linux/sound/firewire/amdtp-stream.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Audio and Music Data Transmission Protocol (IEC 61883-6) streams
   4 * with Common Isochronous Packet (IEC 61883-1) headers
   5 *
   6 * Copyright (c) Clemens Ladisch <clemens@ladisch.de>
   7 */
   8
   9#include <linux/device.h>
  10#include <linux/err.h>
  11#include <linux/firewire.h>
  12#include <linux/firewire-constants.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <sound/pcm.h>
  16#include <sound/pcm_params.h>
  17#include "amdtp-stream.h"
  18
  19#define TICKS_PER_CYCLE         3072
  20#define CYCLES_PER_SECOND       8000
  21#define TICKS_PER_SECOND        (TICKS_PER_CYCLE * CYCLES_PER_SECOND)
  22
  23#define OHCI_MAX_SECOND         8
  24
  25/* Always support Linux tracing subsystem. */
  26#define CREATE_TRACE_POINTS
  27#include "amdtp-stream-trace.h"
  28
  29#define TRANSFER_DELAY_TICKS    0x2e00 /* 479.17 microseconds */
  30
  31/* isochronous header parameters */
  32#define ISO_DATA_LENGTH_SHIFT   16
  33#define TAG_NO_CIP_HEADER       0
  34#define TAG_CIP                 1
  35
  36/* common isochronous packet header parameters */
  37#define CIP_EOH_SHIFT           31
  38#define CIP_EOH                 (1u << CIP_EOH_SHIFT)
  39#define CIP_EOH_MASK            0x80000000
  40#define CIP_SID_SHIFT           24
  41#define CIP_SID_MASK            0x3f000000
  42#define CIP_DBS_MASK            0x00ff0000
  43#define CIP_DBS_SHIFT           16
  44#define CIP_SPH_MASK            0x00000400
  45#define CIP_SPH_SHIFT           10
  46#define CIP_DBC_MASK            0x000000ff
  47#define CIP_FMT_SHIFT           24
  48#define CIP_FMT_MASK            0x3f000000
  49#define CIP_FDF_MASK            0x00ff0000
  50#define CIP_FDF_SHIFT           16
  51#define CIP_SYT_MASK            0x0000ffff
  52#define CIP_SYT_NO_INFO         0xffff
  53
  54/* Audio and Music transfer protocol specific parameters */
  55#define CIP_FMT_AM              0x10
  56#define AMDTP_FDF_NO_DATA       0xff
  57
  58// For iso header, tstamp and 2 CIP header.
  59#define IR_CTX_HEADER_SIZE_CIP          16
  60// For iso header and tstamp.
  61#define IR_CTX_HEADER_SIZE_NO_CIP       8
  62#define HEADER_TSTAMP_MASK      0x0000ffff
  63
  64#define IT_PKT_HEADER_SIZE_CIP          8 // For 2 CIP header.
  65#define IT_PKT_HEADER_SIZE_NO_CIP       0 // Nothing.
  66
  67static void pcm_period_work(struct work_struct *work);
  68
  69/**
  70 * amdtp_stream_init - initialize an AMDTP stream structure
  71 * @s: the AMDTP stream to initialize
  72 * @unit: the target of the stream
  73 * @dir: the direction of stream
  74 * @flags: the packet transmission method to use
  75 * @fmt: the value of fmt field in CIP header
  76 * @process_ctx_payloads: callback handler to process payloads of isoc context
  77 * @protocol_size: the size to allocate newly for protocol
  78 */
  79int amdtp_stream_init(struct amdtp_stream *s, struct fw_unit *unit,
  80                      enum amdtp_stream_direction dir, enum cip_flags flags,
  81                      unsigned int fmt,
  82                      amdtp_stream_process_ctx_payloads_t process_ctx_payloads,
  83                      unsigned int protocol_size)
  84{
  85        if (process_ctx_payloads == NULL)
  86                return -EINVAL;
  87
  88        s->protocol = kzalloc(protocol_size, GFP_KERNEL);
  89        if (!s->protocol)
  90                return -ENOMEM;
  91
  92        s->unit = unit;
  93        s->direction = dir;
  94        s->flags = flags;
  95        s->context = ERR_PTR(-1);
  96        mutex_init(&s->mutex);
  97        INIT_WORK(&s->period_work, pcm_period_work);
  98        s->packet_index = 0;
  99
 100        init_waitqueue_head(&s->callback_wait);
 101        s->callbacked = false;
 102
 103        s->fmt = fmt;
 104        s->process_ctx_payloads = process_ctx_payloads;
 105
 106        if (dir == AMDTP_OUT_STREAM)
 107                s->ctx_data.rx.syt_override = -1;
 108
 109        return 0;
 110}
 111EXPORT_SYMBOL(amdtp_stream_init);
 112
 113/**
 114 * amdtp_stream_destroy - free stream resources
 115 * @s: the AMDTP stream to destroy
 116 */
 117void amdtp_stream_destroy(struct amdtp_stream *s)
 118{
 119        /* Not initialized. */
 120        if (s->protocol == NULL)
 121                return;
 122
 123        WARN_ON(amdtp_stream_running(s));
 124        kfree(s->protocol);
 125        mutex_destroy(&s->mutex);
 126}
 127EXPORT_SYMBOL(amdtp_stream_destroy);
 128
 129const unsigned int amdtp_syt_intervals[CIP_SFC_COUNT] = {
 130        [CIP_SFC_32000]  =  8,
 131        [CIP_SFC_44100]  =  8,
 132        [CIP_SFC_48000]  =  8,
 133        [CIP_SFC_88200]  = 16,
 134        [CIP_SFC_96000]  = 16,
 135        [CIP_SFC_176400] = 32,
 136        [CIP_SFC_192000] = 32,
 137};
 138EXPORT_SYMBOL(amdtp_syt_intervals);
 139
 140const unsigned int amdtp_rate_table[CIP_SFC_COUNT] = {
 141        [CIP_SFC_32000]  =  32000,
 142        [CIP_SFC_44100]  =  44100,
 143        [CIP_SFC_48000]  =  48000,
 144        [CIP_SFC_88200]  =  88200,
 145        [CIP_SFC_96000]  =  96000,
 146        [CIP_SFC_176400] = 176400,
 147        [CIP_SFC_192000] = 192000,
 148};
 149EXPORT_SYMBOL(amdtp_rate_table);
 150
 151static int apply_constraint_to_size(struct snd_pcm_hw_params *params,
 152                                    struct snd_pcm_hw_rule *rule)
 153{
 154        struct snd_interval *s = hw_param_interval(params, rule->var);
 155        const struct snd_interval *r =
 156                hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_RATE);
 157        struct snd_interval t = {0};
 158        unsigned int step = 0;
 159        int i;
 160
 161        for (i = 0; i < CIP_SFC_COUNT; ++i) {
 162                if (snd_interval_test(r, amdtp_rate_table[i]))
 163                        step = max(step, amdtp_syt_intervals[i]);
 164        }
 165
 166        t.min = roundup(s->min, step);
 167        t.max = rounddown(s->max, step);
 168        t.integer = 1;
 169
 170        return snd_interval_refine(s, &t);
 171}
 172
 173/**
 174 * amdtp_stream_add_pcm_hw_constraints - add hw constraints for PCM substream
 175 * @s:          the AMDTP stream, which must be initialized.
 176 * @runtime:    the PCM substream runtime
 177 */
 178int amdtp_stream_add_pcm_hw_constraints(struct amdtp_stream *s,
 179                                        struct snd_pcm_runtime *runtime)
 180{
 181        struct snd_pcm_hardware *hw = &runtime->hw;
 182        unsigned int ctx_header_size;
 183        unsigned int maximum_usec_per_period;
 184        int err;
 185
 186        hw->info = SNDRV_PCM_INFO_BATCH |
 187                   SNDRV_PCM_INFO_BLOCK_TRANSFER |
 188                   SNDRV_PCM_INFO_INTERLEAVED |
 189                   SNDRV_PCM_INFO_JOINT_DUPLEX |
 190                   SNDRV_PCM_INFO_MMAP |
 191                   SNDRV_PCM_INFO_MMAP_VALID;
 192
 193        /* SNDRV_PCM_INFO_BATCH */
 194        hw->periods_min = 2;
 195        hw->periods_max = UINT_MAX;
 196
 197        /* bytes for a frame */
 198        hw->period_bytes_min = 4 * hw->channels_max;
 199
 200        /* Just to prevent from allocating much pages. */
 201        hw->period_bytes_max = hw->period_bytes_min * 2048;
 202        hw->buffer_bytes_max = hw->period_bytes_max * hw->periods_min;
 203
 204        // Linux driver for 1394 OHCI controller voluntarily flushes isoc
 205        // context when total size of accumulated context header reaches
 206        // PAGE_SIZE. This kicks work for the isoc context and brings
 207        // callback in the middle of scheduled interrupts.
 208        // Although AMDTP streams in the same domain use the same events per
 209        // IRQ, use the largest size of context header between IT/IR contexts.
 210        // Here, use the value of context header in IR context is for both
 211        // contexts.
 212        if (!(s->flags & CIP_NO_HEADER))
 213                ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
 214        else
 215                ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
 216        maximum_usec_per_period = USEC_PER_SEC * PAGE_SIZE /
 217                                  CYCLES_PER_SECOND / ctx_header_size;
 218
 219        // In IEC 61883-6, one isoc packet can transfer events up to the value
 220        // of syt interval. This comes from the interval of isoc cycle. As 1394
 221        // OHCI controller can generate hardware IRQ per isoc packet, the
 222        // interval is 125 usec.
 223        // However, there are two ways of transmission in IEC 61883-6; blocking
 224        // and non-blocking modes. In blocking mode, the sequence of isoc packet
 225        // includes 'empty' or 'NODATA' packets which include no event. In
 226        // non-blocking mode, the number of events per packet is variable up to
 227        // the syt interval.
 228        // Due to the above protocol design, the minimum PCM frames per
 229        // interrupt should be double of the value of syt interval, thus it is
 230        // 250 usec.
 231        err = snd_pcm_hw_constraint_minmax(runtime,
 232                                           SNDRV_PCM_HW_PARAM_PERIOD_TIME,
 233                                           250, maximum_usec_per_period);
 234        if (err < 0)
 235                goto end;
 236
 237        /* Non-Blocking stream has no more constraints */
 238        if (!(s->flags & CIP_BLOCKING))
 239                goto end;
 240
 241        /*
 242         * One AMDTP packet can include some frames. In blocking mode, the
 243         * number equals to SYT_INTERVAL. So the number is 8, 16 or 32,
 244         * depending on its sampling rate. For accurate period interrupt, it's
 245         * preferrable to align period/buffer sizes to current SYT_INTERVAL.
 246         */
 247        err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 248                                  apply_constraint_to_size, NULL,
 249                                  SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
 250                                  SNDRV_PCM_HW_PARAM_RATE, -1);
 251        if (err < 0)
 252                goto end;
 253        err = snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 254                                  apply_constraint_to_size, NULL,
 255                                  SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
 256                                  SNDRV_PCM_HW_PARAM_RATE, -1);
 257        if (err < 0)
 258                goto end;
 259end:
 260        return err;
 261}
 262EXPORT_SYMBOL(amdtp_stream_add_pcm_hw_constraints);
 263
 264/**
 265 * amdtp_stream_set_parameters - set stream parameters
 266 * @s: the AMDTP stream to configure
 267 * @rate: the sample rate
 268 * @data_block_quadlets: the size of a data block in quadlet unit
 269 *
 270 * The parameters must be set before the stream is started, and must not be
 271 * changed while the stream is running.
 272 */
 273int amdtp_stream_set_parameters(struct amdtp_stream *s, unsigned int rate,
 274                                unsigned int data_block_quadlets)
 275{
 276        unsigned int sfc;
 277
 278        for (sfc = 0; sfc < ARRAY_SIZE(amdtp_rate_table); ++sfc) {
 279                if (amdtp_rate_table[sfc] == rate)
 280                        break;
 281        }
 282        if (sfc == ARRAY_SIZE(amdtp_rate_table))
 283                return -EINVAL;
 284
 285        s->sfc = sfc;
 286        s->data_block_quadlets = data_block_quadlets;
 287        s->syt_interval = amdtp_syt_intervals[sfc];
 288
 289        // default buffering in the device.
 290        if (s->direction == AMDTP_OUT_STREAM) {
 291                s->ctx_data.rx.transfer_delay =
 292                                        TRANSFER_DELAY_TICKS - TICKS_PER_CYCLE;
 293
 294                if (s->flags & CIP_BLOCKING) {
 295                        // additional buffering needed to adjust for no-data
 296                        // packets.
 297                        s->ctx_data.rx.transfer_delay +=
 298                                TICKS_PER_SECOND * s->syt_interval / rate;
 299                }
 300        }
 301
 302        return 0;
 303}
 304EXPORT_SYMBOL(amdtp_stream_set_parameters);
 305
 306/**
 307 * amdtp_stream_get_max_payload - get the stream's packet size
 308 * @s: the AMDTP stream
 309 *
 310 * This function must not be called before the stream has been configured
 311 * with amdtp_stream_set_parameters().
 312 */
 313unsigned int amdtp_stream_get_max_payload(struct amdtp_stream *s)
 314{
 315        unsigned int multiplier = 1;
 316        unsigned int cip_header_size = 0;
 317
 318        if (s->flags & CIP_JUMBO_PAYLOAD)
 319                multiplier = 5;
 320        if (!(s->flags & CIP_NO_HEADER))
 321                cip_header_size = sizeof(__be32) * 2;
 322
 323        return cip_header_size +
 324                s->syt_interval * s->data_block_quadlets * sizeof(__be32) * multiplier;
 325}
 326EXPORT_SYMBOL(amdtp_stream_get_max_payload);
 327
 328/**
 329 * amdtp_stream_pcm_prepare - prepare PCM device for running
 330 * @s: the AMDTP stream
 331 *
 332 * This function should be called from the PCM device's .prepare callback.
 333 */
 334void amdtp_stream_pcm_prepare(struct amdtp_stream *s)
 335{
 336        cancel_work_sync(&s->period_work);
 337        s->pcm_buffer_pointer = 0;
 338        s->pcm_period_pointer = 0;
 339}
 340EXPORT_SYMBOL(amdtp_stream_pcm_prepare);
 341
 342static unsigned int calculate_data_blocks(unsigned int *data_block_state,
 343                                bool is_blocking, bool is_no_info,
 344                                unsigned int syt_interval, enum cip_sfc sfc)
 345{
 346        unsigned int data_blocks;
 347
 348        /* Blocking mode. */
 349        if (is_blocking) {
 350                /* This module generate empty packet for 'no data'. */
 351                if (is_no_info)
 352                        data_blocks = 0;
 353                else
 354                        data_blocks = syt_interval;
 355        /* Non-blocking mode. */
 356        } else {
 357                if (!cip_sfc_is_base_44100(sfc)) {
 358                        // Sample_rate / 8000 is an integer, and precomputed.
 359                        data_blocks = *data_block_state;
 360                } else {
 361                        unsigned int phase = *data_block_state;
 362
 363                /*
 364                 * This calculates the number of data blocks per packet so that
 365                 * 1) the overall rate is correct and exactly synchronized to
 366                 *    the bus clock, and
 367                 * 2) packets with a rounded-up number of blocks occur as early
 368                 *    as possible in the sequence (to prevent underruns of the
 369                 *    device's buffer).
 370                 */
 371                        if (sfc == CIP_SFC_44100)
 372                                /* 6 6 5 6 5 6 5 ... */
 373                                data_blocks = 5 + ((phase & 1) ^
 374                                                   (phase == 0 || phase >= 40));
 375                        else
 376                                /* 12 11 11 11 11 ... or 23 22 22 22 22 ... */
 377                                data_blocks = 11 * (sfc >> 1) + (phase == 0);
 378                        if (++phase >= (80 >> (sfc >> 1)))
 379                                phase = 0;
 380                        *data_block_state = phase;
 381                }
 382        }
 383
 384        return data_blocks;
 385}
 386
 387static unsigned int calculate_syt_offset(unsigned int *last_syt_offset,
 388                        unsigned int *syt_offset_state, enum cip_sfc sfc)
 389{
 390        unsigned int syt_offset;
 391
 392        if (*last_syt_offset < TICKS_PER_CYCLE) {
 393                if (!cip_sfc_is_base_44100(sfc))
 394                        syt_offset = *last_syt_offset + *syt_offset_state;
 395                else {
 396                /*
 397                 * The time, in ticks, of the n'th SYT_INTERVAL sample is:
 398                 *   n * SYT_INTERVAL * 24576000 / sample_rate
 399                 * Modulo TICKS_PER_CYCLE, the difference between successive
 400                 * elements is about 1386.23.  Rounding the results of this
 401                 * formula to the SYT precision results in a sequence of
 402                 * differences that begins with:
 403                 *   1386 1386 1387 1386 1386 1386 1387 1386 1386 1386 1387 ...
 404                 * This code generates _exactly_ the same sequence.
 405                 */
 406                        unsigned int phase = *syt_offset_state;
 407                        unsigned int index = phase % 13;
 408
 409                        syt_offset = *last_syt_offset;
 410                        syt_offset += 1386 + ((index && !(index & 3)) ||
 411                                              phase == 146);
 412                        if (++phase >= 147)
 413                                phase = 0;
 414                        *syt_offset_state = phase;
 415                }
 416        } else
 417                syt_offset = *last_syt_offset - TICKS_PER_CYCLE;
 418        *last_syt_offset = syt_offset;
 419
 420        if (syt_offset >= TICKS_PER_CYCLE)
 421                syt_offset = CIP_SYT_NO_INFO;
 422
 423        return syt_offset;
 424}
 425
 426static void update_pcm_pointers(struct amdtp_stream *s,
 427                                struct snd_pcm_substream *pcm,
 428                                unsigned int frames)
 429{
 430        unsigned int ptr;
 431
 432        ptr = s->pcm_buffer_pointer + frames;
 433        if (ptr >= pcm->runtime->buffer_size)
 434                ptr -= pcm->runtime->buffer_size;
 435        WRITE_ONCE(s->pcm_buffer_pointer, ptr);
 436
 437        s->pcm_period_pointer += frames;
 438        if (s->pcm_period_pointer >= pcm->runtime->period_size) {
 439                s->pcm_period_pointer -= pcm->runtime->period_size;
 440                queue_work(system_highpri_wq, &s->period_work);
 441        }
 442}
 443
 444static void pcm_period_work(struct work_struct *work)
 445{
 446        struct amdtp_stream *s = container_of(work, struct amdtp_stream,
 447                                              period_work);
 448        struct snd_pcm_substream *pcm = READ_ONCE(s->pcm);
 449
 450        if (pcm)
 451                snd_pcm_period_elapsed(pcm);
 452}
 453
 454static int queue_packet(struct amdtp_stream *s, struct fw_iso_packet *params,
 455                        bool sched_irq)
 456{
 457        int err;
 458
 459        params->interrupt = sched_irq;
 460        params->tag = s->tag;
 461        params->sy = 0;
 462
 463        err = fw_iso_context_queue(s->context, params, &s->buffer.iso_buffer,
 464                                   s->buffer.packets[s->packet_index].offset);
 465        if (err < 0) {
 466                dev_err(&s->unit->device, "queueing error: %d\n", err);
 467                goto end;
 468        }
 469
 470        if (++s->packet_index >= s->queue_size)
 471                s->packet_index = 0;
 472end:
 473        return err;
 474}
 475
 476static inline int queue_out_packet(struct amdtp_stream *s,
 477                                   struct fw_iso_packet *params, bool sched_irq)
 478{
 479        params->skip =
 480                !!(params->header_length == 0 && params->payload_length == 0);
 481        return queue_packet(s, params, sched_irq);
 482}
 483
 484static inline int queue_in_packet(struct amdtp_stream *s,
 485                                  struct fw_iso_packet *params)
 486{
 487        // Queue one packet for IR context.
 488        params->header_length = s->ctx_data.tx.ctx_header_size;
 489        params->payload_length = s->ctx_data.tx.max_ctx_payload_length;
 490        params->skip = false;
 491        return queue_packet(s, params, false);
 492}
 493
 494static void generate_cip_header(struct amdtp_stream *s, __be32 cip_header[2],
 495                        unsigned int data_block_counter, unsigned int syt)
 496{
 497        cip_header[0] = cpu_to_be32(READ_ONCE(s->source_node_id_field) |
 498                                (s->data_block_quadlets << CIP_DBS_SHIFT) |
 499                                ((s->sph << CIP_SPH_SHIFT) & CIP_SPH_MASK) |
 500                                data_block_counter);
 501        cip_header[1] = cpu_to_be32(CIP_EOH |
 502                        ((s->fmt << CIP_FMT_SHIFT) & CIP_FMT_MASK) |
 503                        ((s->ctx_data.rx.fdf << CIP_FDF_SHIFT) & CIP_FDF_MASK) |
 504                        (syt & CIP_SYT_MASK));
 505}
 506
 507static void build_it_pkt_header(struct amdtp_stream *s, unsigned int cycle,
 508                                struct fw_iso_packet *params,
 509                                unsigned int data_blocks,
 510                                unsigned int data_block_counter,
 511                                unsigned int syt, unsigned int index)
 512{
 513        unsigned int payload_length;
 514        __be32 *cip_header;
 515
 516        payload_length = data_blocks * sizeof(__be32) * s->data_block_quadlets;
 517        params->payload_length = payload_length;
 518
 519        if (!(s->flags & CIP_NO_HEADER)) {
 520                cip_header = (__be32 *)params->header;
 521                generate_cip_header(s, cip_header, data_block_counter, syt);
 522                params->header_length = 2 * sizeof(__be32);
 523                payload_length += params->header_length;
 524        } else {
 525                cip_header = NULL;
 526        }
 527
 528        trace_amdtp_packet(s, cycle, cip_header, payload_length, data_blocks,
 529                           data_block_counter, index);
 530}
 531
 532static int check_cip_header(struct amdtp_stream *s, const __be32 *buf,
 533                            unsigned int payload_length,
 534                            unsigned int *data_blocks,
 535                            unsigned int *data_block_counter, unsigned int *syt)
 536{
 537        u32 cip_header[2];
 538        unsigned int sph;
 539        unsigned int fmt;
 540        unsigned int fdf;
 541        unsigned int dbc;
 542        bool lost;
 543
 544        cip_header[0] = be32_to_cpu(buf[0]);
 545        cip_header[1] = be32_to_cpu(buf[1]);
 546
 547        /*
 548         * This module supports 'Two-quadlet CIP header with SYT field'.
 549         * For convenience, also check FMT field is AM824 or not.
 550         */
 551        if ((((cip_header[0] & CIP_EOH_MASK) == CIP_EOH) ||
 552             ((cip_header[1] & CIP_EOH_MASK) != CIP_EOH)) &&
 553            (!(s->flags & CIP_HEADER_WITHOUT_EOH))) {
 554                dev_info_ratelimited(&s->unit->device,
 555                                "Invalid CIP header for AMDTP: %08X:%08X\n",
 556                                cip_header[0], cip_header[1]);
 557                return -EAGAIN;
 558        }
 559
 560        /* Check valid protocol or not. */
 561        sph = (cip_header[0] & CIP_SPH_MASK) >> CIP_SPH_SHIFT;
 562        fmt = (cip_header[1] & CIP_FMT_MASK) >> CIP_FMT_SHIFT;
 563        if (sph != s->sph || fmt != s->fmt) {
 564                dev_info_ratelimited(&s->unit->device,
 565                                     "Detect unexpected protocol: %08x %08x\n",
 566                                     cip_header[0], cip_header[1]);
 567                return -EAGAIN;
 568        }
 569
 570        /* Calculate data blocks */
 571        fdf = (cip_header[1] & CIP_FDF_MASK) >> CIP_FDF_SHIFT;
 572        if (payload_length < sizeof(__be32) * 2 ||
 573            (fmt == CIP_FMT_AM && fdf == AMDTP_FDF_NO_DATA)) {
 574                *data_blocks = 0;
 575        } else {
 576                unsigned int data_block_quadlets =
 577                                (cip_header[0] & CIP_DBS_MASK) >> CIP_DBS_SHIFT;
 578                /* avoid division by zero */
 579                if (data_block_quadlets == 0) {
 580                        dev_err(&s->unit->device,
 581                                "Detect invalid value in dbs field: %08X\n",
 582                                cip_header[0]);
 583                        return -EPROTO;
 584                }
 585                if (s->flags & CIP_WRONG_DBS)
 586                        data_block_quadlets = s->data_block_quadlets;
 587
 588                *data_blocks = (payload_length / sizeof(__be32) - 2) /
 589                                                        data_block_quadlets;
 590        }
 591
 592        /* Check data block counter continuity */
 593        dbc = cip_header[0] & CIP_DBC_MASK;
 594        if (*data_blocks == 0 && (s->flags & CIP_EMPTY_HAS_WRONG_DBC) &&
 595            *data_block_counter != UINT_MAX)
 596                dbc = *data_block_counter;
 597
 598        if ((dbc == 0x00 && (s->flags & CIP_SKIP_DBC_ZERO_CHECK)) ||
 599            *data_block_counter == UINT_MAX) {
 600                lost = false;
 601        } else if (!(s->flags & CIP_DBC_IS_END_EVENT)) {
 602                lost = dbc != *data_block_counter;
 603        } else {
 604                unsigned int dbc_interval;
 605
 606                if (*data_blocks > 0 && s->ctx_data.tx.dbc_interval > 0)
 607                        dbc_interval = s->ctx_data.tx.dbc_interval;
 608                else
 609                        dbc_interval = *data_blocks;
 610
 611                lost = dbc != ((*data_block_counter + dbc_interval) & 0xff);
 612        }
 613
 614        if (lost) {
 615                dev_err(&s->unit->device,
 616                        "Detect discontinuity of CIP: %02X %02X\n",
 617                        *data_block_counter, dbc);
 618                return -EIO;
 619        }
 620
 621        *data_block_counter = dbc;
 622
 623        *syt = cip_header[1] & CIP_SYT_MASK;
 624
 625        return 0;
 626}
 627
 628static int parse_ir_ctx_header(struct amdtp_stream *s, unsigned int cycle,
 629                               const __be32 *ctx_header,
 630                               unsigned int *payload_length,
 631                               unsigned int *data_blocks,
 632                               unsigned int *data_block_counter,
 633                               unsigned int *syt, unsigned int index)
 634{
 635        const __be32 *cip_header;
 636        int err;
 637
 638        *payload_length = be32_to_cpu(ctx_header[0]) >> ISO_DATA_LENGTH_SHIFT;
 639        if (*payload_length > s->ctx_data.tx.ctx_header_size +
 640                                        s->ctx_data.tx.max_ctx_payload_length) {
 641                dev_err(&s->unit->device,
 642                        "Detect jumbo payload: %04x %04x\n",
 643                        *payload_length, s->ctx_data.tx.max_ctx_payload_length);
 644                return -EIO;
 645        }
 646
 647        if (!(s->flags & CIP_NO_HEADER)) {
 648                cip_header = ctx_header + 2;
 649                err = check_cip_header(s, cip_header, *payload_length,
 650                                       data_blocks, data_block_counter, syt);
 651                if (err < 0)
 652                        return err;
 653        } else {
 654                cip_header = NULL;
 655                err = 0;
 656                *data_blocks = *payload_length / sizeof(__be32) /
 657                               s->data_block_quadlets;
 658                *syt = 0;
 659
 660                if (*data_block_counter == UINT_MAX)
 661                        *data_block_counter = 0;
 662        }
 663
 664        trace_amdtp_packet(s, cycle, cip_header, *payload_length, *data_blocks,
 665                           *data_block_counter, index);
 666
 667        return err;
 668}
 669
 670// In CYCLE_TIMER register of IEEE 1394, 7 bits are used to represent second. On
 671// the other hand, in DMA descriptors of 1394 OHCI, 3 bits are used to represent
 672// it. Thus, via Linux firewire subsystem, we can get the 3 bits for second.
 673static inline u32 compute_cycle_count(__be32 ctx_header_tstamp)
 674{
 675        u32 tstamp = be32_to_cpu(ctx_header_tstamp) & HEADER_TSTAMP_MASK;
 676        return (((tstamp >> 13) & 0x07) * 8000) + (tstamp & 0x1fff);
 677}
 678
 679static inline u32 increment_cycle_count(u32 cycle, unsigned int addend)
 680{
 681        cycle += addend;
 682        if (cycle >= OHCI_MAX_SECOND * CYCLES_PER_SECOND)
 683                cycle -= OHCI_MAX_SECOND * CYCLES_PER_SECOND;
 684        return cycle;
 685}
 686
 687// Align to actual cycle count for the packet which is going to be scheduled.
 688// This module queued the same number of isochronous cycle as the size of queue
 689// to kip isochronous cycle, therefore it's OK to just increment the cycle by
 690// the size of queue for scheduled cycle.
 691static inline u32 compute_it_cycle(const __be32 ctx_header_tstamp,
 692                                   unsigned int queue_size)
 693{
 694        u32 cycle = compute_cycle_count(ctx_header_tstamp);
 695        return increment_cycle_count(cycle, queue_size);
 696}
 697
 698static int generate_device_pkt_descs(struct amdtp_stream *s,
 699                                     struct pkt_desc *descs,
 700                                     const __be32 *ctx_header,
 701                                     unsigned int packets)
 702{
 703        unsigned int dbc = s->data_block_counter;
 704        int i;
 705        int err;
 706
 707        for (i = 0; i < packets; ++i) {
 708                struct pkt_desc *desc = descs + i;
 709                unsigned int index = (s->packet_index + i) % s->queue_size;
 710                unsigned int cycle;
 711                unsigned int payload_length;
 712                unsigned int data_blocks;
 713                unsigned int syt;
 714
 715                cycle = compute_cycle_count(ctx_header[1]);
 716
 717                err = parse_ir_ctx_header(s, cycle, ctx_header, &payload_length,
 718                                          &data_blocks, &dbc, &syt, i);
 719                if (err < 0)
 720                        return err;
 721
 722                desc->cycle = cycle;
 723                desc->syt = syt;
 724                desc->data_blocks = data_blocks;
 725                desc->data_block_counter = dbc;
 726                desc->ctx_payload = s->buffer.packets[index].buffer;
 727
 728                if (!(s->flags & CIP_DBC_IS_END_EVENT))
 729                        dbc = (dbc + desc->data_blocks) & 0xff;
 730
 731                ctx_header +=
 732                        s->ctx_data.tx.ctx_header_size / sizeof(*ctx_header);
 733        }
 734
 735        s->data_block_counter = dbc;
 736
 737        return 0;
 738}
 739
 740static unsigned int compute_syt(unsigned int syt_offset, unsigned int cycle,
 741                                unsigned int transfer_delay)
 742{
 743        unsigned int syt;
 744
 745        syt_offset += transfer_delay;
 746        syt = ((cycle + syt_offset / TICKS_PER_CYCLE) << 12) |
 747              (syt_offset % TICKS_PER_CYCLE);
 748        return syt & CIP_SYT_MASK;
 749}
 750
 751static void generate_pkt_descs(struct amdtp_stream *s, struct pkt_desc *descs,
 752                               const __be32 *ctx_header, unsigned int packets,
 753                               const struct seq_desc *seq_descs,
 754                               unsigned int seq_size)
 755{
 756        unsigned int dbc = s->data_block_counter;
 757        unsigned int seq_index = s->ctx_data.rx.seq_index;
 758        int i;
 759
 760        for (i = 0; i < packets; ++i) {
 761                struct pkt_desc *desc = descs + i;
 762                unsigned int index = (s->packet_index + i) % s->queue_size;
 763                const struct seq_desc *seq = seq_descs + seq_index;
 764                unsigned int syt;
 765
 766                desc->cycle = compute_it_cycle(*ctx_header, s->queue_size);
 767
 768                syt = seq->syt_offset;
 769                if (syt != CIP_SYT_NO_INFO) {
 770                        syt = compute_syt(syt, desc->cycle,
 771                                          s->ctx_data.rx.transfer_delay);
 772                }
 773                desc->syt = syt;
 774                desc->data_blocks = seq->data_blocks;
 775
 776                if (s->flags & CIP_DBC_IS_END_EVENT)
 777                        dbc = (dbc + desc->data_blocks) & 0xff;
 778
 779                desc->data_block_counter = dbc;
 780
 781                if (!(s->flags & CIP_DBC_IS_END_EVENT))
 782                        dbc = (dbc + desc->data_blocks) & 0xff;
 783
 784                desc->ctx_payload = s->buffer.packets[index].buffer;
 785
 786                seq_index = (seq_index + 1) % seq_size;
 787
 788                ++ctx_header;
 789        }
 790
 791        s->data_block_counter = dbc;
 792        s->ctx_data.rx.seq_index = seq_index;
 793}
 794
 795static inline void cancel_stream(struct amdtp_stream *s)
 796{
 797        s->packet_index = -1;
 798        if (current_work() == &s->period_work)
 799                amdtp_stream_pcm_abort(s);
 800        WRITE_ONCE(s->pcm_buffer_pointer, SNDRV_PCM_POS_XRUN);
 801}
 802
 803static void process_ctx_payloads(struct amdtp_stream *s,
 804                                 const struct pkt_desc *descs,
 805                                 unsigned int packets)
 806{
 807        struct snd_pcm_substream *pcm;
 808        unsigned int pcm_frames;
 809
 810        pcm = READ_ONCE(s->pcm);
 811        pcm_frames = s->process_ctx_payloads(s, descs, packets, pcm);
 812        if (pcm)
 813                update_pcm_pointers(s, pcm, pcm_frames);
 814}
 815
 816static void out_stream_callback(struct fw_iso_context *context, u32 tstamp,
 817                                size_t header_length, void *header,
 818                                void *private_data)
 819{
 820        struct amdtp_stream *s = private_data;
 821        const struct amdtp_domain *d = s->domain;
 822        const __be32 *ctx_header = header;
 823        unsigned int events_per_period = s->ctx_data.rx.events_per_period;
 824        unsigned int event_count = s->ctx_data.rx.event_count;
 825        unsigned int packets;
 826        int i;
 827
 828        if (s->packet_index < 0)
 829                return;
 830
 831        // Calculate the number of packets in buffer and check XRUN.
 832        packets = header_length / sizeof(*ctx_header);
 833
 834        generate_pkt_descs(s, s->pkt_descs, ctx_header, packets, d->seq_descs,
 835                           d->seq_size);
 836
 837        process_ctx_payloads(s, s->pkt_descs, packets);
 838
 839        for (i = 0; i < packets; ++i) {
 840                const struct pkt_desc *desc = s->pkt_descs + i;
 841                unsigned int syt;
 842                struct {
 843                        struct fw_iso_packet params;
 844                        __be32 header[IT_PKT_HEADER_SIZE_CIP / sizeof(__be32)];
 845                } template = { {0}, {0} };
 846                bool sched_irq = false;
 847
 848                if (s->ctx_data.rx.syt_override < 0)
 849                        syt = desc->syt;
 850                else
 851                        syt = s->ctx_data.rx.syt_override;
 852
 853                build_it_pkt_header(s, desc->cycle, &template.params,
 854                                    desc->data_blocks, desc->data_block_counter,
 855                                    syt, i);
 856
 857                if (s == s->domain->irq_target) {
 858                        event_count += desc->data_blocks;
 859                        if (event_count >= events_per_period) {
 860                                event_count -= events_per_period;
 861                                sched_irq = true;
 862                        }
 863                }
 864
 865                if (queue_out_packet(s, &template.params, sched_irq) < 0) {
 866                        cancel_stream(s);
 867                        return;
 868                }
 869        }
 870
 871        s->ctx_data.rx.event_count = event_count;
 872}
 873
 874static void in_stream_callback(struct fw_iso_context *context, u32 tstamp,
 875                               size_t header_length, void *header,
 876                               void *private_data)
 877{
 878        struct amdtp_stream *s = private_data;
 879        __be32 *ctx_header = header;
 880        unsigned int packets;
 881        int i;
 882        int err;
 883
 884        if (s->packet_index < 0)
 885                return;
 886
 887        // Calculate the number of packets in buffer and check XRUN.
 888        packets = header_length / s->ctx_data.tx.ctx_header_size;
 889
 890        err = generate_device_pkt_descs(s, s->pkt_descs, ctx_header, packets);
 891        if (err < 0) {
 892                if (err != -EAGAIN) {
 893                        cancel_stream(s);
 894                        return;
 895                }
 896        } else {
 897                process_ctx_payloads(s, s->pkt_descs, packets);
 898        }
 899
 900        for (i = 0; i < packets; ++i) {
 901                struct fw_iso_packet params = {0};
 902
 903                if (queue_in_packet(s, &params) < 0) {
 904                        cancel_stream(s);
 905                        return;
 906                }
 907        }
 908}
 909
 910static void pool_ideal_seq_descs(struct amdtp_domain *d, unsigned int packets)
 911{
 912        struct amdtp_stream *irq_target = d->irq_target;
 913        unsigned int seq_tail = d->seq_tail;
 914        unsigned int seq_size = d->seq_size;
 915        unsigned int min_avail;
 916        struct amdtp_stream *s;
 917
 918        min_avail = d->seq_size;
 919        list_for_each_entry(s, &d->streams, list) {
 920                unsigned int seq_index;
 921                unsigned int avail;
 922
 923                if (s->direction == AMDTP_IN_STREAM)
 924                        continue;
 925
 926                seq_index = s->ctx_data.rx.seq_index;
 927                avail = d->seq_tail;
 928                if (seq_index > avail)
 929                        avail += d->seq_size;
 930                avail -= seq_index;
 931
 932                if (avail < min_avail)
 933                        min_avail = avail;
 934        }
 935
 936        while (min_avail < packets) {
 937                struct seq_desc *desc = d->seq_descs + seq_tail;
 938
 939                desc->syt_offset = calculate_syt_offset(&d->last_syt_offset,
 940                                        &d->syt_offset_state, irq_target->sfc);
 941                desc->data_blocks = calculate_data_blocks(&d->data_block_state,
 942                                !!(irq_target->flags & CIP_BLOCKING),
 943                                desc->syt_offset == CIP_SYT_NO_INFO,
 944                                irq_target->syt_interval, irq_target->sfc);
 945
 946                ++seq_tail;
 947                seq_tail %= seq_size;
 948
 949                ++min_avail;
 950        }
 951
 952        d->seq_tail = seq_tail;
 953}
 954
 955static void irq_target_callback(struct fw_iso_context *context, u32 tstamp,
 956                                size_t header_length, void *header,
 957                                void *private_data)
 958{
 959        struct amdtp_stream *irq_target = private_data;
 960        struct amdtp_domain *d = irq_target->domain;
 961        unsigned int packets = header_length / sizeof(__be32);
 962        struct amdtp_stream *s;
 963
 964        // Record enough entries with extra 3 cycles at least.
 965        pool_ideal_seq_descs(d, packets + 3);
 966
 967        out_stream_callback(context, tstamp, header_length, header, irq_target);
 968        if (amdtp_streaming_error(irq_target))
 969                goto error;
 970
 971        list_for_each_entry(s, &d->streams, list) {
 972                if (s != irq_target && amdtp_stream_running(s)) {
 973                        fw_iso_context_flush_completions(s->context);
 974                        if (amdtp_streaming_error(s))
 975                                goto error;
 976                }
 977        }
 978
 979        return;
 980error:
 981        if (amdtp_stream_running(irq_target))
 982                cancel_stream(irq_target);
 983
 984        list_for_each_entry(s, &d->streams, list) {
 985                if (amdtp_stream_running(s))
 986                        cancel_stream(s);
 987        }
 988}
 989
 990// this is executed one time.
 991static void amdtp_stream_first_callback(struct fw_iso_context *context,
 992                                        u32 tstamp, size_t header_length,
 993                                        void *header, void *private_data)
 994{
 995        struct amdtp_stream *s = private_data;
 996        const __be32 *ctx_header = header;
 997        u32 cycle;
 998
 999        /*
1000         * For in-stream, first packet has come.
1001         * For out-stream, prepared to transmit first packet
1002         */
1003        s->callbacked = true;
1004        wake_up(&s->callback_wait);
1005
1006        if (s->direction == AMDTP_IN_STREAM) {
1007                cycle = compute_cycle_count(ctx_header[1]);
1008
1009                context->callback.sc = in_stream_callback;
1010        } else {
1011                cycle = compute_it_cycle(*ctx_header, s->queue_size);
1012
1013                if (s == s->domain->irq_target)
1014                        context->callback.sc = irq_target_callback;
1015                else
1016                        context->callback.sc = out_stream_callback;
1017        }
1018
1019        s->start_cycle = cycle;
1020
1021        context->callback.sc(context, tstamp, header_length, header, s);
1022}
1023
1024/**
1025 * amdtp_stream_start - start transferring packets
1026 * @s: the AMDTP stream to start
1027 * @channel: the isochronous channel on the bus
1028 * @speed: firewire speed code
1029 * @start_cycle: the isochronous cycle to start the context. Start immediately
1030 *               if negative value is given.
1031 * @queue_size: The number of packets in the queue.
1032 * @idle_irq_interval: the interval to queue packet during initial state.
1033 *
1034 * The stream cannot be started until it has been configured with
1035 * amdtp_stream_set_parameters() and it must be started before any PCM or MIDI
1036 * device can be started.
1037 */
1038static int amdtp_stream_start(struct amdtp_stream *s, int channel, int speed,
1039                              int start_cycle, unsigned int queue_size,
1040                              unsigned int idle_irq_interval)
1041{
1042        bool is_irq_target = (s == s->domain->irq_target);
1043        unsigned int ctx_header_size;
1044        unsigned int max_ctx_payload_size;
1045        enum dma_data_direction dir;
1046        int type, tag, err;
1047
1048        mutex_lock(&s->mutex);
1049
1050        if (WARN_ON(amdtp_stream_running(s) ||
1051                    (s->data_block_quadlets < 1))) {
1052                err = -EBADFD;
1053                goto err_unlock;
1054        }
1055
1056        if (s->direction == AMDTP_IN_STREAM) {
1057                // NOTE: IT context should be used for constant IRQ.
1058                if (is_irq_target) {
1059                        err = -EINVAL;
1060                        goto err_unlock;
1061                }
1062
1063                s->data_block_counter = UINT_MAX;
1064        } else {
1065                s->data_block_counter = 0;
1066        }
1067
1068        /* initialize packet buffer */
1069        if (s->direction == AMDTP_IN_STREAM) {
1070                dir = DMA_FROM_DEVICE;
1071                type = FW_ISO_CONTEXT_RECEIVE;
1072                if (!(s->flags & CIP_NO_HEADER))
1073                        ctx_header_size = IR_CTX_HEADER_SIZE_CIP;
1074                else
1075                        ctx_header_size = IR_CTX_HEADER_SIZE_NO_CIP;
1076
1077                max_ctx_payload_size = amdtp_stream_get_max_payload(s) -
1078                                       ctx_header_size;
1079        } else {
1080                dir = DMA_TO_DEVICE;
1081                type = FW_ISO_CONTEXT_TRANSMIT;
1082                ctx_header_size = 0;    // No effect for IT context.
1083
1084                max_ctx_payload_size = amdtp_stream_get_max_payload(s);
1085                if (!(s->flags & CIP_NO_HEADER))
1086                        max_ctx_payload_size -= IT_PKT_HEADER_SIZE_CIP;
1087        }
1088
1089        err = iso_packets_buffer_init(&s->buffer, s->unit, queue_size,
1090                                      max_ctx_payload_size, dir);
1091        if (err < 0)
1092                goto err_unlock;
1093        s->queue_size = queue_size;
1094
1095        s->context = fw_iso_context_create(fw_parent_device(s->unit)->card,
1096                                          type, channel, speed, ctx_header_size,
1097                                          amdtp_stream_first_callback, s);
1098        if (IS_ERR(s->context)) {
1099                err = PTR_ERR(s->context);
1100                if (err == -EBUSY)
1101                        dev_err(&s->unit->device,
1102                                "no free stream on this controller\n");
1103                goto err_buffer;
1104        }
1105
1106        amdtp_stream_update(s);
1107
1108        if (s->direction == AMDTP_IN_STREAM) {
1109                s->ctx_data.tx.max_ctx_payload_length = max_ctx_payload_size;
1110                s->ctx_data.tx.ctx_header_size = ctx_header_size;
1111        }
1112
1113        if (s->flags & CIP_NO_HEADER)
1114                s->tag = TAG_NO_CIP_HEADER;
1115        else
1116                s->tag = TAG_CIP;
1117
1118        s->pkt_descs = kcalloc(s->queue_size, sizeof(*s->pkt_descs),
1119                               GFP_KERNEL);
1120        if (!s->pkt_descs) {
1121                err = -ENOMEM;
1122                goto err_context;
1123        }
1124
1125        s->packet_index = 0;
1126        do {
1127                struct fw_iso_packet params;
1128
1129                if (s->direction == AMDTP_IN_STREAM) {
1130                        err = queue_in_packet(s, &params);
1131                } else {
1132                        bool sched_irq = false;
1133
1134                        params.header_length = 0;
1135                        params.payload_length = 0;
1136
1137                        if (is_irq_target) {
1138                                sched_irq = !((s->packet_index + 1) %
1139                                              idle_irq_interval);
1140                        }
1141
1142                        err = queue_out_packet(s, &params, sched_irq);
1143                }
1144                if (err < 0)
1145                        goto err_pkt_descs;
1146        } while (s->packet_index > 0);
1147
1148        /* NOTE: TAG1 matches CIP. This just affects in stream. */
1149        tag = FW_ISO_CONTEXT_MATCH_TAG1;
1150        if ((s->flags & CIP_EMPTY_WITH_TAG0) || (s->flags & CIP_NO_HEADER))
1151                tag |= FW_ISO_CONTEXT_MATCH_TAG0;
1152
1153        s->callbacked = false;
1154        err = fw_iso_context_start(s->context, start_cycle, 0, tag);
1155        if (err < 0)
1156                goto err_pkt_descs;
1157
1158        mutex_unlock(&s->mutex);
1159
1160        return 0;
1161err_pkt_descs:
1162        kfree(s->pkt_descs);
1163err_context:
1164        fw_iso_context_destroy(s->context);
1165        s->context = ERR_PTR(-1);
1166err_buffer:
1167        iso_packets_buffer_destroy(&s->buffer, s->unit);
1168err_unlock:
1169        mutex_unlock(&s->mutex);
1170
1171        return err;
1172}
1173
1174/**
1175 * amdtp_domain_stream_pcm_pointer - get the PCM buffer position
1176 * @d: the AMDTP domain.
1177 * @s: the AMDTP stream that transports the PCM data
1178 *
1179 * Returns the current buffer position, in frames.
1180 */
1181unsigned long amdtp_domain_stream_pcm_pointer(struct amdtp_domain *d,
1182                                              struct amdtp_stream *s)
1183{
1184        struct amdtp_stream *irq_target = d->irq_target;
1185
1186        if (irq_target && amdtp_stream_running(irq_target)) {
1187                // This function is called in software IRQ context of
1188                // period_work or process context.
1189                //
1190                // When the software IRQ context was scheduled by software IRQ
1191                // context of IT contexts, queued packets were already handled.
1192                // Therefore, no need to flush the queue in buffer furthermore.
1193                //
1194                // When the process context reach here, some packets will be
1195                // already queued in the buffer. These packets should be handled
1196                // immediately to keep better granularity of PCM pointer.
1197                //
1198                // Later, the process context will sometimes schedules software
1199                // IRQ context of the period_work. Then, no need to flush the
1200                // queue by the same reason as described in the above
1201                if (current_work() != &s->period_work) {
1202                        // Queued packet should be processed without any kernel
1203                        // preemption to keep latency against bus cycle.
1204                        preempt_disable();
1205                        fw_iso_context_flush_completions(irq_target->context);
1206                        preempt_enable();
1207                }
1208        }
1209
1210        return READ_ONCE(s->pcm_buffer_pointer);
1211}
1212EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_pointer);
1213
1214/**
1215 * amdtp_domain_stream_pcm_ack - acknowledge queued PCM frames
1216 * @d: the AMDTP domain.
1217 * @s: the AMDTP stream that transfers the PCM frames
1218 *
1219 * Returns zero always.
1220 */
1221int amdtp_domain_stream_pcm_ack(struct amdtp_domain *d, struct amdtp_stream *s)
1222{
1223        struct amdtp_stream *irq_target = d->irq_target;
1224
1225        // Process isochronous packets for recent isochronous cycle to handle
1226        // queued PCM frames.
1227        if (irq_target && amdtp_stream_running(irq_target)) {
1228                // Queued packet should be processed without any kernel
1229                // preemption to keep latency against bus cycle.
1230                preempt_disable();
1231                fw_iso_context_flush_completions(irq_target->context);
1232                preempt_enable();
1233        }
1234
1235        return 0;
1236}
1237EXPORT_SYMBOL_GPL(amdtp_domain_stream_pcm_ack);
1238
1239/**
1240 * amdtp_stream_update - update the stream after a bus reset
1241 * @s: the AMDTP stream
1242 */
1243void amdtp_stream_update(struct amdtp_stream *s)
1244{
1245        /* Precomputing. */
1246        WRITE_ONCE(s->source_node_id_field,
1247                   (fw_parent_device(s->unit)->card->node_id << CIP_SID_SHIFT) & CIP_SID_MASK);
1248}
1249EXPORT_SYMBOL(amdtp_stream_update);
1250
1251/**
1252 * amdtp_stream_stop - stop sending packets
1253 * @s: the AMDTP stream to stop
1254 *
1255 * All PCM and MIDI devices of the stream must be stopped before the stream
1256 * itself can be stopped.
1257 */
1258static void amdtp_stream_stop(struct amdtp_stream *s)
1259{
1260        mutex_lock(&s->mutex);
1261
1262        if (!amdtp_stream_running(s)) {
1263                mutex_unlock(&s->mutex);
1264                return;
1265        }
1266
1267        cancel_work_sync(&s->period_work);
1268        fw_iso_context_stop(s->context);
1269        fw_iso_context_destroy(s->context);
1270        s->context = ERR_PTR(-1);
1271        iso_packets_buffer_destroy(&s->buffer, s->unit);
1272        kfree(s->pkt_descs);
1273
1274        s->callbacked = false;
1275
1276        mutex_unlock(&s->mutex);
1277}
1278
1279/**
1280 * amdtp_stream_pcm_abort - abort the running PCM device
1281 * @s: the AMDTP stream about to be stopped
1282 *
1283 * If the isochronous stream needs to be stopped asynchronously, call this
1284 * function first to stop the PCM device.
1285 */
1286void amdtp_stream_pcm_abort(struct amdtp_stream *s)
1287{
1288        struct snd_pcm_substream *pcm;
1289
1290        pcm = READ_ONCE(s->pcm);
1291        if (pcm)
1292                snd_pcm_stop_xrun(pcm);
1293}
1294EXPORT_SYMBOL(amdtp_stream_pcm_abort);
1295
1296/**
1297 * amdtp_domain_init - initialize an AMDTP domain structure
1298 * @d: the AMDTP domain to initialize.
1299 */
1300int amdtp_domain_init(struct amdtp_domain *d)
1301{
1302        INIT_LIST_HEAD(&d->streams);
1303
1304        d->events_per_period = 0;
1305
1306        d->seq_descs = NULL;
1307
1308        return 0;
1309}
1310EXPORT_SYMBOL_GPL(amdtp_domain_init);
1311
1312/**
1313 * amdtp_domain_destroy - destroy an AMDTP domain structure
1314 * @d: the AMDTP domain to destroy.
1315 */
1316void amdtp_domain_destroy(struct amdtp_domain *d)
1317{
1318        // At present nothing to do.
1319        return;
1320}
1321EXPORT_SYMBOL_GPL(amdtp_domain_destroy);
1322
1323/**
1324 * amdtp_domain_add_stream - register isoc context into the domain.
1325 * @d: the AMDTP domain.
1326 * @s: the AMDTP stream.
1327 * @channel: the isochronous channel on the bus.
1328 * @speed: firewire speed code.
1329 */
1330int amdtp_domain_add_stream(struct amdtp_domain *d, struct amdtp_stream *s,
1331                            int channel, int speed)
1332{
1333        struct amdtp_stream *tmp;
1334
1335        list_for_each_entry(tmp, &d->streams, list) {
1336                if (s == tmp)
1337                        return -EBUSY;
1338        }
1339
1340        list_add(&s->list, &d->streams);
1341
1342        s->channel = channel;
1343        s->speed = speed;
1344        s->domain = d;
1345
1346        return 0;
1347}
1348EXPORT_SYMBOL_GPL(amdtp_domain_add_stream);
1349
1350static int get_current_cycle_time(struct fw_card *fw_card, int *cur_cycle)
1351{
1352        int generation;
1353        int rcode;
1354        __be32 reg;
1355        u32 data;
1356
1357        // This is a request to local 1394 OHCI controller and expected to
1358        // complete without any event waiting.
1359        generation = fw_card->generation;
1360        smp_rmb();      // node_id vs. generation.
1361        rcode = fw_run_transaction(fw_card, TCODE_READ_QUADLET_REQUEST,
1362                                   fw_card->node_id, generation, SCODE_100,
1363                                   CSR_REGISTER_BASE + CSR_CYCLE_TIME,
1364                                   &reg, sizeof(reg));
1365        if (rcode != RCODE_COMPLETE)
1366                return -EIO;
1367
1368        data = be32_to_cpu(reg);
1369        *cur_cycle = data >> 12;
1370
1371        return 0;
1372}
1373
1374/**
1375 * amdtp_domain_start - start sending packets for isoc context in the domain.
1376 * @d: the AMDTP domain.
1377 * @ir_delay_cycle: the cycle delay to start all IR contexts.
1378 */
1379int amdtp_domain_start(struct amdtp_domain *d, unsigned int ir_delay_cycle)
1380{
1381        static const struct {
1382                unsigned int data_block;
1383                unsigned int syt_offset;
1384        } *entry, initial_state[] = {
1385                [CIP_SFC_32000]  = {  4, 3072 },
1386                [CIP_SFC_48000]  = {  6, 1024 },
1387                [CIP_SFC_96000]  = { 12, 1024 },
1388                [CIP_SFC_192000] = { 24, 1024 },
1389                [CIP_SFC_44100]  = {  0,   67 },
1390                [CIP_SFC_88200]  = {  0,   67 },
1391                [CIP_SFC_176400] = {  0,   67 },
1392        };
1393        unsigned int events_per_buffer = d->events_per_buffer;
1394        unsigned int events_per_period = d->events_per_period;
1395        unsigned int idle_irq_interval;
1396        unsigned int queue_size;
1397        struct amdtp_stream *s;
1398        int cycle;
1399        int err;
1400
1401        // Select an IT context as IRQ target.
1402        list_for_each_entry(s, &d->streams, list) {
1403                if (s->direction == AMDTP_OUT_STREAM)
1404                        break;
1405        }
1406        if (!s)
1407                return -ENXIO;
1408        d->irq_target = s;
1409
1410        // This is a case that AMDTP streams in domain run just for MIDI
1411        // substream. Use the number of events equivalent to 10 msec as
1412        // interval of hardware IRQ.
1413        if (events_per_period == 0)
1414                events_per_period = amdtp_rate_table[d->irq_target->sfc] / 100;
1415        if (events_per_buffer == 0)
1416                events_per_buffer = events_per_period * 3;
1417
1418        queue_size = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_buffer,
1419                                  amdtp_rate_table[d->irq_target->sfc]);
1420
1421        d->seq_descs = kcalloc(queue_size, sizeof(*d->seq_descs), GFP_KERNEL);
1422        if (!d->seq_descs)
1423                return -ENOMEM;
1424        d->seq_size = queue_size;
1425        d->seq_tail = 0;
1426
1427        entry = &initial_state[s->sfc];
1428        d->data_block_state = entry->data_block;
1429        d->syt_offset_state = entry->syt_offset;
1430        d->last_syt_offset = TICKS_PER_CYCLE;
1431
1432        if (ir_delay_cycle > 0) {
1433                struct fw_card *fw_card = fw_parent_device(s->unit)->card;
1434
1435                err = get_current_cycle_time(fw_card, &cycle);
1436                if (err < 0)
1437                        goto error;
1438
1439                // No need to care overflow in cycle field because of enough
1440                // width.
1441                cycle += ir_delay_cycle;
1442
1443                // Round up to sec field.
1444                if ((cycle & 0x00001fff) >= CYCLES_PER_SECOND) {
1445                        unsigned int sec;
1446
1447                        // The sec field can overflow.
1448                        sec = (cycle & 0xffffe000) >> 13;
1449                        cycle = (++sec << 13) |
1450                                ((cycle & 0x00001fff) / CYCLES_PER_SECOND);
1451                }
1452
1453                // In OHCI 1394 specification, lower 2 bits are available for
1454                // sec field.
1455                cycle &= 0x00007fff;
1456        } else {
1457                cycle = -1;
1458        }
1459
1460        list_for_each_entry(s, &d->streams, list) {
1461                int cycle_match;
1462
1463                if (s->direction == AMDTP_IN_STREAM) {
1464                        cycle_match = cycle;
1465                } else {
1466                        // IT context starts immediately.
1467                        cycle_match = -1;
1468                        s->ctx_data.rx.seq_index = 0;
1469                }
1470
1471                if (s != d->irq_target) {
1472                        err = amdtp_stream_start(s, s->channel, s->speed,
1473                                                 cycle_match, queue_size, 0);
1474                        if (err < 0)
1475                                goto error;
1476                }
1477        }
1478
1479        s = d->irq_target;
1480        s->ctx_data.rx.events_per_period = events_per_period;
1481        s->ctx_data.rx.event_count = 0;
1482        s->ctx_data.rx.seq_index = 0;
1483
1484        idle_irq_interval = DIV_ROUND_UP(CYCLES_PER_SECOND * events_per_period,
1485                                         amdtp_rate_table[d->irq_target->sfc]);
1486        err = amdtp_stream_start(s, s->channel, s->speed, -1, queue_size,
1487                                 idle_irq_interval);
1488        if (err < 0)
1489                goto error;
1490
1491        return 0;
1492error:
1493        list_for_each_entry(s, &d->streams, list)
1494                amdtp_stream_stop(s);
1495        kfree(d->seq_descs);
1496        d->seq_descs = NULL;
1497        return err;
1498}
1499EXPORT_SYMBOL_GPL(amdtp_domain_start);
1500
1501/**
1502 * amdtp_domain_stop - stop sending packets for isoc context in the same domain.
1503 * @d: the AMDTP domain to which the isoc contexts belong.
1504 */
1505void amdtp_domain_stop(struct amdtp_domain *d)
1506{
1507        struct amdtp_stream *s, *next;
1508
1509        if (d->irq_target)
1510                amdtp_stream_stop(d->irq_target);
1511
1512        list_for_each_entry_safe(s, next, &d->streams, list) {
1513                list_del(&s->list);
1514
1515                if (s != d->irq_target)
1516                        amdtp_stream_stop(s);
1517        }
1518
1519        d->events_per_period = 0;
1520        d->irq_target = NULL;
1521
1522        kfree(d->seq_descs);
1523        d->seq_descs = NULL;
1524}
1525EXPORT_SYMBOL_GPL(amdtp_domain_stop);
1526