linux/security/keys/gc.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* Key garbage collector
   3 *
   4 * Copyright (C) 2009-2011 Red Hat, Inc. All Rights Reserved.
   5 * Written by David Howells (dhowells@redhat.com)
   6 */
   7
   8#include <linux/slab.h>
   9#include <linux/security.h>
  10#include <keys/keyring-type.h>
  11#include "internal.h"
  12
  13/*
  14 * Delay between key revocation/expiry in seconds
  15 */
  16unsigned key_gc_delay = 5 * 60;
  17
  18/*
  19 * Reaper for unused keys.
  20 */
  21static void key_garbage_collector(struct work_struct *work);
  22DECLARE_WORK(key_gc_work, key_garbage_collector);
  23
  24/*
  25 * Reaper for links from keyrings to dead keys.
  26 */
  27static void key_gc_timer_func(struct timer_list *);
  28static DEFINE_TIMER(key_gc_timer, key_gc_timer_func);
  29
  30static time64_t key_gc_next_run = TIME64_MAX;
  31static struct key_type *key_gc_dead_keytype;
  32
  33static unsigned long key_gc_flags;
  34#define KEY_GC_KEY_EXPIRED      0       /* A key expired and needs unlinking */
  35#define KEY_GC_REAP_KEYTYPE     1       /* A keytype is being unregistered */
  36#define KEY_GC_REAPING_KEYTYPE  2       /* Cleared when keytype reaped */
  37
  38
  39/*
  40 * Any key whose type gets unregistered will be re-typed to this if it can't be
  41 * immediately unlinked.
  42 */
  43struct key_type key_type_dead = {
  44        .name = ".dead",
  45};
  46
  47/*
  48 * Schedule a garbage collection run.
  49 * - time precision isn't particularly important
  50 */
  51void key_schedule_gc(time64_t gc_at)
  52{
  53        unsigned long expires;
  54        time64_t now = ktime_get_real_seconds();
  55
  56        kenter("%lld", gc_at - now);
  57
  58        if (gc_at <= now || test_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags)) {
  59                kdebug("IMMEDIATE");
  60                schedule_work(&key_gc_work);
  61        } else if (gc_at < key_gc_next_run) {
  62                kdebug("DEFERRED");
  63                key_gc_next_run = gc_at;
  64                expires = jiffies + (gc_at - now) * HZ;
  65                mod_timer(&key_gc_timer, expires);
  66        }
  67}
  68
  69/*
  70 * Schedule a dead links collection run.
  71 */
  72void key_schedule_gc_links(void)
  73{
  74        set_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags);
  75        schedule_work(&key_gc_work);
  76}
  77
  78/*
  79 * Some key's cleanup time was met after it expired, so we need to get the
  80 * reaper to go through a cycle finding expired keys.
  81 */
  82static void key_gc_timer_func(struct timer_list *unused)
  83{
  84        kenter("");
  85        key_gc_next_run = TIME64_MAX;
  86        key_schedule_gc_links();
  87}
  88
  89/*
  90 * Reap keys of dead type.
  91 *
  92 * We use three flags to make sure we see three complete cycles of the garbage
  93 * collector: the first to mark keys of that type as being dead, the second to
  94 * collect dead links and the third to clean up the dead keys.  We have to be
  95 * careful as there may already be a cycle in progress.
  96 *
  97 * The caller must be holding key_types_sem.
  98 */
  99void key_gc_keytype(struct key_type *ktype)
 100{
 101        kenter("%s", ktype->name);
 102
 103        key_gc_dead_keytype = ktype;
 104        set_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
 105        smp_mb();
 106        set_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags);
 107
 108        kdebug("schedule");
 109        schedule_work(&key_gc_work);
 110
 111        kdebug("sleep");
 112        wait_on_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE,
 113                    TASK_UNINTERRUPTIBLE);
 114
 115        key_gc_dead_keytype = NULL;
 116        kleave("");
 117}
 118
 119/*
 120 * Garbage collect a list of unreferenced, detached keys
 121 */
 122static noinline void key_gc_unused_keys(struct list_head *keys)
 123{
 124        while (!list_empty(keys)) {
 125                struct key *key =
 126                        list_entry(keys->next, struct key, graveyard_link);
 127                short state = key->state;
 128
 129                list_del(&key->graveyard_link);
 130
 131                kdebug("- %u", key->serial);
 132                key_check(key);
 133
 134#ifdef CONFIG_KEY_NOTIFICATIONS
 135                remove_watch_list(key->watchers, key->serial);
 136                key->watchers = NULL;
 137#endif
 138
 139                /* Throw away the key data if the key is instantiated */
 140                if (state == KEY_IS_POSITIVE && key->type->destroy)
 141                        key->type->destroy(key);
 142
 143                security_key_free(key);
 144
 145                /* deal with the user's key tracking and quota */
 146                if (test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
 147                        spin_lock(&key->user->lock);
 148                        key->user->qnkeys--;
 149                        key->user->qnbytes -= key->quotalen;
 150                        spin_unlock(&key->user->lock);
 151                }
 152
 153                atomic_dec(&key->user->nkeys);
 154                if (state != KEY_IS_UNINSTANTIATED)
 155                        atomic_dec(&key->user->nikeys);
 156
 157                key_user_put(key->user);
 158                key_put_tag(key->domain_tag);
 159                kfree(key->description);
 160
 161                memzero_explicit(key, sizeof(*key));
 162                kmem_cache_free(key_jar, key);
 163        }
 164}
 165
 166/*
 167 * Garbage collector for unused keys.
 168 *
 169 * This is done in process context so that we don't have to disable interrupts
 170 * all over the place.  key_put() schedules this rather than trying to do the
 171 * cleanup itself, which means key_put() doesn't have to sleep.
 172 */
 173static void key_garbage_collector(struct work_struct *work)
 174{
 175        static LIST_HEAD(graveyard);
 176        static u8 gc_state;             /* Internal persistent state */
 177#define KEY_GC_REAP_AGAIN       0x01    /* - Need another cycle */
 178#define KEY_GC_REAPING_LINKS    0x02    /* - We need to reap links */
 179#define KEY_GC_SET_TIMER        0x04    /* - We need to restart the timer */
 180#define KEY_GC_REAPING_DEAD_1   0x10    /* - We need to mark dead keys */
 181#define KEY_GC_REAPING_DEAD_2   0x20    /* - We need to reap dead key links */
 182#define KEY_GC_REAPING_DEAD_3   0x40    /* - We need to reap dead keys */
 183#define KEY_GC_FOUND_DEAD_KEY   0x80    /* - We found at least one dead key */
 184
 185        struct rb_node *cursor;
 186        struct key *key;
 187        time64_t new_timer, limit;
 188
 189        kenter("[%lx,%x]", key_gc_flags, gc_state);
 190
 191        limit = ktime_get_real_seconds();
 192        if (limit > key_gc_delay)
 193                limit -= key_gc_delay;
 194        else
 195                limit = key_gc_delay;
 196
 197        /* Work out what we're going to be doing in this pass */
 198        gc_state &= KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2;
 199        gc_state <<= 1;
 200        if (test_and_clear_bit(KEY_GC_KEY_EXPIRED, &key_gc_flags))
 201                gc_state |= KEY_GC_REAPING_LINKS | KEY_GC_SET_TIMER;
 202
 203        if (test_and_clear_bit(KEY_GC_REAP_KEYTYPE, &key_gc_flags))
 204                gc_state |= KEY_GC_REAPING_DEAD_1;
 205        kdebug("new pass %x", gc_state);
 206
 207        new_timer = TIME64_MAX;
 208
 209        /* As only this function is permitted to remove things from the key
 210         * serial tree, if cursor is non-NULL then it will always point to a
 211         * valid node in the tree - even if lock got dropped.
 212         */
 213        spin_lock(&key_serial_lock);
 214        cursor = rb_first(&key_serial_tree);
 215
 216continue_scanning:
 217        while (cursor) {
 218                key = rb_entry(cursor, struct key, serial_node);
 219                cursor = rb_next(cursor);
 220
 221                if (refcount_read(&key->usage) == 0)
 222                        goto found_unreferenced_key;
 223
 224                if (unlikely(gc_state & KEY_GC_REAPING_DEAD_1)) {
 225                        if (key->type == key_gc_dead_keytype) {
 226                                gc_state |= KEY_GC_FOUND_DEAD_KEY;
 227                                set_bit(KEY_FLAG_DEAD, &key->flags);
 228                                key->perm = 0;
 229                                goto skip_dead_key;
 230                        } else if (key->type == &key_type_keyring &&
 231                                   key->restrict_link) {
 232                                goto found_restricted_keyring;
 233                        }
 234                }
 235
 236                if (gc_state & KEY_GC_SET_TIMER) {
 237                        if (key->expiry > limit && key->expiry < new_timer) {
 238                                kdebug("will expire %x in %lld",
 239                                       key_serial(key), key->expiry - limit);
 240                                new_timer = key->expiry;
 241                        }
 242                }
 243
 244                if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2))
 245                        if (key->type == key_gc_dead_keytype)
 246                                gc_state |= KEY_GC_FOUND_DEAD_KEY;
 247
 248                if ((gc_state & KEY_GC_REAPING_LINKS) ||
 249                    unlikely(gc_state & KEY_GC_REAPING_DEAD_2)) {
 250                        if (key->type == &key_type_keyring)
 251                                goto found_keyring;
 252                }
 253
 254                if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3))
 255                        if (key->type == key_gc_dead_keytype)
 256                                goto destroy_dead_key;
 257
 258        skip_dead_key:
 259                if (spin_is_contended(&key_serial_lock) || need_resched())
 260                        goto contended;
 261        }
 262
 263contended:
 264        spin_unlock(&key_serial_lock);
 265
 266maybe_resched:
 267        if (cursor) {
 268                cond_resched();
 269                spin_lock(&key_serial_lock);
 270                goto continue_scanning;
 271        }
 272
 273        /* We've completed the pass.  Set the timer if we need to and queue a
 274         * new cycle if necessary.  We keep executing cycles until we find one
 275         * where we didn't reap any keys.
 276         */
 277        kdebug("pass complete");
 278
 279        if (gc_state & KEY_GC_SET_TIMER && new_timer != (time64_t)TIME64_MAX) {
 280                new_timer += key_gc_delay;
 281                key_schedule_gc(new_timer);
 282        }
 283
 284        if (unlikely(gc_state & KEY_GC_REAPING_DEAD_2) ||
 285            !list_empty(&graveyard)) {
 286                /* Make sure that all pending keyring payload destructions are
 287                 * fulfilled and that people aren't now looking at dead or
 288                 * dying keys that they don't have a reference upon or a link
 289                 * to.
 290                 */
 291                kdebug("gc sync");
 292                synchronize_rcu();
 293        }
 294
 295        if (!list_empty(&graveyard)) {
 296                kdebug("gc keys");
 297                key_gc_unused_keys(&graveyard);
 298        }
 299
 300        if (unlikely(gc_state & (KEY_GC_REAPING_DEAD_1 |
 301                                 KEY_GC_REAPING_DEAD_2))) {
 302                if (!(gc_state & KEY_GC_FOUND_DEAD_KEY)) {
 303                        /* No remaining dead keys: short circuit the remaining
 304                         * keytype reap cycles.
 305                         */
 306                        kdebug("dead short");
 307                        gc_state &= ~(KEY_GC_REAPING_DEAD_1 | KEY_GC_REAPING_DEAD_2);
 308                        gc_state |= KEY_GC_REAPING_DEAD_3;
 309                } else {
 310                        gc_state |= KEY_GC_REAP_AGAIN;
 311                }
 312        }
 313
 314        if (unlikely(gc_state & KEY_GC_REAPING_DEAD_3)) {
 315                kdebug("dead wake");
 316                smp_mb();
 317                clear_bit(KEY_GC_REAPING_KEYTYPE, &key_gc_flags);
 318                wake_up_bit(&key_gc_flags, KEY_GC_REAPING_KEYTYPE);
 319        }
 320
 321        if (gc_state & KEY_GC_REAP_AGAIN)
 322                schedule_work(&key_gc_work);
 323        kleave(" [end %x]", gc_state);
 324        return;
 325
 326        /* We found an unreferenced key - once we've removed it from the tree,
 327         * we can safely drop the lock.
 328         */
 329found_unreferenced_key:
 330        kdebug("unrefd key %d", key->serial);
 331        rb_erase(&key->serial_node, &key_serial_tree);
 332        spin_unlock(&key_serial_lock);
 333
 334        list_add_tail(&key->graveyard_link, &graveyard);
 335        gc_state |= KEY_GC_REAP_AGAIN;
 336        goto maybe_resched;
 337
 338        /* We found a restricted keyring and need to update the restriction if
 339         * it is associated with the dead key type.
 340         */
 341found_restricted_keyring:
 342        spin_unlock(&key_serial_lock);
 343        keyring_restriction_gc(key, key_gc_dead_keytype);
 344        goto maybe_resched;
 345
 346        /* We found a keyring and we need to check the payload for links to
 347         * dead or expired keys.  We don't flag another reap immediately as we
 348         * have to wait for the old payload to be destroyed by RCU before we
 349         * can reap the keys to which it refers.
 350         */
 351found_keyring:
 352        spin_unlock(&key_serial_lock);
 353        keyring_gc(key, limit);
 354        goto maybe_resched;
 355
 356        /* We found a dead key that is still referenced.  Reset its type and
 357         * destroy its payload with its semaphore held.
 358         */
 359destroy_dead_key:
 360        spin_unlock(&key_serial_lock);
 361        kdebug("destroy key %d", key->serial);
 362        down_write(&key->sem);
 363        key->type = &key_type_dead;
 364        if (key_gc_dead_keytype->destroy)
 365                key_gc_dead_keytype->destroy(key);
 366        memset(&key->payload, KEY_DESTROY, sizeof(key->payload));
 367        up_write(&key->sem);
 368        goto maybe_resched;
 369}
 370