linux/arch/arm/include/asm/pgtable-2level.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 *  arch/arm/include/asm/pgtable-2level.h
   4 *
   5 *  Copyright (C) 1995-2002 Russell King
   6 */
   7#ifndef _ASM_PGTABLE_2LEVEL_H
   8#define _ASM_PGTABLE_2LEVEL_H
   9
  10#define __PAGETABLE_PMD_FOLDED 1
  11
  12/*
  13 * Hardware-wise, we have a two level page table structure, where the first
  14 * level has 4096 entries, and the second level has 256 entries.  Each entry
  15 * is one 32-bit word.  Most of the bits in the second level entry are used
  16 * by hardware, and there aren't any "accessed" and "dirty" bits.
  17 *
  18 * Linux on the other hand has a three level page table structure, which can
  19 * be wrapped to fit a two level page table structure easily - using the PGD
  20 * and PTE only.  However, Linux also expects one "PTE" table per page, and
  21 * at least a "dirty" bit.
  22 *
  23 * Therefore, we tweak the implementation slightly - we tell Linux that we
  24 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
  25 * hardware pointers to the second level.)  The second level contains two
  26 * hardware PTE tables arranged contiguously, preceded by Linux versions
  27 * which contain the state information Linux needs.  We, therefore, end up
  28 * with 512 entries in the "PTE" level.
  29 *
  30 * This leads to the page tables having the following layout:
  31 *
  32 *    pgd             pte
  33 * |        |
  34 * +--------+
  35 * |        |       +------------+ +0
  36 * +- - - - +       | Linux pt 0 |
  37 * |        |       +------------+ +1024
  38 * +--------+ +0    | Linux pt 1 |
  39 * |        |-----> +------------+ +2048
  40 * +- - - - + +4    |  h/w pt 0  |
  41 * |        |-----> +------------+ +3072
  42 * +--------+ +8    |  h/w pt 1  |
  43 * |        |       +------------+ +4096
  44 *
  45 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
  46 * PTE_xxx for definitions of bits appearing in the "h/w pt".
  47 *
  48 * PMD_xxx definitions refer to bits in the first level page table.
  49 *
  50 * The "dirty" bit is emulated by only granting hardware write permission
  51 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
  52 * means that a write to a clean page will cause a permission fault, and
  53 * the Linux MM layer will mark the page dirty via handle_pte_fault().
  54 * For the hardware to notice the permission change, the TLB entry must
  55 * be flushed, and ptep_set_access_flags() does that for us.
  56 *
  57 * The "accessed" or "young" bit is emulated by a similar method; we only
  58 * allow accesses to the page if the "young" bit is set.  Accesses to the
  59 * page will cause a fault, and handle_pte_fault() will set the young bit
  60 * for us as long as the page is marked present in the corresponding Linux
  61 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
  62 * up to date.
  63 *
  64 * However, when the "young" bit is cleared, we deny access to the page
  65 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
  66 * for us in this case, which means the TLB will retain the transation
  67 * until either the TLB entry is evicted under pressure, or a context
  68 * switch which changes the user space mapping occurs.
  69 */
  70#define PTRS_PER_PTE            512
  71#define PTRS_PER_PMD            1
  72#define PTRS_PER_PGD            2048
  73
  74#define PTE_HWTABLE_PTRS        (PTRS_PER_PTE)
  75#define PTE_HWTABLE_OFF         (PTE_HWTABLE_PTRS * sizeof(pte_t))
  76#define PTE_HWTABLE_SIZE        (PTRS_PER_PTE * sizeof(u32))
  77
  78#define MAX_POSSIBLE_PHYSMEM_BITS       32
  79
  80/*
  81 * PMD_SHIFT determines the size of the area a second-level page table can map
  82 * PGDIR_SHIFT determines what a third-level page table entry can map
  83 */
  84#define PMD_SHIFT               21
  85#define PGDIR_SHIFT             21
  86
  87#define PMD_SIZE                (1UL << PMD_SHIFT)
  88#define PMD_MASK                (~(PMD_SIZE-1))
  89#define PGDIR_SIZE              (1UL << PGDIR_SHIFT)
  90#define PGDIR_MASK              (~(PGDIR_SIZE-1))
  91
  92/*
  93 * section address mask and size definitions.
  94 */
  95#define SECTION_SHIFT           20
  96#define SECTION_SIZE            (1UL << SECTION_SHIFT)
  97#define SECTION_MASK            (~(SECTION_SIZE-1))
  98
  99/*
 100 * ARMv6 supersection address mask and size definitions.
 101 */
 102#define SUPERSECTION_SHIFT      24
 103#define SUPERSECTION_SIZE       (1UL << SUPERSECTION_SHIFT)
 104#define SUPERSECTION_MASK       (~(SUPERSECTION_SIZE-1))
 105
 106#define USER_PTRS_PER_PGD       (TASK_SIZE / PGDIR_SIZE)
 107
 108/*
 109 * "Linux" PTE definitions.
 110 *
 111 * We keep two sets of PTEs - the hardware and the linux version.
 112 * This allows greater flexibility in the way we map the Linux bits
 113 * onto the hardware tables, and allows us to have YOUNG and DIRTY
 114 * bits.
 115 *
 116 * The PTE table pointer refers to the hardware entries; the "Linux"
 117 * entries are stored 1024 bytes below.
 118 */
 119#define L_PTE_VALID             (_AT(pteval_t, 1) << 0)         /* Valid */
 120#define L_PTE_PRESENT           (_AT(pteval_t, 1) << 0)
 121#define L_PTE_YOUNG             (_AT(pteval_t, 1) << 1)
 122#define L_PTE_DIRTY             (_AT(pteval_t, 1) << 6)
 123#define L_PTE_RDONLY            (_AT(pteval_t, 1) << 7)
 124#define L_PTE_USER              (_AT(pteval_t, 1) << 8)
 125#define L_PTE_XN                (_AT(pteval_t, 1) << 9)
 126#define L_PTE_SHARED            (_AT(pteval_t, 1) << 10)        /* shared(v6), coherent(xsc3) */
 127#define L_PTE_NONE              (_AT(pteval_t, 1) << 11)
 128
 129/*
 130 * These are the memory types, defined to be compatible with
 131 * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
 132 * ARMv6+ without TEX remapping, they are a table index.
 133 * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
 134 *
 135 * MT type              Pre-ARMv6       ARMv6+ type / cacheable status
 136 * UNCACHED             Uncached        Strongly ordered
 137 * BUFFERABLE           Bufferable      Normal memory / non-cacheable
 138 * WRITETHROUGH         Writethrough    Normal memory / write through
 139 * WRITEBACK            Writeback       Normal memory / write back, read alloc
 140 * MINICACHE            Minicache       N/A
 141 * WRITEALLOC           Writeback       Normal memory / write back, write alloc
 142 * DEV_SHARED           Uncached        Device memory (shared)
 143 * DEV_NONSHARED        Uncached        Device memory (non-shared)
 144 * DEV_WC               Bufferable      Normal memory / non-cacheable
 145 * DEV_CACHED           Writeback       Normal memory / write back, read alloc
 146 * VECTORS              Variable        Normal memory / variable
 147 *
 148 * All normal memory mappings have the following properties:
 149 * - reads can be repeated with no side effects
 150 * - repeated reads return the last value written
 151 * - reads can fetch additional locations without side effects
 152 * - writes can be repeated (in certain cases) with no side effects
 153 * - writes can be merged before accessing the target
 154 * - unaligned accesses can be supported
 155 *
 156 * All device mappings have the following properties:
 157 * - no access speculation
 158 * - no repetition (eg, on return from an exception)
 159 * - number, order and size of accesses are maintained
 160 * - unaligned accesses are "unpredictable"
 161 */
 162#define L_PTE_MT_UNCACHED       (_AT(pteval_t, 0x00) << 2)      /* 0000 */
 163#define L_PTE_MT_BUFFERABLE     (_AT(pteval_t, 0x01) << 2)      /* 0001 */
 164#define L_PTE_MT_WRITETHROUGH   (_AT(pteval_t, 0x02) << 2)      /* 0010 */
 165#define L_PTE_MT_WRITEBACK      (_AT(pteval_t, 0x03) << 2)      /* 0011 */
 166#define L_PTE_MT_MINICACHE      (_AT(pteval_t, 0x06) << 2)      /* 0110 (sa1100, xscale) */
 167#define L_PTE_MT_WRITEALLOC     (_AT(pteval_t, 0x07) << 2)      /* 0111 */
 168#define L_PTE_MT_DEV_SHARED     (_AT(pteval_t, 0x04) << 2)      /* 0100 */
 169#define L_PTE_MT_DEV_NONSHARED  (_AT(pteval_t, 0x0c) << 2)      /* 1100 */
 170#define L_PTE_MT_DEV_WC         (_AT(pteval_t, 0x09) << 2)      /* 1001 */
 171#define L_PTE_MT_DEV_CACHED     (_AT(pteval_t, 0x0b) << 2)      /* 1011 */
 172#define L_PTE_MT_VECTORS        (_AT(pteval_t, 0x0f) << 2)      /* 1111 */
 173#define L_PTE_MT_MASK           (_AT(pteval_t, 0x0f) << 2)
 174
 175#ifndef __ASSEMBLY__
 176
 177/*
 178 * The "pud_xxx()" functions here are trivial when the pmd is folded into
 179 * the pud: the pud entry is never bad, always exists, and can't be set or
 180 * cleared.
 181 */
 182static inline int pud_none(pud_t pud)
 183{
 184        return 0;
 185}
 186
 187static inline int pud_bad(pud_t pud)
 188{
 189        return 0;
 190}
 191
 192static inline int pud_present(pud_t pud)
 193{
 194        return 1;
 195}
 196
 197static inline void pud_clear(pud_t *pudp)
 198{
 199}
 200
 201static inline void set_pud(pud_t *pudp, pud_t pud)
 202{
 203}
 204
 205static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
 206{
 207        return (pmd_t *)pud;
 208}
 209#define pmd_offset pmd_offset
 210
 211#define pmd_large(pmd)          (pmd_val(pmd) & 2)
 212#define pmd_leaf(pmd)           (pmd_val(pmd) & 2)
 213#define pmd_bad(pmd)            (pmd_val(pmd) & 2)
 214#define pmd_present(pmd)        (pmd_val(pmd))
 215
 216#define copy_pmd(pmdpd,pmdps)           \
 217        do {                            \
 218                pmdpd[0] = pmdps[0];    \
 219                pmdpd[1] = pmdps[1];    \
 220                flush_pmd_entry(pmdpd); \
 221        } while (0)
 222
 223#define pmd_clear(pmdp)                 \
 224        do {                            \
 225                pmdp[0] = __pmd(0);     \
 226                pmdp[1] = __pmd(0);     \
 227                clean_pmd_entry(pmdp);  \
 228        } while (0)
 229
 230/* we don't need complex calculations here as the pmd is folded into the pgd */
 231#define pmd_addr_end(addr,end) (end)
 232
 233#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
 234
 235/*
 236 * We don't have huge page support for short descriptors, for the moment
 237 * define empty stubs for use by pin_page_for_write.
 238 */
 239#define pmd_hugewillfault(pmd)  (0)
 240#define pmd_thp_or_huge(pmd)    (0)
 241
 242#endif /* __ASSEMBLY__ */
 243
 244#endif /* _ASM_PGTABLE_2LEVEL_H */
 245