMP machines, except for its size or flags.
2154 *
2155 * Return: the area descriptor on success or %NULL on failure.
2156 */
2157struct vm_struct *remove_vm_area(const void *addr)
2158{
2159        struct vmap_area *va;
2160
2161        might_sleep();
2162
2163        spin_lock(&vmap_area_lock);
2164        va = __find_vmap_area((unsigned long)addr);
2165        if (va && va->vm) {
2166                struct vm_struct *vm = va->vm;
2167
2168                va->vm = NULL;
2169                spin_unlock(&vmap_area_lock);
2170
2171                kasan_free_shadow(vm);
2172                free_unmap_vmap_area(va);
2173
2174                return vm;
2175        }
2176
2177        spin_unlock(&vmap_area_lock);
2178        return NULL;
2179}
2180
2181static inline void set_area_direct_map(const struct vm_struct *area,
2182                                       int (*set_direct_map)(struct page *page))
2183{
2184        int i;
2185
2186        for (i = 0; i < area->nr_pages; i++)
2187                if (page_address(area->pages[i]))
2188                        set_direct_map(area->pages[i]);
2189}
2190
2191/* Handle removing and resetting vm mappings related to the vm_struct. */
2192static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2193{
2194        unsigned long start = ULONG_MAX, end = 0;
2195        int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2196        int flush_dmap = 0;
2197        int i;
2198
2199        remove_vm_area(area->addr);
2200
2201        /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2202        if (!flush_reset)
2203                return;
2204
2205        /*
2206         * If not deallocating pages, just do the flush of the VM area and
2207         * return.
2208         */
2209        if (!deallocate_pages) {
2210                vm_unmap_aliases();
2211                return;
2212        }
2213
2214        /*
2215         * If execution gets here, flush the vm mapping and reset the direct
2216         * map. Find the start and end range of the direct mappings to make sure
2217         * the vm_unmap_aliases() flush includes the direct map.
2218         */
2219        for (i = 0; i < area->nr_pages; i++) {
2220                unsigned long addr = (unsigned long)page_address(area->pages[i]);
2221                if (addr) {
2222                        start = min(addr, start);
2223                        end = max(addr + PAGE_SIZE, end);
2224                        flush_dmap = 1;
2225                }
2226        }
2227
2228        /*
2229         * Set direct map to something invalid so that it won't be cached if
2230         * there are any accesses after the TLB flush, then flush the TLB and
2231         * reset the direct map permissions to the default.
2232         */
2233        set_area_direct_map(area, set_direct_map_invalid_noflush);
2234        _vm_unmap_aliases(start, end, flush_dmap);
2235        set_area_direct_map(area, set_direct_map_default_noflush);
2236}
2237
2238static void __vunmap(const void *addr, int deallocate_pages)
2239{
2240        struct vm_struct *area;
2241
2242        if (!addr)
2243                return;
2244
2245        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2246                        addr))
2247                return;
2248
2249        area = find_vm_area(addr);
2250        if (unlikely(!area)) {
2251                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2252                                addr);
2253                return;
2254        }
2255
2256        debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2257        debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2258
2259        kasan_poison_vmalloc(area->addr, area->size);
2260
2261        vm_remove_mappings(area, deallocate_pages);
2262
2263        if (deallocate_pages) {
2264                int i;
2265
2266                for (i = 0; i < area->nr_pages; i++) {
2267                        struct page *page = area->pages[i];
2268
2269                        BUG_ON(!page);
2270                        __free_pages(page, 0);
2271                }
2272                atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2273
2274                kvfree(area->pages);
2275        }
2276
2277        kfree(area);
2278        return;
2279}
2280
2281static inline void __vfree_deferred(const void *addr)
2282{
2283        /*
2284         * Use raw_cpu_ptr() because this can be called from preemptible
2285         * context. Preemption is absolutely fine here, because the llist_add()
2286         * implementation is lockless, so it works even if we are adding to
2287         * another cpu's list. schedule_work() should be fine with this too.
2288         */
2289        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2290
2291        if (llist_add((struct llist_node *)addr, &p->list))
2292                schedule_work(&p->wq);
2293}
2294
2295/**
2296 * vfree_atomic - release memory allocated by vmalloc()
2297 * @addr:         memory base address
2298 *
2299 * This one is just like vfree() but can be called in any atomic context
2300 * except NMIs.
2301 */
2302void vfree_atomic(const void *addr)
2303{
2304        BUG_ON(in_nmi());
2305
2306        kmemleak_free(addr);
2307
2308        if (!addr)
2309                return;
2310        __vfree_deferred(addr);
2311}
2312
2313static void __vfree(const void *addr)
2314{
2315        if (unlikely(in_interrupt()))
2316                __vfree_deferred(addr);
2317        else
2318                __vunmap(addr, 1);
2319}
2320
2321/**
2322 * vfree - Release memory allocated by vmalloc()
2323 * @addr:  Memory base address
2324 *
2325 * Free the virtually continuous memory area starting at @addr, as obtained
2326 * from one of the vmalloc() family of APIs.  This will usually also free the
2327 * physical memory underlying the virtual allocation, but that memory is
2328 * reference counted, so it will not be freed until the last user goes away.
2329 *
2330 * If @addr is NULL, no operation is performed.
2331 *
2332 * Context:
2333 * May sleep if called *not* from interrupt context.
2334 * Must not be called in NMI context (strictly speaking, it could be
2335 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2336 * conventions for vfree() arch-depenedent would be a really bad idea).
2337 */
2338void vfree(const void *addr)
2339{
2340        BUG_ON(in_nmi());
2341
2342        kmemleak_free(addr);
2343
2344        might_sleep_if(!in_interrupt());
2345
2346        if (!addr)
2347                return;
2348
2349        __vfree(addr);
2350}
2351EXPORT_SYMBOL(vfree);
2352
2353/**
2354 * vunmap - release virtual mapping obtained by vmap()
2355 * @addr:   memory base address
2356 *
2357 * Free the virtually contiguous memory area starting at @addr,
2358 * which was created from the page array passed to vmap().
2359 *
2360 * Must not be called in interrupt context.
2361 */
2362void vunmap(const void *addr)
2363{
2364        BUG_ON(in_interrupt());
2365        might_sleep();
2366        if (addr)
2367                __vunmap(addr, 0);
2368}
2369EXPORT_SYMBOL(vunmap);
2370
2371/**
2372 * vmap - map an array of pages into virtually contiguous space
2373 * @pages: array of page pointers
2374 * @count: number of pages to map
2375 * @flags: vm_area->flags
2376 * @prot: page protection for the mapping
2377 *
2378 * Maps @count pages from @pages into contiguous kernel virtual space.
2379 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2380 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2381 * are transferred from the caller to vmap(), and will be freed / dropped when
2382 * vfree() is called on the return value.
2383 *
2384 * Return: the address of the area or %NULL on failure
2385 */
2386void *vmap(struct page **pages, unsigned int count,
2387           unsigned long flags, pgprot_t prot)
2388{
2389        struct vm_struct *area;
2390        unsigned long size;             /* In bytes */
2391
2392        might_sleep();
2393
2394        if (count > totalram_pages())
2395                return NULL;
2396
2397        size = (unsigned long)count << PAGE_SHIFT;
2398        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2399        if (!area)
2400                return NULL;
2401
2402        if (map_kernel_range((unsigned long)area->addr, size, pgprot_nx(prot),
2403                        pages) < 0) {
2404                vunmap(area->addr);
2405                return NULL;
2406        }
2407
2408        if (flags & VM_MAP_PUT_PAGES)
2409                area->pages = pages;
2410        return area->addr;
2411}
2412EXPORT_SYMBOL(vmap);
2413
2414#ifdef CONFIG_VMAP_PFN
2415struct vmap_pfn_data {
2416        unsigned long   *pfns;
2417        pgprot_t        prot;
2418        unsigned int    idx;
2419};
2420
2421static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2422{
2423        struct vmap_pfn_data *data = private;
2424
2425        if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2426                return -EINVAL;
2427        *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2428        return 0;
2429}
2430
2431/**
2432 * vmap_pfn - map an array of PFNs into virtually contiguous space
2433 * @pfns: array of PFNs
2434 * @count: number of pages to map
2435 * @prot: page protection for the mapping
2436 *
2437 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2438 * the start address of the mapping.
2439 */
2440void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2441{
2442        struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2443        struct vm_struct *area;
2444
2445        area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2446                        __builtin_return_address(0));
2447        if (!area)
2448                return NULL;
2449        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2450                        count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2451                free_vm_area(area);
2452                return NULL;
2453        }
2454        return area->addr;
2455}
2456EXPORT_SYMBOL_GPL(vmap_pfn);
2457#endif /* CONFIG_VMAP_PFN */
2458
2459static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2460                                 pgprot_t prot, int node)
2461{
2462        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2463        unsigned int nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
2464        unsigned int array_size = nr_pages * sizeof(struct page *), i;
2465        struct page **pages;
2466
2467        gfp_mask |= __GFP_NOWARN;
2468        if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2469                gfp_mask |= __GFP_HIGHMEM;
2470
2471        /* Please note that the recursion is strictly bounded. */
2472        if (array_size > PAGE_SIZE) {
2473                pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2474                                        area->caller);
2475        } else {
2476                pages = kmalloc_node(array_size, nested_gfp, node);
2477        }
2478
2479        if (!pages) {
2480                remove_vm_area(area->addr);
2481                kfree(area);
2482                return NULL;
2483        }
2484
2485        area->pages = pages;
2486        area->nr_pages = nr_pages;
2487
2488        for (i = 0; i < area->nr_pages; i++) {
2489                struct page *page;
2490
2491                if (node == NUMA_NO_NODE)
2492                        page = alloc_page(gfp_mask);
2493                else
2494                        page = alloc_pages_node(node, gfp_mask, 0);
2495
2496                if (unlikely(!page)) {
2497                        /* Successfully allocated i pages, free them in __vfree() */
2498                        area->nr_pages = i;
2499                        atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2500                        goto fail;
2501                }
2502                area->pages[i] = page;
2503                if (gfpflags_allow_blocking(gfp_mask))
2504                        cond_resched();
2505        }
2506        atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2507
2508        if (map_kernel_range((unsigned long)area->addr, get_vm_area_size(area),
2509                        prot, pages) < 0)
2510                goto fail;
2511
2512        return area->addr;
2513
2514fail:
2515        warn_alloc(gfp_mask, NULL,
2516                          "vmalloc: allocation failure, allocated %ld of %ld bytes",
2517                          (area->nr_pages*PAGE_SIZE), area->size);
2518        __vfree(area->addr);
2519        return NULL;
2520}
2521
2522/**
2523 * __vmalloc_node_range - allocate virtually contiguous memory
2524 * @size:                 allocation size
2525 * @align:                desired alignment
2526 * @start:                vm area range start
2527 * @end:                  vm area range end
2528 * @gfp_mask:             flags for the page level allocator
2529 * @prot:                 protection mask for the allocated pages
2530 * @vm_flags:             additional vm area flags (e.g. %VM_NO_GUARD)
2531 * @node:                 node to use for allocation or NUMA_NO_NODE
2532 * @caller:               caller's return address
2533 *
2534 * Allocate enough pages to cover @size from the page level
2535 * allocator with @gfp_mask flags.  Map them into contiguous
2536 * kernel virtual space, using a pagetable protection of @prot.
2537 *
2538 * Return: the address of the area or %NULL on failure
2539 */
2540void *__vmalloc_node_range(unsigned long size, unsigned long align,
2541                        unsigned long start, unsigned long end, gfp_t gfp_mask,
2542                        pgprot_t prot, unsigned long vm_flags, int node,
2543                        const void *caller)
2544{
2545        struct vm_struct *area;
2546        void *addr;
2547        unsigned long real_size = size;
2548
2549        size = PAGE_ALIGN(size);
2550        if (!size || (size >> PAGE_SHIFT) > totalram_pages())
2551                goto fail;
2552
2553        area = __get_vm_area_node(real_size, align, VM_ALLOC | VM_UNINITIALIZED |
2554                                vm_flags, start, end, node, gfp_mask, caller);
2555        if (!area)
2556                goto fail;
2557
2558        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
2559        if (!addr)
2560                return NULL;
2561
2562        /*
2563         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
2564         * flag. It means that vm_struct is not fully initialized.
2565         * Now, it is fully initialized, so remove this flag here.
2566         */
2567        clear_vm_uninitialized_flag(area);
2568
2569        kmemleak_vmalloc(area, size, gfp_mask);
2570
2571        return addr;
2572
2573fail:
2574        warn_alloc(gfp_mask, NULL,
2575                          "vmalloc: allocation failure: %lu bytes", real_size);
2576        return NULL;
2577}
2578
2579/**
2580 * __vmalloc_node - allocate virtually contiguous memory
2581 * @size:           allocation size
2582 * @align:          desired alignment
2583 * @gfp_mask:       flags for the page level allocator
2584 * @node:           node to use for allocation or NUMA_NO_NODE
2585 * @caller:         caller's return address
2586 *
2587 * Allocate enough pages to cover @size from the page level allocator with
2588 * @gfp_mask flags.  Map them into contiguous kernel virtual space.
2589 *
2590 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
2591 * and __GFP_NOFAIL are not supported
2592 *
2593 * Any use of gfp flags outside of GFP_KERNEL should be consulted
2594 * with mm people.
2595 *
2596 * Return: pointer to the allocated memory or %NULL on error
2597 */
2598void *__vmalloc_node(unsigned long size, unsigned long align,
2599                            gfp_t gfp_mask, int node, const void *caller)
2600{
2601        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
2602                                gfp_mask, PAGE_KERNEL, 0, node, caller);
2603}
2604/*
2605 * This is only for performance analysis of vmalloc and stress purpose.
2606 * It is required by vmalloc test module, therefore do not use it other
2607 * than that.
2608 */
2609#ifdef CONFIG_TEST_VMALLOC_MODULE
2610EXPORT_SYMBOL_GPL(__vmalloc_node);
2611#endif
2612
2613void *__vmalloc(unsigned long size, gfp_t gfp_mask)
2614{
2615        return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
2616                                __builtin_return_address(0));
2617}
2618EXPORT_SYMBOL(__vmalloc);
2619
2620/**
2621 * vmalloc - allocate virtually contiguous memory
2622 * @size:    allocation size
2623 *
2624 * Allocate enough pages to cover @size from the page level
2625 * allocator and map them into contiguous kernel virtual space.
2626 *
2627 * For tight control over page level allocator and protection flags
2628 * use __vmalloc() instead.
2629 *
2630 * Return: pointer to the allocated memory or %NULL on error
2631 */
2632void *vmalloc(unsigned long size)
2633{
2634        return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
2635                                __builtin_return_address(0));
2636}
2637EXPORT_SYMBOL(vmalloc);
2638
2639/**
2640 * vzalloc - allocate virtually contiguous memory with zero fill
2641 * @size:    allocation size
2642 *
2643 * Allocate enough pages to cover @size from the page level
2644 * allocator and map them into contiguous kernel virtual space.
2645 * The memory allocated is set to zero.
2646 *
2647 * For tight control over page level allocator and protection flags
2648 * use __vmalloc() instead.
2649 *
2650 * Return: pointer to the allocated memory or %NULL on error
2651 */
2652void *vzalloc(unsigned long size)
2653{
2654        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
2655                                __builtin_return_address(0));
2656}
2657EXPORT_SYMBOL(vzalloc);
2658
2659/**
2660 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
2661 * @size: allocation size
2662 *
2663 * The resulting memory area is zeroed so it can be mapped to userspace
2664 * without leaking data.
2665 *
2666 * Return: pointer to the allocated memory or %NULL on error
2667 */
2668void *vmalloc_user(unsigned long size)
2669{
2670        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2671                                    GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
2672                                    VM_USERMAP, NUMA_NO_NODE,
2673                                    __builtin_return_address(0));
2674}
2675EXPORT_SYMBOL(vmalloc_user);
2676
2677/**
2678 * vmalloc_node - allocate memory on a specific node
2679 * @size:         allocation size
2680 * @node:         numa node
2681 *
2682 * Allocate enough pages to cover @size from the page level
2683 * allocator and map them into contiguous kernel virtual space.
2684 *
2685 * For tight control over page level allocator and protection flags
2686 * use __vmalloc() instead.
2687 *
2688 * Return: pointer to the allocated memory or %NULL on error
2689 */
2690void *vmalloc_node(unsigned long size, int node)
2691{
2692        return __vmalloc_node(size, 1, GFP_KERNEL, node,
2693                        __builtin_return_address(0));
2694}
2695EXPORT_SYMBOL(vmalloc_node);
2696
2697/**
2698 * vzalloc_node - allocate memory on a specific node with zero fill
2699 * @size:       allocation size
2700 * @node:       numa node
2701 *
2702 * Allocate enough pages to cover @size from the page level
2703 * allocator and map them into contiguous kernel virtual space.
2704 * The memory allocated is set to zero.
2705 *
2706 * Return: pointer to the allocated memory or %NULL on error
2707 */
2708void *vzalloc_node(unsigned long size, int node)
2709{
2710        return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
2711                                __builtin_return_address(0));
2712}
2713EXPORT_SYMBOL(vzalloc_node);
2714
2715#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
2716#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
2717#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
2718#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
2719#else
2720/*
2721 * 64b systems should always have either DMA or DMA32 zones. For others
2722 * GFP_DMA32 should do the right thing and use the normal zone.
2723 */
2724#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
2725#endif
2726
2727/**
2728 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
2729 * @size:       allocation size
2730 *
2731 * Allocate enough 32bit PA addressable pages to cover @size from the
2732 * page level allocator and map them into contiguous kernel virtual space.
2733 *
2734 * Return: pointer to the allocated memory or %NULL on error
2735 */
2736void *vmalloc_32(unsigned long size)
2737{
2738        return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
2739                        __builtin_return_address(0));
2740}
2741EXPORT_SYMBOL(vmalloc_32);
2742
2743/**
2744 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
2745 * @size:            allocation size
2746 *
2747 * The resulting memory area is 32bit addressable and zeroed so it can be
2748 * mapped to userspace without leaking data.
2749 *
2750 * Return: pointer to the allocated memory or %NULL on error
2751 */
2752void *vmalloc_32_user(unsigned long size)
2753{
2754        return __vmalloc_node_range(size, SHMLBA,  VMALLOC_START, VMALLOC_END,
2755                                    GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
2756                                    VM_USERMAP, NUMA_NO_NODE,
2757                                    __builtin_return_address(0));
2758}
2759EXPORT_SYMBOL(vmalloc_32_user);
2760
2761/*
2762 * small helper routine , copy contents to buf from addr.
2763 * If the page is not present, fill zero.
2764 */
2765
2766static int aligned_vread(char *buf, char *addr, unsigned long count)
2767{
2768        struct page *p;
2769        int copied = 0;
2770
2771        while (count) {
2772                unsigned long offset, length;
2773
2774                offset = offset_in_page(addr);
2775                length = PAGE_SIZE - offset;
2776                if (length > count)
2777                        length = count;
2778                p = vmalloc_to_page(addr);
2779                /*
2780                 * To do safe access to this _mapped_ area, we need
2781                 * lock. But adding lock here means that we need to add
2782                 * overhead of vmalloc()/vfree() calles for this _debug_
2783                 * interface, rarely used. Instead of that, we'll use
2784                 * kmap() and get small overhead in this access function.
2785                 */
2786                if (p) {
2787                        /*
2788                         * we can expect USER0 is not used (see vread/vwrite's
2789                         * function description)
2790                         */
2791                        void *map = kmap_atomic(p);
2792                        memcpy(buf, map + offset, length);
2793                        kunmap_atomic(map);
2794                } else
2795                        memset(buf, 0, length);
2796
2797                addr += length;
2798                buf += length;
2799                copied += length;
2800                count -= length;
2801        }
2802        return copied;
2803}
2804
2805static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2806{
2807        struct page *p;
2808        int copied = 0;
2809
2810        while (count) {
2811                unsigned long offset, length;
2812
2813                offset = offset_in_page(addr);
2814                length = PAGE_SIZE - offset;
2815                if (length > count)
2816                        length = count;
2817                p = vmalloc_to_page(addr);
2818                /*
2819                 * To do safe access to this _mapped_ area, we need
2820                 * lock. But adding lock here means that we need to add
2821                 * overhead of vmalloc()/vfree() calles for this _debug_
2822                 * interface, rarely used. Instead of that, we'll use
2823                 * kmap() and get small overhead in this access function.
2824                 */
2825                if (p) {
2826                        /*
2827                         * we can expect USER0 is not used (see vread/vwrite's
2828                         * function description)
2829                         */
2830                        void *map = kmap_atomic(p);
2831                        memcpy(map + offset, buf, length);
2832                        kunmap_atomic(map);
2833                }
2834                addr += length;
2835                buf += length;
2836                copied += length;
2837                count -= length;
2838        }
2839        return copied;
2840}
2841
2842/**
2843 * vread() - read vmalloc area in a safe way.
2844 * @buf:     buffer for reading data
2845 * @addr:    vm address.
2846 * @count:   number of bytes to be read.
2847 *
2848 * This function checks that addr is a valid vmalloc'ed area, and
2849 * copy data from that area to a given buffer. If the given memory range
2850 * of [addr...addr+count) includes some valid address, data is copied to
2851 * proper area of @buf. If there are memory holes, they'll be zero-filled.
2852 * IOREMAP area is treated as memory hole and no copy is done.
2853 *
2854 * If [addr...addr+count) doesn't includes any intersects with alive
2855 * vm_struct area, returns 0. @buf should be kernel's buffer.
2856 *
2857 * Note: In usual ops, vread() is never necessary because the caller
2858 * should know vmalloc() area is valid and can use memcpy().
2859 * This is for routines which have to access vmalloc area without
2860 * any information, as /dev/kmem.
2861 *
2862 * Return: number of bytes for which addr and buf should be increased
2863 * (same number as @count) or %0 if [addr...addr+count) doesn't
2864 * include any intersection with valid vmalloc area
2865 */
2866long vread(char *buf, char *addr, unsigned long count)
2867{
2868        struct vmap_area *va;
2869        struct vm_struct *vm;
2870        char *vaddr, *buf_start = buf;
2871        unsigned long buflen = count;
2872        unsigned long n;
2873
2874        /* Don't allow overflow */
2875        if ((unsigned long) addr + count < count)
2876                count = -(unsigned long) addr;
2877
2878        spin_lock(&vmap_area_lock);
2879        list_for_each_entry(va, &vmap_area_list, list) {
2880                if (!count)
2881                        break;
2882
2883                if (!va->vm)
2884                        continue;
2885
2886                vm = va->vm;
2887                vaddr = (char *) vm->addr;
2888                if (addr >= vaddr + get_vm_area_size(vm))
2889                        continue;
2890                while (addr < vaddr) {
2891                        if (count == 0)
2892                                goto finished;
2893                        *buf = '\0';
2894                        buf++;
2895                        addr++;
2896                        count--;
2897                }
2898                n = vaddr + get_vm_area_size(vm) - addr;
2899                if (n > count)
2900                        n = count;
2901                if (!(vm->flags & VM_IOREMAP))
2902                        aligned_vread(buf, addr, n);
2903                else /* IOREMAP area is treated as memory hole */
2904                        memset(buf, 0, n);
2905                buf += n;
2906                addr += n;
2907                count -= n;
2908        }
2909finished:
2910        spin_unlock(&vmap_area_lock);
2911
2912        if (buf == buf_start)
2913                return 0;
2914        /* zero-fill memory holes */
2915        if (buf != buf_start + buflen)
2916                memset(buf, 0, buflen - (buf - buf_start));
2917
2918        return buflen;
2919}
2920
2921/**
2922 * vwrite() - write vmalloc area in a safe way.
2923 * @buf:      buffer for source data
2924 * @addr:     vm address.
2925 * @count:    number of bytes to be read.
2926 *
2927 * This function checks that addr is a valid vmalloc'ed area, and
2928 * copy data from a buffer to the given addr. If specified range of
2929 * [addr...addr+count) includes some valid address, data is copied from
2930 * proper area of @buf. If there are memory holes, no copy to hole.
2931 * IOREMAP area is treated as memory hole and no copy is done.
2932 *
2933 * If [addr...addr+count) doesn't includes any intersects with alive
2934 * vm_struct area, returns 0. @buf should be kernel's buffer.
2935 *
2936 * Note: In usual ops, vwrite() is never necessary because the caller
2937 * should know vmalloc() area is valid and can use memcpy().
2938 * This is for routines which have to access vmalloc area without
2939 * any information, as /dev/kmem.
2940 *
2941 * Return: number of bytes for which addr and buf should be
2942 * increased (same number as @count) or %0 if [addr...addr+count)
2943 * doesn't include any intersection with valid vmalloc area
2944 */
2945long vwrite(char *buf, char *addr, unsigned long count)
2946{
2947        struct vmap_area *va;
2948        struct vm_struct *vm;
2949        char *vaddr;
2950        unsigned long n, buflen;
2951        int copied = 0;
2952
2953        /* Don't allow overflow */
2954        if ((unsigned long) addr + count < count)
2955                count = -(unsigned long) addr;
2956        buflen = count;
2957
2958        spin_lock(&vmap_area_lock);
2959        list_for_each_entry(va, &vmap_area_list, list) {
2960                if (!count)
2961                        break;
2962
2963                if (!va->vm)
2964                        continue;
2965
2966                vm = va->vm;
2967                vaddr = (char *) vm->addr;
2968                if (addr >= vaddr + get_vm_area_size(vm))
2969                        continue;
2970                while (addr < vaddr) {
2971                        if (count == 0)
2972                                goto finished;
2973                        buf++;
2974                        addr++;
2975                        count--;
2976                }
2977                n = vaddr + get_vm_area_size(vm) - addr;
2978                if (n > count)
2979                        n = count;
2980                if (!(vm->flags & VM_IOREMAP)) {
2981                        aligned_vwrite(buf, addr, n);
2982                        copied++;
2983                }
2984                buf += n;
2985                addr += n;
2986                count -= n;
2987        }
2988finished:
2989        spin_unlock(&vmap_area_lock);
2990        if (!copied)
2991                return 0;
2992        return buflen;
2993}
2994
2995/**
2996 * remap_vmalloc_range_partial - map vmalloc pages to userspace
2997 * @vma:                vma to cover
2998 * @uaddr:              target user address to start at
2999 * @kaddr:              virtual address of vmalloc kernel memory
3000 * @pgoff:              offset from @kaddr to start at
3001 * @size:               size of map area
3002 *
3003 * Returns:     0 for success, -Exxx on failure
3004 *
3005 * This function checks that @kaddr is a valid vmalloc'ed area,
3006 * and that it is big enough to cover the range starting at
3007 * @uaddr in @vma. Will return failure if that criteria isn't
3008 * met.
3009 *
3010 * Similar to remap_pfn_range() (see mm/memory.c)
3011 */
3012int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3013                                void *kaddr, unsigned long pgoff,
3014                                unsigned long size)
3015{
3016        struct vm_struct *area;
3017        unsigned long off;
3018        unsigned long end_index;
3019
3020        if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3021                return -EINVAL;
3022
3023        size = PAGE_ALIGN(size);
3024
3025        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3026                return -EINVAL;
3027
3028        area = find_vm_area(kaddr);
3029        if (!area)
3030                return -EINVAL;
3031
3032        if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3033                return -EINVAL;
3034
3035        if (check_add_overflow(size, off, &end_index) ||
3036            end_index > get_vm_area_size(area))
3037                return -EINVAL;
3038        kaddr += off;
3039
3040        do {
3041                struct page *page = vmalloc_to_page(kaddr);
3042                int ret;
3043
3044                ret = vm_insert_page(vma, uaddr, page);
3045                if (ret)
3046                        return ret;
3047
3048                uaddr += PAGE_SIZE;
3049                kaddr += PAGE_SIZE;
3050                size -= PAGE_SIZE;
3051        } while (size > 0);
3052
3053        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3054
3055        return 0;
3056}
3057EXPORT_SYMBOL(remap_vmalloc_range_partial);
3058
3059/**
3060 * remap_vmalloc_range - map vmalloc pages to userspace
3061 * @vma:                vma to cover (map full range of vma)
3062 * @addr:               vmalloc memory
3063 * @pgoff:              number of pages into addr before first page to map
3064 *
3065 * Returns:     0 for success, -Exxx on failure
3066 *
3067 * This function checks that addr is a valid vmalloc'ed area, and
3068 * that it is big enough to cover the vma. Will return failure if
3069 * that criteria isn't met.
3070 *
3071 * Similar to remap_pfn_range() (see mm/memory.c)
3072 */
3073int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3074                                                unsigned long pgoff)
3075{
3076        return remap_vmalloc_range_partial(vma, vma->vm_start,
3077                                           addr, pgoff,
3078                                           vma->vm_end - vma->vm_start);
3079}
3080EXPORT_SYMBOL(remap_vmalloc_range);
3081
3082void free_vm_area(struct vm_struct *area)
3083{
3084        struct vm_struct *ret;
3085        ret = remove_vm_area(area->addr);
3086        BUG_ON(ret != area);
3087        kfree(area);
3088}
3089EXPORT_SYMBOL_GPL(free_vm_area);
3090
3091#ifdef CONFIG_SMP
3092static struct vmap_area *node_to_va(struct rb_node *n)
3093{
3094        return rb_entry_safe(n, struct vmap_area, rb_node);
3095}
3096
3097/**
3098 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3099 * @addr: target address
3100 *
3101 * Returns: vmap_area if it is found. If there is no such area
3102 *   the first highest(reverse order) vmap_area is returned
3103 *   i.e. va->va_start < addr && va->va_end < addr or NULL
3104 *   if there are no any areas before @addr.
3105 */
3106static struct vmap_area *
3107pvm_find_va_enclose_addr(unsigned long addr)
3108{
3109        struct vmap_area *va, *tmp;
3110        struct rb_node *n;
3111
3112        n = free_vmap_area_root.rb_node;
3113        va = NULL;
3114
3115        while (n) {
3116                tmp = rb_entry(n, struct vmap_area, rb_node);
3117                if (tmp->va_start <= addr) {
3118                        va = tmp;
3119                        if (tmp->va_end >= addr)
3120                                break;
3121
3122                        n = n->rb_right;
3123                } else {
3124                        n = n->rb_left;
3125                }
3126        }
3127
3128        return va;
3129}
3130
3131/**
3132 * pvm_determine_end_from_reverse - find the highest aligned address
3133 * of free block below VMALLOC_END
3134 * @va:
3135 *   in - the VA we start the search(reverse order);
3136 *   out - the VA with the highest aligned end address.
3137 *
3138 * Returns: determined end address within vmap_area
3139 */
3140static unsigned long
3141pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3142{
3143        unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3144        unsigned long addr;
3145
3146        if (likely(*va)) {
3147                list_for_each_entry_from_reverse((*va),
3148                                &free_vmap_area_list, list) {
3149                        addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3150                        if ((*va)->va_start < addr)
3151                                return addr;
3152                }
3153        }
3154
3155        return 0;
3156}
3157
3158/**
3159 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3160 * @offsets: array containing offset of each area
3161 * @sizes: array containing size of each area
3162 * @nr_vms: the number of areas to allocate
3163 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3164 *
3165 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3166 *          vm_structs on success, %NULL on failure
3167 *
3168 * Percpu allocator wants to use congruent vm areas so that it can
3169 * maintain the offsets among percpu areas.  This function allocates
3170 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
3171 * be scattered pretty far, distance between two areas easily going up
3172 * to gigabytes.  To avoid interacting with regular vmallocs, these
3173 * areas are allocated from top.
3174 *
3175 * Despite its complicated look, this allocator is rather simple. It
3176 * does everything top-down and scans free blocks from the end looking
3177 * for matching base. While scanning, if any of the areas do not fit the
3178 * base address is pulled down to fit the area. Scanning is repeated till
3179 * all the areas fit and then all necessary data structures are inserted
3180 * and the result is returned.
3181 */
3182struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3183                                     const size_t *sizes, int nr_vms,
3184                                     size_t align)
3185{
3186        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3187        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3188        struct vmap_area **vas, *va;
3189        struct vm_struct **vms;
3190        int area, area2, last_area, term_area;
3191        unsigned long base, start, size, end, last_end, orig_start, orig_end;
3192        bool purged = false;
3193        enum fit_type type;
3194
3195        /* verify parameters and allocate data structures */
3196        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3197        for (last_area = 0, area = 0; area < nr_vms; area++) {
3198                start = offsets[area];
3199                end = start + sizes[area];
3200
3201                /* is everything aligned properly? */
3202                BUG_ON(!IS_ALIGNED(offsets[area], align));
3203                BUG_ON(!IS_ALIGNED(sizes[area], align));
3204
3205                /* detect the area with the highest address */
3206                if (start > offsets[last_area])
3207                        last_area = area;
3208
3209                for (area2 = area + 1; area2 < nr_vms; area2++) {
3210                        unsigned long start2 = offsets[area2];
3211                        unsigned long end2 = start2 + sizes[area2];
3212
3213                        BUG_ON(start2 < end && start < end2);
3214                }
3215        }
3216        last_end = offsets[last_area] + sizes[last_area];
3217
3218        if (vmalloc_end - vmalloc_start < last_end) {
3219                WARN_ON(true);
3220                return NULL;
3221        }
3222
3223        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3224        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3225        if (!vas || !vms)
3226                goto err_free2;
3227
3228        for (area = 0; area < nr_vms; area++) {
3229                vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3230                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3231                if (!vas[area] || !vms[area])
3232                        goto err_free;
3233        }
3234retry:
3235        spin_lock(&free_vmap_area_lock);
3236
3237        /* start scanning - we scan from the top, begin with the last area */
3238        area = term_area = last_area;
3239        start = offsets[area];
3240        end = start + sizes[area];
3241
3242        va = pvm_find_va_enclose_addr(vmalloc_end);
3243        base = pvm_determine_end_from_reverse(&va, align) - end;
3244
3245        while (true) {
3246                /*
3247                 * base might have underflowed, add last_end before
3248                 * comparing.
3249                 */
3250                if (base + last_end < vmalloc_start + last_end)
3251                        goto overflow;
3252
3253                /*
3254                 * Fitting base has not been found.
3255                 */
3256                if (va == NULL)
3257                        goto overflow;
3258
3259                /*
3260                 * If required width exceeds current VA block, move
3261                 * base downwards and then recheck.
3262                 */
3263                if (base + end > va->va_end) {
3264                        base = pvm_determine_end_from_reverse(&va, align) - end;
3265                        term_area = area;
3266                        continue;
3267                }
3268
3269                /*
3270                 * If this VA does not fit, move base downwards and recheck.
3271                 */
3272                if (base + start < va->va_start) {
3273                        va = node_to_va(rb_prev(&va->rb_node));
3274                        base = pvm_determine_end_from_reverse(&va, align) - end;
3275                        term_area = area;
3276                        continue;
3277                }
3278
3279                /*
3280                 * This area fits, move on to the previous one.  If
3281                 * the previous one is the terminal one, we're done.
3282                 */
3283                area = (area + nr_vms - 1) % nr_vms;
3284                if (area == term_area)
3285                        break;
3286
3287                start = offsets[area];
3288                end = start + sizes[area];
3289                va = pvm_find_va_enclose_addr(base + end);
3290        }
3291
3292        /* we've found a fitting base, insert all va's */
3293        for (area = 0; area < nr_vms; area++) {
3294                int ret;
3295
3296                start = base + offsets[area];
3297                size = sizes[area];
3298
3299                va = pvm_find_va_enclose_addr(start);
3300                if (WARN_ON_ONCE(va == NULL))
3301                        /* It is a BUG(), but trigger recovery instead. */
3302                        goto recovery;
3303
3304                type = classify_va_fit_type(va, start, size);
3305                if (WARN_ON_ONCE(type == NOTHING_FIT))
3306                        /* It is a BUG(), but trigger recovery instead. */
3307                        goto recovery;
3308
3309                ret = adjust_va_to_fit_type(va, start, size, type);
3310                if (unlikely(ret))
3311                        goto recovery;
3312
3313                /* Allocated area. */
3314                va = vas[area];
3315                va->va_start = start;
3316                va->va_end = start + size;
3317        }
3318
3319        spin_unlock(&free_vmap_area_lock);
3320
3321        /* populate the kasan shadow space */
3322        for (area = 0; area < nr_vms; area++) {
3323                if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3324                        goto err_free_shadow;
3325
3326                kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3327                                       sizes[area]);
3328        }
3329
3330        /* insert all vm's */
3331        spin_lock(&vmap_area_lock);
3332        for (area = 0; area < nr_vms; area++) {
3333                insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3334
3335                setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3336                                 pcpu_get_vm_areas);
3337        }
3338        spin_unlock(&vmap_area_lock);
3339
3340        kfree(vas);
3341        return vms;
3342
3343recovery:
3344        /*
3345         * Remove previously allocated areas. There is no
3346         * need in removing these areas from the busy tree,
3347         * because they are inserted only on the final step
3348         * and when pcpu_get_vm_areas() is success.
3349         */
3350        while (area--) {
3351                orig_start = vas[area]->va_start;
3352                orig_end = vas[area]->va_end;
3353                va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3354                                            &free_vmap_area_list);
3355                if (va)
3356                        kasan_release_vmalloc(orig_start, orig_end,
3357                                va->va_start, va->va_end);
3358                vas[area] = NULL;
3359        }
3360
3361overflow:
3362        spin_unlock(&free_vmap_area_lock);
3363        if (!purged) {
3364                purge_vmap_area_lazy();
3365                purged = true;
3366
3367                /* Before "retry", check if we recover. */
3368                for (area = 0; area < nr_vms; area++) {
3369                        if (vas[area])
3370                                continue;
3371
3372                        vas[area] = kmem_cache_zalloc(
3373                                vmap_area_cachep, GFP_KERNEL);
3374                        if (!vas[area])
3375                                goto err_free;
3376                }
3377
3378                goto retry;
3379        }
3380
3381err_free:
3382        for (area = 0; area < nr_vms; area++) {
3383                if (vas[area])
3384                        kmem_cache_free(vmap_area_cachep, vas[area]);
3385
3386                kfree(vms[area]);
3387        }
3388err_free2:
3389        kfree(vas);
3390        kfree(vms);
3391        return NULL;
3392
3393err_free_shadow:
3394        spin_lock(&free_vmap_area_lock);
3395        /*
3396         * We release all the vmalloc shadows, even the ones for regions that
3397         * hadn't been successfully added. This relies on kasan_release_vmalloc
3398         * being able to tolerate this case.
3399         */
3400        for (area = 0; area < nr_vms; area++) {
3401                orig_start = vas[area]->va_start;
3402                orig_end = vas[area]->va_end;
3403                va = merge_or_add_vmap_area(vas[area], &free_vmap_area_root,
3404                                            &free_vmap_area_list);
3405                if (va)
3406                        kasan_release_vmalloc(orig_start, orig_end,
3407                                va->va_start, va->va_end);
3408                vas[area] = NULL;
3409                kfree(vms[area]);
3410        }
3411        spin_unlock(&free_vmap_area_lock);
3412        kfree(vas);
3413        kfree(vms);
3414        return NULL;
3415}
3416
3417/**
3418 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3419 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3420 * @nr_vms: the number of allocated areas
3421 *
3422 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3423 */
3424void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3425{
3426        int i;
3427
3428        for (i = 0; i < nr_vms; i++)
3429                free_vm_area(vms[i]);
3430        kfree(vms);
3431}
3432#endif  /* CONFIG_SMP */
3433
3434#ifdef CONFIG_PROC_FS
3435static void *s_start(struct seq_file *m, loff_t *pos)
3436        __acquires(&vmap_purge_lock)
3437        __acquires(&vmap_area_lock)
3438{
3439        mutex_lock(&vmap_purge_lock);
3440        spin_lock(&vmap_area_lock);
3441
3442        return seq_list_start(&vmap_area_list, *pos);
3443}
3444
3445static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3446{
3447        return seq_list_next(p, &vmap_area_list, pos);
3448}
3449
3450static void s_stop(struct seq_file *m, void *p)
3451        __releases(&vmap_purge_lock)
3452        __releases(&vmap_area_lock)
3453{
3454        mutex_unlock(&vmap_purge_lock);
3455        spin_unlock(&vmap_area_lock);
3456}
3457
3458static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3459{
3460        if (IS_ENABLED(CONFIG_NUMA)) {
3461                unsigned int nr, *counters = m->private;
3462
3463                if (!counters)
3464                        return;
3465
3466                if (v->flags & VM_UNINITIALIZED)
3467                        return;
3468                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3469                smp_rmb();
3470
3471                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3472
3473                for (nr = 0; nr < v->nr_pages; nr++)
3474                        counters[page_to_nid(v->pages[nr])]++;
3475
3476                for_each_node_state(nr, N_HIGH_MEMORY)
3477                        if (counters[nr])
3478                                seq_printf(m, " N%u=%u", nr, counters[nr]);
3479        }
3480}
3481
3482static void show_purge_info(struct seq_file *m)
3483{
3484        struct llist_node *head;
3485        struct vmap_area *va;
3486
3487        head = READ_ONCE(vmap_purge_list.first);
3488        if (head == NULL)
3489                return;
3490
3491        llist_for_each_entry(va, head, purge_list) {
3492                seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3493                        (void *)va->va_start, (void *)va->va_end,
3494                        va->va_end - va->va_start);
3495        }
3496}
3497
3498static int s_show(struct seq_file *m, void *p)
3499{
3500        struct vmap_area *va;
3501        struct vm_struct *v;
3502
3503        va = list_entry(p, struct vmap_area, list);
3504
3505        /*
3506         * s_show can encounter race with remove_vm_area, !vm on behalf
3507         * of vmap area is being tear down or vm_map_ram allocation.
3508         */
3509        if (!va->vm) {
3510                seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3511                        (void *)va->va_start, (void *)va->va_end,
3512                        va->va_end - va->va_start);
3513
3514                return 0;
3515        }
3516
3517        v = va->vm;
3518
3519        seq_printf(m, "0x%pK-0x%pK %7ld",
3520                v->addr, v->addr + v->size, v->size);
3521
3522        if (v->caller)
3523                seq_printf(m, " %pS", v->caller);
3524
3525        if (v->nr_pages)
3526                seq_printf(m, " pages=%d", v->nr_pages);
3527
3528        if (v->phys_addr)
3529                seq_printf(m, " phys=%pa", &v->phys_addr);
3530
3531        if (v->flags & VM_IOREMAP)
3532                seq_puts(m, " ioremap");
3533
3534        if (v->flags & VM_ALLOC)
3535                seq_puts(m, " vmalloc");
3536
3537        if (v->flags & VM_MAP)
3538                seq_puts(m, " vmap");
3539
3540        if (v->flags & VM_USERMAP)
3541                seq_puts(m, " user");
3542
3543        if (v->flags & VM_DMA_COHERENT)
3544                seq_puts(m, " dma-coherent");
3545
3546        if (is_vmalloc_addr(v->pages))
3547                seq_puts(m, " vpages");
3548
3549        show_numa_info(m, v);
3550        seq_putc(m, '\n');
3551
3552        /*
3553         * As a final step, dump "unpurged" areas. Note,
3554         * that entire "/proc/vmallocinfo" output will not
3555         * be address sorted, because the purge list is not
3556         * sorted.
3557         */
3558        if (list_is_last(&va->list, &vmap_area_list))
3559                show_purge_info(m);
3560
3561        return 0;
3562}
3563
3564static const struct seq_operations vmalloc_op = {
3565        .start = s_start,
3566        .next = s_next,
3567        .stop = s_stop,
3568        .show = s_show,
3569};
3570
3571static int __init proc_vmalloc_init(void)
3572{
3573        if (IS_ENABLED(CONFIG_NUMA))
3574                proc_create_seq_private("vmallocinfo", 0400, NULL,
3575                                &vmalloc_op,
3576                                nr_node_ids * sizeof(unsigned int), NULL);
3577        else
3578                proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
3579        return 0;
3580}
3581module_init(proc_vmalloc_init);
3582
3583#endif
3584