linux/tools/perf/util/header.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <errno.h>
   3#include <inttypes.h>
   4#include "string2.h"
   5#include <sys/param.h>
   6#include <sys/types.h>
   7#include <byteswap.h>
   8#include <unistd.h>
   9#include <stdio.h>
  10#include <stdlib.h>
  11#include <linux/compiler.h>
  12#include <linux/list.h>
  13#include <linux/kernel.h>
  14#include <linux/bitops.h>
  15#include <linux/string.h>
  16#include <linux/stringify.h>
  17#include <linux/zalloc.h>
  18#include <sys/stat.h>
  19#include <sys/utsname.h>
  20#include <linux/time64.h>
  21#include <dirent.h>
  22#include <bpf/libbpf.h>
  23#include <perf/cpumap.h>
  24
  25#include "dso.h"
  26#include "evlist.h"
  27#include "evsel.h"
  28#include "util/evsel_fprintf.h"
  29#include "header.h"
  30#include "memswap.h"
  31#include "trace-event.h"
  32#include "session.h"
  33#include "symbol.h"
  34#include "debug.h"
  35#include "cpumap.h"
  36#include "pmu.h"
  37#include "vdso.h"
  38#include "strbuf.h"
  39#include "build-id.h"
  40#include "data.h"
  41#include <api/fs/fs.h>
  42#include "asm/bug.h"
  43#include "tool.h"
  44#include "time-utils.h"
  45#include "units.h"
  46#include "util/util.h" // perf_exe()
  47#include "cputopo.h"
  48#include "bpf-event.h"
  49#include "clockid.h"
  50
  51#include <linux/ctype.h>
  52#include <internal/lib.h>
  53
  54/*
  55 * magic2 = "PERFILE2"
  56 * must be a numerical value to let the endianness
  57 * determine the memory layout. That way we are able
  58 * to detect endianness when reading the perf.data file
  59 * back.
  60 *
  61 * we check for legacy (PERFFILE) format.
  62 */
  63static const char *__perf_magic1 = "PERFFILE";
  64static const u64 __perf_magic2    = 0x32454c4946524550ULL;
  65static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
  66
  67#define PERF_MAGIC      __perf_magic2
  68
  69const char perf_version_string[] = PERF_VERSION;
  70
  71struct perf_file_attr {
  72        struct perf_event_attr  attr;
  73        struct perf_file_section        ids;
  74};
  75
  76void perf_header__set_feat(struct perf_header *header, int feat)
  77{
  78        set_bit(feat, header->adds_features);
  79}
  80
  81void perf_header__clear_feat(struct perf_header *header, int feat)
  82{
  83        clear_bit(feat, header->adds_features);
  84}
  85
  86bool perf_header__has_feat(const struct perf_header *header, int feat)
  87{
  88        return test_bit(feat, header->adds_features);
  89}
  90
  91static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
  92{
  93        ssize_t ret = writen(ff->fd, buf, size);
  94
  95        if (ret != (ssize_t)size)
  96                return ret < 0 ? (int)ret : -1;
  97        return 0;
  98}
  99
 100static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
 101{
 102        /* struct perf_event_header::size is u16 */
 103        const size_t max_size = 0xffff - sizeof(struct perf_event_header);
 104        size_t new_size = ff->size;
 105        void *addr;
 106
 107        if (size + ff->offset > max_size)
 108                return -E2BIG;
 109
 110        while (size > (new_size - ff->offset))
 111                new_size <<= 1;
 112        new_size = min(max_size, new_size);
 113
 114        if (ff->size < new_size) {
 115                addr = realloc(ff->buf, new_size);
 116                if (!addr)
 117                        return -ENOMEM;
 118                ff->buf = addr;
 119                ff->size = new_size;
 120        }
 121
 122        memcpy(ff->buf + ff->offset, buf, size);
 123        ff->offset += size;
 124
 125        return 0;
 126}
 127
 128/* Return: 0 if succeded, -ERR if failed. */
 129int do_write(struct feat_fd *ff, const void *buf, size_t size)
 130{
 131        if (!ff->buf)
 132                return __do_write_fd(ff, buf, size);
 133        return __do_write_buf(ff, buf, size);
 134}
 135
 136/* Return: 0 if succeded, -ERR if failed. */
 137static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
 138{
 139        u64 *p = (u64 *) set;
 140        int i, ret;
 141
 142        ret = do_write(ff, &size, sizeof(size));
 143        if (ret < 0)
 144                return ret;
 145
 146        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 147                ret = do_write(ff, p + i, sizeof(*p));
 148                if (ret < 0)
 149                        return ret;
 150        }
 151
 152        return 0;
 153}
 154
 155/* Return: 0 if succeded, -ERR if failed. */
 156int write_padded(struct feat_fd *ff, const void *bf,
 157                 size_t count, size_t count_aligned)
 158{
 159        static const char zero_buf[NAME_ALIGN];
 160        int err = do_write(ff, bf, count);
 161
 162        if (!err)
 163                err = do_write(ff, zero_buf, count_aligned - count);
 164
 165        return err;
 166}
 167
 168#define string_size(str)                                                \
 169        (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
 170
 171/* Return: 0 if succeded, -ERR if failed. */
 172static int do_write_string(struct feat_fd *ff, const char *str)
 173{
 174        u32 len, olen;
 175        int ret;
 176
 177        olen = strlen(str) + 1;
 178        len = PERF_ALIGN(olen, NAME_ALIGN);
 179
 180        /* write len, incl. \0 */
 181        ret = do_write(ff, &len, sizeof(len));
 182        if (ret < 0)
 183                return ret;
 184
 185        return write_padded(ff, str, olen, len);
 186}
 187
 188static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
 189{
 190        ssize_t ret = readn(ff->fd, addr, size);
 191
 192        if (ret != size)
 193                return ret < 0 ? (int)ret : -1;
 194        return 0;
 195}
 196
 197static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
 198{
 199        if (size > (ssize_t)ff->size - ff->offset)
 200                return -1;
 201
 202        memcpy(addr, ff->buf + ff->offset, size);
 203        ff->offset += size;
 204
 205        return 0;
 206
 207}
 208
 209static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
 210{
 211        if (!ff->buf)
 212                return __do_read_fd(ff, addr, size);
 213        return __do_read_buf(ff, addr, size);
 214}
 215
 216static int do_read_u32(struct feat_fd *ff, u32 *addr)
 217{
 218        int ret;
 219
 220        ret = __do_read(ff, addr, sizeof(*addr));
 221        if (ret)
 222                return ret;
 223
 224        if (ff->ph->needs_swap)
 225                *addr = bswap_32(*addr);
 226        return 0;
 227}
 228
 229static int do_read_u64(struct feat_fd *ff, u64 *addr)
 230{
 231        int ret;
 232
 233        ret = __do_read(ff, addr, sizeof(*addr));
 234        if (ret)
 235                return ret;
 236
 237        if (ff->ph->needs_swap)
 238                *addr = bswap_64(*addr);
 239        return 0;
 240}
 241
 242static char *do_read_string(struct feat_fd *ff)
 243{
 244        u32 len;
 245        char *buf;
 246
 247        if (do_read_u32(ff, &len))
 248                return NULL;
 249
 250        buf = malloc(len);
 251        if (!buf)
 252                return NULL;
 253
 254        if (!__do_read(ff, buf, len)) {
 255                /*
 256                 * strings are padded by zeroes
 257                 * thus the actual strlen of buf
 258                 * may be less than len
 259                 */
 260                return buf;
 261        }
 262
 263        free(buf);
 264        return NULL;
 265}
 266
 267/* Return: 0 if succeded, -ERR if failed. */
 268static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
 269{
 270        unsigned long *set;
 271        u64 size, *p;
 272        int i, ret;
 273
 274        ret = do_read_u64(ff, &size);
 275        if (ret)
 276                return ret;
 277
 278        set = bitmap_alloc(size);
 279        if (!set)
 280                return -ENOMEM;
 281
 282        p = (u64 *) set;
 283
 284        for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
 285                ret = do_read_u64(ff, p + i);
 286                if (ret < 0) {
 287                        free(set);
 288                        return ret;
 289                }
 290        }
 291
 292        *pset  = set;
 293        *psize = size;
 294        return 0;
 295}
 296
 297static int write_tracing_data(struct feat_fd *ff,
 298                              struct evlist *evlist)
 299{
 300        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 301                return -1;
 302
 303        return read_tracing_data(ff->fd, &evlist->core.entries);
 304}
 305
 306static int write_build_id(struct feat_fd *ff,
 307                          struct evlist *evlist __maybe_unused)
 308{
 309        struct perf_session *session;
 310        int err;
 311
 312        session = container_of(ff->ph, struct perf_session, header);
 313
 314        if (!perf_session__read_build_ids(session, true))
 315                return -1;
 316
 317        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 318                return -1;
 319
 320        err = perf_session__write_buildid_table(session, ff);
 321        if (err < 0) {
 322                pr_debug("failed to write buildid table\n");
 323                return err;
 324        }
 325        perf_session__cache_build_ids(session);
 326
 327        return 0;
 328}
 329
 330static int write_hostname(struct feat_fd *ff,
 331                          struct evlist *evlist __maybe_unused)
 332{
 333        struct utsname uts;
 334        int ret;
 335
 336        ret = uname(&uts);
 337        if (ret < 0)
 338                return -1;
 339
 340        return do_write_string(ff, uts.nodename);
 341}
 342
 343static int write_osrelease(struct feat_fd *ff,
 344                           struct evlist *evlist __maybe_unused)
 345{
 346        struct utsname uts;
 347        int ret;
 348
 349        ret = uname(&uts);
 350        if (ret < 0)
 351                return -1;
 352
 353        return do_write_string(ff, uts.release);
 354}
 355
 356static int write_arch(struct feat_fd *ff,
 357                      struct evlist *evlist __maybe_unused)
 358{
 359        struct utsname uts;
 360        int ret;
 361
 362        ret = uname(&uts);
 363        if (ret < 0)
 364                return -1;
 365
 366        return do_write_string(ff, uts.machine);
 367}
 368
 369static int write_version(struct feat_fd *ff,
 370                         struct evlist *evlist __maybe_unused)
 371{
 372        return do_write_string(ff, perf_version_string);
 373}
 374
 375static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
 376{
 377        FILE *file;
 378        char *buf = NULL;
 379        char *s, *p;
 380        const char *search = cpuinfo_proc;
 381        size_t len = 0;
 382        int ret = -1;
 383
 384        if (!search)
 385                return -1;
 386
 387        file = fopen("/proc/cpuinfo", "r");
 388        if (!file)
 389                return -1;
 390
 391        while (getline(&buf, &len, file) > 0) {
 392                ret = strncmp(buf, search, strlen(search));
 393                if (!ret)
 394                        break;
 395        }
 396
 397        if (ret) {
 398                ret = -1;
 399                goto done;
 400        }
 401
 402        s = buf;
 403
 404        p = strchr(buf, ':');
 405        if (p && *(p+1) == ' ' && *(p+2))
 406                s = p + 2;
 407        p = strchr(s, '\n');
 408        if (p)
 409                *p = '\0';
 410
 411        /* squash extra space characters (branding string) */
 412        p = s;
 413        while (*p) {
 414                if (isspace(*p)) {
 415                        char *r = p + 1;
 416                        char *q = skip_spaces(r);
 417                        *p = ' ';
 418                        if (q != (p+1))
 419                                while ((*r++ = *q++));
 420                }
 421                p++;
 422        }
 423        ret = do_write_string(ff, s);
 424done:
 425        free(buf);
 426        fclose(file);
 427        return ret;
 428}
 429
 430static int write_cpudesc(struct feat_fd *ff,
 431                       struct evlist *evlist __maybe_unused)
 432{
 433#if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
 434#define CPUINFO_PROC    { "cpu", }
 435#elif defined(__s390__)
 436#define CPUINFO_PROC    { "vendor_id", }
 437#elif defined(__sh__)
 438#define CPUINFO_PROC    { "cpu type", }
 439#elif defined(__alpha__) || defined(__mips__)
 440#define CPUINFO_PROC    { "cpu model", }
 441#elif defined(__arm__)
 442#define CPUINFO_PROC    { "model name", "Processor", }
 443#elif defined(__arc__)
 444#define CPUINFO_PROC    { "Processor", }
 445#elif defined(__xtensa__)
 446#define CPUINFO_PROC    { "core ID", }
 447#else
 448#define CPUINFO_PROC    { "model name", }
 449#endif
 450        const char *cpuinfo_procs[] = CPUINFO_PROC;
 451#undef CPUINFO_PROC
 452        unsigned int i;
 453
 454        for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
 455                int ret;
 456                ret = __write_cpudesc(ff, cpuinfo_procs[i]);
 457                if (ret >= 0)
 458                        return ret;
 459        }
 460        return -1;
 461}
 462
 463
 464static int write_nrcpus(struct feat_fd *ff,
 465                        struct evlist *evlist __maybe_unused)
 466{
 467        long nr;
 468        u32 nrc, nra;
 469        int ret;
 470
 471        nrc = cpu__max_present_cpu();
 472
 473        nr = sysconf(_SC_NPROCESSORS_ONLN);
 474        if (nr < 0)
 475                return -1;
 476
 477        nra = (u32)(nr & UINT_MAX);
 478
 479        ret = do_write(ff, &nrc, sizeof(nrc));
 480        if (ret < 0)
 481                return ret;
 482
 483        return do_write(ff, &nra, sizeof(nra));
 484}
 485
 486static int write_event_desc(struct feat_fd *ff,
 487                            struct evlist *evlist)
 488{
 489        struct evsel *evsel;
 490        u32 nre, nri, sz;
 491        int ret;
 492
 493        nre = evlist->core.nr_entries;
 494
 495        /*
 496         * write number of events
 497         */
 498        ret = do_write(ff, &nre, sizeof(nre));
 499        if (ret < 0)
 500                return ret;
 501
 502        /*
 503         * size of perf_event_attr struct
 504         */
 505        sz = (u32)sizeof(evsel->core.attr);
 506        ret = do_write(ff, &sz, sizeof(sz));
 507        if (ret < 0)
 508                return ret;
 509
 510        evlist__for_each_entry(evlist, evsel) {
 511                ret = do_write(ff, &evsel->core.attr, sz);
 512                if (ret < 0)
 513                        return ret;
 514                /*
 515                 * write number of unique id per event
 516                 * there is one id per instance of an event
 517                 *
 518                 * copy into an nri to be independent of the
 519                 * type of ids,
 520                 */
 521                nri = evsel->core.ids;
 522                ret = do_write(ff, &nri, sizeof(nri));
 523                if (ret < 0)
 524                        return ret;
 525
 526                /*
 527                 * write event string as passed on cmdline
 528                 */
 529                ret = do_write_string(ff, evsel__name(evsel));
 530                if (ret < 0)
 531                        return ret;
 532                /*
 533                 * write unique ids for this event
 534                 */
 535                ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
 536                if (ret < 0)
 537                        return ret;
 538        }
 539        return 0;
 540}
 541
 542static int write_cmdline(struct feat_fd *ff,
 543                         struct evlist *evlist __maybe_unused)
 544{
 545        char pbuf[MAXPATHLEN], *buf;
 546        int i, ret, n;
 547
 548        /* actual path to perf binary */
 549        buf = perf_exe(pbuf, MAXPATHLEN);
 550
 551        /* account for binary path */
 552        n = perf_env.nr_cmdline + 1;
 553
 554        ret = do_write(ff, &n, sizeof(n));
 555        if (ret < 0)
 556                return ret;
 557
 558        ret = do_write_string(ff, buf);
 559        if (ret < 0)
 560                return ret;
 561
 562        for (i = 0 ; i < perf_env.nr_cmdline; i++) {
 563                ret = do_write_string(ff, perf_env.cmdline_argv[i]);
 564                if (ret < 0)
 565                        return ret;
 566        }
 567        return 0;
 568}
 569
 570
 571static int write_cpu_topology(struct feat_fd *ff,
 572                              struct evlist *evlist __maybe_unused)
 573{
 574        struct cpu_topology *tp;
 575        u32 i;
 576        int ret, j;
 577
 578        tp = cpu_topology__new();
 579        if (!tp)
 580                return -1;
 581
 582        ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
 583        if (ret < 0)
 584                goto done;
 585
 586        for (i = 0; i < tp->core_sib; i++) {
 587                ret = do_write_string(ff, tp->core_siblings[i]);
 588                if (ret < 0)
 589                        goto done;
 590        }
 591        ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
 592        if (ret < 0)
 593                goto done;
 594
 595        for (i = 0; i < tp->thread_sib; i++) {
 596                ret = do_write_string(ff, tp->thread_siblings[i]);
 597                if (ret < 0)
 598                        break;
 599        }
 600
 601        ret = perf_env__read_cpu_topology_map(&perf_env);
 602        if (ret < 0)
 603                goto done;
 604
 605        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 606                ret = do_write(ff, &perf_env.cpu[j].core_id,
 607                               sizeof(perf_env.cpu[j].core_id));
 608                if (ret < 0)
 609                        return ret;
 610                ret = do_write(ff, &perf_env.cpu[j].socket_id,
 611                               sizeof(perf_env.cpu[j].socket_id));
 612                if (ret < 0)
 613                        return ret;
 614        }
 615
 616        if (!tp->die_sib)
 617                goto done;
 618
 619        ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
 620        if (ret < 0)
 621                goto done;
 622
 623        for (i = 0; i < tp->die_sib; i++) {
 624                ret = do_write_string(ff, tp->die_siblings[i]);
 625                if (ret < 0)
 626                        goto done;
 627        }
 628
 629        for (j = 0; j < perf_env.nr_cpus_avail; j++) {
 630                ret = do_write(ff, &perf_env.cpu[j].die_id,
 631                               sizeof(perf_env.cpu[j].die_id));
 632                if (ret < 0)
 633                        return ret;
 634        }
 635
 636done:
 637        cpu_topology__delete(tp);
 638        return ret;
 639}
 640
 641
 642
 643static int write_total_mem(struct feat_fd *ff,
 644                           struct evlist *evlist __maybe_unused)
 645{
 646        char *buf = NULL;
 647        FILE *fp;
 648        size_t len = 0;
 649        int ret = -1, n;
 650        uint64_t mem;
 651
 652        fp = fopen("/proc/meminfo", "r");
 653        if (!fp)
 654                return -1;
 655
 656        while (getline(&buf, &len, fp) > 0) {
 657                ret = strncmp(buf, "MemTotal:", 9);
 658                if (!ret)
 659                        break;
 660        }
 661        if (!ret) {
 662                n = sscanf(buf, "%*s %"PRIu64, &mem);
 663                if (n == 1)
 664                        ret = do_write(ff, &mem, sizeof(mem));
 665        } else
 666                ret = -1;
 667        free(buf);
 668        fclose(fp);
 669        return ret;
 670}
 671
 672static int write_numa_topology(struct feat_fd *ff,
 673                               struct evlist *evlist __maybe_unused)
 674{
 675        struct numa_topology *tp;
 676        int ret = -1;
 677        u32 i;
 678
 679        tp = numa_topology__new();
 680        if (!tp)
 681                return -ENOMEM;
 682
 683        ret = do_write(ff, &tp->nr, sizeof(u32));
 684        if (ret < 0)
 685                goto err;
 686
 687        for (i = 0; i < tp->nr; i++) {
 688                struct numa_topology_node *n = &tp->nodes[i];
 689
 690                ret = do_write(ff, &n->node, sizeof(u32));
 691                if (ret < 0)
 692                        goto err;
 693
 694                ret = do_write(ff, &n->mem_total, sizeof(u64));
 695                if (ret)
 696                        goto err;
 697
 698                ret = do_write(ff, &n->mem_free, sizeof(u64));
 699                if (ret)
 700                        goto err;
 701
 702                ret = do_write_string(ff, n->cpus);
 703                if (ret < 0)
 704                        goto err;
 705        }
 706
 707        ret = 0;
 708
 709err:
 710        numa_topology__delete(tp);
 711        return ret;
 712}
 713
 714/*
 715 * File format:
 716 *
 717 * struct pmu_mappings {
 718 *      u32     pmu_num;
 719 *      struct pmu_map {
 720 *              u32     type;
 721 *              char    name[];
 722 *      }[pmu_num];
 723 * };
 724 */
 725
 726static int write_pmu_mappings(struct feat_fd *ff,
 727                              struct evlist *evlist __maybe_unused)
 728{
 729        struct perf_pmu *pmu = NULL;
 730        u32 pmu_num = 0;
 731        int ret;
 732
 733        /*
 734         * Do a first pass to count number of pmu to avoid lseek so this
 735         * works in pipe mode as well.
 736         */
 737        while ((pmu = perf_pmu__scan(pmu))) {
 738                if (!pmu->name)
 739                        continue;
 740                pmu_num++;
 741        }
 742
 743        ret = do_write(ff, &pmu_num, sizeof(pmu_num));
 744        if (ret < 0)
 745                return ret;
 746
 747        while ((pmu = perf_pmu__scan(pmu))) {
 748                if (!pmu->name)
 749                        continue;
 750
 751                ret = do_write(ff, &pmu->type, sizeof(pmu->type));
 752                if (ret < 0)
 753                        return ret;
 754
 755                ret = do_write_string(ff, pmu->name);
 756                if (ret < 0)
 757                        return ret;
 758        }
 759
 760        return 0;
 761}
 762
 763/*
 764 * File format:
 765 *
 766 * struct group_descs {
 767 *      u32     nr_groups;
 768 *      struct group_desc {
 769 *              char    name[];
 770 *              u32     leader_idx;
 771 *              u32     nr_members;
 772 *      }[nr_groups];
 773 * };
 774 */
 775static int write_group_desc(struct feat_fd *ff,
 776                            struct evlist *evlist)
 777{
 778        u32 nr_groups = evlist->nr_groups;
 779        struct evsel *evsel;
 780        int ret;
 781
 782        ret = do_write(ff, &nr_groups, sizeof(nr_groups));
 783        if (ret < 0)
 784                return ret;
 785
 786        evlist__for_each_entry(evlist, evsel) {
 787                if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
 788                        const char *name = evsel->group_name ?: "{anon_group}";
 789                        u32 leader_idx = evsel->idx;
 790                        u32 nr_members = evsel->core.nr_members;
 791
 792                        ret = do_write_string(ff, name);
 793                        if (ret < 0)
 794                                return ret;
 795
 796                        ret = do_write(ff, &leader_idx, sizeof(leader_idx));
 797                        if (ret < 0)
 798                                return ret;
 799
 800                        ret = do_write(ff, &nr_members, sizeof(nr_members));
 801                        if (ret < 0)
 802                                return ret;
 803                }
 804        }
 805        return 0;
 806}
 807
 808/*
 809 * Return the CPU id as a raw string.
 810 *
 811 * Each architecture should provide a more precise id string that
 812 * can be use to match the architecture's "mapfile".
 813 */
 814char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
 815{
 816        return NULL;
 817}
 818
 819/* Return zero when the cpuid from the mapfile.csv matches the
 820 * cpuid string generated on this platform.
 821 * Otherwise return non-zero.
 822 */
 823int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
 824{
 825        regex_t re;
 826        regmatch_t pmatch[1];
 827        int match;
 828
 829        if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
 830                /* Warn unable to generate match particular string. */
 831                pr_info("Invalid regular expression %s\n", mapcpuid);
 832                return 1;
 833        }
 834
 835        match = !regexec(&re, cpuid, 1, pmatch, 0);
 836        regfree(&re);
 837        if (match) {
 838                size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
 839
 840                /* Verify the entire string matched. */
 841                if (match_len == strlen(cpuid))
 842                        return 0;
 843        }
 844        return 1;
 845}
 846
 847/*
 848 * default get_cpuid(): nothing gets recorded
 849 * actual implementation must be in arch/$(SRCARCH)/util/header.c
 850 */
 851int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
 852{
 853        return ENOSYS; /* Not implemented */
 854}
 855
 856static int write_cpuid(struct feat_fd *ff,
 857                       struct evlist *evlist __maybe_unused)
 858{
 859        char buffer[64];
 860        int ret;
 861
 862        ret = get_cpuid(buffer, sizeof(buffer));
 863        if (ret)
 864                return -1;
 865
 866        return do_write_string(ff, buffer);
 867}
 868
 869static int write_branch_stack(struct feat_fd *ff __maybe_unused,
 870                              struct evlist *evlist __maybe_unused)
 871{
 872        return 0;
 873}
 874
 875static int write_auxtrace(struct feat_fd *ff,
 876                          struct evlist *evlist __maybe_unused)
 877{
 878        struct perf_session *session;
 879        int err;
 880
 881        if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
 882                return -1;
 883
 884        session = container_of(ff->ph, struct perf_session, header);
 885
 886        err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
 887        if (err < 0)
 888                pr_err("Failed to write auxtrace index\n");
 889        return err;
 890}
 891
 892static int write_clockid(struct feat_fd *ff,
 893                         struct evlist *evlist __maybe_unused)
 894{
 895        return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
 896                        sizeof(ff->ph->env.clock.clockid_res_ns));
 897}
 898
 899static int write_clock_data(struct feat_fd *ff,
 900                            struct evlist *evlist __maybe_unused)
 901{
 902        u64 *data64;
 903        u32 data32;
 904        int ret;
 905
 906        /* version */
 907        data32 = 1;
 908
 909        ret = do_write(ff, &data32, sizeof(data32));
 910        if (ret < 0)
 911                return ret;
 912
 913        /* clockid */
 914        data32 = ff->ph->env.clock.clockid;
 915
 916        ret = do_write(ff, &data32, sizeof(data32));
 917        if (ret < 0)
 918                return ret;
 919
 920        /* TOD ref time */
 921        data64 = &ff->ph->env.clock.tod_ns;
 922
 923        ret = do_write(ff, data64, sizeof(*data64));
 924        if (ret < 0)
 925                return ret;
 926
 927        /* clockid ref time */
 928        data64 = &ff->ph->env.clock.clockid_ns;
 929
 930        return do_write(ff, data64, sizeof(*data64));
 931}
 932
 933static int write_dir_format(struct feat_fd *ff,
 934                            struct evlist *evlist __maybe_unused)
 935{
 936        struct perf_session *session;
 937        struct perf_data *data;
 938
 939        session = container_of(ff->ph, struct perf_session, header);
 940        data = session->data;
 941
 942        if (WARN_ON(!perf_data__is_dir(data)))
 943                return -1;
 944
 945        return do_write(ff, &data->dir.version, sizeof(data->dir.version));
 946}
 947
 948#ifdef HAVE_LIBBPF_SUPPORT
 949static int write_bpf_prog_info(struct feat_fd *ff,
 950                               struct evlist *evlist __maybe_unused)
 951{
 952        struct perf_env *env = &ff->ph->env;
 953        struct rb_root *root;
 954        struct rb_node *next;
 955        int ret;
 956
 957        down_read(&env->bpf_progs.lock);
 958
 959        ret = do_write(ff, &env->bpf_progs.infos_cnt,
 960                       sizeof(env->bpf_progs.infos_cnt));
 961        if (ret < 0)
 962                goto out;
 963
 964        root = &env->bpf_progs.infos;
 965        next = rb_first(root);
 966        while (next) {
 967                struct bpf_prog_info_node *node;
 968                size_t len;
 969
 970                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
 971                next = rb_next(&node->rb_node);
 972                len = sizeof(struct bpf_prog_info_linear) +
 973                        node->info_linear->data_len;
 974
 975                /* before writing to file, translate address to offset */
 976                bpf_program__bpil_addr_to_offs(node->info_linear);
 977                ret = do_write(ff, node->info_linear, len);
 978                /*
 979                 * translate back to address even when do_write() fails,
 980                 * so that this function never changes the data.
 981                 */
 982                bpf_program__bpil_offs_to_addr(node->info_linear);
 983                if (ret < 0)
 984                        goto out;
 985        }
 986out:
 987        up_read(&env->bpf_progs.lock);
 988        return ret;
 989}
 990#else // HAVE_LIBBPF_SUPPORT
 991static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
 992                               struct evlist *evlist __maybe_unused)
 993{
 994        return 0;
 995}
 996#endif // HAVE_LIBBPF_SUPPORT
 997
 998static int write_bpf_btf(struct feat_fd *ff,
 999                         struct evlist *evlist __maybe_unused)
1000{
1001        struct perf_env *env = &ff->ph->env;
1002        struct rb_root *root;
1003        struct rb_node *next;
1004        int ret;
1005
1006        down_read(&env->bpf_progs.lock);
1007
1008        ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1009                       sizeof(env->bpf_progs.btfs_cnt));
1010
1011        if (ret < 0)
1012                goto out;
1013
1014        root = &env->bpf_progs.btfs;
1015        next = rb_first(root);
1016        while (next) {
1017                struct btf_node *node;
1018
1019                node = rb_entry(next, struct btf_node, rb_node);
1020                next = rb_next(&node->rb_node);
1021                ret = do_write(ff, &node->id,
1022                               sizeof(u32) * 2 + node->data_size);
1023                if (ret < 0)
1024                        goto out;
1025        }
1026out:
1027        up_read(&env->bpf_progs.lock);
1028        return ret;
1029}
1030
1031static int cpu_cache_level__sort(const void *a, const void *b)
1032{
1033        struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1034        struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1035
1036        return cache_a->level - cache_b->level;
1037}
1038
1039static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1040{
1041        if (a->level != b->level)
1042                return false;
1043
1044        if (a->line_size != b->line_size)
1045                return false;
1046
1047        if (a->sets != b->sets)
1048                return false;
1049
1050        if (a->ways != b->ways)
1051                return false;
1052
1053        if (strcmp(a->type, b->type))
1054                return false;
1055
1056        if (strcmp(a->size, b->size))
1057                return false;
1058
1059        if (strcmp(a->map, b->map))
1060                return false;
1061
1062        return true;
1063}
1064
1065static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1066{
1067        char path[PATH_MAX], file[PATH_MAX];
1068        struct stat st;
1069        size_t len;
1070
1071        scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1072        scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1073
1074        if (stat(file, &st))
1075                return 1;
1076
1077        scnprintf(file, PATH_MAX, "%s/level", path);
1078        if (sysfs__read_int(file, (int *) &cache->level))
1079                return -1;
1080
1081        scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1082        if (sysfs__read_int(file, (int *) &cache->line_size))
1083                return -1;
1084
1085        scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1086        if (sysfs__read_int(file, (int *) &cache->sets))
1087                return -1;
1088
1089        scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1090        if (sysfs__read_int(file, (int *) &cache->ways))
1091                return -1;
1092
1093        scnprintf(file, PATH_MAX, "%s/type", path);
1094        if (sysfs__read_str(file, &cache->type, &len))
1095                return -1;
1096
1097        cache->type[len] = 0;
1098        cache->type = strim(cache->type);
1099
1100        scnprintf(file, PATH_MAX, "%s/size", path);
1101        if (sysfs__read_str(file, &cache->size, &len)) {
1102                zfree(&cache->type);
1103                return -1;
1104        }
1105
1106        cache->size[len] = 0;
1107        cache->size = strim(cache->size);
1108
1109        scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1110        if (sysfs__read_str(file, &cache->map, &len)) {
1111                zfree(&cache->size);
1112                zfree(&cache->type);
1113                return -1;
1114        }
1115
1116        cache->map[len] = 0;
1117        cache->map = strim(cache->map);
1118        return 0;
1119}
1120
1121static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1122{
1123        fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1124}
1125
1126#define MAX_CACHE_LVL 4
1127
1128static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1129{
1130        u32 i, cnt = 0;
1131        u32 nr, cpu;
1132        u16 level;
1133
1134        nr = cpu__max_cpu();
1135
1136        for (cpu = 0; cpu < nr; cpu++) {
1137                for (level = 0; level < MAX_CACHE_LVL; level++) {
1138                        struct cpu_cache_level c;
1139                        int err;
1140
1141                        err = cpu_cache_level__read(&c, cpu, level);
1142                        if (err < 0)
1143                                return err;
1144
1145                        if (err == 1)
1146                                break;
1147
1148                        for (i = 0; i < cnt; i++) {
1149                                if (cpu_cache_level__cmp(&c, &caches[i]))
1150                                        break;
1151                        }
1152
1153                        if (i == cnt)
1154                                caches[cnt++] = c;
1155                        else
1156                                cpu_cache_level__free(&c);
1157                }
1158        }
1159        *cntp = cnt;
1160        return 0;
1161}
1162
1163static int write_cache(struct feat_fd *ff,
1164                       struct evlist *evlist __maybe_unused)
1165{
1166        u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1167        struct cpu_cache_level caches[max_caches];
1168        u32 cnt = 0, i, version = 1;
1169        int ret;
1170
1171        ret = build_caches(caches, &cnt);
1172        if (ret)
1173                goto out;
1174
1175        qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1176
1177        ret = do_write(ff, &version, sizeof(u32));
1178        if (ret < 0)
1179                goto out;
1180
1181        ret = do_write(ff, &cnt, sizeof(u32));
1182        if (ret < 0)
1183                goto out;
1184
1185        for (i = 0; i < cnt; i++) {
1186                struct cpu_cache_level *c = &caches[i];
1187
1188                #define _W(v)                                   \
1189                        ret = do_write(ff, &c->v, sizeof(u32)); \
1190                        if (ret < 0)                            \
1191                                goto out;
1192
1193                _W(level)
1194                _W(line_size)
1195                _W(sets)
1196                _W(ways)
1197                #undef _W
1198
1199                #define _W(v)                                           \
1200                        ret = do_write_string(ff, (const char *) c->v); \
1201                        if (ret < 0)                                    \
1202                                goto out;
1203
1204                _W(type)
1205                _W(size)
1206                _W(map)
1207                #undef _W
1208        }
1209
1210out:
1211        for (i = 0; i < cnt; i++)
1212                cpu_cache_level__free(&caches[i]);
1213        return ret;
1214}
1215
1216static int write_stat(struct feat_fd *ff __maybe_unused,
1217                      struct evlist *evlist __maybe_unused)
1218{
1219        return 0;
1220}
1221
1222static int write_sample_time(struct feat_fd *ff,
1223                             struct evlist *evlist)
1224{
1225        int ret;
1226
1227        ret = do_write(ff, &evlist->first_sample_time,
1228                       sizeof(evlist->first_sample_time));
1229        if (ret < 0)
1230                return ret;
1231
1232        return do_write(ff, &evlist->last_sample_time,
1233                        sizeof(evlist->last_sample_time));
1234}
1235
1236
1237static int memory_node__read(struct memory_node *n, unsigned long idx)
1238{
1239        unsigned int phys, size = 0;
1240        char path[PATH_MAX];
1241        struct dirent *ent;
1242        DIR *dir;
1243
1244#define for_each_memory(mem, dir)                                       \
1245        while ((ent = readdir(dir)))                                    \
1246                if (strcmp(ent->d_name, ".") &&                         \
1247                    strcmp(ent->d_name, "..") &&                        \
1248                    sscanf(ent->d_name, "memory%u", &mem) == 1)
1249
1250        scnprintf(path, PATH_MAX,
1251                  "%s/devices/system/node/node%lu",
1252                  sysfs__mountpoint(), idx);
1253
1254        dir = opendir(path);
1255        if (!dir) {
1256                pr_warning("failed: cant' open memory sysfs data\n");
1257                return -1;
1258        }
1259
1260        for_each_memory(phys, dir) {
1261                size = max(phys, size);
1262        }
1263
1264        size++;
1265
1266        n->set = bitmap_alloc(size);
1267        if (!n->set) {
1268                closedir(dir);
1269                return -ENOMEM;
1270        }
1271
1272        n->node = idx;
1273        n->size = size;
1274
1275        rewinddir(dir);
1276
1277        for_each_memory(phys, dir) {
1278                set_bit(phys, n->set);
1279        }
1280
1281        closedir(dir);
1282        return 0;
1283}
1284
1285static int memory_node__sort(const void *a, const void *b)
1286{
1287        const struct memory_node *na = a;
1288        const struct memory_node *nb = b;
1289
1290        return na->node - nb->node;
1291}
1292
1293static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1294{
1295        char path[PATH_MAX];
1296        struct dirent *ent;
1297        DIR *dir;
1298        u64 cnt = 0;
1299        int ret = 0;
1300
1301        scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1302                  sysfs__mountpoint());
1303
1304        dir = opendir(path);
1305        if (!dir) {
1306                pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1307                          __func__, path);
1308                return -1;
1309        }
1310
1311        while (!ret && (ent = readdir(dir))) {
1312                unsigned int idx;
1313                int r;
1314
1315                if (!strcmp(ent->d_name, ".") ||
1316                    !strcmp(ent->d_name, ".."))
1317                        continue;
1318
1319                r = sscanf(ent->d_name, "node%u", &idx);
1320                if (r != 1)
1321                        continue;
1322
1323                if (WARN_ONCE(cnt >= size,
1324                        "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1325                        closedir(dir);
1326                        return -1;
1327                }
1328
1329                ret = memory_node__read(&nodes[cnt++], idx);
1330        }
1331
1332        *cntp = cnt;
1333        closedir(dir);
1334
1335        if (!ret)
1336                qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1337
1338        return ret;
1339}
1340
1341#define MAX_MEMORY_NODES 2000
1342
1343/*
1344 * The MEM_TOPOLOGY holds physical memory map for every
1345 * node in system. The format of data is as follows:
1346 *
1347 *  0 - version          | for future changes
1348 *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1349 * 16 - count            | number of nodes
1350 *
1351 * For each node we store map of physical indexes for
1352 * each node:
1353 *
1354 * 32 - node id          | node index
1355 * 40 - size             | size of bitmap
1356 * 48 - bitmap           | bitmap of memory indexes that belongs to node
1357 */
1358static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1359                              struct evlist *evlist __maybe_unused)
1360{
1361        static struct memory_node nodes[MAX_MEMORY_NODES];
1362        u64 bsize, version = 1, i, nr;
1363        int ret;
1364
1365        ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1366                              (unsigned long long *) &bsize);
1367        if (ret)
1368                return ret;
1369
1370        ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1371        if (ret)
1372                return ret;
1373
1374        ret = do_write(ff, &version, sizeof(version));
1375        if (ret < 0)
1376                goto out;
1377
1378        ret = do_write(ff, &bsize, sizeof(bsize));
1379        if (ret < 0)
1380                goto out;
1381
1382        ret = do_write(ff, &nr, sizeof(nr));
1383        if (ret < 0)
1384                goto out;
1385
1386        for (i = 0; i < nr; i++) {
1387                struct memory_node *n = &nodes[i];
1388
1389                #define _W(v)                                           \
1390                        ret = do_write(ff, &n->v, sizeof(n->v));        \
1391                        if (ret < 0)                                    \
1392                                goto out;
1393
1394                _W(node)
1395                _W(size)
1396
1397                #undef _W
1398
1399                ret = do_write_bitmap(ff, n->set, n->size);
1400                if (ret < 0)
1401                        goto out;
1402        }
1403
1404out:
1405        return ret;
1406}
1407
1408static int write_compressed(struct feat_fd *ff __maybe_unused,
1409                            struct evlist *evlist __maybe_unused)
1410{
1411        int ret;
1412
1413        ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1414        if (ret)
1415                return ret;
1416
1417        ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1418        if (ret)
1419                return ret;
1420
1421        ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1422        if (ret)
1423                return ret;
1424
1425        ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1426        if (ret)
1427                return ret;
1428
1429        return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1430}
1431
1432static int write_cpu_pmu_caps(struct feat_fd *ff,
1433                              struct evlist *evlist __maybe_unused)
1434{
1435        struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1436        struct perf_pmu_caps *caps = NULL;
1437        int nr_caps;
1438        int ret;
1439
1440        if (!cpu_pmu)
1441                return -ENOENT;
1442
1443        nr_caps = perf_pmu__caps_parse(cpu_pmu);
1444        if (nr_caps < 0)
1445                return nr_caps;
1446
1447        ret = do_write(ff, &nr_caps, sizeof(nr_caps));
1448        if (ret < 0)
1449                return ret;
1450
1451        list_for_each_entry(caps, &cpu_pmu->caps, list) {
1452                ret = do_write_string(ff, caps->name);
1453                if (ret < 0)
1454                        return ret;
1455
1456                ret = do_write_string(ff, caps->value);
1457                if (ret < 0)
1458                        return ret;
1459        }
1460
1461        return ret;
1462}
1463
1464static void print_hostname(struct feat_fd *ff, FILE *fp)
1465{
1466        fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467}
1468
1469static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470{
1471        fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472}
1473
1474static void print_arch(struct feat_fd *ff, FILE *fp)
1475{
1476        fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477}
1478
1479static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480{
1481        fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482}
1483
1484static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485{
1486        fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487        fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488}
1489
1490static void print_version(struct feat_fd *ff, FILE *fp)
1491{
1492        fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493}
1494
1495static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496{
1497        int nr, i;
1498
1499        nr = ff->ph->env.nr_cmdline;
1500
1501        fprintf(fp, "# cmdline : ");
1502
1503        for (i = 0; i < nr; i++) {
1504                char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505                if (!argv_i) {
1506                        fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507                } else {
1508                        char *mem = argv_i;
1509                        do {
1510                                char *quote = strchr(argv_i, '\'');
1511                                if (!quote)
1512                                        break;
1513                                *quote++ = '\0';
1514                                fprintf(fp, "%s\\\'", argv_i);
1515                                argv_i = quote;
1516                        } while (1);
1517                        fprintf(fp, "%s ", argv_i);
1518                        free(mem);
1519                }
1520        }
1521        fputc('\n', fp);
1522}
1523
1524static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525{
1526        struct perf_header *ph = ff->ph;
1527        int cpu_nr = ph->env.nr_cpus_avail;
1528        int nr, i;
1529        char *str;
1530
1531        nr = ph->env.nr_sibling_cores;
1532        str = ph->env.sibling_cores;
1533
1534        for (i = 0; i < nr; i++) {
1535                fprintf(fp, "# sibling sockets : %s\n", str);
1536                str += strlen(str) + 1;
1537        }
1538
1539        if (ph->env.nr_sibling_dies) {
1540                nr = ph->env.nr_sibling_dies;
1541                str = ph->env.sibling_dies;
1542
1543                for (i = 0; i < nr; i++) {
1544                        fprintf(fp, "# sibling dies    : %s\n", str);
1545                        str += strlen(str) + 1;
1546                }
1547        }
1548
1549        nr = ph->env.nr_sibling_threads;
1550        str = ph->env.sibling_threads;
1551
1552        for (i = 0; i < nr; i++) {
1553                fprintf(fp, "# sibling threads : %s\n", str);
1554                str += strlen(str) + 1;
1555        }
1556
1557        if (ph->env.nr_sibling_dies) {
1558                if (ph->env.cpu != NULL) {
1559                        for (i = 0; i < cpu_nr; i++)
1560                                fprintf(fp, "# CPU %d: Core ID %d, "
1561                                            "Die ID %d, Socket ID %d\n",
1562                                            i, ph->env.cpu[i].core_id,
1563                                            ph->env.cpu[i].die_id,
1564                                            ph->env.cpu[i].socket_id);
1565                } else
1566                        fprintf(fp, "# Core ID, Die ID and Socket ID "
1567                                    "information is not available\n");
1568        } else {
1569                if (ph->env.cpu != NULL) {
1570                        for (i = 0; i < cpu_nr; i++)
1571                                fprintf(fp, "# CPU %d: Core ID %d, "
1572                                            "Socket ID %d\n",
1573                                            i, ph->env.cpu[i].core_id,
1574                                            ph->env.cpu[i].socket_id);
1575                } else
1576                        fprintf(fp, "# Core ID and Socket ID "
1577                                    "information is not available\n");
1578        }
1579}
1580
1581static void print_clockid(struct feat_fd *ff, FILE *fp)
1582{
1583        fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1584                ff->ph->env.clock.clockid_res_ns * 1000);
1585}
1586
1587static void print_clock_data(struct feat_fd *ff, FILE *fp)
1588{
1589        struct timespec clockid_ns;
1590        char tstr[64], date[64];
1591        struct timeval tod_ns;
1592        clockid_t clockid;
1593        struct tm ltime;
1594        u64 ref;
1595
1596        if (!ff->ph->env.clock.enabled) {
1597                fprintf(fp, "# reference time disabled\n");
1598                return;
1599        }
1600
1601        /* Compute TOD time. */
1602        ref = ff->ph->env.clock.tod_ns;
1603        tod_ns.tv_sec = ref / NSEC_PER_SEC;
1604        ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1605        tod_ns.tv_usec = ref / NSEC_PER_USEC;
1606
1607        /* Compute clockid time. */
1608        ref = ff->ph->env.clock.clockid_ns;
1609        clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1610        ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1611        clockid_ns.tv_nsec = ref;
1612
1613        clockid = ff->ph->env.clock.clockid;
1614
1615        if (localtime_r(&tod_ns.tv_sec, &ltime) == NULL)
1616                snprintf(tstr, sizeof(tstr), "<error>");
1617        else {
1618                strftime(date, sizeof(date), "%F %T", &ltime);
1619                scnprintf(tstr, sizeof(tstr), "%s.%06d",
1620                          date, (int) tod_ns.tv_usec);
1621        }
1622
1623        fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1624        fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1625                    tstr, tod_ns.tv_sec, (int) tod_ns.tv_usec,
1626                    clockid_ns.tv_sec, clockid_ns.tv_nsec,
1627                    clockid_name(clockid));
1628}
1629
1630static void print_dir_format(struct feat_fd *ff, FILE *fp)
1631{
1632        struct perf_session *session;
1633        struct perf_data *data;
1634
1635        session = container_of(ff->ph, struct perf_session, header);
1636        data = session->data;
1637
1638        fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1639}
1640
1641static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1642{
1643        struct perf_env *env = &ff->ph->env;
1644        struct rb_root *root;
1645        struct rb_node *next;
1646
1647        down_read(&env->bpf_progs.lock);
1648
1649        root = &env->bpf_progs.infos;
1650        next = rb_first(root);
1651
1652        while (next) {
1653                struct bpf_prog_info_node *node;
1654
1655                node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1656                next = rb_next(&node->rb_node);
1657
1658                bpf_event__print_bpf_prog_info(&node->info_linear->info,
1659                                               env, fp);
1660        }
1661
1662        up_read(&env->bpf_progs.lock);
1663}
1664
1665static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1666{
1667        struct perf_env *env = &ff->ph->env;
1668        struct rb_root *root;
1669        struct rb_node *next;
1670
1671        down_read(&env->bpf_progs.lock);
1672
1673        root = &env->bpf_progs.btfs;
1674        next = rb_first(root);
1675
1676        while (next) {
1677                struct btf_node *node;
1678
1679                node = rb_entry(next, struct btf_node, rb_node);
1680                next = rb_next(&node->rb_node);
1681                fprintf(fp, "# btf info of id %u\n", node->id);
1682        }
1683
1684        up_read(&env->bpf_progs.lock);
1685}
1686
1687static void free_event_desc(struct evsel *events)
1688{
1689        struct evsel *evsel;
1690
1691        if (!events)
1692                return;
1693
1694        for (evsel = events; evsel->core.attr.size; evsel++) {
1695                zfree(&evsel->name);
1696                zfree(&evsel->core.id);
1697        }
1698
1699        free(events);
1700}
1701
1702static bool perf_attr_check(struct perf_event_attr *attr)
1703{
1704        if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1705                pr_warning("Reserved bits are set unexpectedly. "
1706                           "Please update perf tool.\n");
1707                return false;
1708        }
1709
1710        if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1711                pr_warning("Unknown sample type (0x%llx) is detected. "
1712                           "Please update perf tool.\n",
1713                           attr->sample_type);
1714                return false;
1715        }
1716
1717        if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1718                pr_warning("Unknown read format (0x%llx) is detected. "
1719                           "Please update perf tool.\n",
1720                           attr->read_format);
1721                return false;
1722        }
1723
1724        if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1725            (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1726                pr_warning("Unknown branch sample type (0x%llx) is detected. "
1727                           "Please update perf tool.\n",
1728                           attr->branch_sample_type);
1729
1730                return false;
1731        }
1732
1733        return true;
1734}
1735
1736static struct evsel *read_event_desc(struct feat_fd *ff)
1737{
1738        struct evsel *evsel, *events = NULL;
1739        u64 *id;
1740        void *buf = NULL;
1741        u32 nre, sz, nr, i, j;
1742        size_t msz;
1743
1744        /* number of events */
1745        if (do_read_u32(ff, &nre))
1746                goto error;
1747
1748        if (do_read_u32(ff, &sz))
1749                goto error;
1750
1751        /* buffer to hold on file attr struct */
1752        buf = malloc(sz);
1753        if (!buf)
1754                goto error;
1755
1756        /* the last event terminates with evsel->core.attr.size == 0: */
1757        events = calloc(nre + 1, sizeof(*events));
1758        if (!events)
1759                goto error;
1760
1761        msz = sizeof(evsel->core.attr);
1762        if (sz < msz)
1763                msz = sz;
1764
1765        for (i = 0, evsel = events; i < nre; evsel++, i++) {
1766                evsel->idx = i;
1767
1768                /*
1769                 * must read entire on-file attr struct to
1770                 * sync up with layout.
1771                 */
1772                if (__do_read(ff, buf, sz))
1773                        goto error;
1774
1775                if (ff->ph->needs_swap)
1776                        perf_event__attr_swap(buf);
1777
1778                memcpy(&evsel->core.attr, buf, msz);
1779
1780                if (!perf_attr_check(&evsel->core.attr))
1781                        goto error;
1782
1783                if (do_read_u32(ff, &nr))
1784                        goto error;
1785
1786                if (ff->ph->needs_swap)
1787                        evsel->needs_swap = true;
1788
1789                evsel->name = do_read_string(ff);
1790                if (!evsel->name)
1791                        goto error;
1792
1793                if (!nr)
1794                        continue;
1795
1796                id = calloc(nr, sizeof(*id));
1797                if (!id)
1798                        goto error;
1799                evsel->core.ids = nr;
1800                evsel->core.id = id;
1801
1802                for (j = 0 ; j < nr; j++) {
1803                        if (do_read_u64(ff, id))
1804                                goto error;
1805                        id++;
1806                }
1807        }
1808out:
1809        free(buf);
1810        return events;
1811error:
1812        free_event_desc(events);
1813        events = NULL;
1814        goto out;
1815}
1816
1817static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1818                                void *priv __maybe_unused)
1819{
1820        return fprintf(fp, ", %s = %s", name, val);
1821}
1822
1823static void print_event_desc(struct feat_fd *ff, FILE *fp)
1824{
1825        struct evsel *evsel, *events;
1826        u32 j;
1827        u64 *id;
1828
1829        if (ff->events)
1830                events = ff->events;
1831        else
1832                events = read_event_desc(ff);
1833
1834        if (!events) {
1835                fprintf(fp, "# event desc: not available or unable to read\n");
1836                return;
1837        }
1838
1839        for (evsel = events; evsel->core.attr.size; evsel++) {
1840                fprintf(fp, "# event : name = %s, ", evsel->name);
1841
1842                if (evsel->core.ids) {
1843                        fprintf(fp, ", id = {");
1844                        for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1845                                if (j)
1846                                        fputc(',', fp);
1847                                fprintf(fp, " %"PRIu64, *id);
1848                        }
1849                        fprintf(fp, " }");
1850                }
1851
1852                perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1853
1854                fputc('\n', fp);
1855        }
1856
1857        free_event_desc(events);
1858        ff->events = NULL;
1859}
1860
1861static void print_total_mem(struct feat_fd *ff, FILE *fp)
1862{
1863        fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1864}
1865
1866static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1867{
1868        int i;
1869        struct numa_node *n;
1870
1871        for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1872                n = &ff->ph->env.numa_nodes[i];
1873
1874                fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1875                            " free = %"PRIu64" kB\n",
1876                        n->node, n->mem_total, n->mem_free);
1877
1878                fprintf(fp, "# node%u cpu list : ", n->node);
1879                cpu_map__fprintf(n->map, fp);
1880        }
1881}
1882
1883static void print_cpuid(struct feat_fd *ff, FILE *fp)
1884{
1885        fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1886}
1887
1888static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1889{
1890        fprintf(fp, "# contains samples with branch stack\n");
1891}
1892
1893static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1894{
1895        fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1896}
1897
1898static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1899{
1900        fprintf(fp, "# contains stat data\n");
1901}
1902
1903static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1904{
1905        int i;
1906
1907        fprintf(fp, "# CPU cache info:\n");
1908        for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1909                fprintf(fp, "#  ");
1910                cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1911        }
1912}
1913
1914static void print_compressed(struct feat_fd *ff, FILE *fp)
1915{
1916        fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1917                ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1918                ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1919}
1920
1921static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
1922{
1923        const char *delimiter = "# cpu pmu capabilities: ";
1924        u32 nr_caps = ff->ph->env.nr_cpu_pmu_caps;
1925        char *str;
1926
1927        if (!nr_caps) {
1928                fprintf(fp, "# cpu pmu capabilities: not available\n");
1929                return;
1930        }
1931
1932        str = ff->ph->env.cpu_pmu_caps;
1933        while (nr_caps--) {
1934                fprintf(fp, "%s%s", delimiter, str);
1935                delimiter = ", ";
1936                str += strlen(str) + 1;
1937        }
1938
1939        fprintf(fp, "\n");
1940}
1941
1942static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1943{
1944        const char *delimiter = "# pmu mappings: ";
1945        char *str, *tmp;
1946        u32 pmu_num;
1947        u32 type;
1948
1949        pmu_num = ff->ph->env.nr_pmu_mappings;
1950        if (!pmu_num) {
1951                fprintf(fp, "# pmu mappings: not available\n");
1952                return;
1953        }
1954
1955        str = ff->ph->env.pmu_mappings;
1956
1957        while (pmu_num) {
1958                type = strtoul(str, &tmp, 0);
1959                if (*tmp != ':')
1960                        goto error;
1961
1962                str = tmp + 1;
1963                fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1964
1965                delimiter = ", ";
1966                str += strlen(str) + 1;
1967                pmu_num--;
1968        }
1969
1970        fprintf(fp, "\n");
1971
1972        if (!pmu_num)
1973                return;
1974error:
1975        fprintf(fp, "# pmu mappings: unable to read\n");
1976}
1977
1978static void print_group_desc(struct feat_fd *ff, FILE *fp)
1979{
1980        struct perf_session *session;
1981        struct evsel *evsel;
1982        u32 nr = 0;
1983
1984        session = container_of(ff->ph, struct perf_session, header);
1985
1986        evlist__for_each_entry(session->evlist, evsel) {
1987                if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
1988                        fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
1989
1990                        nr = evsel->core.nr_members - 1;
1991                } else if (nr) {
1992                        fprintf(fp, ",%s", evsel__name(evsel));
1993
1994                        if (--nr == 0)
1995                                fprintf(fp, "}\n");
1996                }
1997        }
1998}
1999
2000static void print_sample_time(struct feat_fd *ff, FILE *fp)
2001{
2002        struct perf_session *session;
2003        char time_buf[32];
2004        double d;
2005
2006        session = container_of(ff->ph, struct perf_session, header);
2007
2008        timestamp__scnprintf_usec(session->evlist->first_sample_time,
2009                                  time_buf, sizeof(time_buf));
2010        fprintf(fp, "# time of first sample : %s\n", time_buf);
2011
2012        timestamp__scnprintf_usec(session->evlist->last_sample_time,
2013                                  time_buf, sizeof(time_buf));
2014        fprintf(fp, "# time of last sample : %s\n", time_buf);
2015
2016        d = (double)(session->evlist->last_sample_time -
2017                session->evlist->first_sample_time) / NSEC_PER_MSEC;
2018
2019        fprintf(fp, "# sample duration : %10.3f ms\n", d);
2020}
2021
2022static void memory_node__fprintf(struct memory_node *n,
2023                                 unsigned long long bsize, FILE *fp)
2024{
2025        char buf_map[100], buf_size[50];
2026        unsigned long long size;
2027
2028        size = bsize * bitmap_weight(n->set, n->size);
2029        unit_number__scnprintf(buf_size, 50, size);
2030
2031        bitmap_scnprintf(n->set, n->size, buf_map, 100);
2032        fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2033}
2034
2035static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2036{
2037        struct memory_node *nodes;
2038        int i, nr;
2039
2040        nodes = ff->ph->env.memory_nodes;
2041        nr    = ff->ph->env.nr_memory_nodes;
2042
2043        fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2044                nr, ff->ph->env.memory_bsize);
2045
2046        for (i = 0; i < nr; i++) {
2047                memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2048        }
2049}
2050
2051static int __event_process_build_id(struct perf_record_header_build_id *bev,
2052                                    char *filename,
2053                                    struct perf_session *session)
2054{
2055        int err = -1;
2056        struct machine *machine;
2057        u16 cpumode;
2058        struct dso *dso;
2059        enum dso_space_type dso_space;
2060
2061        machine = perf_session__findnew_machine(session, bev->pid);
2062        if (!machine)
2063                goto out;
2064
2065        cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2066
2067        switch (cpumode) {
2068        case PERF_RECORD_MISC_KERNEL:
2069                dso_space = DSO_SPACE__KERNEL;
2070                break;
2071        case PERF_RECORD_MISC_GUEST_KERNEL:
2072                dso_space = DSO_SPACE__KERNEL_GUEST;
2073                break;
2074        case PERF_RECORD_MISC_USER:
2075        case PERF_RECORD_MISC_GUEST_USER:
2076                dso_space = DSO_SPACE__USER;
2077                break;
2078        default:
2079                goto out;
2080        }
2081
2082        dso = machine__findnew_dso(machine, filename);
2083        if (dso != NULL) {
2084                char sbuild_id[SBUILD_ID_SIZE];
2085                struct build_id bid;
2086                size_t size = BUILD_ID_SIZE;
2087
2088                if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2089                        size = bev->size;
2090
2091                build_id__init(&bid, bev->data, size);
2092                dso__set_build_id(dso, &bid);
2093
2094                if (dso_space != DSO_SPACE__USER) {
2095                        struct kmod_path m = { .name = NULL, };
2096
2097                        if (!kmod_path__parse_name(&m, filename) && m.kmod)
2098                                dso__set_module_info(dso, &m, machine);
2099
2100                        dso->kernel = dso_space;
2101                        free(m.name);
2102                }
2103
2104                build_id__sprintf(&dso->bid, sbuild_id);
2105                pr_debug("build id event received for %s: %s [%zu]\n",
2106                         dso->long_name, sbuild_id, size);
2107                dso__put(dso);
2108        }
2109
2110        err = 0;
2111out:
2112        return err;
2113}
2114
2115static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2116                                                 int input, u64 offset, u64 size)
2117{
2118        struct perf_session *session = container_of(header, struct perf_session, header);
2119        struct {
2120                struct perf_event_header   header;
2121                u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2122                char                       filename[0];
2123        } old_bev;
2124        struct perf_record_header_build_id bev;
2125        char filename[PATH_MAX];
2126        u64 limit = offset + size;
2127
2128        while (offset < limit) {
2129                ssize_t len;
2130
2131                if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2132                        return -1;
2133
2134                if (header->needs_swap)
2135                        perf_event_header__bswap(&old_bev.header);
2136
2137                len = old_bev.header.size - sizeof(old_bev);
2138                if (readn(input, filename, len) != len)
2139                        return -1;
2140
2141                bev.header = old_bev.header;
2142
2143                /*
2144                 * As the pid is the missing value, we need to fill
2145                 * it properly. The header.misc value give us nice hint.
2146                 */
2147                bev.pid = HOST_KERNEL_ID;
2148                if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2149                    bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2150                        bev.pid = DEFAULT_GUEST_KERNEL_ID;
2151
2152                memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2153                __event_process_build_id(&bev, filename, session);
2154
2155                offset += bev.header.size;
2156        }
2157
2158        return 0;
2159}
2160
2161static int perf_header__read_build_ids(struct perf_header *header,
2162                                       int input, u64 offset, u64 size)
2163{
2164        struct perf_session *session = container_of(header, struct perf_session, header);
2165        struct perf_record_header_build_id bev;
2166        char filename[PATH_MAX];
2167        u64 limit = offset + size, orig_offset = offset;
2168        int err = -1;
2169
2170        while (offset < limit) {
2171                ssize_t len;
2172
2173                if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2174                        goto out;
2175
2176                if (header->needs_swap)
2177                        perf_event_header__bswap(&bev.header);
2178
2179                len = bev.header.size - sizeof(bev);
2180                if (readn(input, filename, len) != len)
2181                        goto out;
2182                /*
2183                 * The a1645ce1 changeset:
2184                 *
2185                 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2186                 *
2187                 * Added a field to struct perf_record_header_build_id that broke the file
2188                 * format.
2189                 *
2190                 * Since the kernel build-id is the first entry, process the
2191                 * table using the old format if the well known
2192                 * '[kernel.kallsyms]' string for the kernel build-id has the
2193                 * first 4 characters chopped off (where the pid_t sits).
2194                 */
2195                if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2196                        if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2197                                return -1;
2198                        return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2199                }
2200
2201                __event_process_build_id(&bev, filename, session);
2202
2203                offset += bev.header.size;
2204        }
2205        err = 0;
2206out:
2207        return err;
2208}
2209
2210/* Macro for features that simply need to read and store a string. */
2211#define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2212static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2213{\
2214        ff->ph->env.__feat_env = do_read_string(ff); \
2215        return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2216}
2217
2218FEAT_PROCESS_STR_FUN(hostname, hostname);
2219FEAT_PROCESS_STR_FUN(osrelease, os_release);
2220FEAT_PROCESS_STR_FUN(version, version);
2221FEAT_PROCESS_STR_FUN(arch, arch);
2222FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2223FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2224
2225static int process_tracing_data(struct feat_fd *ff, void *data)
2226{
2227        ssize_t ret = trace_report(ff->fd, data, false);
2228
2229        return ret < 0 ? -1 : 0;
2230}
2231
2232static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2233{
2234        if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2235                pr_debug("Failed to read buildids, continuing...\n");
2236        return 0;
2237}
2238
2239static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2240{
2241        int ret;
2242        u32 nr_cpus_avail, nr_cpus_online;
2243
2244        ret = do_read_u32(ff, &nr_cpus_avail);
2245        if (ret)
2246                return ret;
2247
2248        ret = do_read_u32(ff, &nr_cpus_online);
2249        if (ret)
2250                return ret;
2251        ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2252        ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2253        return 0;
2254}
2255
2256static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2257{
2258        u64 total_mem;
2259        int ret;
2260
2261        ret = do_read_u64(ff, &total_mem);
2262        if (ret)
2263                return -1;
2264        ff->ph->env.total_mem = (unsigned long long)total_mem;
2265        return 0;
2266}
2267
2268static struct evsel *
2269perf_evlist__find_by_index(struct evlist *evlist, int idx)
2270{
2271        struct evsel *evsel;
2272
2273        evlist__for_each_entry(evlist, evsel) {
2274                if (evsel->idx == idx)
2275                        return evsel;
2276        }
2277
2278        return NULL;
2279}
2280
2281static void
2282perf_evlist__set_event_name(struct evlist *evlist,
2283                            struct evsel *event)
2284{
2285        struct evsel *evsel;
2286
2287        if (!event->name)
2288                return;
2289
2290        evsel = perf_evlist__find_by_index(evlist, event->idx);
2291        if (!evsel)
2292                return;
2293
2294        if (evsel->name)
2295                return;
2296
2297        evsel->name = strdup(event->name);
2298}
2299
2300static int
2301process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2302{
2303        struct perf_session *session;
2304        struct evsel *evsel, *events = read_event_desc(ff);
2305
2306        if (!events)
2307                return 0;
2308
2309        session = container_of(ff->ph, struct perf_session, header);
2310
2311        if (session->data->is_pipe) {
2312                /* Save events for reading later by print_event_desc,
2313                 * since they can't be read again in pipe mode. */
2314                ff->events = events;
2315        }
2316
2317        for (evsel = events; evsel->core.attr.size; evsel++)
2318                perf_evlist__set_event_name(session->evlist, evsel);
2319
2320        if (!session->data->is_pipe)
2321                free_event_desc(events);
2322
2323        return 0;
2324}
2325
2326static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2327{
2328        char *str, *cmdline = NULL, **argv = NULL;
2329        u32 nr, i, len = 0;
2330
2331        if (do_read_u32(ff, &nr))
2332                return -1;
2333
2334        ff->ph->env.nr_cmdline = nr;
2335
2336        cmdline = zalloc(ff->size + nr + 1);
2337        if (!cmdline)
2338                return -1;
2339
2340        argv = zalloc(sizeof(char *) * (nr + 1));
2341        if (!argv)
2342                goto error;
2343
2344        for (i = 0; i < nr; i++) {
2345                str = do_read_string(ff);
2346                if (!str)
2347                        goto error;
2348
2349                argv[i] = cmdline + len;
2350                memcpy(argv[i], str, strlen(str) + 1);
2351                len += strlen(str) + 1;
2352                free(str);
2353        }
2354        ff->ph->env.cmdline = cmdline;
2355        ff->ph->env.cmdline_argv = (const char **) argv;
2356        return 0;
2357
2358error:
2359        free(argv);
2360        free(cmdline);
2361        return -1;
2362}
2363
2364static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2365{
2366        u32 nr, i;
2367        char *str;
2368        struct strbuf sb;
2369        int cpu_nr = ff->ph->env.nr_cpus_avail;
2370        u64 size = 0;
2371        struct perf_header *ph = ff->ph;
2372        bool do_core_id_test = true;
2373
2374        ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2375        if (!ph->env.cpu)
2376                return -1;
2377
2378        if (do_read_u32(ff, &nr))
2379                goto free_cpu;
2380
2381        ph->env.nr_sibling_cores = nr;
2382        size += sizeof(u32);
2383        if (strbuf_init(&sb, 128) < 0)
2384                goto free_cpu;
2385
2386        for (i = 0; i < nr; i++) {
2387                str = do_read_string(ff);
2388                if (!str)
2389                        goto error;
2390
2391                /* include a NULL character at the end */
2392                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2393                        goto error;
2394                size += string_size(str);
2395                free(str);
2396        }
2397        ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2398
2399        if (do_read_u32(ff, &nr))
2400                return -1;
2401
2402        ph->env.nr_sibling_threads = nr;
2403        size += sizeof(u32);
2404
2405        for (i = 0; i < nr; i++) {
2406                str = do_read_string(ff);
2407                if (!str)
2408                        goto error;
2409
2410                /* include a NULL character at the end */
2411                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2412                        goto error;
2413                size += string_size(str);
2414                free(str);
2415        }
2416        ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2417
2418        /*
2419         * The header may be from old perf,
2420         * which doesn't include core id and socket id information.
2421         */
2422        if (ff->size <= size) {
2423                zfree(&ph->env.cpu);
2424                return 0;
2425        }
2426
2427        /* On s390 the socket_id number is not related to the numbers of cpus.
2428         * The socket_id number might be higher than the numbers of cpus.
2429         * This depends on the configuration.
2430         * AArch64 is the same.
2431         */
2432        if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2433                          || !strncmp(ph->env.arch, "aarch64", 7)))
2434                do_core_id_test = false;
2435
2436        for (i = 0; i < (u32)cpu_nr; i++) {
2437                if (do_read_u32(ff, &nr))
2438                        goto free_cpu;
2439
2440                ph->env.cpu[i].core_id = nr;
2441                size += sizeof(u32);
2442
2443                if (do_read_u32(ff, &nr))
2444                        goto free_cpu;
2445
2446                if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2447                        pr_debug("socket_id number is too big."
2448                                 "You may need to upgrade the perf tool.\n");
2449                        goto free_cpu;
2450                }
2451
2452                ph->env.cpu[i].socket_id = nr;
2453                size += sizeof(u32);
2454        }
2455
2456        /*
2457         * The header may be from old perf,
2458         * which doesn't include die information.
2459         */
2460        if (ff->size <= size)
2461                return 0;
2462
2463        if (do_read_u32(ff, &nr))
2464                return -1;
2465
2466        ph->env.nr_sibling_dies = nr;
2467        size += sizeof(u32);
2468
2469        for (i = 0; i < nr; i++) {
2470                str = do_read_string(ff);
2471                if (!str)
2472                        goto error;
2473
2474                /* include a NULL character at the end */
2475                if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2476                        goto error;
2477                size += string_size(str);
2478                free(str);
2479        }
2480        ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2481
2482        for (i = 0; i < (u32)cpu_nr; i++) {
2483                if (do_read_u32(ff, &nr))
2484                        goto free_cpu;
2485
2486                ph->env.cpu[i].die_id = nr;
2487        }
2488
2489        return 0;
2490
2491error:
2492        strbuf_release(&sb);
2493free_cpu:
2494        zfree(&ph->env.cpu);
2495        return -1;
2496}
2497
2498static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2499{
2500        struct numa_node *nodes, *n;
2501        u32 nr, i;
2502        char *str;
2503
2504        /* nr nodes */
2505        if (do_read_u32(ff, &nr))
2506                return -1;
2507
2508        nodes = zalloc(sizeof(*nodes) * nr);
2509        if (!nodes)
2510                return -ENOMEM;
2511
2512        for (i = 0; i < nr; i++) {
2513                n = &nodes[i];
2514
2515                /* node number */
2516                if (do_read_u32(ff, &n->node))
2517                        goto error;
2518
2519                if (do_read_u64(ff, &n->mem_total))
2520                        goto error;
2521
2522                if (do_read_u64(ff, &n->mem_free))
2523                        goto error;
2524
2525                str = do_read_string(ff);
2526                if (!str)
2527                        goto error;
2528
2529                n->map = perf_cpu_map__new(str);
2530                if (!n->map)
2531                        goto error;
2532
2533                free(str);
2534        }
2535        ff->ph->env.nr_numa_nodes = nr;
2536        ff->ph->env.numa_nodes = nodes;
2537        return 0;
2538
2539error:
2540        free(nodes);
2541        return -1;
2542}
2543
2544static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2545{
2546        char *name;
2547        u32 pmu_num;
2548        u32 type;
2549        struct strbuf sb;
2550
2551        if (do_read_u32(ff, &pmu_num))
2552                return -1;
2553
2554        if (!pmu_num) {
2555                pr_debug("pmu mappings not available\n");
2556                return 0;
2557        }
2558
2559        ff->ph->env.nr_pmu_mappings = pmu_num;
2560        if (strbuf_init(&sb, 128) < 0)
2561                return -1;
2562
2563        while (pmu_num) {
2564                if (do_read_u32(ff, &type))
2565                        goto error;
2566
2567                name = do_read_string(ff);
2568                if (!name)
2569                        goto error;
2570
2571                if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2572                        goto error;
2573                /* include a NULL character at the end */
2574                if (strbuf_add(&sb, "", 1) < 0)
2575                        goto error;
2576
2577                if (!strcmp(name, "msr"))
2578                        ff->ph->env.msr_pmu_type = type;
2579
2580                free(name);
2581                pmu_num--;
2582        }
2583        ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2584        return 0;
2585
2586error:
2587        strbuf_release(&sb);
2588        return -1;
2589}
2590
2591static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2592{
2593        size_t ret = -1;
2594        u32 i, nr, nr_groups;
2595        struct perf_session *session;
2596        struct evsel *evsel, *leader = NULL;
2597        struct group_desc {
2598                char *name;
2599                u32 leader_idx;
2600                u32 nr_members;
2601        } *desc;
2602
2603        if (do_read_u32(ff, &nr_groups))
2604                return -1;
2605
2606        ff->ph->env.nr_groups = nr_groups;
2607        if (!nr_groups) {
2608                pr_debug("group desc not available\n");
2609                return 0;
2610        }
2611
2612        desc = calloc(nr_groups, sizeof(*desc));
2613        if (!desc)
2614                return -1;
2615
2616        for (i = 0; i < nr_groups; i++) {
2617                desc[i].name = do_read_string(ff);
2618                if (!desc[i].name)
2619                        goto out_free;
2620
2621                if (do_read_u32(ff, &desc[i].leader_idx))
2622                        goto out_free;
2623
2624                if (do_read_u32(ff, &desc[i].nr_members))
2625                        goto out_free;
2626        }
2627
2628        /*
2629         * Rebuild group relationship based on the group_desc
2630         */
2631        session = container_of(ff->ph, struct perf_session, header);
2632        session->evlist->nr_groups = nr_groups;
2633
2634        i = nr = 0;
2635        evlist__for_each_entry(session->evlist, evsel) {
2636                if (evsel->idx == (int) desc[i].leader_idx) {
2637                        evsel->leader = evsel;
2638                        /* {anon_group} is a dummy name */
2639                        if (strcmp(desc[i].name, "{anon_group}")) {
2640                                evsel->group_name = desc[i].name;
2641                                desc[i].name = NULL;
2642                        }
2643                        evsel->core.nr_members = desc[i].nr_members;
2644
2645                        if (i >= nr_groups || nr > 0) {
2646                                pr_debug("invalid group desc\n");
2647                                goto out_free;
2648                        }
2649
2650                        leader = evsel;
2651                        nr = evsel->core.nr_members - 1;
2652                        i++;
2653                } else if (nr) {
2654                        /* This is a group member */
2655                        evsel->leader = leader;
2656
2657                        nr--;
2658                }
2659        }
2660
2661        if (i != nr_groups || nr != 0) {
2662                pr_debug("invalid group desc\n");
2663                goto out_free;
2664        }
2665
2666        ret = 0;
2667out_free:
2668        for (i = 0; i < nr_groups; i++)
2669                zfree(&desc[i].name);
2670        free(desc);
2671
2672        return ret;
2673}
2674
2675static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2676{
2677        struct perf_session *session;
2678        int err;
2679
2680        session = container_of(ff->ph, struct perf_session, header);
2681
2682        err = auxtrace_index__process(ff->fd, ff->size, session,
2683                                      ff->ph->needs_swap);
2684        if (err < 0)
2685                pr_err("Failed to process auxtrace index\n");
2686        return err;
2687}
2688
2689static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2690{
2691        struct cpu_cache_level *caches;
2692        u32 cnt, i, version;
2693
2694        if (do_read_u32(ff, &version))
2695                return -1;
2696
2697        if (version != 1)
2698                return -1;
2699
2700        if (do_read_u32(ff, &cnt))
2701                return -1;
2702
2703        caches = zalloc(sizeof(*caches) * cnt);
2704        if (!caches)
2705                return -1;
2706
2707        for (i = 0; i < cnt; i++) {
2708                struct cpu_cache_level c;
2709
2710                #define _R(v)                                           \
2711                        if (do_read_u32(ff, &c.v))\
2712                                goto out_free_caches;                   \
2713
2714                _R(level)
2715                _R(line_size)
2716                _R(sets)
2717                _R(ways)
2718                #undef _R
2719
2720                #define _R(v)                                   \
2721                        c.v = do_read_string(ff);               \
2722                        if (!c.v)                               \
2723                                goto out_free_caches;
2724
2725                _R(type)
2726                _R(size)
2727                _R(map)
2728                #undef _R
2729
2730                caches[i] = c;
2731        }
2732
2733        ff->ph->env.caches = caches;
2734        ff->ph->env.caches_cnt = cnt;
2735        return 0;
2736out_free_caches:
2737        free(caches);
2738        return -1;
2739}
2740
2741static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2742{
2743        struct perf_session *session;
2744        u64 first_sample_time, last_sample_time;
2745        int ret;
2746
2747        session = container_of(ff->ph, struct perf_session, header);
2748
2749        ret = do_read_u64(ff, &first_sample_time);
2750        if (ret)
2751                return -1;
2752
2753        ret = do_read_u64(ff, &last_sample_time);
2754        if (ret)
2755                return -1;
2756
2757        session->evlist->first_sample_time = first_sample_time;
2758        session->evlist->last_sample_time = last_sample_time;
2759        return 0;
2760}
2761
2762static int process_mem_topology(struct feat_fd *ff,
2763                                void *data __maybe_unused)
2764{
2765        struct memory_node *nodes;
2766        u64 version, i, nr, bsize;
2767        int ret = -1;
2768
2769        if (do_read_u64(ff, &version))
2770                return -1;
2771
2772        if (version != 1)
2773                return -1;
2774
2775        if (do_read_u64(ff, &bsize))
2776                return -1;
2777
2778        if (do_read_u64(ff, &nr))
2779                return -1;
2780
2781        nodes = zalloc(sizeof(*nodes) * nr);
2782        if (!nodes)
2783                return -1;
2784
2785        for (i = 0; i < nr; i++) {
2786                struct memory_node n;
2787
2788                #define _R(v)                           \
2789                        if (do_read_u64(ff, &n.v))      \
2790                                goto out;               \
2791
2792                _R(node)
2793                _R(size)
2794
2795                #undef _R
2796
2797                if (do_read_bitmap(ff, &n.set, &n.size))
2798                        goto out;
2799
2800                nodes[i] = n;
2801        }
2802
2803        ff->ph->env.memory_bsize    = bsize;
2804        ff->ph->env.memory_nodes    = nodes;
2805        ff->ph->env.nr_memory_nodes = nr;
2806        ret = 0;
2807
2808out:
2809        if (ret)
2810                free(nodes);
2811        return ret;
2812}
2813
2814static int process_clockid(struct feat_fd *ff,
2815                           void *data __maybe_unused)
2816{
2817        if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2818                return -1;
2819
2820        return 0;
2821}
2822
2823static int process_clock_data(struct feat_fd *ff,
2824                              void *_data __maybe_unused)
2825{
2826        u32 data32;
2827        u64 data64;
2828
2829        /* version */
2830        if (do_read_u32(ff, &data32))
2831                return -1;
2832
2833        if (data32 != 1)
2834                return -1;
2835
2836        /* clockid */
2837        if (do_read_u32(ff, &data32))
2838                return -1;
2839
2840        ff->ph->env.clock.clockid = data32;
2841
2842        /* TOD ref time */
2843        if (do_read_u64(ff, &data64))
2844                return -1;
2845
2846        ff->ph->env.clock.tod_ns = data64;
2847
2848        /* clockid ref time */
2849        if (do_read_u64(ff, &data64))
2850                return -1;
2851
2852        ff->ph->env.clock.clockid_ns = data64;
2853        ff->ph->env.clock.enabled = true;
2854        return 0;
2855}
2856
2857static int process_dir_format(struct feat_fd *ff,
2858                              void *_data __maybe_unused)
2859{
2860        struct perf_session *session;
2861        struct perf_data *data;
2862
2863        session = container_of(ff->ph, struct perf_session, header);
2864        data = session->data;
2865
2866        if (WARN_ON(!perf_data__is_dir(data)))
2867                return -1;
2868
2869        return do_read_u64(ff, &data->dir.version);
2870}
2871
2872#ifdef HAVE_LIBBPF_SUPPORT
2873static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2874{
2875        struct bpf_prog_info_linear *info_linear;
2876        struct bpf_prog_info_node *info_node;
2877        struct perf_env *env = &ff->ph->env;
2878        u32 count, i;
2879        int err = -1;
2880
2881        if (ff->ph->needs_swap) {
2882                pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2883                return 0;
2884        }
2885
2886        if (do_read_u32(ff, &count))
2887                return -1;
2888
2889        down_write(&env->bpf_progs.lock);
2890
2891        for (i = 0; i < count; ++i) {
2892                u32 info_len, data_len;
2893
2894                info_linear = NULL;
2895                info_node = NULL;
2896                if (do_read_u32(ff, &info_len))
2897                        goto out;
2898                if (do_read_u32(ff, &data_len))
2899                        goto out;
2900
2901                if (info_len > sizeof(struct bpf_prog_info)) {
2902                        pr_warning("detected invalid bpf_prog_info\n");
2903                        goto out;
2904                }
2905
2906                info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2907                                     data_len);
2908                if (!info_linear)
2909                        goto out;
2910                info_linear->info_len = sizeof(struct bpf_prog_info);
2911                info_linear->data_len = data_len;
2912                if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2913                        goto out;
2914                if (__do_read(ff, &info_linear->info, info_len))
2915                        goto out;
2916                if (info_len < sizeof(struct bpf_prog_info))
2917                        memset(((void *)(&info_linear->info)) + info_len, 0,
2918                               sizeof(struct bpf_prog_info) - info_len);
2919
2920                if (__do_read(ff, info_linear->data, data_len))
2921                        goto out;
2922
2923                info_node = malloc(sizeof(struct bpf_prog_info_node));
2924                if (!info_node)
2925                        goto out;
2926
2927                /* after reading from file, translate offset to address */
2928                bpf_program__bpil_offs_to_addr(info_linear);
2929                info_node->info_linear = info_linear;
2930                perf_env__insert_bpf_prog_info(env, info_node);
2931        }
2932
2933        up_write(&env->bpf_progs.lock);
2934        return 0;
2935out:
2936        free(info_linear);
2937        free(info_node);
2938        up_write(&env->bpf_progs.lock);
2939        return err;
2940}
2941#else // HAVE_LIBBPF_SUPPORT
2942static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2943{
2944        return 0;
2945}
2946#endif // HAVE_LIBBPF_SUPPORT
2947
2948static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2949{
2950        struct perf_env *env = &ff->ph->env;
2951        struct btf_node *node = NULL;
2952        u32 count, i;
2953        int err = -1;
2954
2955        if (ff->ph->needs_swap) {
2956                pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2957                return 0;
2958        }
2959
2960        if (do_read_u32(ff, &count))
2961                return -1;
2962
2963        down_write(&env->bpf_progs.lock);
2964
2965        for (i = 0; i < count; ++i) {
2966                u32 id, data_size;
2967
2968                if (do_read_u32(ff, &id))
2969                        goto out;
2970                if (do_read_u32(ff, &data_size))
2971                        goto out;
2972
2973                node = malloc(sizeof(struct btf_node) + data_size);
2974                if (!node)
2975                        goto out;
2976
2977                node->id = id;
2978                node->data_size = data_size;
2979
2980                if (__do_read(ff, node->data, data_size))
2981                        goto out;
2982
2983                perf_env__insert_btf(env, node);
2984                node = NULL;
2985        }
2986
2987        err = 0;
2988out:
2989        up_write(&env->bpf_progs.lock);
2990        free(node);
2991        return err;
2992}
2993
2994static int process_compressed(struct feat_fd *ff,
2995                              void *data __maybe_unused)
2996{
2997        if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2998                return -1;
2999
3000        if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3001                return -1;
3002
3003        if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3004                return -1;
3005
3006        if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3007                return -1;
3008
3009        if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3010                return -1;
3011
3012        return 0;
3013}
3014
3015static int process_cpu_pmu_caps(struct feat_fd *ff,
3016                                void *data __maybe_unused)
3017{
3018        char *name, *value;
3019        struct strbuf sb;
3020        u32 nr_caps;
3021
3022        if (do_read_u32(ff, &nr_caps))
3023                return -1;
3024
3025        if (!nr_caps) {
3026                pr_debug("cpu pmu capabilities not available\n");
3027                return 0;
3028        }
3029
3030        ff->ph->env.nr_cpu_pmu_caps = nr_caps;
3031
3032        if (strbuf_init(&sb, 128) < 0)
3033                return -1;
3034
3035        while (nr_caps--) {
3036                name = do_read_string(ff);
3037                if (!name)
3038                        goto error;
3039
3040                value = do_read_string(ff);
3041                if (!value)
3042                        goto free_name;
3043
3044                if (strbuf_addf(&sb, "%s=%s", name, value) < 0)
3045                        goto free_value;
3046
3047                /* include a NULL character at the end */
3048                if (strbuf_add(&sb, "", 1) < 0)
3049                        goto free_value;
3050
3051                if (!strcmp(name, "branches"))
3052                        ff->ph->env.max_branches = atoi(value);
3053
3054                free(value);
3055                free(name);
3056        }
3057        ff->ph->env.cpu_pmu_caps = strbuf_detach(&sb, NULL);
3058        return 0;
3059
3060free_value:
3061        free(value);
3062free_name:
3063        free(name);
3064error:
3065        strbuf_release(&sb);
3066        return -1;
3067}
3068
3069#define FEAT_OPR(n, func, __full_only) \
3070        [HEADER_##n] = {                                        \
3071                .name       = __stringify(n),                   \
3072                .write      = write_##func,                     \
3073                .print      = print_##func,                     \
3074                .full_only  = __full_only,                      \
3075                .process    = process_##func,                   \
3076                .synthesize = true                              \
3077        }
3078
3079#define FEAT_OPN(n, func, __full_only) \
3080        [HEADER_##n] = {                                        \
3081                .name       = __stringify(n),                   \
3082                .write      = write_##func,                     \
3083                .print      = print_##func,                     \
3084                .full_only  = __full_only,                      \
3085                .process    = process_##func                    \
3086        }
3087
3088/* feature_ops not implemented: */
3089#define print_tracing_data      NULL
3090#define print_build_id          NULL
3091
3092#define process_branch_stack    NULL
3093#define process_stat            NULL
3094
3095// Only used in util/synthetic-events.c
3096const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3097
3098const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3099        FEAT_OPN(TRACING_DATA,  tracing_data,   false),
3100        FEAT_OPN(BUILD_ID,      build_id,       false),
3101        FEAT_OPR(HOSTNAME,      hostname,       false),
3102        FEAT_OPR(OSRELEASE,     osrelease,      false),
3103        FEAT_OPR(VERSION,       version,        false),
3104        FEAT_OPR(ARCH,          arch,           false),
3105        FEAT_OPR(NRCPUS,        nrcpus,         false),
3106        FEAT_OPR(CPUDESC,       cpudesc,        false),
3107        FEAT_OPR(CPUID,         cpuid,          false),
3108        FEAT_OPR(TOTAL_MEM,     total_mem,      false),
3109        FEAT_OPR(EVENT_DESC,    event_desc,     false),
3110        FEAT_OPR(CMDLINE,       cmdline,        false),
3111        FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
3112        FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
3113        FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
3114        FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
3115        FEAT_OPR(GROUP_DESC,    group_desc,     false),
3116        FEAT_OPN(AUXTRACE,      auxtrace,       false),
3117        FEAT_OPN(STAT,          stat,           false),
3118        FEAT_OPN(CACHE,         cache,          true),
3119        FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
3120        FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
3121        FEAT_OPR(CLOCKID,       clockid,        false),
3122        FEAT_OPN(DIR_FORMAT,    dir_format,     false),
3123        FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
3124        FEAT_OPR(BPF_BTF,       bpf_btf,        false),
3125        FEAT_OPR(COMPRESSED,    compressed,     false),
3126        FEAT_OPR(CPU_PMU_CAPS,  cpu_pmu_caps,   false),
3127        FEAT_OPR(CLOCK_DATA,    clock_data,     false),
3128};
3129
3130struct header_print_data {
3131        FILE *fp;
3132        bool full; /* extended list of headers */
3133};
3134
3135static int perf_file_section__fprintf_info(struct perf_file_section *section,
3136                                           struct perf_header *ph,
3137                                           int feat, int fd, void *data)
3138{
3139        struct header_print_data *hd = data;
3140        struct feat_fd ff;
3141
3142        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3143                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3144                                "%d, continuing...\n", section->offset, feat);
3145                return 0;
3146        }
3147        if (feat >= HEADER_LAST_FEATURE) {
3148                pr_warning("unknown feature %d\n", feat);
3149                return 0;
3150        }
3151        if (!feat_ops[feat].print)
3152                return 0;
3153
3154        ff = (struct  feat_fd) {
3155                .fd = fd,
3156                .ph = ph,
3157        };
3158
3159        if (!feat_ops[feat].full_only || hd->full)
3160                feat_ops[feat].print(&ff, hd->fp);
3161        else
3162                fprintf(hd->fp, "# %s info available, use -I to display\n",
3163                        feat_ops[feat].name);
3164
3165        return 0;
3166}
3167
3168int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3169{
3170        struct header_print_data hd;
3171        struct perf_header *header = &session->header;
3172        int fd = perf_data__fd(session->data);
3173        struct stat st;
3174        time_t stctime;
3175        int ret, bit;
3176
3177        hd.fp = fp;
3178        hd.full = full;
3179
3180        ret = fstat(fd, &st);
3181        if (ret == -1)
3182                return -1;
3183
3184        stctime = st.st_mtime;
3185        fprintf(fp, "# captured on    : %s", ctime(&stctime));
3186
3187        fprintf(fp, "# header version : %u\n", header->version);
3188        fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
3189        fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
3190        fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
3191
3192        perf_header__process_sections(header, fd, &hd,
3193                                      perf_file_section__fprintf_info);
3194
3195        if (session->data->is_pipe)
3196                return 0;
3197
3198        fprintf(fp, "# missing features: ");
3199        for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3200                if (bit)
3201                        fprintf(fp, "%s ", feat_ops[bit].name);
3202        }
3203
3204        fprintf(fp, "\n");
3205        return 0;
3206}
3207
3208static int do_write_feat(struct feat_fd *ff, int type,
3209                         struct perf_file_section **p,
3210                         struct evlist *evlist)
3211{
3212        int err;
3213        int ret = 0;
3214
3215        if (perf_header__has_feat(ff->ph, type)) {
3216                if (!feat_ops[type].write)
3217                        return -1;
3218
3219                if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3220                        return -1;
3221
3222                (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3223
3224                err = feat_ops[type].write(ff, evlist);
3225                if (err < 0) {
3226                        pr_debug("failed to write feature %s\n", feat_ops[type].name);
3227
3228                        /* undo anything written */
3229                        lseek(ff->fd, (*p)->offset, SEEK_SET);
3230
3231                        return -1;
3232                }
3233                (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3234                (*p)++;
3235        }
3236        return ret;
3237}
3238
3239static int perf_header__adds_write(struct perf_header *header,
3240                                   struct evlist *evlist, int fd)
3241{
3242        int nr_sections;
3243        struct feat_fd ff;
3244        struct perf_file_section *feat_sec, *p;
3245        int sec_size;
3246        u64 sec_start;
3247        int feat;
3248        int err;
3249
3250        ff = (struct feat_fd){
3251                .fd  = fd,
3252                .ph = header,
3253        };
3254
3255        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3256        if (!nr_sections)
3257                return 0;
3258
3259        feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3260        if (feat_sec == NULL)
3261                return -ENOMEM;
3262
3263        sec_size = sizeof(*feat_sec) * nr_sections;
3264
3265        sec_start = header->feat_offset;
3266        lseek(fd, sec_start + sec_size, SEEK_SET);
3267
3268        for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3269                if (do_write_feat(&ff, feat, &p, evlist))
3270                        perf_header__clear_feat(header, feat);
3271        }
3272
3273        lseek(fd, sec_start, SEEK_SET);
3274        /*
3275         * may write more than needed due to dropped feature, but
3276         * this is okay, reader will skip the missing entries
3277         */
3278        err = do_write(&ff, feat_sec, sec_size);
3279        if (err < 0)
3280                pr_debug("failed to write feature section\n");
3281        free(feat_sec);
3282        return err;
3283}
3284
3285int perf_header__write_pipe(int fd)
3286{
3287        struct perf_pipe_file_header f_header;
3288        struct feat_fd ff;
3289        int err;
3290
3291        ff = (struct feat_fd){ .fd = fd };
3292
3293        f_header = (struct perf_pipe_file_header){
3294                .magic     = PERF_MAGIC,
3295                .size      = sizeof(f_header),
3296        };
3297
3298        err = do_write(&ff, &f_header, sizeof(f_header));
3299        if (err < 0) {
3300                pr_debug("failed to write perf pipe header\n");
3301                return err;
3302        }
3303
3304        return 0;
3305}
3306
3307int perf_session__write_header(struct perf_session *session,
3308                               struct evlist *evlist,
3309                               int fd, bool at_exit)
3310{
3311        struct perf_file_header f_header;
3312        struct perf_file_attr   f_attr;
3313        struct perf_header *header = &session->header;
3314        struct evsel *evsel;
3315        struct feat_fd ff;
3316        u64 attr_offset;
3317        int err;
3318
3319        ff = (struct feat_fd){ .fd = fd};
3320        lseek(fd, sizeof(f_header), SEEK_SET);
3321
3322        evlist__for_each_entry(session->evlist, evsel) {
3323                evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3324                err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3325                if (err < 0) {
3326                        pr_debug("failed to write perf header\n");
3327                        return err;
3328                }
3329        }
3330
3331        attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3332
3333        evlist__for_each_entry(evlist, evsel) {
3334                f_attr = (struct perf_file_attr){
3335                        .attr = evsel->core.attr,
3336                        .ids  = {
3337                                .offset = evsel->id_offset,
3338                                .size   = evsel->core.ids * sizeof(u64),
3339                        }
3340                };
3341                err = do_write(&ff, &f_attr, sizeof(f_attr));
3342                if (err < 0) {
3343                        pr_debug("failed to write perf header attribute\n");
3344                        return err;
3345                }
3346        }
3347
3348        if (!header->data_offset)
3349                header->data_offset = lseek(fd, 0, SEEK_CUR);
3350        header->feat_offset = header->data_offset + header->data_size;
3351
3352        if (at_exit) {
3353                err = perf_header__adds_write(header, evlist, fd);
3354                if (err < 0)
3355                        return err;
3356        }
3357
3358        f_header = (struct perf_file_header){
3359                .magic     = PERF_MAGIC,
3360                .size      = sizeof(f_header),
3361                .attr_size = sizeof(f_attr),
3362                .attrs = {
3363                        .offset = attr_offset,
3364                        .size   = evlist->core.nr_entries * sizeof(f_attr),
3365                },
3366                .data = {
3367                        .offset = header->data_offset,
3368                        .size   = header->data_size,
3369                },
3370                /* event_types is ignored, store zeros */
3371        };
3372
3373        memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3374
3375        lseek(fd, 0, SEEK_SET);
3376        err = do_write(&ff, &f_header, sizeof(f_header));
3377        if (err < 0) {
3378                pr_debug("failed to write perf header\n");
3379                return err;
3380        }
3381        lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3382
3383        return 0;
3384}
3385
3386static int perf_header__getbuffer64(struct perf_header *header,
3387                                    int fd, void *buf, size_t size)
3388{
3389        if (readn(fd, buf, size) <= 0)
3390                return -1;
3391
3392        if (header->needs_swap)
3393                mem_bswap_64(buf, size);
3394
3395        return 0;
3396}
3397
3398int perf_header__process_sections(struct perf_header *header, int fd,
3399                                  void *data,
3400                                  int (*process)(struct perf_file_section *section,
3401                                                 struct perf_header *ph,
3402                                                 int feat, int fd, void *data))
3403{
3404        struct perf_file_section *feat_sec, *sec;
3405        int nr_sections;
3406        int sec_size;
3407        int feat;
3408        int err;
3409
3410        nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3411        if (!nr_sections)
3412                return 0;
3413
3414        feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3415        if (!feat_sec)
3416                return -1;
3417
3418        sec_size = sizeof(*feat_sec) * nr_sections;
3419
3420        lseek(fd, header->feat_offset, SEEK_SET);
3421
3422        err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3423        if (err < 0)
3424                goto out_free;
3425
3426        for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3427                err = process(sec++, header, feat, fd, data);
3428                if (err < 0)
3429                        goto out_free;
3430        }
3431        err = 0;
3432out_free:
3433        free(feat_sec);
3434        return err;
3435}
3436
3437static const int attr_file_abi_sizes[] = {
3438        [0] = PERF_ATTR_SIZE_VER0,
3439        [1] = PERF_ATTR_SIZE_VER1,
3440        [2] = PERF_ATTR_SIZE_VER2,
3441        [3] = PERF_ATTR_SIZE_VER3,
3442        [4] = PERF_ATTR_SIZE_VER4,
3443        0,
3444};
3445
3446/*
3447 * In the legacy file format, the magic number is not used to encode endianness.
3448 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3449 * on ABI revisions, we need to try all combinations for all endianness to
3450 * detect the endianness.
3451 */
3452static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3453{
3454        uint64_t ref_size, attr_size;
3455        int i;
3456
3457        for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3458                ref_size = attr_file_abi_sizes[i]
3459                         + sizeof(struct perf_file_section);
3460                if (hdr_sz != ref_size) {
3461                        attr_size = bswap_64(hdr_sz);
3462                        if (attr_size != ref_size)
3463                                continue;
3464
3465                        ph->needs_swap = true;
3466                }
3467                pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3468                         i,
3469                         ph->needs_swap);
3470                return 0;
3471        }
3472        /* could not determine endianness */
3473        return -1;
3474}
3475
3476#define PERF_PIPE_HDR_VER0      16
3477
3478static const size_t attr_pipe_abi_sizes[] = {
3479        [0] = PERF_PIPE_HDR_VER0,
3480        0,
3481};
3482
3483/*
3484 * In the legacy pipe format, there is an implicit assumption that endiannesss
3485 * between host recording the samples, and host parsing the samples is the
3486 * same. This is not always the case given that the pipe output may always be
3487 * redirected into a file and analyzed on a different machine with possibly a
3488 * different endianness and perf_event ABI revsions in the perf tool itself.
3489 */
3490static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3491{
3492        u64 attr_size;
3493        int i;
3494
3495        for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3496                if (hdr_sz != attr_pipe_abi_sizes[i]) {
3497                        attr_size = bswap_64(hdr_sz);
3498                        if (attr_size != hdr_sz)
3499                                continue;
3500
3501                        ph->needs_swap = true;
3502                }
3503                pr_debug("Pipe ABI%d perf.data file detected\n", i);
3504                return 0;
3505        }
3506        return -1;
3507}
3508
3509bool is_perf_magic(u64 magic)
3510{
3511        if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3512                || magic == __perf_magic2
3513                || magic == __perf_magic2_sw)
3514                return true;
3515
3516        return false;
3517}
3518
3519static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3520                              bool is_pipe, struct perf_header *ph)
3521{
3522        int ret;
3523
3524        /* check for legacy format */
3525        ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3526        if (ret == 0) {
3527                ph->version = PERF_HEADER_VERSION_1;
3528                pr_debug("legacy perf.data format\n");
3529                if (is_pipe)
3530                        return try_all_pipe_abis(hdr_sz, ph);
3531
3532                return try_all_file_abis(hdr_sz, ph);
3533        }
3534        /*
3535         * the new magic number serves two purposes:
3536         * - unique number to identify actual perf.data files
3537         * - encode endianness of file
3538         */
3539        ph->version = PERF_HEADER_VERSION_2;
3540
3541        /* check magic number with one endianness */
3542        if (magic == __perf_magic2)
3543                return 0;
3544
3545        /* check magic number with opposite endianness */
3546        if (magic != __perf_magic2_sw)
3547                return -1;
3548
3549        ph->needs_swap = true;
3550
3551        return 0;
3552}
3553
3554int perf_file_header__read(struct perf_file_header *header,
3555                           struct perf_header *ph, int fd)
3556{
3557        ssize_t ret;
3558
3559        lseek(fd, 0, SEEK_SET);
3560
3561        ret = readn(fd, header, sizeof(*header));
3562        if (ret <= 0)
3563                return -1;
3564
3565        if (check_magic_endian(header->magic,
3566                               header->attr_size, false, ph) < 0) {
3567                pr_debug("magic/endian check failed\n");
3568                return -1;
3569        }
3570
3571        if (ph->needs_swap) {
3572                mem_bswap_64(header, offsetof(struct perf_file_header,
3573                             adds_features));
3574        }
3575
3576        if (header->size != sizeof(*header)) {
3577                /* Support the previous format */
3578                if (header->size == offsetof(typeof(*header), adds_features))
3579                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3580                else
3581                        return -1;
3582        } else if (ph->needs_swap) {
3583                /*
3584                 * feature bitmap is declared as an array of unsigned longs --
3585                 * not good since its size can differ between the host that
3586                 * generated the data file and the host analyzing the file.
3587                 *
3588                 * We need to handle endianness, but we don't know the size of
3589                 * the unsigned long where the file was generated. Take a best
3590                 * guess at determining it: try 64-bit swap first (ie., file
3591                 * created on a 64-bit host), and check if the hostname feature
3592                 * bit is set (this feature bit is forced on as of fbe96f2).
3593                 * If the bit is not, undo the 64-bit swap and try a 32-bit
3594                 * swap. If the hostname bit is still not set (e.g., older data
3595                 * file), punt and fallback to the original behavior --
3596                 * clearing all feature bits and setting buildid.
3597                 */
3598                mem_bswap_64(&header->adds_features,
3599                            BITS_TO_U64(HEADER_FEAT_BITS));
3600
3601                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3602                        /* unswap as u64 */
3603                        mem_bswap_64(&header->adds_features,
3604                                    BITS_TO_U64(HEADER_FEAT_BITS));
3605
3606                        /* unswap as u32 */
3607                        mem_bswap_32(&header->adds_features,
3608                                    BITS_TO_U32(HEADER_FEAT_BITS));
3609                }
3610
3611                if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3612                        bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3613                        set_bit(HEADER_BUILD_ID, header->adds_features);
3614                }
3615        }
3616
3617        memcpy(&ph->adds_features, &header->adds_features,
3618               sizeof(ph->adds_features));
3619
3620        ph->data_offset  = header->data.offset;
3621        ph->data_size    = header->data.size;
3622        ph->feat_offset  = header->data.offset + header->data.size;
3623        return 0;
3624}
3625
3626static int perf_file_section__process(struct perf_file_section *section,
3627                                      struct perf_header *ph,
3628                                      int feat, int fd, void *data)
3629{
3630        struct feat_fd fdd = {
3631                .fd     = fd,
3632                .ph     = ph,
3633                .size   = section->size,
3634                .offset = section->offset,
3635        };
3636
3637        if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3638                pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3639                          "%d, continuing...\n", section->offset, feat);
3640                return 0;
3641        }
3642
3643        if (feat >= HEADER_LAST_FEATURE) {
3644                pr_debug("unknown feature %d, continuing...\n", feat);
3645                return 0;
3646        }
3647
3648        if (!feat_ops[feat].process)
3649                return 0;
3650
3651        return feat_ops[feat].process(&fdd, data);
3652}
3653
3654static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3655                                       struct perf_header *ph, int fd,
3656                                       bool repipe)
3657{
3658        struct feat_fd ff = {
3659                .fd = STDOUT_FILENO,
3660                .ph = ph,
3661        };
3662        ssize_t ret;
3663
3664        ret = readn(fd, header, sizeof(*header));
3665        if (ret <= 0)
3666                return -1;
3667
3668        if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3669                pr_debug("endian/magic failed\n");
3670                return -1;
3671        }
3672
3673        if (ph->needs_swap)
3674                header->size = bswap_64(header->size);
3675
3676        if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3677                return -1;
3678
3679        return 0;
3680}
3681
3682static int perf_header__read_pipe(struct perf_session *session)
3683{
3684        struct perf_header *header = &session->header;
3685        struct perf_pipe_file_header f_header;
3686
3687        if (perf_file_header__read_pipe(&f_header, header,
3688                                        perf_data__fd(session->data),
3689                                        session->repipe) < 0) {
3690                pr_debug("incompatible file format\n");
3691                return -EINVAL;
3692        }
3693
3694        return f_header.size == sizeof(f_header) ? 0 : -1;
3695}
3696
3697static int read_attr(int fd, struct perf_header *ph,
3698                     struct perf_file_attr *f_attr)
3699{
3700        struct perf_event_attr *attr = &f_attr->attr;
3701        size_t sz, left;
3702        size_t our_sz = sizeof(f_attr->attr);
3703        ssize_t ret;
3704
3705        memset(f_attr, 0, sizeof(*f_attr));
3706
3707        /* read minimal guaranteed structure */
3708        ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3709        if (ret <= 0) {
3710                pr_debug("cannot read %d bytes of header attr\n",
3711                         PERF_ATTR_SIZE_VER0);
3712                return -1;
3713        }
3714
3715        /* on file perf_event_attr size */
3716        sz = attr->size;
3717
3718        if (ph->needs_swap)
3719                sz = bswap_32(sz);
3720
3721        if (sz == 0) {
3722                /* assume ABI0 */
3723                sz =  PERF_ATTR_SIZE_VER0;
3724        } else if (sz > our_sz) {
3725                pr_debug("file uses a more recent and unsupported ABI"
3726                         " (%zu bytes extra)\n", sz - our_sz);
3727                return -1;
3728        }
3729        /* what we have not yet read and that we know about */
3730        left = sz - PERF_ATTR_SIZE_VER0;
3731        if (left) {
3732                void *ptr = attr;
3733                ptr += PERF_ATTR_SIZE_VER0;
3734
3735                ret = readn(fd, ptr, left);
3736        }
3737        /* read perf_file_section, ids are read in caller */
3738        ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3739
3740        return ret <= 0 ? -1 : 0;
3741}
3742
3743static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3744                                                struct tep_handle *pevent)
3745{
3746        struct tep_event *event;
3747        char bf[128];
3748
3749        /* already prepared */
3750        if (evsel->tp_format)
3751                return 0;
3752
3753        if (pevent == NULL) {
3754                pr_debug("broken or missing trace data\n");
3755                return -1;
3756        }
3757
3758        event = tep_find_event(pevent, evsel->core.attr.config);
3759        if (event == NULL) {
3760                pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3761                return -1;
3762        }
3763
3764        if (!evsel->name) {
3765                snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3766                evsel->name = strdup(bf);
3767                if (evsel->name == NULL)
3768                        return -1;
3769        }
3770
3771        evsel->tp_format = event;
3772        return 0;
3773}
3774
3775static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3776                                                  struct tep_handle *pevent)
3777{
3778        struct evsel *pos;
3779
3780        evlist__for_each_entry(evlist, pos) {
3781                if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3782                    perf_evsel__prepare_tracepoint_event(pos, pevent))
3783                        return -1;
3784        }
3785
3786        return 0;
3787}
3788
3789int perf_session__read_header(struct perf_session *session)
3790{
3791        struct perf_data *data = session->data;
3792        struct perf_header *header = &session->header;
3793        struct perf_file_header f_header;
3794        struct perf_file_attr   f_attr;
3795        u64                     f_id;
3796        int nr_attrs, nr_ids, i, j, err;
3797        int fd = perf_data__fd(data);
3798
3799        session->evlist = evlist__new();
3800        if (session->evlist == NULL)
3801                return -ENOMEM;
3802
3803        session->evlist->env = &header->env;
3804        session->machines.host.env = &header->env;
3805
3806        /*
3807         * We can read 'pipe' data event from regular file,
3808         * check for the pipe header regardless of source.
3809         */
3810        err = perf_header__read_pipe(session);
3811        if (!err || (err && perf_data__is_pipe(data))) {
3812                data->is_pipe = true;
3813                return err;
3814        }
3815
3816        if (perf_file_header__read(&f_header, header, fd) < 0)
3817                return -EINVAL;
3818
3819        /*
3820         * Sanity check that perf.data was written cleanly; data size is
3821         * initialized to 0 and updated only if the on_exit function is run.
3822         * If data size is still 0 then the file contains only partial
3823         * information.  Just warn user and process it as much as it can.
3824         */
3825        if (f_header.data.size == 0) {
3826                pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3827                           "Was the 'perf record' command properly terminated?\n",
3828                           data->file.path);
3829        }
3830
3831        if (f_header.attr_size == 0) {
3832                pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3833                       "Was the 'perf record' command properly terminated?\n",
3834                       data->file.path);
3835                return -EINVAL;
3836        }
3837
3838        nr_attrs = f_header.attrs.size / f_header.attr_size;
3839        lseek(fd, f_header.attrs.offset, SEEK_SET);
3840
3841        for (i = 0; i < nr_attrs; i++) {
3842                struct evsel *evsel;
3843                off_t tmp;
3844
3845                if (read_attr(fd, header, &f_attr) < 0)
3846                        goto out_errno;
3847
3848                if (header->needs_swap) {
3849                        f_attr.ids.size   = bswap_64(f_attr.ids.size);
3850                        f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3851                        perf_event__attr_swap(&f_attr.attr);
3852                }
3853
3854                tmp = lseek(fd, 0, SEEK_CUR);
3855                evsel = evsel__new(&f_attr.attr);
3856
3857                if (evsel == NULL)
3858                        goto out_delete_evlist;
3859
3860                evsel->needs_swap = header->needs_swap;
3861                /*
3862                 * Do it before so that if perf_evsel__alloc_id fails, this
3863                 * entry gets purged too at evlist__delete().
3864                 */
3865                evlist__add(session->evlist, evsel);
3866
3867                nr_ids = f_attr.ids.size / sizeof(u64);
3868                /*
3869                 * We don't have the cpu and thread maps on the header, so
3870                 * for allocating the perf_sample_id table we fake 1 cpu and
3871                 * hattr->ids threads.
3872                 */
3873                if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3874                        goto out_delete_evlist;
3875
3876                lseek(fd, f_attr.ids.offset, SEEK_SET);
3877
3878                for (j = 0; j < nr_ids; j++) {
3879                        if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3880                                goto out_errno;
3881
3882                        perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3883                }
3884
3885                lseek(fd, tmp, SEEK_SET);
3886        }
3887
3888        perf_header__process_sections(header, fd, &session->tevent,
3889                                      perf_file_section__process);
3890
3891        if (perf_evlist__prepare_tracepoint_events(session->evlist,
3892                                                   session->tevent.pevent))
3893                goto out_delete_evlist;
3894
3895        return 0;
3896out_errno:
3897        return -errno;
3898
3899out_delete_evlist:
3900        evlist__delete(session->evlist);
3901        session->evlist = NULL;
3902        return -ENOMEM;
3903}
3904
3905int perf_event__process_feature(struct perf_session *session,
3906                                union perf_event *event)
3907{
3908        struct perf_tool *tool = session->tool;
3909        struct feat_fd ff = { .fd = 0 };
3910        struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3911        int type = fe->header.type;
3912        u64 feat = fe->feat_id;
3913
3914        if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3915                pr_warning("invalid record type %d in pipe-mode\n", type);
3916                return 0;
3917        }
3918        if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3919                pr_warning("invalid record type %d in pipe-mode\n", type);
3920                return -1;
3921        }
3922
3923        if (!feat_ops[feat].process)
3924                return 0;
3925
3926        ff.buf  = (void *)fe->data;
3927        ff.size = event->header.size - sizeof(*fe);
3928        ff.ph = &session->header;
3929
3930        if (feat_ops[feat].process(&ff, NULL))
3931                return -1;
3932
3933        if (!feat_ops[feat].print || !tool->show_feat_hdr)
3934                return 0;
3935
3936        if (!feat_ops[feat].full_only ||
3937            tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3938                feat_ops[feat].print(&ff, stdout);
3939        } else {
3940                fprintf(stdout, "# %s info available, use -I to display\n",
3941                        feat_ops[feat].name);
3942        }
3943
3944        return 0;
3945}
3946
3947size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3948{
3949        struct perf_record_event_update *ev = &event->event_update;
3950        struct perf_record_event_update_scale *ev_scale;
3951        struct perf_record_event_update_cpus *ev_cpus;
3952        struct perf_cpu_map *map;
3953        size_t ret;
3954
3955        ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3956
3957        switch (ev->type) {
3958        case PERF_EVENT_UPDATE__SCALE:
3959                ev_scale = (struct perf_record_event_update_scale *)ev->data;
3960                ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3961                break;
3962        case PERF_EVENT_UPDATE__UNIT:
3963                ret += fprintf(fp, "... unit:  %s\n", ev->data);
3964                break;
3965        case PERF_EVENT_UPDATE__NAME:
3966                ret += fprintf(fp, "... name:  %s\n", ev->data);
3967                break;
3968        case PERF_EVENT_UPDATE__CPUS:
3969                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3970                ret += fprintf(fp, "... ");
3971
3972                map = cpu_map__new_data(&ev_cpus->cpus);
3973                if (map)
3974                        ret += cpu_map__fprintf(map, fp);
3975                else
3976                        ret += fprintf(fp, "failed to get cpus\n");
3977                break;
3978        default:
3979                ret += fprintf(fp, "... unknown type\n");
3980                break;
3981        }
3982
3983        return ret;
3984}
3985
3986int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3987                             union perf_event *event,
3988                             struct evlist **pevlist)
3989{
3990        u32 i, ids, n_ids;
3991        struct evsel *evsel;
3992        struct evlist *evlist = *pevlist;
3993
3994        if (evlist == NULL) {
3995                *pevlist = evlist = evlist__new();
3996                if (evlist == NULL)
3997                        return -ENOMEM;
3998        }
3999
4000        evsel = evsel__new(&event->attr.attr);
4001        if (evsel == NULL)
4002                return -ENOMEM;
4003
4004        evlist__add(evlist, evsel);
4005
4006        ids = event->header.size;
4007        ids -= (void *)&event->attr.id - (void *)event;
4008        n_ids = ids / sizeof(u64);
4009        /*
4010         * We don't have the cpu and thread maps on the header, so
4011         * for allocating the perf_sample_id table we fake 1 cpu and
4012         * hattr->ids threads.
4013         */
4014        if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4015                return -ENOMEM;
4016
4017        for (i = 0; i < n_ids; i++) {
4018                perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4019        }
4020
4021        return 0;
4022}
4023
4024int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4025                                     union perf_event *event,
4026                                     struct evlist **pevlist)
4027{
4028        struct perf_record_event_update *ev = &event->event_update;
4029        struct perf_record_event_update_scale *ev_scale;
4030        struct perf_record_event_update_cpus *ev_cpus;
4031        struct evlist *evlist;
4032        struct evsel *evsel;
4033        struct perf_cpu_map *map;
4034
4035        if (!pevlist || *pevlist == NULL)
4036                return -EINVAL;
4037
4038        evlist = *pevlist;
4039
4040        evsel = perf_evlist__id2evsel(evlist, ev->id);
4041        if (evsel == NULL)
4042                return -EINVAL;
4043
4044        switch (ev->type) {
4045        case PERF_EVENT_UPDATE__UNIT:
4046                evsel->unit = strdup(ev->data);
4047                break;
4048        case PERF_EVENT_UPDATE__NAME:
4049                evsel->name = strdup(ev->data);
4050                break;
4051        case PERF_EVENT_UPDATE__SCALE:
4052                ev_scale = (struct perf_record_event_update_scale *)ev->data;
4053                evsel->scale = ev_scale->scale;
4054                break;
4055        case PERF_EVENT_UPDATE__CPUS:
4056                ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
4057
4058                map = cpu_map__new_data(&ev_cpus->cpus);
4059                if (map)
4060                        evsel->core.own_cpus = map;
4061                else
4062                        pr_err("failed to get event_update cpus\n");
4063        default:
4064                break;
4065        }
4066
4067        return 0;
4068}
4069
4070int perf_event__process_tracing_data(struct perf_session *session,
4071                                     union perf_event *event)
4072{
4073        ssize_t size_read, padding, size = event->tracing_data.size;
4074        int fd = perf_data__fd(session->data);
4075        char buf[BUFSIZ];
4076
4077        /*
4078         * The pipe fd is already in proper place and in any case
4079         * we can't move it, and we'd screw the case where we read
4080         * 'pipe' data from regular file. The trace_report reads
4081         * data from 'fd' so we need to set it directly behind the
4082         * event, where the tracing data starts.
4083         */
4084        if (!perf_data__is_pipe(session->data)) {
4085                off_t offset = lseek(fd, 0, SEEK_CUR);
4086
4087                /* setup for reading amidst mmap */
4088                lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4089                      SEEK_SET);
4090        }
4091
4092        size_read = trace_report(fd, &session->tevent,
4093                                 session->repipe);
4094        padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4095
4096        if (readn(fd, buf, padding) < 0) {
4097                pr_err("%s: reading input file", __func__);
4098                return -1;
4099        }
4100        if (session->repipe) {
4101                int retw = write(STDOUT_FILENO, buf, padding);
4102                if (retw <= 0 || retw != padding) {
4103                        pr_err("%s: repiping tracing data padding", __func__);
4104                        return -1;
4105                }
4106        }
4107
4108        if (size_read + padding != size) {
4109                pr_err("%s: tracing data size mismatch", __func__);
4110                return -1;
4111        }
4112
4113        perf_evlist__prepare_tracepoint_events(session->evlist,
4114                                               session->tevent.pevent);
4115
4116        return size_read + padding;
4117}
4118
4119int perf_event__process_build_id(struct perf_session *session,
4120                                 union perf_event *event)
4121{
4122        __event_process_build_id(&event->build_id,
4123                                 event->build_id.filename,
4124                                 session);
4125        return 0;
4126}
4127