linux/net/wireless/util.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Wireless utility functions
   4 *
   5 * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
   6 * Copyright 2013-2014  Intel Mobile Communications GmbH
   7 * Copyright 2017       Intel Deutschland GmbH
   8 * Copyright (C) 2018-2020 Intel Corporation
   9 */
  10#include <linux/export.h>
  11#include <linux/bitops.h>
  12#include <linux/etherdevice.h>
  13#include <linux/slab.h>
  14#include <linux/ieee80211.h>
  15#include <net/cfg80211.h>
  16#include <net/ip.h>
  17#include <net/dsfield.h>
  18#include <linux/if_vlan.h>
  19#include <linux/mpls.h>
  20#include <linux/gcd.h>
  21#include <linux/bitfield.h>
  22#include <linux/nospec.h>
  23#include "core.h"
  24#include "rdev-ops.h"
  25
  26
  27struct ieee80211_rate *
  28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
  29                            u32 basic_rates, int bitrate)
  30{
  31        struct ieee80211_rate *result = &sband->bitrates[0];
  32        int i;
  33
  34        for (i = 0; i < sband->n_bitrates; i++) {
  35                if (!(basic_rates & BIT(i)))
  36                        continue;
  37                if (sband->bitrates[i].bitrate > bitrate)
  38                        continue;
  39                result = &sband->bitrates[i];
  40        }
  41
  42        return result;
  43}
  44EXPORT_SYMBOL(ieee80211_get_response_rate);
  45
  46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
  47                              enum nl80211_bss_scan_width scan_width)
  48{
  49        struct ieee80211_rate *bitrates;
  50        u32 mandatory_rates = 0;
  51        enum ieee80211_rate_flags mandatory_flag;
  52        int i;
  53
  54        if (WARN_ON(!sband))
  55                return 1;
  56
  57        if (sband->band == NL80211_BAND_2GHZ) {
  58                if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
  59                    scan_width == NL80211_BSS_CHAN_WIDTH_10)
  60                        mandatory_flag = IEEE80211_RATE_MANDATORY_G;
  61                else
  62                        mandatory_flag = IEEE80211_RATE_MANDATORY_B;
  63        } else {
  64                mandatory_flag = IEEE80211_RATE_MANDATORY_A;
  65        }
  66
  67        bitrates = sband->bitrates;
  68        for (i = 0; i < sband->n_bitrates; i++)
  69                if (bitrates[i].flags & mandatory_flag)
  70                        mandatory_rates |= BIT(i);
  71        return mandatory_rates;
  72}
  73EXPORT_SYMBOL(ieee80211_mandatory_rates);
  74
  75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
  76{
  77        /* see 802.11 17.3.8.3.2 and Annex J
  78         * there are overlapping channel numbers in 5GHz and 2GHz bands */
  79        if (chan <= 0)
  80                return 0; /* not supported */
  81        switch (band) {
  82        case NL80211_BAND_2GHZ:
  83                if (chan == 14)
  84                        return MHZ_TO_KHZ(2484);
  85                else if (chan < 14)
  86                        return MHZ_TO_KHZ(2407 + chan * 5);
  87                break;
  88        case NL80211_BAND_5GHZ:
  89                if (chan >= 182 && chan <= 196)
  90                        return MHZ_TO_KHZ(4000 + chan * 5);
  91                else
  92                        return MHZ_TO_KHZ(5000 + chan * 5);
  93                break;
  94        case NL80211_BAND_6GHZ:
  95                /* see 802.11ax D6.1 27.3.23.2 */
  96                if (chan == 2)
  97                        return MHZ_TO_KHZ(5935);
  98                if (chan <= 233)
  99                        return MHZ_TO_KHZ(5950 + chan * 5);
 100                break;
 101        case NL80211_BAND_60GHZ:
 102                if (chan < 7)
 103                        return MHZ_TO_KHZ(56160 + chan * 2160);
 104                break;
 105        case NL80211_BAND_S1GHZ:
 106                return 902000 + chan * 500;
 107        default:
 108                ;
 109        }
 110        return 0; /* not supported */
 111}
 112EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
 113
 114enum nl80211_chan_width
 115ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
 116{
 117        if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
 118                return NL80211_CHAN_WIDTH_20_NOHT;
 119
 120        /*S1G defines a single allowed channel width per channel.
 121         * Extract that width here.
 122         */
 123        if (chan->flags & IEEE80211_CHAN_1MHZ)
 124                return NL80211_CHAN_WIDTH_1;
 125        else if (chan->flags & IEEE80211_CHAN_2MHZ)
 126                return NL80211_CHAN_WIDTH_2;
 127        else if (chan->flags & IEEE80211_CHAN_4MHZ)
 128                return NL80211_CHAN_WIDTH_4;
 129        else if (chan->flags & IEEE80211_CHAN_8MHZ)
 130                return NL80211_CHAN_WIDTH_8;
 131        else if (chan->flags & IEEE80211_CHAN_16MHZ)
 132                return NL80211_CHAN_WIDTH_16;
 133
 134        pr_err("unknown channel width for channel at %dKHz?\n",
 135               ieee80211_channel_to_khz(chan));
 136
 137        return NL80211_CHAN_WIDTH_1;
 138}
 139EXPORT_SYMBOL(ieee80211_s1g_channel_width);
 140
 141int ieee80211_freq_khz_to_channel(u32 freq)
 142{
 143        /* TODO: just handle MHz for now */
 144        freq = KHZ_TO_MHZ(freq);
 145
 146        /* see 802.11 17.3.8.3.2 and Annex J */
 147        if (freq == 2484)
 148                return 14;
 149        else if (freq < 2484)
 150                return (freq - 2407) / 5;
 151        else if (freq >= 4910 && freq <= 4980)
 152                return (freq - 4000) / 5;
 153        else if (freq < 5925)
 154                return (freq - 5000) / 5;
 155        else if (freq == 5935)
 156                return 2;
 157        else if (freq <= 45000) /* DMG band lower limit */
 158                /* see 802.11ax D6.1 27.3.22.2 */
 159                return (freq - 5950) / 5;
 160        else if (freq >= 58320 && freq <= 70200)
 161                return (freq - 56160) / 2160;
 162        else
 163                return 0;
 164}
 165EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
 166
 167struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
 168                                                    u32 freq)
 169{
 170        enum nl80211_band band;
 171        struct ieee80211_supported_band *sband;
 172        int i;
 173
 174        for (band = 0; band < NUM_NL80211_BANDS; band++) {
 175                sband = wiphy->bands[band];
 176
 177                if (!sband)
 178                        continue;
 179
 180                for (i = 0; i < sband->n_channels; i++) {
 181                        struct ieee80211_channel *chan = &sband->channels[i];
 182
 183                        if (ieee80211_channel_to_khz(chan) == freq)
 184                                return chan;
 185                }
 186        }
 187
 188        return NULL;
 189}
 190EXPORT_SYMBOL(ieee80211_get_channel_khz);
 191
 192static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
 193{
 194        int i, want;
 195
 196        switch (sband->band) {
 197        case NL80211_BAND_5GHZ:
 198        case NL80211_BAND_6GHZ:
 199                want = 3;
 200                for (i = 0; i < sband->n_bitrates; i++) {
 201                        if (sband->bitrates[i].bitrate == 60 ||
 202                            sband->bitrates[i].bitrate == 120 ||
 203                            sband->bitrates[i].bitrate == 240) {
 204                                sband->bitrates[i].flags |=
 205                                        IEEE80211_RATE_MANDATORY_A;
 206                                want--;
 207                        }
 208                }
 209                WARN_ON(want);
 210                break;
 211        case NL80211_BAND_2GHZ:
 212                want = 7;
 213                for (i = 0; i < sband->n_bitrates; i++) {
 214                        switch (sband->bitrates[i].bitrate) {
 215                        case 10:
 216                        case 20:
 217                        case 55:
 218                        case 110:
 219                                sband->bitrates[i].flags |=
 220                                        IEEE80211_RATE_MANDATORY_B |
 221                                        IEEE80211_RATE_MANDATORY_G;
 222                                want--;
 223                                break;
 224                        case 60:
 225                        case 120:
 226                        case 240:
 227                                sband->bitrates[i].flags |=
 228                                        IEEE80211_RATE_MANDATORY_G;
 229                                want--;
 230                                fallthrough;
 231                        default:
 232                                sband->bitrates[i].flags |=
 233                                        IEEE80211_RATE_ERP_G;
 234                                break;
 235                        }
 236                }
 237                WARN_ON(want != 0 && want != 3);
 238                break;
 239        case NL80211_BAND_60GHZ:
 240                /* check for mandatory HT MCS 1..4 */
 241                WARN_ON(!sband->ht_cap.ht_supported);
 242                WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
 243                break;
 244        case NL80211_BAND_S1GHZ:
 245                /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
 246                 * mandatory is ok.
 247                 */
 248                WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
 249                break;
 250        case NUM_NL80211_BANDS:
 251        default:
 252                WARN_ON(1);
 253                break;
 254        }
 255}
 256
 257void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
 258{
 259        enum nl80211_band band;
 260
 261        for (band = 0; band < NUM_NL80211_BANDS; band++)
 262                if (wiphy->bands[band])
 263                        set_mandatory_flags_band(wiphy->bands[band]);
 264}
 265
 266bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
 267{
 268        int i;
 269        for (i = 0; i < wiphy->n_cipher_suites; i++)
 270                if (cipher == wiphy->cipher_suites[i])
 271                        return true;
 272        return false;
 273}
 274
 275int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
 276                                   struct key_params *params, int key_idx,
 277                                   bool pairwise, const u8 *mac_addr)
 278{
 279        int max_key_idx = 5;
 280
 281        if (wiphy_ext_feature_isset(&rdev->wiphy,
 282                                    NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
 283            wiphy_ext_feature_isset(&rdev->wiphy,
 284                                    NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
 285                max_key_idx = 7;
 286        if (key_idx < 0 || key_idx > max_key_idx)
 287                return -EINVAL;
 288
 289        if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
 290                return -EINVAL;
 291
 292        if (pairwise && !mac_addr)
 293                return -EINVAL;
 294
 295        switch (params->cipher) {
 296        case WLAN_CIPHER_SUITE_TKIP:
 297                /* Extended Key ID can only be used with CCMP/GCMP ciphers */
 298                if ((pairwise && key_idx) ||
 299                    params->mode != NL80211_KEY_RX_TX)
 300                        return -EINVAL;
 301                break;
 302        case WLAN_CIPHER_SUITE_CCMP:
 303        case WLAN_CIPHER_SUITE_CCMP_256:
 304        case WLAN_CIPHER_SUITE_GCMP:
 305        case WLAN_CIPHER_SUITE_GCMP_256:
 306                /* IEEE802.11-2016 allows only 0 and - when supporting
 307                 * Extended Key ID - 1 as index for pairwise keys.
 308                 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
 309                 * the driver supports Extended Key ID.
 310                 * @NL80211_KEY_SET_TX can't be set when installing and
 311                 * validating a key.
 312                 */
 313                if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
 314                    params->mode == NL80211_KEY_SET_TX)
 315                        return -EINVAL;
 316                if (wiphy_ext_feature_isset(&rdev->wiphy,
 317                                            NL80211_EXT_FEATURE_EXT_KEY_ID)) {
 318                        if (pairwise && (key_idx < 0 || key_idx > 1))
 319                                return -EINVAL;
 320                } else if (pairwise && key_idx) {
 321                        return -EINVAL;
 322                }
 323                break;
 324        case WLAN_CIPHER_SUITE_AES_CMAC:
 325        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 326        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 327        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 328                /* Disallow BIP (group-only) cipher as pairwise cipher */
 329                if (pairwise)
 330                        return -EINVAL;
 331                if (key_idx < 4)
 332                        return -EINVAL;
 333                break;
 334        case WLAN_CIPHER_SUITE_WEP40:
 335        case WLAN_CIPHER_SUITE_WEP104:
 336                if (key_idx > 3)
 337                        return -EINVAL;
 338        default:
 339                break;
 340        }
 341
 342        switch (params->cipher) {
 343        case WLAN_CIPHER_SUITE_WEP40:
 344                if (params->key_len != WLAN_KEY_LEN_WEP40)
 345                        return -EINVAL;
 346                break;
 347        case WLAN_CIPHER_SUITE_TKIP:
 348                if (params->key_len != WLAN_KEY_LEN_TKIP)
 349                        return -EINVAL;
 350                break;
 351        case WLAN_CIPHER_SUITE_CCMP:
 352                if (params->key_len != WLAN_KEY_LEN_CCMP)
 353                        return -EINVAL;
 354                break;
 355        case WLAN_CIPHER_SUITE_CCMP_256:
 356                if (params->key_len != WLAN_KEY_LEN_CCMP_256)
 357                        return -EINVAL;
 358                break;
 359        case WLAN_CIPHER_SUITE_GCMP:
 360                if (params->key_len != WLAN_KEY_LEN_GCMP)
 361                        return -EINVAL;
 362                break;
 363        case WLAN_CIPHER_SUITE_GCMP_256:
 364                if (params->key_len != WLAN_KEY_LEN_GCMP_256)
 365                        return -EINVAL;
 366                break;
 367        case WLAN_CIPHER_SUITE_WEP104:
 368                if (params->key_len != WLAN_KEY_LEN_WEP104)
 369                        return -EINVAL;
 370                break;
 371        case WLAN_CIPHER_SUITE_AES_CMAC:
 372                if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
 373                        return -EINVAL;
 374                break;
 375        case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 376                if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
 377                        return -EINVAL;
 378                break;
 379        case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 380                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
 381                        return -EINVAL;
 382                break;
 383        case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 384                if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
 385                        return -EINVAL;
 386                break;
 387        default:
 388                /*
 389                 * We don't know anything about this algorithm,
 390                 * allow using it -- but the driver must check
 391                 * all parameters! We still check below whether
 392                 * or not the driver supports this algorithm,
 393                 * of course.
 394                 */
 395                break;
 396        }
 397
 398        if (params->seq) {
 399                switch (params->cipher) {
 400                case WLAN_CIPHER_SUITE_WEP40:
 401                case WLAN_CIPHER_SUITE_WEP104:
 402                        /* These ciphers do not use key sequence */
 403                        return -EINVAL;
 404                case WLAN_CIPHER_SUITE_TKIP:
 405                case WLAN_CIPHER_SUITE_CCMP:
 406                case WLAN_CIPHER_SUITE_CCMP_256:
 407                case WLAN_CIPHER_SUITE_GCMP:
 408                case WLAN_CIPHER_SUITE_GCMP_256:
 409                case WLAN_CIPHER_SUITE_AES_CMAC:
 410                case WLAN_CIPHER_SUITE_BIP_CMAC_256:
 411                case WLAN_CIPHER_SUITE_BIP_GMAC_128:
 412                case WLAN_CIPHER_SUITE_BIP_GMAC_256:
 413                        if (params->seq_len != 6)
 414                                return -EINVAL;
 415                        break;
 416                }
 417        }
 418
 419        if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
 420                return -EINVAL;
 421
 422        return 0;
 423}
 424
 425unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
 426{
 427        unsigned int hdrlen = 24;
 428
 429        if (ieee80211_is_ext(fc)) {
 430                hdrlen = 4;
 431                goto out;
 432        }
 433
 434        if (ieee80211_is_data(fc)) {
 435                if (ieee80211_has_a4(fc))
 436                        hdrlen = 30;
 437                if (ieee80211_is_data_qos(fc)) {
 438                        hdrlen += IEEE80211_QOS_CTL_LEN;
 439                        if (ieee80211_has_order(fc))
 440                                hdrlen += IEEE80211_HT_CTL_LEN;
 441                }
 442                goto out;
 443        }
 444
 445        if (ieee80211_is_mgmt(fc)) {
 446                if (ieee80211_has_order(fc))
 447                        hdrlen += IEEE80211_HT_CTL_LEN;
 448                goto out;
 449        }
 450
 451        if (ieee80211_is_ctl(fc)) {
 452                /*
 453                 * ACK and CTS are 10 bytes, all others 16. To see how
 454                 * to get this condition consider
 455                 *   subtype mask:   0b0000000011110000 (0x00F0)
 456                 *   ACK subtype:    0b0000000011010000 (0x00D0)
 457                 *   CTS subtype:    0b0000000011000000 (0x00C0)
 458                 *   bits that matter:         ^^^      (0x00E0)
 459                 *   value of those: 0b0000000011000000 (0x00C0)
 460                 */
 461                if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
 462                        hdrlen = 10;
 463                else
 464                        hdrlen = 16;
 465        }
 466out:
 467        return hdrlen;
 468}
 469EXPORT_SYMBOL(ieee80211_hdrlen);
 470
 471unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
 472{
 473        const struct ieee80211_hdr *hdr =
 474                        (const struct ieee80211_hdr *)skb->data;
 475        unsigned int hdrlen;
 476
 477        if (unlikely(skb->len < 10))
 478                return 0;
 479        hdrlen = ieee80211_hdrlen(hdr->frame_control);
 480        if (unlikely(hdrlen > skb->len))
 481                return 0;
 482        return hdrlen;
 483}
 484EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
 485
 486static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
 487{
 488        int ae = flags & MESH_FLAGS_AE;
 489        /* 802.11-2012, 8.2.4.7.3 */
 490        switch (ae) {
 491        default:
 492        case 0:
 493                return 6;
 494        case MESH_FLAGS_AE_A4:
 495                return 12;
 496        case MESH_FLAGS_AE_A5_A6:
 497                return 18;
 498        }
 499}
 500
 501unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
 502{
 503        return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
 504}
 505EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
 506
 507int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
 508                                  const u8 *addr, enum nl80211_iftype iftype,
 509                                  u8 data_offset)
 510{
 511        struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
 512        struct {
 513                u8 hdr[ETH_ALEN] __aligned(2);
 514                __be16 proto;
 515        } payload;
 516        struct ethhdr tmp;
 517        u16 hdrlen;
 518        u8 mesh_flags = 0;
 519
 520        if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
 521                return -1;
 522
 523        hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
 524        if (skb->len < hdrlen + 8)
 525                return -1;
 526
 527        /* convert IEEE 802.11 header + possible LLC headers into Ethernet
 528         * header
 529         * IEEE 802.11 address fields:
 530         * ToDS FromDS Addr1 Addr2 Addr3 Addr4
 531         *   0     0   DA    SA    BSSID n/a
 532         *   0     1   DA    BSSID SA    n/a
 533         *   1     0   BSSID SA    DA    n/a
 534         *   1     1   RA    TA    DA    SA
 535         */
 536        memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
 537        memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
 538
 539        if (iftype == NL80211_IFTYPE_MESH_POINT)
 540                skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
 541
 542        mesh_flags &= MESH_FLAGS_AE;
 543
 544        switch (hdr->frame_control &
 545                cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
 546        case cpu_to_le16(IEEE80211_FCTL_TODS):
 547                if (unlikely(iftype != NL80211_IFTYPE_AP &&
 548                             iftype != NL80211_IFTYPE_AP_VLAN &&
 549                             iftype != NL80211_IFTYPE_P2P_GO))
 550                        return -1;
 551                break;
 552        case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
 553                if (unlikely(iftype != NL80211_IFTYPE_WDS &&
 554                             iftype != NL80211_IFTYPE_MESH_POINT &&
 555                             iftype != NL80211_IFTYPE_AP_VLAN &&
 556                             iftype != NL80211_IFTYPE_STATION))
 557                        return -1;
 558                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 559                        if (mesh_flags == MESH_FLAGS_AE_A4)
 560                                return -1;
 561                        if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
 562                                skb_copy_bits(skb, hdrlen +
 563                                        offsetof(struct ieee80211s_hdr, eaddr1),
 564                                        tmp.h_dest, 2 * ETH_ALEN);
 565                        }
 566                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 567                }
 568                break;
 569        case cpu_to_le16(IEEE80211_FCTL_FROMDS):
 570                if ((iftype != NL80211_IFTYPE_STATION &&
 571                     iftype != NL80211_IFTYPE_P2P_CLIENT &&
 572                     iftype != NL80211_IFTYPE_MESH_POINT) ||
 573                    (is_multicast_ether_addr(tmp.h_dest) &&
 574                     ether_addr_equal(tmp.h_source, addr)))
 575                        return -1;
 576                if (iftype == NL80211_IFTYPE_MESH_POINT) {
 577                        if (mesh_flags == MESH_FLAGS_AE_A5_A6)
 578                                return -1;
 579                        if (mesh_flags == MESH_FLAGS_AE_A4)
 580                                skb_copy_bits(skb, hdrlen +
 581                                        offsetof(struct ieee80211s_hdr, eaddr1),
 582                                        tmp.h_source, ETH_ALEN);
 583                        hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
 584                }
 585                break;
 586        case cpu_to_le16(0):
 587                if (iftype != NL80211_IFTYPE_ADHOC &&
 588                    iftype != NL80211_IFTYPE_STATION &&
 589                    iftype != NL80211_IFTYPE_OCB)
 590                                return -1;
 591                break;
 592        }
 593
 594        skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
 595        tmp.h_proto = payload.proto;
 596
 597        if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
 598                    tmp.h_proto != htons(ETH_P_AARP) &&
 599                    tmp.h_proto != htons(ETH_P_IPX)) ||
 600                   ether_addr_equal(payload.hdr, bridge_tunnel_header)))
 601                /* remove RFC1042 or Bridge-Tunnel encapsulation and
 602                 * replace EtherType */
 603                hdrlen += ETH_ALEN + 2;
 604        else
 605                tmp.h_proto = htons(skb->len - hdrlen);
 606
 607        pskb_pull(skb, hdrlen);
 608
 609        if (!ehdr)
 610                ehdr = skb_push(skb, sizeof(struct ethhdr));
 611        memcpy(ehdr, &tmp, sizeof(tmp));
 612
 613        return 0;
 614}
 615EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
 616
 617static void
 618__frame_add_frag(struct sk_buff *skb, struct page *page,
 619                 void *ptr, int len, int size)
 620{
 621        struct skb_shared_info *sh = skb_shinfo(skb);
 622        int page_offset;
 623
 624        get_page(page);
 625        page_offset = ptr - page_address(page);
 626        skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
 627}
 628
 629static void
 630__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
 631                            int offset, int len)
 632{
 633        struct skb_shared_info *sh = skb_shinfo(skb);
 634        const skb_frag_t *frag = &sh->frags[0];
 635        struct page *frag_page;
 636        void *frag_ptr;
 637        int frag_len, frag_size;
 638        int head_size = skb->len - skb->data_len;
 639        int cur_len;
 640
 641        frag_page = virt_to_head_page(skb->head);
 642        frag_ptr = skb->data;
 643        frag_size = head_size;
 644
 645        while (offset >= frag_size) {
 646                offset -= frag_size;
 647                frag_page = skb_frag_page(frag);
 648                frag_ptr = skb_frag_address(frag);
 649                frag_size = skb_frag_size(frag);
 650                frag++;
 651        }
 652
 653        frag_ptr += offset;
 654        frag_len = frag_size - offset;
 655
 656        cur_len = min(len, frag_len);
 657
 658        __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
 659        len -= cur_len;
 660
 661        while (len > 0) {
 662                frag_len = skb_frag_size(frag);
 663                cur_len = min(len, frag_len);
 664                __frame_add_frag(frame, skb_frag_page(frag),
 665                                 skb_frag_address(frag), cur_len, frag_len);
 666                len -= cur_len;
 667                frag++;
 668        }
 669}
 670
 671static struct sk_buff *
 672__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
 673                       int offset, int len, bool reuse_frag)
 674{
 675        struct sk_buff *frame;
 676        int cur_len = len;
 677
 678        if (skb->len - offset < len)
 679                return NULL;
 680
 681        /*
 682         * When reusing framents, copy some data to the head to simplify
 683         * ethernet header handling and speed up protocol header processing
 684         * in the stack later.
 685         */
 686        if (reuse_frag)
 687                cur_len = min_t(int, len, 32);
 688
 689        /*
 690         * Allocate and reserve two bytes more for payload
 691         * alignment since sizeof(struct ethhdr) is 14.
 692         */
 693        frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
 694        if (!frame)
 695                return NULL;
 696
 697        skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
 698        skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
 699
 700        len -= cur_len;
 701        if (!len)
 702                return frame;
 703
 704        offset += cur_len;
 705        __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
 706
 707        return frame;
 708}
 709
 710void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
 711                              const u8 *addr, enum nl80211_iftype iftype,
 712                              const unsigned int extra_headroom,
 713                              const u8 *check_da, const u8 *check_sa)
 714{
 715        unsigned int hlen = ALIGN(extra_headroom, 4);
 716        struct sk_buff *frame = NULL;
 717        u16 ethertype;
 718        u8 *payload;
 719        int offset = 0, remaining;
 720        struct ethhdr eth;
 721        bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
 722        bool reuse_skb = false;
 723        bool last = false;
 724
 725        while (!last) {
 726                unsigned int subframe_len;
 727                int len;
 728                u8 padding;
 729
 730                skb_copy_bits(skb, offset, &eth, sizeof(eth));
 731                len = ntohs(eth.h_proto);
 732                subframe_len = sizeof(struct ethhdr) + len;
 733                padding = (4 - subframe_len) & 0x3;
 734
 735                /* the last MSDU has no padding */
 736                remaining = skb->len - offset;
 737                if (subframe_len > remaining)
 738                        goto purge;
 739
 740                offset += sizeof(struct ethhdr);
 741                last = remaining <= subframe_len + padding;
 742
 743                /* FIXME: should we really accept multicast DA? */
 744                if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
 745                     !ether_addr_equal(check_da, eth.h_dest)) ||
 746                    (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
 747                        offset += len + padding;
 748                        continue;
 749                }
 750
 751                /* reuse skb for the last subframe */
 752                if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
 753                        skb_pull(skb, offset);
 754                        frame = skb;
 755                        reuse_skb = true;
 756                } else {
 757                        frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
 758                                                       reuse_frag);
 759                        if (!frame)
 760                                goto purge;
 761
 762                        offset += len + padding;
 763                }
 764
 765                skb_reset_network_header(frame);
 766                frame->dev = skb->dev;
 767                frame->priority = skb->priority;
 768
 769                payload = frame->data;
 770                ethertype = (payload[6] << 8) | payload[7];
 771                if (likely((ether_addr_equal(payload, rfc1042_header) &&
 772                            ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
 773                           ether_addr_equal(payload, bridge_tunnel_header))) {
 774                        eth.h_proto = htons(ethertype);
 775                        skb_pull(frame, ETH_ALEN + 2);
 776                }
 777
 778                memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
 779                __skb_queue_tail(list, frame);
 780        }
 781
 782        if (!reuse_skb)
 783                dev_kfree_skb(skb);
 784
 785        return;
 786
 787 purge:
 788        __skb_queue_purge(list);
 789        dev_kfree_skb(skb);
 790}
 791EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
 792
 793/* Given a data frame determine the 802.1p/1d tag to use. */
 794unsigned int cfg80211_classify8021d(struct sk_buff *skb,
 795                                    struct cfg80211_qos_map *qos_map)
 796{
 797        unsigned int dscp;
 798        unsigned char vlan_priority;
 799        unsigned int ret;
 800
 801        /* skb->priority values from 256->263 are magic values to
 802         * directly indicate a specific 802.1d priority.  This is used
 803         * to allow 802.1d priority to be passed directly in from VLAN
 804         * tags, etc.
 805         */
 806        if (skb->priority >= 256 && skb->priority <= 263) {
 807                ret = skb->priority - 256;
 808                goto out;
 809        }
 810
 811        if (skb_vlan_tag_present(skb)) {
 812                vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
 813                        >> VLAN_PRIO_SHIFT;
 814                if (vlan_priority > 0) {
 815                        ret = vlan_priority;
 816                        goto out;
 817                }
 818        }
 819
 820        switch (skb->protocol) {
 821        case htons(ETH_P_IP):
 822                dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
 823                break;
 824        case htons(ETH_P_IPV6):
 825                dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
 826                break;
 827        case htons(ETH_P_MPLS_UC):
 828        case htons(ETH_P_MPLS_MC): {
 829                struct mpls_label mpls_tmp, *mpls;
 830
 831                mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
 832                                          sizeof(*mpls), &mpls_tmp);
 833                if (!mpls)
 834                        return 0;
 835
 836                ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
 837                        >> MPLS_LS_TC_SHIFT;
 838                goto out;
 839        }
 840        case htons(ETH_P_80221):
 841                /* 802.21 is always network control traffic */
 842                return 7;
 843        default:
 844                return 0;
 845        }
 846
 847        if (qos_map) {
 848                unsigned int i, tmp_dscp = dscp >> 2;
 849
 850                for (i = 0; i < qos_map->num_des; i++) {
 851                        if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
 852                                ret = qos_map->dscp_exception[i].up;
 853                                goto out;
 854                        }
 855                }
 856
 857                for (i = 0; i < 8; i++) {
 858                        if (tmp_dscp >= qos_map->up[i].low &&
 859                            tmp_dscp <= qos_map->up[i].high) {
 860                                ret = i;
 861                                goto out;
 862                        }
 863                }
 864        }
 865
 866        ret = dscp >> 5;
 867out:
 868        return array_index_nospec(ret, IEEE80211_NUM_TIDS);
 869}
 870EXPORT_SYMBOL(cfg80211_classify8021d);
 871
 872const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
 873{
 874        const struct cfg80211_bss_ies *ies;
 875
 876        ies = rcu_dereference(bss->ies);
 877        if (!ies)
 878                return NULL;
 879
 880        return cfg80211_find_elem(id, ies->data, ies->len);
 881}
 882EXPORT_SYMBOL(ieee80211_bss_get_elem);
 883
 884void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
 885{
 886        struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
 887        struct net_device *dev = wdev->netdev;
 888        int i;
 889
 890        if (!wdev->connect_keys)
 891                return;
 892
 893        for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
 894                if (!wdev->connect_keys->params[i].cipher)
 895                        continue;
 896                if (rdev_add_key(rdev, dev, i, false, NULL,
 897                                 &wdev->connect_keys->params[i])) {
 898                        netdev_err(dev, "failed to set key %d\n", i);
 899                        continue;
 900                }
 901                if (wdev->connect_keys->def == i &&
 902                    rdev_set_default_key(rdev, dev, i, true, true)) {
 903                        netdev_err(dev, "failed to set defkey %d\n", i);
 904                        continue;
 905                }
 906        }
 907
 908        kfree_sensitive(wdev->connect_keys);
 909        wdev->connect_keys = NULL;
 910}
 911
 912void cfg80211_process_wdev_events(struct wireless_dev *wdev)
 913{
 914        struct cfg80211_event *ev;
 915        unsigned long flags;
 916
 917        spin_lock_irqsave(&wdev->event_lock, flags);
 918        while (!list_empty(&wdev->event_list)) {
 919                ev = list_first_entry(&wdev->event_list,
 920                                      struct cfg80211_event, list);
 921                list_del(&ev->list);
 922                spin_unlock_irqrestore(&wdev->event_lock, flags);
 923
 924                wdev_lock(wdev);
 925                switch (ev->type) {
 926                case EVENT_CONNECT_RESULT:
 927                        __cfg80211_connect_result(
 928                                wdev->netdev,
 929                                &ev->cr,
 930                                ev->cr.status == WLAN_STATUS_SUCCESS);
 931                        break;
 932                case EVENT_ROAMED:
 933                        __cfg80211_roamed(wdev, &ev->rm);
 934                        break;
 935                case EVENT_DISCONNECTED:
 936                        __cfg80211_disconnected(wdev->netdev,
 937                                                ev->dc.ie, ev->dc.ie_len,
 938                                                ev->dc.reason,
 939                                                !ev->dc.locally_generated);
 940                        break;
 941                case EVENT_IBSS_JOINED:
 942                        __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
 943                                               ev->ij.channel);
 944                        break;
 945                case EVENT_STOPPED:
 946                        __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
 947                        break;
 948                case EVENT_PORT_AUTHORIZED:
 949                        __cfg80211_port_authorized(wdev, ev->pa.bssid);
 950                        break;
 951                }
 952                wdev_unlock(wdev);
 953
 954                kfree(ev);
 955
 956                spin_lock_irqsave(&wdev->event_lock, flags);
 957        }
 958        spin_unlock_irqrestore(&wdev->event_lock, flags);
 959}
 960
 961void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
 962{
 963        struct wireless_dev *wdev;
 964
 965        ASSERT_RTNL();
 966
 967        list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
 968                cfg80211_process_wdev_events(wdev);
 969}
 970
 971int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
 972                          struct net_device *dev, enum nl80211_iftype ntype,
 973                          struct vif_params *params)
 974{
 975        int err;
 976        enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
 977
 978        ASSERT_RTNL();
 979
 980        /* don't support changing VLANs, you just re-create them */
 981        if (otype == NL80211_IFTYPE_AP_VLAN)
 982                return -EOPNOTSUPP;
 983
 984        /* cannot change into P2P device or NAN */
 985        if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
 986            ntype == NL80211_IFTYPE_NAN)
 987                return -EOPNOTSUPP;
 988
 989        if (!rdev->ops->change_virtual_intf ||
 990            !(rdev->wiphy.interface_modes & (1 << ntype)))
 991                return -EOPNOTSUPP;
 992
 993        /* if it's part of a bridge, reject changing type to station/ibss */
 994        if (netif_is_bridge_port(dev) &&
 995            (ntype == NL80211_IFTYPE_ADHOC ||
 996             ntype == NL80211_IFTYPE_STATION ||
 997             ntype == NL80211_IFTYPE_P2P_CLIENT))
 998                return -EBUSY;
 999
1000        if (ntype != otype) {
1001                dev->ieee80211_ptr->use_4addr = false;
1002                dev->ieee80211_ptr->mesh_id_up_len = 0;
1003                wdev_lock(dev->ieee80211_ptr);
1004                rdev_set_qos_map(rdev, dev, NULL);
1005                wdev_unlock(dev->ieee80211_ptr);
1006
1007                switch (otype) {
1008                case NL80211_IFTYPE_AP:
1009                        cfg80211_stop_ap(rdev, dev, true);
1010                        break;
1011                case NL80211_IFTYPE_ADHOC:
1012                        cfg80211_leave_ibss(rdev, dev, false);
1013                        break;
1014                case NL80211_IFTYPE_STATION:
1015                case NL80211_IFTYPE_P2P_CLIENT:
1016                        wdev_lock(dev->ieee80211_ptr);
1017                        cfg80211_disconnect(rdev, dev,
1018                                            WLAN_REASON_DEAUTH_LEAVING, true);
1019                        wdev_unlock(dev->ieee80211_ptr);
1020                        break;
1021                case NL80211_IFTYPE_MESH_POINT:
1022                        /* mesh should be handled? */
1023                        break;
1024                default:
1025                        break;
1026                }
1027
1028                cfg80211_process_rdev_events(rdev);
1029                cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1030        }
1031
1032        err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1033
1034        WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1035
1036        if (!err && params && params->use_4addr != -1)
1037                dev->ieee80211_ptr->use_4addr = params->use_4addr;
1038
1039        if (!err) {
1040                dev->priv_flags &= ~IFF_DONT_BRIDGE;
1041                switch (ntype) {
1042                case NL80211_IFTYPE_STATION:
1043                        if (dev->ieee80211_ptr->use_4addr)
1044                                break;
1045                        fallthrough;
1046                case NL80211_IFTYPE_OCB:
1047                case NL80211_IFTYPE_P2P_CLIENT:
1048                case NL80211_IFTYPE_ADHOC:
1049                        dev->priv_flags |= IFF_DONT_BRIDGE;
1050                        break;
1051                case NL80211_IFTYPE_P2P_GO:
1052                case NL80211_IFTYPE_AP:
1053                case NL80211_IFTYPE_AP_VLAN:
1054                case NL80211_IFTYPE_WDS:
1055                case NL80211_IFTYPE_MESH_POINT:
1056                        /* bridging OK */
1057                        break;
1058                case NL80211_IFTYPE_MONITOR:
1059                        /* monitor can't bridge anyway */
1060                        break;
1061                case NL80211_IFTYPE_UNSPECIFIED:
1062                case NUM_NL80211_IFTYPES:
1063                        /* not happening */
1064                        break;
1065                case NL80211_IFTYPE_P2P_DEVICE:
1066                case NL80211_IFTYPE_NAN:
1067                        WARN_ON(1);
1068                        break;
1069                }
1070        }
1071
1072        if (!err && ntype != otype && netif_running(dev)) {
1073                cfg80211_update_iface_num(rdev, ntype, 1);
1074                cfg80211_update_iface_num(rdev, otype, -1);
1075        }
1076
1077        return err;
1078}
1079
1080static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1081{
1082        int modulation, streams, bitrate;
1083
1084        /* the formula below does only work for MCS values smaller than 32 */
1085        if (WARN_ON_ONCE(rate->mcs >= 32))
1086                return 0;
1087
1088        modulation = rate->mcs & 7;
1089        streams = (rate->mcs >> 3) + 1;
1090
1091        bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1092
1093        if (modulation < 4)
1094                bitrate *= (modulation + 1);
1095        else if (modulation == 4)
1096                bitrate *= (modulation + 2);
1097        else
1098                bitrate *= (modulation + 3);
1099
1100        bitrate *= streams;
1101
1102        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1103                bitrate = (bitrate / 9) * 10;
1104
1105        /* do NOT round down here */
1106        return (bitrate + 50000) / 100000;
1107}
1108
1109static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1110{
1111        static const u32 __mcs2bitrate[] = {
1112                /* control PHY */
1113                [0] =   275,
1114                /* SC PHY */
1115                [1] =  3850,
1116                [2] =  7700,
1117                [3] =  9625,
1118                [4] = 11550,
1119                [5] = 12512, /* 1251.25 mbps */
1120                [6] = 15400,
1121                [7] = 19250,
1122                [8] = 23100,
1123                [9] = 25025,
1124                [10] = 30800,
1125                [11] = 38500,
1126                [12] = 46200,
1127                /* OFDM PHY */
1128                [13] =  6930,
1129                [14] =  8662, /* 866.25 mbps */
1130                [15] = 13860,
1131                [16] = 17325,
1132                [17] = 20790,
1133                [18] = 27720,
1134                [19] = 34650,
1135                [20] = 41580,
1136                [21] = 45045,
1137                [22] = 51975,
1138                [23] = 62370,
1139                [24] = 67568, /* 6756.75 mbps */
1140                /* LP-SC PHY */
1141                [25] =  6260,
1142                [26] =  8340,
1143                [27] = 11120,
1144                [28] = 12510,
1145                [29] = 16680,
1146                [30] = 22240,
1147                [31] = 25030,
1148        };
1149
1150        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1151                return 0;
1152
1153        return __mcs2bitrate[rate->mcs];
1154}
1155
1156static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1157{
1158        static const u32 __mcs2bitrate[] = {
1159                /* control PHY */
1160                [0] =   275,
1161                /* SC PHY */
1162                [1] =  3850,
1163                [2] =  7700,
1164                [3] =  9625,
1165                [4] = 11550,
1166                [5] = 12512, /* 1251.25 mbps */
1167                [6] = 13475,
1168                [7] = 15400,
1169                [8] = 19250,
1170                [9] = 23100,
1171                [10] = 25025,
1172                [11] = 26950,
1173                [12] = 30800,
1174                [13] = 38500,
1175                [14] = 46200,
1176                [15] = 50050,
1177                [16] = 53900,
1178                [17] = 57750,
1179                [18] = 69300,
1180                [19] = 75075,
1181                [20] = 80850,
1182        };
1183
1184        if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1185                return 0;
1186
1187        return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1188}
1189
1190static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1191{
1192        static const u32 base[4][10] = {
1193                {   6500000,
1194                   13000000,
1195                   19500000,
1196                   26000000,
1197                   39000000,
1198                   52000000,
1199                   58500000,
1200                   65000000,
1201                   78000000,
1202                /* not in the spec, but some devices use this: */
1203                   86500000,
1204                },
1205                {  13500000,
1206                   27000000,
1207                   40500000,
1208                   54000000,
1209                   81000000,
1210                  108000000,
1211                  121500000,
1212                  135000000,
1213                  162000000,
1214                  180000000,
1215                },
1216                {  29300000,
1217                   58500000,
1218                   87800000,
1219                  117000000,
1220                  175500000,
1221                  234000000,
1222                  263300000,
1223                  292500000,
1224                  351000000,
1225                  390000000,
1226                },
1227                {  58500000,
1228                  117000000,
1229                  175500000,
1230                  234000000,
1231                  351000000,
1232                  468000000,
1233                  526500000,
1234                  585000000,
1235                  702000000,
1236                  780000000,
1237                },
1238        };
1239        u32 bitrate;
1240        int idx;
1241
1242        if (rate->mcs > 9)
1243                goto warn;
1244
1245        switch (rate->bw) {
1246        case RATE_INFO_BW_160:
1247                idx = 3;
1248                break;
1249        case RATE_INFO_BW_80:
1250                idx = 2;
1251                break;
1252        case RATE_INFO_BW_40:
1253                idx = 1;
1254                break;
1255        case RATE_INFO_BW_5:
1256        case RATE_INFO_BW_10:
1257        default:
1258                goto warn;
1259        case RATE_INFO_BW_20:
1260                idx = 0;
1261        }
1262
1263        bitrate = base[idx][rate->mcs];
1264        bitrate *= rate->nss;
1265
1266        if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1267                bitrate = (bitrate / 9) * 10;
1268
1269        /* do NOT round down here */
1270        return (bitrate + 50000) / 100000;
1271 warn:
1272        WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1273                  rate->bw, rate->mcs, rate->nss);
1274        return 0;
1275}
1276
1277static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1278{
1279#define SCALE 2048
1280        u16 mcs_divisors[12] = {
1281                34133, /* 16.666666... */
1282                17067, /*  8.333333... */
1283                11378, /*  5.555555... */
1284                 8533, /*  4.166666... */
1285                 5689, /*  2.777777... */
1286                 4267, /*  2.083333... */
1287                 3923, /*  1.851851... */
1288                 3413, /*  1.666666... */
1289                 2844, /*  1.388888... */
1290                 2560, /*  1.250000... */
1291                 2276, /*  1.111111... */
1292                 2048, /*  1.000000... */
1293        };
1294        u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1295        u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1296        u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1297        u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1298        u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1299        u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1300        u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1301        u64 tmp;
1302        u32 result;
1303
1304        if (WARN_ON_ONCE(rate->mcs > 11))
1305                return 0;
1306
1307        if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1308                return 0;
1309        if (WARN_ON_ONCE(rate->he_ru_alloc >
1310                         NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1311                return 0;
1312        if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1313                return 0;
1314
1315        if (rate->bw == RATE_INFO_BW_160)
1316                result = rates_160M[rate->he_gi];
1317        else if (rate->bw == RATE_INFO_BW_80 ||
1318                 (rate->bw == RATE_INFO_BW_HE_RU &&
1319                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1320                result = rates_969[rate->he_gi];
1321        else if (rate->bw == RATE_INFO_BW_40 ||
1322                 (rate->bw == RATE_INFO_BW_HE_RU &&
1323                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1324                result = rates_484[rate->he_gi];
1325        else if (rate->bw == RATE_INFO_BW_20 ||
1326                 (rate->bw == RATE_INFO_BW_HE_RU &&
1327                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1328                result = rates_242[rate->he_gi];
1329        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1330                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1331                result = rates_106[rate->he_gi];
1332        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1333                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1334                result = rates_52[rate->he_gi];
1335        else if (rate->bw == RATE_INFO_BW_HE_RU &&
1336                 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1337                result = rates_26[rate->he_gi];
1338        else {
1339                WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1340                     rate->bw, rate->he_ru_alloc);
1341                return 0;
1342        }
1343
1344        /* now scale to the appropriate MCS */
1345        tmp = result;
1346        tmp *= SCALE;
1347        do_div(tmp, mcs_divisors[rate->mcs]);
1348        result = tmp;
1349
1350        /* and take NSS, DCM into account */
1351        result = (result * rate->nss) / 8;
1352        if (rate->he_dcm)
1353                result /= 2;
1354
1355        return result / 10000;
1356}
1357
1358u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1359{
1360        if (rate->flags & RATE_INFO_FLAGS_MCS)
1361                return cfg80211_calculate_bitrate_ht(rate);
1362        if (rate->flags & RATE_INFO_FLAGS_DMG)
1363                return cfg80211_calculate_bitrate_dmg(rate);
1364        if (rate->flags & RATE_INFO_FLAGS_EDMG)
1365                return cfg80211_calculate_bitrate_edmg(rate);
1366        if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1367                return cfg80211_calculate_bitrate_vht(rate);
1368        if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1369                return cfg80211_calculate_bitrate_he(rate);
1370
1371        return rate->legacy;
1372}
1373EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1374
1375int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1376                          enum ieee80211_p2p_attr_id attr,
1377                          u8 *buf, unsigned int bufsize)
1378{
1379        u8 *out = buf;
1380        u16 attr_remaining = 0;
1381        bool desired_attr = false;
1382        u16 desired_len = 0;
1383
1384        while (len > 0) {
1385                unsigned int iedatalen;
1386                unsigned int copy;
1387                const u8 *iedata;
1388
1389                if (len < 2)
1390                        return -EILSEQ;
1391                iedatalen = ies[1];
1392                if (iedatalen + 2 > len)
1393                        return -EILSEQ;
1394
1395                if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1396                        goto cont;
1397
1398                if (iedatalen < 4)
1399                        goto cont;
1400
1401                iedata = ies + 2;
1402
1403                /* check WFA OUI, P2P subtype */
1404                if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1405                    iedata[2] != 0x9a || iedata[3] != 0x09)
1406                        goto cont;
1407
1408                iedatalen -= 4;
1409                iedata += 4;
1410
1411                /* check attribute continuation into this IE */
1412                copy = min_t(unsigned int, attr_remaining, iedatalen);
1413                if (copy && desired_attr) {
1414                        desired_len += copy;
1415                        if (out) {
1416                                memcpy(out, iedata, min(bufsize, copy));
1417                                out += min(bufsize, copy);
1418                                bufsize -= min(bufsize, copy);
1419                        }
1420
1421
1422                        if (copy == attr_remaining)
1423                                return desired_len;
1424                }
1425
1426                attr_remaining -= copy;
1427                if (attr_remaining)
1428                        goto cont;
1429
1430                iedatalen -= copy;
1431                iedata += copy;
1432
1433                while (iedatalen > 0) {
1434                        u16 attr_len;
1435
1436                        /* P2P attribute ID & size must fit */
1437                        if (iedatalen < 3)
1438                                return -EILSEQ;
1439                        desired_attr = iedata[0] == attr;
1440                        attr_len = get_unaligned_le16(iedata + 1);
1441                        iedatalen -= 3;
1442                        iedata += 3;
1443
1444                        copy = min_t(unsigned int, attr_len, iedatalen);
1445
1446                        if (desired_attr) {
1447                                desired_len += copy;
1448                                if (out) {
1449                                        memcpy(out, iedata, min(bufsize, copy));
1450                                        out += min(bufsize, copy);
1451                                        bufsize -= min(bufsize, copy);
1452                                }
1453
1454                                if (copy == attr_len)
1455                                        return desired_len;
1456                        }
1457
1458                        iedata += copy;
1459                        iedatalen -= copy;
1460                        attr_remaining = attr_len - copy;
1461                }
1462
1463 cont:
1464                len -= ies[1] + 2;
1465                ies += ies[1] + 2;
1466        }
1467
1468        if (attr_remaining && desired_attr)
1469                return -EILSEQ;
1470
1471        return -ENOENT;
1472}
1473EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1474
1475static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1476{
1477        int i;
1478
1479        /* Make sure array values are legal */
1480        if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1481                return false;
1482
1483        i = 0;
1484        while (i < n_ids) {
1485                if (ids[i] == WLAN_EID_EXTENSION) {
1486                        if (id_ext && (ids[i + 1] == id))
1487                                return true;
1488
1489                        i += 2;
1490                        continue;
1491                }
1492
1493                if (ids[i] == id && !id_ext)
1494                        return true;
1495
1496                i++;
1497        }
1498        return false;
1499}
1500
1501static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1502{
1503        /* we assume a validly formed IEs buffer */
1504        u8 len = ies[pos + 1];
1505
1506        pos += 2 + len;
1507
1508        /* the IE itself must have 255 bytes for fragments to follow */
1509        if (len < 255)
1510                return pos;
1511
1512        while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1513                len = ies[pos + 1];
1514                pos += 2 + len;
1515        }
1516
1517        return pos;
1518}
1519
1520size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1521                              const u8 *ids, int n_ids,
1522                              const u8 *after_ric, int n_after_ric,
1523                              size_t offset)
1524{
1525        size_t pos = offset;
1526
1527        while (pos < ielen) {
1528                u8 ext = 0;
1529
1530                if (ies[pos] == WLAN_EID_EXTENSION)
1531                        ext = 2;
1532                if ((pos + ext) >= ielen)
1533                        break;
1534
1535                if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1536                                          ies[pos] == WLAN_EID_EXTENSION))
1537                        break;
1538
1539                if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1540                        pos = skip_ie(ies, ielen, pos);
1541
1542                        while (pos < ielen) {
1543                                if (ies[pos] == WLAN_EID_EXTENSION)
1544                                        ext = 2;
1545                                else
1546                                        ext = 0;
1547
1548                                if ((pos + ext) >= ielen)
1549                                        break;
1550
1551                                if (!ieee80211_id_in_list(after_ric,
1552                                                          n_after_ric,
1553                                                          ies[pos + ext],
1554                                                          ext == 2))
1555                                        pos = skip_ie(ies, ielen, pos);
1556                                else
1557                                        break;
1558                        }
1559                } else {
1560                        pos = skip_ie(ies, ielen, pos);
1561                }
1562        }
1563
1564        return pos;
1565}
1566EXPORT_SYMBOL(ieee80211_ie_split_ric);
1567
1568bool ieee80211_operating_class_to_band(u8 operating_class,
1569                                       enum nl80211_band *band)
1570{
1571        switch (operating_class) {
1572        case 112:
1573        case 115 ... 127:
1574        case 128 ... 130:
1575                *band = NL80211_BAND_5GHZ;
1576                return true;
1577        case 131 ... 135:
1578                *band = NL80211_BAND_6GHZ;
1579                return true;
1580        case 81:
1581        case 82:
1582        case 83:
1583        case 84:
1584                *band = NL80211_BAND_2GHZ;
1585                return true;
1586        case 180:
1587                *band = NL80211_BAND_60GHZ;
1588                return true;
1589        }
1590
1591        return false;
1592}
1593EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1594
1595bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1596                                          u8 *op_class)
1597{
1598        u8 vht_opclass;
1599        u32 freq = chandef->center_freq1;
1600
1601        if (freq >= 2412 && freq <= 2472) {
1602                if (chandef->width > NL80211_CHAN_WIDTH_40)
1603                        return false;
1604
1605                /* 2.407 GHz, channels 1..13 */
1606                if (chandef->width == NL80211_CHAN_WIDTH_40) {
1607                        if (freq > chandef->chan->center_freq)
1608                                *op_class = 83; /* HT40+ */
1609                        else
1610                                *op_class = 84; /* HT40- */
1611                } else {
1612                        *op_class = 81;
1613                }
1614
1615                return true;
1616        }
1617
1618        if (freq == 2484) {
1619                /* channel 14 is only for IEEE 802.11b */
1620                if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1621                        return false;
1622
1623                *op_class = 82; /* channel 14 */
1624                return true;
1625        }
1626
1627        switch (chandef->width) {
1628        case NL80211_CHAN_WIDTH_80:
1629                vht_opclass = 128;
1630                break;
1631        case NL80211_CHAN_WIDTH_160:
1632                vht_opclass = 129;
1633                break;
1634        case NL80211_CHAN_WIDTH_80P80:
1635                vht_opclass = 130;
1636                break;
1637        case NL80211_CHAN_WIDTH_10:
1638        case NL80211_CHAN_WIDTH_5:
1639                return false; /* unsupported for now */
1640        default:
1641                vht_opclass = 0;
1642                break;
1643        }
1644
1645        /* 5 GHz, channels 36..48 */
1646        if (freq >= 5180 && freq <= 5240) {
1647                if (vht_opclass) {
1648                        *op_class = vht_opclass;
1649                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1650                        if (freq > chandef->chan->center_freq)
1651                                *op_class = 116;
1652                        else
1653                                *op_class = 117;
1654                } else {
1655                        *op_class = 115;
1656                }
1657
1658                return true;
1659        }
1660
1661        /* 5 GHz, channels 52..64 */
1662        if (freq >= 5260 && freq <= 5320) {
1663                if (vht_opclass) {
1664                        *op_class = vht_opclass;
1665                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1666                        if (freq > chandef->chan->center_freq)
1667                                *op_class = 119;
1668                        else
1669                                *op_class = 120;
1670                } else {
1671                        *op_class = 118;
1672                }
1673
1674                return true;
1675        }
1676
1677        /* 5 GHz, channels 100..144 */
1678        if (freq >= 5500 && freq <= 5720) {
1679                if (vht_opclass) {
1680                        *op_class = vht_opclass;
1681                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1682                        if (freq > chandef->chan->center_freq)
1683                                *op_class = 122;
1684                        else
1685                                *op_class = 123;
1686                } else {
1687                        *op_class = 121;
1688                }
1689
1690                return true;
1691        }
1692
1693        /* 5 GHz, channels 149..169 */
1694        if (freq >= 5745 && freq <= 5845) {
1695                if (vht_opclass) {
1696                        *op_class = vht_opclass;
1697                } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1698                        if (freq > chandef->chan->center_freq)
1699                                *op_class = 126;
1700                        else
1701                                *op_class = 127;
1702                } else if (freq <= 5805) {
1703                        *op_class = 124;
1704                } else {
1705                        *op_class = 125;
1706                }
1707
1708                return true;
1709        }
1710
1711        /* 56.16 GHz, channel 1..4 */
1712        if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1713                if (chandef->width >= NL80211_CHAN_WIDTH_40)
1714                        return false;
1715
1716                *op_class = 180;
1717                return true;
1718        }
1719
1720        /* not supported yet */
1721        return false;
1722}
1723EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1724
1725static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1726                                       u32 *beacon_int_gcd,
1727                                       bool *beacon_int_different)
1728{
1729        struct wireless_dev *wdev;
1730
1731        *beacon_int_gcd = 0;
1732        *beacon_int_different = false;
1733
1734        list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1735                if (!wdev->beacon_interval)
1736                        continue;
1737
1738                if (!*beacon_int_gcd) {
1739                        *beacon_int_gcd = wdev->beacon_interval;
1740                        continue;
1741                }
1742
1743                if (wdev->beacon_interval == *beacon_int_gcd)
1744                        continue;
1745
1746                *beacon_int_different = true;
1747                *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1748        }
1749
1750        if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1751                if (*beacon_int_gcd)
1752                        *beacon_int_different = true;
1753                *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1754        }
1755}
1756
1757int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1758                                 enum nl80211_iftype iftype, u32 beacon_int)
1759{
1760        /*
1761         * This is just a basic pre-condition check; if interface combinations
1762         * are possible the driver must already be checking those with a call
1763         * to cfg80211_check_combinations(), in which case we'll validate more
1764         * through the cfg80211_calculate_bi_data() call and code in
1765         * cfg80211_iter_combinations().
1766         */
1767
1768        if (beacon_int < 10 || beacon_int > 10000)
1769                return -EINVAL;
1770
1771        return 0;
1772}
1773
1774int cfg80211_iter_combinations(struct wiphy *wiphy,
1775                               struct iface_combination_params *params,
1776                               void (*iter)(const struct ieee80211_iface_combination *c,
1777                                            void *data),
1778                               void *data)
1779{
1780        const struct ieee80211_regdomain *regdom;
1781        enum nl80211_dfs_regions region = 0;
1782        int i, j, iftype;
1783        int num_interfaces = 0;
1784        u32 used_iftypes = 0;
1785        u32 beacon_int_gcd;
1786        bool beacon_int_different;
1787
1788        /*
1789         * This is a bit strange, since the iteration used to rely only on
1790         * the data given by the driver, but here it now relies on context,
1791         * in form of the currently operating interfaces.
1792         * This is OK for all current users, and saves us from having to
1793         * push the GCD calculations into all the drivers.
1794         * In the future, this should probably rely more on data that's in
1795         * cfg80211 already - the only thing not would appear to be any new
1796         * interfaces (while being brought up) and channel/radar data.
1797         */
1798        cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1799                                   &beacon_int_gcd, &beacon_int_different);
1800
1801        if (params->radar_detect) {
1802                rcu_read_lock();
1803                regdom = rcu_dereference(cfg80211_regdomain);
1804                if (regdom)
1805                        region = regdom->dfs_region;
1806                rcu_read_unlock();
1807        }
1808
1809        for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1810                num_interfaces += params->iftype_num[iftype];
1811                if (params->iftype_num[iftype] > 0 &&
1812                    !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1813                        used_iftypes |= BIT(iftype);
1814        }
1815
1816        for (i = 0; i < wiphy->n_iface_combinations; i++) {
1817                const struct ieee80211_iface_combination *c;
1818                struct ieee80211_iface_limit *limits;
1819                u32 all_iftypes = 0;
1820
1821                c = &wiphy->iface_combinations[i];
1822
1823                if (num_interfaces > c->max_interfaces)
1824                        continue;
1825                if (params->num_different_channels > c->num_different_channels)
1826                        continue;
1827
1828                limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1829                                 GFP_KERNEL);
1830                if (!limits)
1831                        return -ENOMEM;
1832
1833                for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1834                        if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1835                                continue;
1836                        for (j = 0; j < c->n_limits; j++) {
1837                                all_iftypes |= limits[j].types;
1838                                if (!(limits[j].types & BIT(iftype)))
1839                                        continue;
1840                                if (limits[j].max < params->iftype_num[iftype])
1841                                        goto cont;
1842                                limits[j].max -= params->iftype_num[iftype];
1843                        }
1844                }
1845
1846                if (params->radar_detect !=
1847                        (c->radar_detect_widths & params->radar_detect))
1848                        goto cont;
1849
1850                if (params->radar_detect && c->radar_detect_regions &&
1851                    !(c->radar_detect_regions & BIT(region)))
1852                        goto cont;
1853
1854                /* Finally check that all iftypes that we're currently
1855                 * using are actually part of this combination. If they
1856                 * aren't then we can't use this combination and have
1857                 * to continue to the next.
1858                 */
1859                if ((all_iftypes & used_iftypes) != used_iftypes)
1860                        goto cont;
1861
1862                if (beacon_int_gcd) {
1863                        if (c->beacon_int_min_gcd &&
1864                            beacon_int_gcd < c->beacon_int_min_gcd)
1865                                goto cont;
1866                        if (!c->beacon_int_min_gcd && beacon_int_different)
1867                                goto cont;
1868                }
1869
1870                /* This combination covered all interface types and
1871                 * supported the requested numbers, so we're good.
1872                 */
1873
1874                (*iter)(c, data);
1875 cont:
1876                kfree(limits);
1877        }
1878
1879        return 0;
1880}
1881EXPORT_SYMBOL(cfg80211_iter_combinations);
1882
1883static void
1884cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1885                          void *data)
1886{
1887        int *num = data;
1888        (*num)++;
1889}
1890
1891int cfg80211_check_combinations(struct wiphy *wiphy,
1892                                struct iface_combination_params *params)
1893{
1894        int err, num = 0;
1895
1896        err = cfg80211_iter_combinations(wiphy, params,
1897                                         cfg80211_iter_sum_ifcombs, &num);
1898        if (err)
1899                return err;
1900        if (num == 0)
1901                return -EBUSY;
1902
1903        return 0;
1904}
1905EXPORT_SYMBOL(cfg80211_check_combinations);
1906
1907int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1908                           const u8 *rates, unsigned int n_rates,
1909                           u32 *mask)
1910{
1911        int i, j;
1912
1913        if (!sband)
1914                return -EINVAL;
1915
1916        if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1917                return -EINVAL;
1918
1919        *mask = 0;
1920
1921        for (i = 0; i < n_rates; i++) {
1922                int rate = (rates[i] & 0x7f) * 5;
1923                bool found = false;
1924
1925                for (j = 0; j < sband->n_bitrates; j++) {
1926                        if (sband->bitrates[j].bitrate == rate) {
1927                                found = true;
1928                                *mask |= BIT(j);
1929                                break;
1930                        }
1931                }
1932                if (!found)
1933                        return -EINVAL;
1934        }
1935
1936        /*
1937         * mask must have at least one bit set here since we
1938         * didn't accept a 0-length rates array nor allowed
1939         * entries in the array that didn't exist
1940         */
1941
1942        return 0;
1943}
1944
1945unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1946{
1947        enum nl80211_band band;
1948        unsigned int n_channels = 0;
1949
1950        for (band = 0; band < NUM_NL80211_BANDS; band++)
1951                if (wiphy->bands[band])
1952                        n_channels += wiphy->bands[band]->n_channels;
1953
1954        return n_channels;
1955}
1956EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1957
1958int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1959                         struct station_info *sinfo)
1960{
1961        struct cfg80211_registered_device *rdev;
1962        struct wireless_dev *wdev;
1963
1964        wdev = dev->ieee80211_ptr;
1965        if (!wdev)
1966                return -EOPNOTSUPP;
1967
1968        rdev = wiphy_to_rdev(wdev->wiphy);
1969        if (!rdev->ops->get_station)
1970                return -EOPNOTSUPP;
1971
1972        memset(sinfo, 0, sizeof(*sinfo));
1973
1974        return rdev_get_station(rdev, dev, mac_addr, sinfo);
1975}
1976EXPORT_SYMBOL(cfg80211_get_station);
1977
1978void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1979{
1980        int i;
1981
1982        if (!f)
1983                return;
1984
1985        kfree(f->serv_spec_info);
1986        kfree(f->srf_bf);
1987        kfree(f->srf_macs);
1988        for (i = 0; i < f->num_rx_filters; i++)
1989                kfree(f->rx_filters[i].filter);
1990
1991        for (i = 0; i < f->num_tx_filters; i++)
1992                kfree(f->tx_filters[i].filter);
1993
1994        kfree(f->rx_filters);
1995        kfree(f->tx_filters);
1996        kfree(f);
1997}
1998EXPORT_SYMBOL(cfg80211_free_nan_func);
1999
2000bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2001                                u32 center_freq_khz, u32 bw_khz)
2002{
2003        u32 start_freq_khz, end_freq_khz;
2004
2005        start_freq_khz = center_freq_khz - (bw_khz / 2);
2006        end_freq_khz = center_freq_khz + (bw_khz / 2);
2007
2008        if (start_freq_khz >= freq_range->start_freq_khz &&
2009            end_freq_khz <= freq_range->end_freq_khz)
2010                return true;
2011
2012        return false;
2013}
2014
2015int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2016{
2017        sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2018                                sizeof(*(sinfo->pertid)),
2019                                gfp);
2020        if (!sinfo->pertid)
2021                return -ENOMEM;
2022
2023        return 0;
2024}
2025EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2026
2027/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2028/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2029const unsigned char rfc1042_header[] __aligned(2) =
2030        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2031EXPORT_SYMBOL(rfc1042_header);
2032
2033/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2034const unsigned char bridge_tunnel_header[] __aligned(2) =
2035        { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2036EXPORT_SYMBOL(bridge_tunnel_header);
2037
2038/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2039struct iapp_layer2_update {
2040        u8 da[ETH_ALEN];        /* broadcast */
2041        u8 sa[ETH_ALEN];        /* STA addr */
2042        __be16 len;             /* 6 */
2043        u8 dsap;                /* 0 */
2044        u8 ssap;                /* 0 */
2045        u8 control;
2046        u8 xid_info[3];
2047} __packed;
2048
2049void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2050{
2051        struct iapp_layer2_update *msg;
2052        struct sk_buff *skb;
2053
2054        /* Send Level 2 Update Frame to update forwarding tables in layer 2
2055         * bridge devices */
2056
2057        skb = dev_alloc_skb(sizeof(*msg));
2058        if (!skb)
2059                return;
2060        msg = skb_put(skb, sizeof(*msg));
2061
2062        /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2063         * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2064
2065        eth_broadcast_addr(msg->da);
2066        ether_addr_copy(msg->sa, addr);
2067        msg->len = htons(6);
2068        msg->dsap = 0;
2069        msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2070        msg->control = 0xaf;    /* XID response lsb.1111F101.
2071                                 * F=0 (no poll command; unsolicited frame) */
2072        msg->xid_info[0] = 0x81;        /* XID format identifier */
2073        msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2074        msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2075
2076        skb->dev = dev;
2077        skb->protocol = eth_type_trans(skb, dev);
2078        memset(skb->cb, 0, sizeof(skb->cb));
2079        netif_rx_ni(skb);
2080}
2081EXPORT_SYMBOL(cfg80211_send_layer2_update);
2082
2083int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2084                              enum ieee80211_vht_chanwidth bw,
2085                              int mcs, bool ext_nss_bw_capable,
2086                              unsigned int max_vht_nss)
2087{
2088        u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2089        int ext_nss_bw;
2090        int supp_width;
2091        int i, mcs_encoding;
2092
2093        if (map == 0xffff)
2094                return 0;
2095
2096        if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2097                return 0;
2098        if (mcs <= 7)
2099                mcs_encoding = 0;
2100        else if (mcs == 8)
2101                mcs_encoding = 1;
2102        else
2103                mcs_encoding = 2;
2104
2105        if (!max_vht_nss) {
2106                /* find max_vht_nss for the given MCS */
2107                for (i = 7; i >= 0; i--) {
2108                        int supp = (map >> (2 * i)) & 3;
2109
2110                        if (supp == 3)
2111                                continue;
2112
2113                        if (supp >= mcs_encoding) {
2114                                max_vht_nss = i + 1;
2115                                break;
2116                        }
2117                }
2118        }
2119
2120        if (!(cap->supp_mcs.tx_mcs_map &
2121                        cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2122                return max_vht_nss;
2123
2124        ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2125                                   IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2126        supp_width = le32_get_bits(cap->vht_cap_info,
2127                                   IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2128
2129        /* if not capable, treat ext_nss_bw as 0 */
2130        if (!ext_nss_bw_capable)
2131                ext_nss_bw = 0;
2132
2133        /* This is invalid */
2134        if (supp_width == 3)
2135                return 0;
2136
2137        /* This is an invalid combination so pretend nothing is supported */
2138        if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2139                return 0;
2140
2141        /*
2142         * Cover all the special cases according to IEEE 802.11-2016
2143         * Table 9-250. All other cases are either factor of 1 or not
2144         * valid/supported.
2145         */
2146        switch (bw) {
2147        case IEEE80211_VHT_CHANWIDTH_USE_HT:
2148        case IEEE80211_VHT_CHANWIDTH_80MHZ:
2149                if ((supp_width == 1 || supp_width == 2) &&
2150                    ext_nss_bw == 3)
2151                        return 2 * max_vht_nss;
2152                break;
2153        case IEEE80211_VHT_CHANWIDTH_160MHZ:
2154                if (supp_width == 0 &&
2155                    (ext_nss_bw == 1 || ext_nss_bw == 2))
2156                        return max_vht_nss / 2;
2157                if (supp_width == 0 &&
2158                    ext_nss_bw == 3)
2159                        return (3 * max_vht_nss) / 4;
2160                if (supp_width == 1 &&
2161                    ext_nss_bw == 3)
2162                        return 2 * max_vht_nss;
2163                break;
2164        case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2165                if (supp_width == 0 && ext_nss_bw == 1)
2166                        return 0; /* not possible */
2167                if (supp_width == 0 &&
2168                    ext_nss_bw == 2)
2169                        return max_vht_nss / 2;
2170                if (supp_width == 0 &&
2171                    ext_nss_bw == 3)
2172                        return (3 * max_vht_nss) / 4;
2173                if (supp_width == 1 &&
2174                    ext_nss_bw == 0)
2175                        return 0; /* not possible */
2176                if (supp_width == 1 &&
2177                    ext_nss_bw == 1)
2178                        return max_vht_nss / 2;
2179                if (supp_width == 1 &&
2180                    ext_nss_bw == 2)
2181                        return (3 * max_vht_nss) / 4;
2182                break;
2183        }
2184
2185        /* not covered or invalid combination received */
2186        return max_vht_nss;
2187}
2188EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2189
2190bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2191                             bool is_4addr, u8 check_swif)
2192
2193{
2194        bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2195
2196        switch (check_swif) {
2197        case 0:
2198                if (is_vlan && is_4addr)
2199                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2200                return wiphy->interface_modes & BIT(iftype);
2201        case 1:
2202                if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2203                        return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2204                return wiphy->software_iftypes & BIT(iftype);
2205        default:
2206                break;
2207        }
2208
2209        return false;
2210}
2211EXPORT_SYMBOL(cfg80211_iftype_allowed);
2212