linux/arch/arm64/kernel/cpufeature.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Contains CPU feature definitions
   4 *
   5 * Copyright (C) 2015 ARM Ltd.
   6 *
   7 * A note for the weary kernel hacker: the code here is confusing and hard to
   8 * follow! That's partly because it's solving a nasty problem, but also because
   9 * there's a little bit of over-abstraction that tends to obscure what's going
  10 * on behind a maze of helper functions and macros.
  11 *
  12 * The basic problem is that hardware folks have started gluing together CPUs
  13 * with distinct architectural features; in some cases even creating SoCs where
  14 * user-visible instructions are available only on a subset of the available
  15 * cores. We try to address this by snapshotting the feature registers of the
  16 * boot CPU and comparing these with the feature registers of each secondary
  17 * CPU when bringing them up. If there is a mismatch, then we update the
  18 * snapshot state to indicate the lowest-common denominator of the feature,
  19 * known as the "safe" value. This snapshot state can be queried to view the
  20 * "sanitised" value of a feature register.
  21 *
  22 * The sanitised register values are used to decide which capabilities we
  23 * have in the system. These may be in the form of traditional "hwcaps"
  24 * advertised to userspace or internal "cpucaps" which are used to configure
  25 * things like alternative patching and static keys. While a feature mismatch
  26 * may result in a TAINT_CPU_OUT_OF_SPEC kernel taint, a capability mismatch
  27 * may prevent a CPU from being onlined at all.
  28 *
  29 * Some implementation details worth remembering:
  30 *
  31 * - Mismatched features are *always* sanitised to a "safe" value, which
  32 *   usually indicates that the feature is not supported.
  33 *
  34 * - A mismatched feature marked with FTR_STRICT will cause a "SANITY CHECK"
  35 *   warning when onlining an offending CPU and the kernel will be tainted
  36 *   with TAINT_CPU_OUT_OF_SPEC.
  37 *
  38 * - Features marked as FTR_VISIBLE have their sanitised value visible to
  39 *   userspace. FTR_VISIBLE features in registers that are only visible
  40 *   to EL0 by trapping *must* have a corresponding HWCAP so that late
  41 *   onlining of CPUs cannot lead to features disappearing at runtime.
  42 *
  43 * - A "feature" is typically a 4-bit register field. A "capability" is the
  44 *   high-level description derived from the sanitised field value.
  45 *
  46 * - Read the Arm ARM (DDI 0487F.a) section D13.1.3 ("Principles of the ID
  47 *   scheme for fields in ID registers") to understand when feature fields
  48 *   may be signed or unsigned (FTR_SIGNED and FTR_UNSIGNED accordingly).
  49 *
  50 * - KVM exposes its own view of the feature registers to guest operating
  51 *   systems regardless of FTR_VISIBLE. This is typically driven from the
  52 *   sanitised register values to allow virtual CPUs to be migrated between
  53 *   arbitrary physical CPUs, but some features not present on the host are
  54 *   also advertised and emulated. Look at sys_reg_descs[] for the gory
  55 *   details.
  56 *
  57 * - If the arm64_ftr_bits[] for a register has a missing field, then this
  58 *   field is treated as STRICT RES0, including for read_sanitised_ftr_reg().
  59 *   This is stronger than FTR_HIDDEN and can be used to hide features from
  60 *   KVM guests.
  61 */
  62
  63#define pr_fmt(fmt) "CPU features: " fmt
  64
  65#include <linux/bsearch.h>
  66#include <linux/cpumask.h>
  67#include <linux/crash_dump.h>
  68#include <linux/sort.h>
  69#include <linux/stop_machine.h>
  70#include <linux/types.h>
  71#include <linux/mm.h>
  72#include <linux/cpu.h>
  73#include <linux/kasan.h>
  74#include <asm/cpu.h>
  75#include <asm/cpufeature.h>
  76#include <asm/cpu_ops.h>
  77#include <asm/fpsimd.h>
  78#include <asm/kvm_host.h>
  79#include <asm/mmu_context.h>
  80#include <asm/mte.h>
  81#include <asm/processor.h>
  82#include <asm/sysreg.h>
  83#include <asm/traps.h>
  84#include <asm/virt.h>
  85
  86/* Kernel representation of AT_HWCAP and AT_HWCAP2 */
  87static unsigned long elf_hwcap __read_mostly;
  88
  89#ifdef CONFIG_COMPAT
  90#define COMPAT_ELF_HWCAP_DEFAULT        \
  91                                (COMPAT_HWCAP_HALF|COMPAT_HWCAP_THUMB|\
  92                                 COMPAT_HWCAP_FAST_MULT|COMPAT_HWCAP_EDSP|\
  93                                 COMPAT_HWCAP_TLS|COMPAT_HWCAP_IDIV|\
  94                                 COMPAT_HWCAP_LPAE)
  95unsigned int compat_elf_hwcap __read_mostly = COMPAT_ELF_HWCAP_DEFAULT;
  96unsigned int compat_elf_hwcap2 __read_mostly;
  97#endif
  98
  99DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
 100EXPORT_SYMBOL(cpu_hwcaps);
 101static struct arm64_cpu_capabilities const __ro_after_init *cpu_hwcaps_ptrs[ARM64_NCAPS];
 102
 103/* Need also bit for ARM64_CB_PATCH */
 104DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
 105
 106bool arm64_use_ng_mappings = false;
 107EXPORT_SYMBOL(arm64_use_ng_mappings);
 108
 109/*
 110 * Flag to indicate if we have computed the system wide
 111 * capabilities based on the boot time active CPUs. This
 112 * will be used to determine if a new booting CPU should
 113 * go through the verification process to make sure that it
 114 * supports the system capabilities, without using a hotplug
 115 * notifier. This is also used to decide if we could use
 116 * the fast path for checking constant CPU caps.
 117 */
 118DEFINE_STATIC_KEY_FALSE(arm64_const_caps_ready);
 119EXPORT_SYMBOL(arm64_const_caps_ready);
 120static inline void finalize_system_capabilities(void)
 121{
 122        static_branch_enable(&arm64_const_caps_ready);
 123}
 124
 125void dump_cpu_features(void)
 126{
 127        /* file-wide pr_fmt adds "CPU features: " prefix */
 128        pr_emerg("0x%*pb\n", ARM64_NCAPS, &cpu_hwcaps);
 129}
 130
 131DEFINE_STATIC_KEY_ARRAY_FALSE(cpu_hwcap_keys, ARM64_NCAPS);
 132EXPORT_SYMBOL(cpu_hwcap_keys);
 133
 134#define __ARM64_FTR_BITS(SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 135        {                                               \
 136                .sign = SIGNED,                         \
 137                .visible = VISIBLE,                     \
 138                .strict = STRICT,                       \
 139                .type = TYPE,                           \
 140                .shift = SHIFT,                         \
 141                .width = WIDTH,                         \
 142                .safe_val = SAFE_VAL,                   \
 143        }
 144
 145/* Define a feature with unsigned values */
 146#define ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 147        __ARM64_FTR_BITS(FTR_UNSIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
 148
 149/* Define a feature with a signed value */
 150#define S_ARM64_FTR_BITS(VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL) \
 151        __ARM64_FTR_BITS(FTR_SIGNED, VISIBLE, STRICT, TYPE, SHIFT, WIDTH, SAFE_VAL)
 152
 153#define ARM64_FTR_END                                   \
 154        {                                               \
 155                .width = 0,                             \
 156        }
 157
 158static void cpu_enable_cnp(struct arm64_cpu_capabilities const *cap);
 159
 160static bool __system_matches_cap(unsigned int n);
 161
 162/*
 163 * NOTE: Any changes to the visibility of features should be kept in
 164 * sync with the documentation of the CPU feature register ABI.
 165 */
 166static const struct arm64_ftr_bits ftr_id_aa64isar0[] = {
 167        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RNDR_SHIFT, 4, 0),
 168        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TLB_SHIFT, 4, 0),
 169        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_TS_SHIFT, 4, 0),
 170        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_FHM_SHIFT, 4, 0),
 171        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_DP_SHIFT, 4, 0),
 172        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM4_SHIFT, 4, 0),
 173        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SM3_SHIFT, 4, 0),
 174        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA3_SHIFT, 4, 0),
 175        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_RDM_SHIFT, 4, 0),
 176        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_ATOMICS_SHIFT, 4, 0),
 177        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_CRC32_SHIFT, 4, 0),
 178        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA2_SHIFT, 4, 0),
 179        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_SHA1_SHIFT, 4, 0),
 180        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR0_AES_SHIFT, 4, 0),
 181        ARM64_FTR_END,
 182};
 183
 184static const struct arm64_ftr_bits ftr_id_aa64isar1[] = {
 185        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_I8MM_SHIFT, 4, 0),
 186        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DGH_SHIFT, 4, 0),
 187        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_BF16_SHIFT, 4, 0),
 188        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SPECRES_SHIFT, 4, 0),
 189        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_SB_SHIFT, 4, 0),
 190        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FRINTTS_SHIFT, 4, 0),
 191        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 192                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPI_SHIFT, 4, 0),
 193        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 194                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_GPA_SHIFT, 4, 0),
 195        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_LRCPC_SHIFT, 4, 0),
 196        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_FCMA_SHIFT, 4, 0),
 197        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_JSCVT_SHIFT, 4, 0),
 198        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 199                       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_API_SHIFT, 4, 0),
 200        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_PTR_AUTH),
 201                       FTR_STRICT, FTR_EXACT, ID_AA64ISAR1_APA_SHIFT, 4, 0),
 202        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ISAR1_DPB_SHIFT, 4, 0),
 203        ARM64_FTR_END,
 204};
 205
 206static const struct arm64_ftr_bits ftr_id_aa64pfr0[] = {
 207        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV3_SHIFT, 4, 0),
 208        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_CSV2_SHIFT, 4, 0),
 209        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_DIT_SHIFT, 4, 0),
 210        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_AMU_SHIFT, 4, 0),
 211        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_MPAM_SHIFT, 4, 0),
 212        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SEL2_SHIFT, 4, 0),
 213        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 214                                   FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_SVE_SHIFT, 4, 0),
 215        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_RAS_SHIFT, 4, 0),
 216        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_GIC_SHIFT, 4, 0),
 217        S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_ASIMD_SHIFT, 4, ID_AA64PFR0_ASIMD_NI),
 218        S_ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR0_FP_SHIFT, 4, ID_AA64PFR0_FP_NI),
 219        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL3_SHIFT, 4, 0),
 220        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL2_SHIFT, 4, 0),
 221        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL1_SHIFT, 4, ID_AA64PFR0_EL1_64BIT_ONLY),
 222        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR0_EL0_SHIFT, 4, ID_AA64PFR0_EL0_64BIT_ONLY),
 223        ARM64_FTR_END,
 224};
 225
 226static const struct arm64_ftr_bits ftr_id_aa64pfr1[] = {
 227        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MPAMFRAC_SHIFT, 4, 0),
 228        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_RASFRAC_SHIFT, 4, 0),
 229        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_MTE),
 230                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_MTE_SHIFT, 4, ID_AA64PFR1_MTE_NI),
 231        ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64PFR1_SSBS_SHIFT, 4, ID_AA64PFR1_SSBS_PSTATE_NI),
 232        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_BTI),
 233                                    FTR_STRICT, FTR_LOWER_SAFE, ID_AA64PFR1_BT_SHIFT, 4, 0),
 234        ARM64_FTR_END,
 235};
 236
 237static const struct arm64_ftr_bits ftr_id_aa64zfr0[] = {
 238        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 239                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F64MM_SHIFT, 4, 0),
 240        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 241                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_F32MM_SHIFT, 4, 0),
 242        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 243                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_I8MM_SHIFT, 4, 0),
 244        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 245                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SM4_SHIFT, 4, 0),
 246        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 247                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SHA3_SHIFT, 4, 0),
 248        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 249                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BF16_SHIFT, 4, 0),
 250        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 251                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_BITPERM_SHIFT, 4, 0),
 252        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 253                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_AES_SHIFT, 4, 0),
 254        ARM64_FTR_BITS(FTR_VISIBLE_IF_IS_ENABLED(CONFIG_ARM64_SVE),
 255                       FTR_STRICT, FTR_LOWER_SAFE, ID_AA64ZFR0_SVEVER_SHIFT, 4, 0),
 256        ARM64_FTR_END,
 257};
 258
 259static const struct arm64_ftr_bits ftr_id_aa64mmfr0[] = {
 260        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ECV_SHIFT, 4, 0),
 261        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_FGT_SHIFT, 4, 0),
 262        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_EXS_SHIFT, 4, 0),
 263        /*
 264         * Page size not being supported at Stage-2 is not fatal. You
 265         * just give up KVM if PAGE_SIZE isn't supported there. Go fix
 266         * your favourite nesting hypervisor.
 267         *
 268         * There is a small corner case where the hypervisor explicitly
 269         * advertises a given granule size at Stage-2 (value 2) on some
 270         * vCPUs, and uses the fallback to Stage-1 (value 0) for other
 271         * vCPUs. Although this is not forbidden by the architecture, it
 272         * indicates that the hypervisor is being silly (or buggy).
 273         *
 274         * We make no effort to cope with this and pretend that if these
 275         * fields are inconsistent across vCPUs, then it isn't worth
 276         * trying to bring KVM up.
 277         */
 278        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN4_2_SHIFT, 4, 1),
 279        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN64_2_SHIFT, 4, 1),
 280        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64MMFR0_TGRAN16_2_SHIFT, 4, 1),
 281        /*
 282         * We already refuse to boot CPUs that don't support our configured
 283         * page size, so we can only detect mismatches for a page size other
 284         * than the one we're currently using. Unfortunately, SoCs like this
 285         * exist in the wild so, even though we don't like it, we'll have to go
 286         * along with it and treat them as non-strict.
 287         */
 288        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN4_SHIFT, 4, ID_AA64MMFR0_TGRAN4_NI),
 289        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN64_SHIFT, 4, ID_AA64MMFR0_TGRAN64_NI),
 290        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_TGRAN16_SHIFT, 4, ID_AA64MMFR0_TGRAN16_NI),
 291
 292        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL0_SHIFT, 4, 0),
 293        /* Linux shouldn't care about secure memory */
 294        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_SNSMEM_SHIFT, 4, 0),
 295        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_BIGENDEL_SHIFT, 4, 0),
 296        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_ASID_SHIFT, 4, 0),
 297        /*
 298         * Differing PARange is fine as long as all peripherals and memory are mapped
 299         * within the minimum PARange of all CPUs
 300         */
 301        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR0_PARANGE_SHIFT, 4, 0),
 302        ARM64_FTR_END,
 303};
 304
 305static const struct arm64_ftr_bits ftr_id_aa64mmfr1[] = {
 306        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_ETS_SHIFT, 4, 0),
 307        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_TWED_SHIFT, 4, 0),
 308        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_XNX_SHIFT, 4, 0),
 309        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_AA64MMFR1_SPECSEI_SHIFT, 4, 0),
 310        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_PAN_SHIFT, 4, 0),
 311        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_LOR_SHIFT, 4, 0),
 312        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HPD_SHIFT, 4, 0),
 313        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VHE_SHIFT, 4, 0),
 314        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_VMIDBITS_SHIFT, 4, 0),
 315        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR1_HADBS_SHIFT, 4, 0),
 316        ARM64_FTR_END,
 317};
 318
 319static const struct arm64_ftr_bits ftr_id_aa64mmfr2[] = {
 320        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_E0PD_SHIFT, 4, 0),
 321        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_EVT_SHIFT, 4, 0),
 322        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_BBM_SHIFT, 4, 0),
 323        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_TTL_SHIFT, 4, 0),
 324        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_FWB_SHIFT, 4, 0),
 325        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IDS_SHIFT, 4, 0),
 326        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_AT_SHIFT, 4, 0),
 327        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_ST_SHIFT, 4, 0),
 328        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_NV_SHIFT, 4, 0),
 329        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CCIDX_SHIFT, 4, 0),
 330        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LVA_SHIFT, 4, 0),
 331        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_IESB_SHIFT, 4, 0),
 332        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_LSM_SHIFT, 4, 0),
 333        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_UAO_SHIFT, 4, 0),
 334        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64MMFR2_CNP_SHIFT, 4, 0),
 335        ARM64_FTR_END,
 336};
 337
 338static const struct arm64_ftr_bits ftr_ctr[] = {
 339        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, 31, 1, 1), /* RES1 */
 340        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DIC_SHIFT, 1, 1),
 341        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IDC_SHIFT, 1, 1),
 342        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_CWG_SHIFT, 4, 0),
 343        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_HIGHER_OR_ZERO_SAFE, CTR_ERG_SHIFT, 4, 0),
 344        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_DMINLINE_SHIFT, 4, 1),
 345        /*
 346         * Linux can handle differing I-cache policies. Userspace JITs will
 347         * make use of *minLine.
 348         * If we have differing I-cache policies, report it as the weakest - VIPT.
 349         */
 350        ARM64_FTR_BITS(FTR_VISIBLE, FTR_NONSTRICT, FTR_EXACT, CTR_L1IP_SHIFT, 2, ICACHE_POLICY_VIPT),   /* L1Ip */
 351        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, CTR_IMINLINE_SHIFT, 4, 0),
 352        ARM64_FTR_END,
 353};
 354
 355struct arm64_ftr_reg arm64_ftr_reg_ctrel0 = {
 356        .name           = "SYS_CTR_EL0",
 357        .ftr_bits       = ftr_ctr
 358};
 359
 360static const struct arm64_ftr_bits ftr_id_mmfr0[] = {
 361        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_INNERSHR_SHIFT, 4, 0xf),
 362        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_FCSE_SHIFT, 4, 0),
 363        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_MMFR0_AUXREG_SHIFT, 4, 0),
 364        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_TCM_SHIFT, 4, 0),
 365        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_SHARELVL_SHIFT, 4, 0),
 366        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_OUTERSHR_SHIFT, 4, 0xf),
 367        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_PMSA_SHIFT, 4, 0),
 368        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR0_VMSA_SHIFT, 4, 0),
 369        ARM64_FTR_END,
 370};
 371
 372static const struct arm64_ftr_bits ftr_id_aa64dfr0[] = {
 373        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_DOUBLELOCK_SHIFT, 4, 0),
 374        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_AA64DFR0_PMSVER_SHIFT, 4, 0),
 375        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_CTX_CMPS_SHIFT, 4, 0),
 376        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_WRPS_SHIFT, 4, 0),
 377        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_AA64DFR0_BRPS_SHIFT, 4, 0),
 378        /*
 379         * We can instantiate multiple PMU instances with different levels
 380         * of support.
 381         */
 382        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_EXACT, ID_AA64DFR0_PMUVER_SHIFT, 4, 0),
 383        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_TRACEVER_SHIFT, 4, 0),
 384        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, ID_AA64DFR0_DEBUGVER_SHIFT, 4, 0x6),
 385        ARM64_FTR_END,
 386};
 387
 388static const struct arm64_ftr_bits ftr_mvfr2[] = {
 389        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_FPMISC_SHIFT, 4, 0),
 390        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, MVFR2_SIMDMISC_SHIFT, 4, 0),
 391        ARM64_FTR_END,
 392};
 393
 394static const struct arm64_ftr_bits ftr_dczid[] = {
 395        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_EXACT, DCZID_DZP_SHIFT, 1, 1),
 396        ARM64_FTR_BITS(FTR_VISIBLE, FTR_STRICT, FTR_LOWER_SAFE, DCZID_BS_SHIFT, 4, 0),
 397        ARM64_FTR_END,
 398};
 399
 400static const struct arm64_ftr_bits ftr_id_isar0[] = {
 401        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DIVIDE_SHIFT, 4, 0),
 402        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_DEBUG_SHIFT, 4, 0),
 403        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_COPROC_SHIFT, 4, 0),
 404        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_CMPBRANCH_SHIFT, 4, 0),
 405        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITFIELD_SHIFT, 4, 0),
 406        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_BITCOUNT_SHIFT, 4, 0),
 407        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR0_SWAP_SHIFT, 4, 0),
 408        ARM64_FTR_END,
 409};
 410
 411static const struct arm64_ftr_bits ftr_id_isar5[] = {
 412        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_RDM_SHIFT, 4, 0),
 413        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_CRC32_SHIFT, 4, 0),
 414        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA2_SHIFT, 4, 0),
 415        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SHA1_SHIFT, 4, 0),
 416        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_AES_SHIFT, 4, 0),
 417        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR5_SEVL_SHIFT, 4, 0),
 418        ARM64_FTR_END,
 419};
 420
 421static const struct arm64_ftr_bits ftr_id_mmfr4[] = {
 422        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_EVT_SHIFT, 4, 0),
 423        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CCIDX_SHIFT, 4, 0),
 424        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_LSM_SHIFT, 4, 0),
 425        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_HPDS_SHIFT, 4, 0),
 426        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_CNP_SHIFT, 4, 0),
 427        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_XNX_SHIFT, 4, 0),
 428        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR4_AC2_SHIFT, 4, 0),
 429
 430        /*
 431         * SpecSEI = 1 indicates that the PE might generate an SError on an
 432         * external abort on speculative read. It is safe to assume that an
 433         * SError might be generated than it will not be. Hence it has been
 434         * classified as FTR_HIGHER_SAFE.
 435         */
 436        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_HIGHER_SAFE, ID_MMFR4_SPECSEI_SHIFT, 4, 0),
 437        ARM64_FTR_END,
 438};
 439
 440static const struct arm64_ftr_bits ftr_id_isar4[] = {
 441        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SWP_FRAC_SHIFT, 4, 0),
 442        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_PSR_M_SHIFT, 4, 0),
 443        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SYNCH_PRIM_FRAC_SHIFT, 4, 0),
 444        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_BARRIER_SHIFT, 4, 0),
 445        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_SMC_SHIFT, 4, 0),
 446        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WRITEBACK_SHIFT, 4, 0),
 447        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_WITHSHIFTS_SHIFT, 4, 0),
 448        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR4_UNPRIV_SHIFT, 4, 0),
 449        ARM64_FTR_END,
 450};
 451
 452static const struct arm64_ftr_bits ftr_id_mmfr5[] = {
 453        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_MMFR5_ETS_SHIFT, 4, 0),
 454        ARM64_FTR_END,
 455};
 456
 457static const struct arm64_ftr_bits ftr_id_isar6[] = {
 458        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_I8MM_SHIFT, 4, 0),
 459        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_BF16_SHIFT, 4, 0),
 460        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SPECRES_SHIFT, 4, 0),
 461        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_SB_SHIFT, 4, 0),
 462        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_FHM_SHIFT, 4, 0),
 463        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_DP_SHIFT, 4, 0),
 464        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_ISAR6_JSCVT_SHIFT, 4, 0),
 465        ARM64_FTR_END,
 466};
 467
 468static const struct arm64_ftr_bits ftr_id_pfr0[] = {
 469        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_DIT_SHIFT, 4, 0),
 470        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR0_CSV2_SHIFT, 4, 0),
 471        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE3_SHIFT, 4, 0),
 472        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE2_SHIFT, 4, 0),
 473        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE1_SHIFT, 4, 0),
 474        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR0_STATE0_SHIFT, 4, 0),
 475        ARM64_FTR_END,
 476};
 477
 478static const struct arm64_ftr_bits ftr_id_pfr1[] = {
 479        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GIC_SHIFT, 4, 0),
 480        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRT_FRAC_SHIFT, 4, 0),
 481        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SEC_FRAC_SHIFT, 4, 0),
 482        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_GENTIMER_SHIFT, 4, 0),
 483        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_VIRTUALIZATION_SHIFT, 4, 0),
 484        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_MPROGMOD_SHIFT, 4, 0),
 485        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_SECURITY_SHIFT, 4, 0),
 486        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_PFR1_PROGMOD_SHIFT, 4, 0),
 487        ARM64_FTR_END,
 488};
 489
 490static const struct arm64_ftr_bits ftr_id_pfr2[] = {
 491        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_SSBS_SHIFT, 4, 0),
 492        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE, ID_PFR2_CSV3_SHIFT, 4, 0),
 493        ARM64_FTR_END,
 494};
 495
 496static const struct arm64_ftr_bits ftr_id_dfr0[] = {
 497        /* [31:28] TraceFilt */
 498        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_PERFMON_SHIFT, 4, 0xf),
 499        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MPROFDBG_SHIFT, 4, 0),
 500        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPTRC_SHIFT, 4, 0),
 501        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPTRC_SHIFT, 4, 0),
 502        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_MMAPDBG_SHIFT, 4, 0),
 503        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPSDBG_SHIFT, 4, 0),
 504        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR0_COPDBG_SHIFT, 4, 0),
 505        ARM64_FTR_END,
 506};
 507
 508static const struct arm64_ftr_bits ftr_id_dfr1[] = {
 509        S_ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, ID_DFR1_MTPMU_SHIFT, 4, 0),
 510        ARM64_FTR_END,
 511};
 512
 513static const struct arm64_ftr_bits ftr_zcr[] = {
 514        ARM64_FTR_BITS(FTR_HIDDEN, FTR_NONSTRICT, FTR_LOWER_SAFE,
 515                ZCR_ELx_LEN_SHIFT, ZCR_ELx_LEN_SIZE, 0),        /* LEN */
 516        ARM64_FTR_END,
 517};
 518
 519/*
 520 * Common ftr bits for a 32bit register with all hidden, strict
 521 * attributes, with 4bit feature fields and a default safe value of
 522 * 0. Covers the following 32bit registers:
 523 * id_isar[1-4], id_mmfr[1-3], id_pfr1, mvfr[0-1]
 524 */
 525static const struct arm64_ftr_bits ftr_generic_32bits[] = {
 526        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 28, 4, 0),
 527        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 24, 4, 0),
 528        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 20, 4, 0),
 529        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 16, 4, 0),
 530        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 12, 4, 0),
 531        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 8, 4, 0),
 532        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 4, 4, 0),
 533        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_LOWER_SAFE, 0, 4, 0),
 534        ARM64_FTR_END,
 535};
 536
 537/* Table for a single 32bit feature value */
 538static const struct arm64_ftr_bits ftr_single32[] = {
 539        ARM64_FTR_BITS(FTR_HIDDEN, FTR_STRICT, FTR_EXACT, 0, 32, 0),
 540        ARM64_FTR_END,
 541};
 542
 543static const struct arm64_ftr_bits ftr_raz[] = {
 544        ARM64_FTR_END,
 545};
 546
 547#define ARM64_FTR_REG(id, table) {              \
 548        .sys_id = id,                           \
 549        .reg =  &(struct arm64_ftr_reg){        \
 550                .name = #id,                    \
 551                .ftr_bits = &((table)[0]),      \
 552        }}
 553
 554static const struct __ftr_reg_entry {
 555        u32                     sys_id;
 556        struct arm64_ftr_reg    *reg;
 557} arm64_ftr_regs[] = {
 558
 559        /* Op1 = 0, CRn = 0, CRm = 1 */
 560        ARM64_FTR_REG(SYS_ID_PFR0_EL1, ftr_id_pfr0),
 561        ARM64_FTR_REG(SYS_ID_PFR1_EL1, ftr_id_pfr1),
 562        ARM64_FTR_REG(SYS_ID_DFR0_EL1, ftr_id_dfr0),
 563        ARM64_FTR_REG(SYS_ID_MMFR0_EL1, ftr_id_mmfr0),
 564        ARM64_FTR_REG(SYS_ID_MMFR1_EL1, ftr_generic_32bits),
 565        ARM64_FTR_REG(SYS_ID_MMFR2_EL1, ftr_generic_32bits),
 566        ARM64_FTR_REG(SYS_ID_MMFR3_EL1, ftr_generic_32bits),
 567
 568        /* Op1 = 0, CRn = 0, CRm = 2 */
 569        ARM64_FTR_REG(SYS_ID_ISAR0_EL1, ftr_id_isar0),
 570        ARM64_FTR_REG(SYS_ID_ISAR1_EL1, ftr_generic_32bits),
 571        ARM64_FTR_REG(SYS_ID_ISAR2_EL1, ftr_generic_32bits),
 572        ARM64_FTR_REG(SYS_ID_ISAR3_EL1, ftr_generic_32bits),
 573        ARM64_FTR_REG(SYS_ID_ISAR4_EL1, ftr_id_isar4),
 574        ARM64_FTR_REG(SYS_ID_ISAR5_EL1, ftr_id_isar5),
 575        ARM64_FTR_REG(SYS_ID_MMFR4_EL1, ftr_id_mmfr4),
 576        ARM64_FTR_REG(SYS_ID_ISAR6_EL1, ftr_id_isar6),
 577
 578        /* Op1 = 0, CRn = 0, CRm = 3 */
 579        ARM64_FTR_REG(SYS_MVFR0_EL1, ftr_generic_32bits),
 580        ARM64_FTR_REG(SYS_MVFR1_EL1, ftr_generic_32bits),
 581        ARM64_FTR_REG(SYS_MVFR2_EL1, ftr_mvfr2),
 582        ARM64_FTR_REG(SYS_ID_PFR2_EL1, ftr_id_pfr2),
 583        ARM64_FTR_REG(SYS_ID_DFR1_EL1, ftr_id_dfr1),
 584        ARM64_FTR_REG(SYS_ID_MMFR5_EL1, ftr_id_mmfr5),
 585
 586        /* Op1 = 0, CRn = 0, CRm = 4 */
 587        ARM64_FTR_REG(SYS_ID_AA64PFR0_EL1, ftr_id_aa64pfr0),
 588        ARM64_FTR_REG(SYS_ID_AA64PFR1_EL1, ftr_id_aa64pfr1),
 589        ARM64_FTR_REG(SYS_ID_AA64ZFR0_EL1, ftr_id_aa64zfr0),
 590
 591        /* Op1 = 0, CRn = 0, CRm = 5 */
 592        ARM64_FTR_REG(SYS_ID_AA64DFR0_EL1, ftr_id_aa64dfr0),
 593        ARM64_FTR_REG(SYS_ID_AA64DFR1_EL1, ftr_raz),
 594
 595        /* Op1 = 0, CRn = 0, CRm = 6 */
 596        ARM64_FTR_REG(SYS_ID_AA64ISAR0_EL1, ftr_id_aa64isar0),
 597        ARM64_FTR_REG(SYS_ID_AA64ISAR1_EL1, ftr_id_aa64isar1),
 598
 599        /* Op1 = 0, CRn = 0, CRm = 7 */
 600        ARM64_FTR_REG(SYS_ID_AA64MMFR0_EL1, ftr_id_aa64mmfr0),
 601        ARM64_FTR_REG(SYS_ID_AA64MMFR1_EL1, ftr_id_aa64mmfr1),
 602        ARM64_FTR_REG(SYS_ID_AA64MMFR2_EL1, ftr_id_aa64mmfr2),
 603
 604        /* Op1 = 0, CRn = 1, CRm = 2 */
 605        ARM64_FTR_REG(SYS_ZCR_EL1, ftr_zcr),
 606
 607        /* Op1 = 3, CRn = 0, CRm = 0 */
 608        { SYS_CTR_EL0, &arm64_ftr_reg_ctrel0 },
 609        ARM64_FTR_REG(SYS_DCZID_EL0, ftr_dczid),
 610
 611        /* Op1 = 3, CRn = 14, CRm = 0 */
 612        ARM64_FTR_REG(SYS_CNTFRQ_EL0, ftr_single32),
 613};
 614
 615static int search_cmp_ftr_reg(const void *id, const void *regp)
 616{
 617        return (int)(unsigned long)id - (int)((const struct __ftr_reg_entry *)regp)->sys_id;
 618}
 619
 620/*
 621 * get_arm64_ftr_reg_nowarn - Looks up a feature register entry using
 622 * its sys_reg() encoding. With the array arm64_ftr_regs sorted in the
 623 * ascending order of sys_id, we use binary search to find a matching
 624 * entry.
 625 *
 626 * returns - Upon success,  matching ftr_reg entry for id.
 627 *         - NULL on failure. It is upto the caller to decide
 628 *           the impact of a failure.
 629 */
 630static struct arm64_ftr_reg *get_arm64_ftr_reg_nowarn(u32 sys_id)
 631{
 632        const struct __ftr_reg_entry *ret;
 633
 634        ret = bsearch((const void *)(unsigned long)sys_id,
 635                        arm64_ftr_regs,
 636                        ARRAY_SIZE(arm64_ftr_regs),
 637                        sizeof(arm64_ftr_regs[0]),
 638                        search_cmp_ftr_reg);
 639        if (ret)
 640                return ret->reg;
 641        return NULL;
 642}
 643
 644/*
 645 * get_arm64_ftr_reg - Looks up a feature register entry using
 646 * its sys_reg() encoding. This calls get_arm64_ftr_reg_nowarn().
 647 *
 648 * returns - Upon success,  matching ftr_reg entry for id.
 649 *         - NULL on failure but with an WARN_ON().
 650 */
 651static struct arm64_ftr_reg *get_arm64_ftr_reg(u32 sys_id)
 652{
 653        struct arm64_ftr_reg *reg;
 654
 655        reg = get_arm64_ftr_reg_nowarn(sys_id);
 656
 657        /*
 658         * Requesting a non-existent register search is an error. Warn
 659         * and let the caller handle it.
 660         */
 661        WARN_ON(!reg);
 662        return reg;
 663}
 664
 665static u64 arm64_ftr_set_value(const struct arm64_ftr_bits *ftrp, s64 reg,
 666                               s64 ftr_val)
 667{
 668        u64 mask = arm64_ftr_mask(ftrp);
 669
 670        reg &= ~mask;
 671        reg |= (ftr_val << ftrp->shift) & mask;
 672        return reg;
 673}
 674
 675static s64 arm64_ftr_safe_value(const struct arm64_ftr_bits *ftrp, s64 new,
 676                                s64 cur)
 677{
 678        s64 ret = 0;
 679
 680        switch (ftrp->type) {
 681        case FTR_EXACT:
 682                ret = ftrp->safe_val;
 683                break;
 684        case FTR_LOWER_SAFE:
 685                ret = new < cur ? new : cur;
 686                break;
 687        case FTR_HIGHER_OR_ZERO_SAFE:
 688                if (!cur || !new)
 689                        break;
 690                fallthrough;
 691        case FTR_HIGHER_SAFE:
 692                ret = new > cur ? new : cur;
 693                break;
 694        default:
 695                BUG();
 696        }
 697
 698        return ret;
 699}
 700
 701static void __init sort_ftr_regs(void)
 702{
 703        unsigned int i;
 704
 705        for (i = 0; i < ARRAY_SIZE(arm64_ftr_regs); i++) {
 706                const struct arm64_ftr_reg *ftr_reg = arm64_ftr_regs[i].reg;
 707                const struct arm64_ftr_bits *ftr_bits = ftr_reg->ftr_bits;
 708                unsigned int j = 0;
 709
 710                /*
 711                 * Features here must be sorted in descending order with respect
 712                 * to their shift values and should not overlap with each other.
 713                 */
 714                for (; ftr_bits->width != 0; ftr_bits++, j++) {
 715                        unsigned int width = ftr_reg->ftr_bits[j].width;
 716                        unsigned int shift = ftr_reg->ftr_bits[j].shift;
 717                        unsigned int prev_shift;
 718
 719                        WARN((shift  + width) > 64,
 720                                "%s has invalid feature at shift %d\n",
 721                                ftr_reg->name, shift);
 722
 723                        /*
 724                         * Skip the first feature. There is nothing to
 725                         * compare against for now.
 726                         */
 727                        if (j == 0)
 728                                continue;
 729
 730                        prev_shift = ftr_reg->ftr_bits[j - 1].shift;
 731                        WARN((shift + width) > prev_shift,
 732                                "%s has feature overlap at shift %d\n",
 733                                ftr_reg->name, shift);
 734                }
 735
 736                /*
 737                 * Skip the first register. There is nothing to
 738                 * compare against for now.
 739                 */
 740                if (i == 0)
 741                        continue;
 742                /*
 743                 * Registers here must be sorted in ascending order with respect
 744                 * to sys_id for subsequent binary search in get_arm64_ftr_reg()
 745                 * to work correctly.
 746                 */
 747                BUG_ON(arm64_ftr_regs[i].sys_id < arm64_ftr_regs[i - 1].sys_id);
 748        }
 749}
 750
 751/*
 752 * Initialise the CPU feature register from Boot CPU values.
 753 * Also initiliases the strict_mask for the register.
 754 * Any bits that are not covered by an arm64_ftr_bits entry are considered
 755 * RES0 for the system-wide value, and must strictly match.
 756 */
 757static void __init init_cpu_ftr_reg(u32 sys_reg, u64 new)
 758{
 759        u64 val = 0;
 760        u64 strict_mask = ~0x0ULL;
 761        u64 user_mask = 0;
 762        u64 valid_mask = 0;
 763
 764        const struct arm64_ftr_bits *ftrp;
 765        struct arm64_ftr_reg *reg = get_arm64_ftr_reg(sys_reg);
 766
 767        if (!reg)
 768                return;
 769
 770        for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
 771                u64 ftr_mask = arm64_ftr_mask(ftrp);
 772                s64 ftr_new = arm64_ftr_value(ftrp, new);
 773
 774                val = arm64_ftr_set_value(ftrp, val, ftr_new);
 775
 776                valid_mask |= ftr_mask;
 777                if (!ftrp->strict)
 778                        strict_mask &= ~ftr_mask;
 779                if (ftrp->visible)
 780                        user_mask |= ftr_mask;
 781                else
 782                        reg->user_val = arm64_ftr_set_value(ftrp,
 783                                                            reg->user_val,
 784                                                            ftrp->safe_val);
 785        }
 786
 787        val &= valid_mask;
 788
 789        reg->sys_val = val;
 790        reg->strict_mask = strict_mask;
 791        reg->user_mask = user_mask;
 792}
 793
 794extern const struct arm64_cpu_capabilities arm64_errata[];
 795static const struct arm64_cpu_capabilities arm64_features[];
 796
 797static void __init
 798init_cpu_hwcaps_indirect_list_from_array(const struct arm64_cpu_capabilities *caps)
 799{
 800        for (; caps->matches; caps++) {
 801                if (WARN(caps->capability >= ARM64_NCAPS,
 802                        "Invalid capability %d\n", caps->capability))
 803                        continue;
 804                if (WARN(cpu_hwcaps_ptrs[caps->capability],
 805                        "Duplicate entry for capability %d\n",
 806                        caps->capability))
 807                        continue;
 808                cpu_hwcaps_ptrs[caps->capability] = caps;
 809        }
 810}
 811
 812static void __init init_cpu_hwcaps_indirect_list(void)
 813{
 814        init_cpu_hwcaps_indirect_list_from_array(arm64_features);
 815        init_cpu_hwcaps_indirect_list_from_array(arm64_errata);
 816}
 817
 818static void __init setup_boot_cpu_capabilities(void);
 819
 820void __init init_cpu_features(struct cpuinfo_arm64 *info)
 821{
 822        /* Before we start using the tables, make sure it is sorted */
 823        sort_ftr_regs();
 824
 825        init_cpu_ftr_reg(SYS_CTR_EL0, info->reg_ctr);
 826        init_cpu_ftr_reg(SYS_DCZID_EL0, info->reg_dczid);
 827        init_cpu_ftr_reg(SYS_CNTFRQ_EL0, info->reg_cntfrq);
 828        init_cpu_ftr_reg(SYS_ID_AA64DFR0_EL1, info->reg_id_aa64dfr0);
 829        init_cpu_ftr_reg(SYS_ID_AA64DFR1_EL1, info->reg_id_aa64dfr1);
 830        init_cpu_ftr_reg(SYS_ID_AA64ISAR0_EL1, info->reg_id_aa64isar0);
 831        init_cpu_ftr_reg(SYS_ID_AA64ISAR1_EL1, info->reg_id_aa64isar1);
 832        init_cpu_ftr_reg(SYS_ID_AA64MMFR0_EL1, info->reg_id_aa64mmfr0);
 833        init_cpu_ftr_reg(SYS_ID_AA64MMFR1_EL1, info->reg_id_aa64mmfr1);
 834        init_cpu_ftr_reg(SYS_ID_AA64MMFR2_EL1, info->reg_id_aa64mmfr2);
 835        init_cpu_ftr_reg(SYS_ID_AA64PFR0_EL1, info->reg_id_aa64pfr0);
 836        init_cpu_ftr_reg(SYS_ID_AA64PFR1_EL1, info->reg_id_aa64pfr1);
 837        init_cpu_ftr_reg(SYS_ID_AA64ZFR0_EL1, info->reg_id_aa64zfr0);
 838
 839        if (id_aa64pfr0_32bit_el0(info->reg_id_aa64pfr0)) {
 840                init_cpu_ftr_reg(SYS_ID_DFR0_EL1, info->reg_id_dfr0);
 841                init_cpu_ftr_reg(SYS_ID_DFR1_EL1, info->reg_id_dfr1);
 842                init_cpu_ftr_reg(SYS_ID_ISAR0_EL1, info->reg_id_isar0);
 843                init_cpu_ftr_reg(SYS_ID_ISAR1_EL1, info->reg_id_isar1);
 844                init_cpu_ftr_reg(SYS_ID_ISAR2_EL1, info->reg_id_isar2);
 845                init_cpu_ftr_reg(SYS_ID_ISAR3_EL1, info->reg_id_isar3);
 846                init_cpu_ftr_reg(SYS_ID_ISAR4_EL1, info->reg_id_isar4);
 847                init_cpu_ftr_reg(SYS_ID_ISAR5_EL1, info->reg_id_isar5);
 848                init_cpu_ftr_reg(SYS_ID_ISAR6_EL1, info->reg_id_isar6);
 849                init_cpu_ftr_reg(SYS_ID_MMFR0_EL1, info->reg_id_mmfr0);
 850                init_cpu_ftr_reg(SYS_ID_MMFR1_EL1, info->reg_id_mmfr1);
 851                init_cpu_ftr_reg(SYS_ID_MMFR2_EL1, info->reg_id_mmfr2);
 852                init_cpu_ftr_reg(SYS_ID_MMFR3_EL1, info->reg_id_mmfr3);
 853                init_cpu_ftr_reg(SYS_ID_MMFR4_EL1, info->reg_id_mmfr4);
 854                init_cpu_ftr_reg(SYS_ID_MMFR5_EL1, info->reg_id_mmfr5);
 855                init_cpu_ftr_reg(SYS_ID_PFR0_EL1, info->reg_id_pfr0);
 856                init_cpu_ftr_reg(SYS_ID_PFR1_EL1, info->reg_id_pfr1);
 857                init_cpu_ftr_reg(SYS_ID_PFR2_EL1, info->reg_id_pfr2);
 858                init_cpu_ftr_reg(SYS_MVFR0_EL1, info->reg_mvfr0);
 859                init_cpu_ftr_reg(SYS_MVFR1_EL1, info->reg_mvfr1);
 860                init_cpu_ftr_reg(SYS_MVFR2_EL1, info->reg_mvfr2);
 861        }
 862
 863        if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
 864                init_cpu_ftr_reg(SYS_ZCR_EL1, info->reg_zcr);
 865                sve_init_vq_map();
 866        }
 867
 868        /*
 869         * Initialize the indirect array of CPU hwcaps capabilities pointers
 870         * before we handle the boot CPU below.
 871         */
 872        init_cpu_hwcaps_indirect_list();
 873
 874        /*
 875         * Detect and enable early CPU capabilities based on the boot CPU,
 876         * after we have initialised the CPU feature infrastructure.
 877         */
 878        setup_boot_cpu_capabilities();
 879}
 880
 881static void update_cpu_ftr_reg(struct arm64_ftr_reg *reg, u64 new)
 882{
 883        const struct arm64_ftr_bits *ftrp;
 884
 885        for (ftrp = reg->ftr_bits; ftrp->width; ftrp++) {
 886                s64 ftr_cur = arm64_ftr_value(ftrp, reg->sys_val);
 887                s64 ftr_new = arm64_ftr_value(ftrp, new);
 888
 889                if (ftr_cur == ftr_new)
 890                        continue;
 891                /* Find a safe value */
 892                ftr_new = arm64_ftr_safe_value(ftrp, ftr_new, ftr_cur);
 893                reg->sys_val = arm64_ftr_set_value(ftrp, reg->sys_val, ftr_new);
 894        }
 895
 896}
 897
 898static int check_update_ftr_reg(u32 sys_id, int cpu, u64 val, u64 boot)
 899{
 900        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
 901
 902        if (!regp)
 903                return 0;
 904
 905        update_cpu_ftr_reg(regp, val);
 906        if ((boot & regp->strict_mask) == (val & regp->strict_mask))
 907                return 0;
 908        pr_warn("SANITY CHECK: Unexpected variation in %s. Boot CPU: %#016llx, CPU%d: %#016llx\n",
 909                        regp->name, boot, cpu, val);
 910        return 1;
 911}
 912
 913static void relax_cpu_ftr_reg(u32 sys_id, int field)
 914{
 915        const struct arm64_ftr_bits *ftrp;
 916        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(sys_id);
 917
 918        if (!regp)
 919                return;
 920
 921        for (ftrp = regp->ftr_bits; ftrp->width; ftrp++) {
 922                if (ftrp->shift == field) {
 923                        regp->strict_mask &= ~arm64_ftr_mask(ftrp);
 924                        break;
 925                }
 926        }
 927
 928        /* Bogus field? */
 929        WARN_ON(!ftrp->width);
 930}
 931
 932static int update_32bit_cpu_features(int cpu, struct cpuinfo_arm64 *info,
 933                                     struct cpuinfo_arm64 *boot)
 934{
 935        int taint = 0;
 936        u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
 937
 938        /*
 939         * If we don't have AArch32 at all then skip the checks entirely
 940         * as the register values may be UNKNOWN and we're not going to be
 941         * using them for anything.
 942         */
 943        if (!id_aa64pfr0_32bit_el0(pfr0))
 944                return taint;
 945
 946        /*
 947         * If we don't have AArch32 at EL1, then relax the strictness of
 948         * EL1-dependent register fields to avoid spurious sanity check fails.
 949         */
 950        if (!id_aa64pfr0_32bit_el1(pfr0)) {
 951                relax_cpu_ftr_reg(SYS_ID_ISAR4_EL1, ID_ISAR4_SMC_SHIFT);
 952                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRT_FRAC_SHIFT);
 953                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SEC_FRAC_SHIFT);
 954                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_VIRTUALIZATION_SHIFT);
 955                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_SECURITY_SHIFT);
 956                relax_cpu_ftr_reg(SYS_ID_PFR1_EL1, ID_PFR1_PROGMOD_SHIFT);
 957        }
 958
 959        taint |= check_update_ftr_reg(SYS_ID_DFR0_EL1, cpu,
 960                                      info->reg_id_dfr0, boot->reg_id_dfr0);
 961        taint |= check_update_ftr_reg(SYS_ID_DFR1_EL1, cpu,
 962                                      info->reg_id_dfr1, boot->reg_id_dfr1);
 963        taint |= check_update_ftr_reg(SYS_ID_ISAR0_EL1, cpu,
 964                                      info->reg_id_isar0, boot->reg_id_isar0);
 965        taint |= check_update_ftr_reg(SYS_ID_ISAR1_EL1, cpu,
 966                                      info->reg_id_isar1, boot->reg_id_isar1);
 967        taint |= check_update_ftr_reg(SYS_ID_ISAR2_EL1, cpu,
 968                                      info->reg_id_isar2, boot->reg_id_isar2);
 969        taint |= check_update_ftr_reg(SYS_ID_ISAR3_EL1, cpu,
 970                                      info->reg_id_isar3, boot->reg_id_isar3);
 971        taint |= check_update_ftr_reg(SYS_ID_ISAR4_EL1, cpu,
 972                                      info->reg_id_isar4, boot->reg_id_isar4);
 973        taint |= check_update_ftr_reg(SYS_ID_ISAR5_EL1, cpu,
 974                                      info->reg_id_isar5, boot->reg_id_isar5);
 975        taint |= check_update_ftr_reg(SYS_ID_ISAR6_EL1, cpu,
 976                                      info->reg_id_isar6, boot->reg_id_isar6);
 977
 978        /*
 979         * Regardless of the value of the AuxReg field, the AIFSR, ADFSR, and
 980         * ACTLR formats could differ across CPUs and therefore would have to
 981         * be trapped for virtualization anyway.
 982         */
 983        taint |= check_update_ftr_reg(SYS_ID_MMFR0_EL1, cpu,
 984                                      info->reg_id_mmfr0, boot->reg_id_mmfr0);
 985        taint |= check_update_ftr_reg(SYS_ID_MMFR1_EL1, cpu,
 986                                      info->reg_id_mmfr1, boot->reg_id_mmfr1);
 987        taint |= check_update_ftr_reg(SYS_ID_MMFR2_EL1, cpu,
 988                                      info->reg_id_mmfr2, boot->reg_id_mmfr2);
 989        taint |= check_update_ftr_reg(SYS_ID_MMFR3_EL1, cpu,
 990                                      info->reg_id_mmfr3, boot->reg_id_mmfr3);
 991        taint |= check_update_ftr_reg(SYS_ID_MMFR4_EL1, cpu,
 992                                      info->reg_id_mmfr4, boot->reg_id_mmfr4);
 993        taint |= check_update_ftr_reg(SYS_ID_MMFR5_EL1, cpu,
 994                                      info->reg_id_mmfr5, boot->reg_id_mmfr5);
 995        taint |= check_update_ftr_reg(SYS_ID_PFR0_EL1, cpu,
 996                                      info->reg_id_pfr0, boot->reg_id_pfr0);
 997        taint |= check_update_ftr_reg(SYS_ID_PFR1_EL1, cpu,
 998                                      info->reg_id_pfr1, boot->reg_id_pfr1);
 999        taint |= check_update_ftr_reg(SYS_ID_PFR2_EL1, cpu,
1000                                      info->reg_id_pfr2, boot->reg_id_pfr2);
1001        taint |= check_update_ftr_reg(SYS_MVFR0_EL1, cpu,
1002                                      info->reg_mvfr0, boot->reg_mvfr0);
1003        taint |= check_update_ftr_reg(SYS_MVFR1_EL1, cpu,
1004                                      info->reg_mvfr1, boot->reg_mvfr1);
1005        taint |= check_update_ftr_reg(SYS_MVFR2_EL1, cpu,
1006                                      info->reg_mvfr2, boot->reg_mvfr2);
1007
1008        return taint;
1009}
1010
1011/*
1012 * Update system wide CPU feature registers with the values from a
1013 * non-boot CPU. Also performs SANITY checks to make sure that there
1014 * aren't any insane variations from that of the boot CPU.
1015 */
1016void update_cpu_features(int cpu,
1017                         struct cpuinfo_arm64 *info,
1018                         struct cpuinfo_arm64 *boot)
1019{
1020        int taint = 0;
1021
1022        /*
1023         * The kernel can handle differing I-cache policies, but otherwise
1024         * caches should look identical. Userspace JITs will make use of
1025         * *minLine.
1026         */
1027        taint |= check_update_ftr_reg(SYS_CTR_EL0, cpu,
1028                                      info->reg_ctr, boot->reg_ctr);
1029
1030        /*
1031         * Userspace may perform DC ZVA instructions. Mismatched block sizes
1032         * could result in too much or too little memory being zeroed if a
1033         * process is preempted and migrated between CPUs.
1034         */
1035        taint |= check_update_ftr_reg(SYS_DCZID_EL0, cpu,
1036                                      info->reg_dczid, boot->reg_dczid);
1037
1038        /* If different, timekeeping will be broken (especially with KVM) */
1039        taint |= check_update_ftr_reg(SYS_CNTFRQ_EL0, cpu,
1040                                      info->reg_cntfrq, boot->reg_cntfrq);
1041
1042        /*
1043         * The kernel uses self-hosted debug features and expects CPUs to
1044         * support identical debug features. We presently need CTX_CMPs, WRPs,
1045         * and BRPs to be identical.
1046         * ID_AA64DFR1 is currently RES0.
1047         */
1048        taint |= check_update_ftr_reg(SYS_ID_AA64DFR0_EL1, cpu,
1049                                      info->reg_id_aa64dfr0, boot->reg_id_aa64dfr0);
1050        taint |= check_update_ftr_reg(SYS_ID_AA64DFR1_EL1, cpu,
1051                                      info->reg_id_aa64dfr1, boot->reg_id_aa64dfr1);
1052        /*
1053         * Even in big.LITTLE, processors should be identical instruction-set
1054         * wise.
1055         */
1056        taint |= check_update_ftr_reg(SYS_ID_AA64ISAR0_EL1, cpu,
1057                                      info->reg_id_aa64isar0, boot->reg_id_aa64isar0);
1058        taint |= check_update_ftr_reg(SYS_ID_AA64ISAR1_EL1, cpu,
1059                                      info->reg_id_aa64isar1, boot->reg_id_aa64isar1);
1060
1061        /*
1062         * Differing PARange support is fine as long as all peripherals and
1063         * memory are mapped within the minimum PARange of all CPUs.
1064         * Linux should not care about secure memory.
1065         */
1066        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR0_EL1, cpu,
1067                                      info->reg_id_aa64mmfr0, boot->reg_id_aa64mmfr0);
1068        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR1_EL1, cpu,
1069                                      info->reg_id_aa64mmfr1, boot->reg_id_aa64mmfr1);
1070        taint |= check_update_ftr_reg(SYS_ID_AA64MMFR2_EL1, cpu,
1071                                      info->reg_id_aa64mmfr2, boot->reg_id_aa64mmfr2);
1072
1073        taint |= check_update_ftr_reg(SYS_ID_AA64PFR0_EL1, cpu,
1074                                      info->reg_id_aa64pfr0, boot->reg_id_aa64pfr0);
1075        taint |= check_update_ftr_reg(SYS_ID_AA64PFR1_EL1, cpu,
1076                                      info->reg_id_aa64pfr1, boot->reg_id_aa64pfr1);
1077
1078        taint |= check_update_ftr_reg(SYS_ID_AA64ZFR0_EL1, cpu,
1079                                      info->reg_id_aa64zfr0, boot->reg_id_aa64zfr0);
1080
1081        if (id_aa64pfr0_sve(info->reg_id_aa64pfr0)) {
1082                taint |= check_update_ftr_reg(SYS_ZCR_EL1, cpu,
1083                                        info->reg_zcr, boot->reg_zcr);
1084
1085                /* Probe vector lengths, unless we already gave up on SVE */
1086                if (id_aa64pfr0_sve(read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1)) &&
1087                    !system_capabilities_finalized())
1088                        sve_update_vq_map();
1089        }
1090
1091        /*
1092         * This relies on a sanitised view of the AArch64 ID registers
1093         * (e.g. SYS_ID_AA64PFR0_EL1), so we call it last.
1094         */
1095        taint |= update_32bit_cpu_features(cpu, info, boot);
1096
1097        /*
1098         * Mismatched CPU features are a recipe for disaster. Don't even
1099         * pretend to support them.
1100         */
1101        if (taint) {
1102                pr_warn_once("Unsupported CPU feature variation detected.\n");
1103                add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1104        }
1105}
1106
1107u64 read_sanitised_ftr_reg(u32 id)
1108{
1109        struct arm64_ftr_reg *regp = get_arm64_ftr_reg(id);
1110
1111        if (!regp)
1112                return 0;
1113        return regp->sys_val;
1114}
1115EXPORT_SYMBOL_GPL(read_sanitised_ftr_reg);
1116
1117#define read_sysreg_case(r)     \
1118        case r:         return read_sysreg_s(r)
1119
1120/*
1121 * __read_sysreg_by_encoding() - Used by a STARTING cpu before cpuinfo is populated.
1122 * Read the system register on the current CPU
1123 */
1124static u64 __read_sysreg_by_encoding(u32 sys_id)
1125{
1126        switch (sys_id) {
1127        read_sysreg_case(SYS_ID_PFR0_EL1);
1128        read_sysreg_case(SYS_ID_PFR1_EL1);
1129        read_sysreg_case(SYS_ID_PFR2_EL1);
1130        read_sysreg_case(SYS_ID_DFR0_EL1);
1131        read_sysreg_case(SYS_ID_DFR1_EL1);
1132        read_sysreg_case(SYS_ID_MMFR0_EL1);
1133        read_sysreg_case(SYS_ID_MMFR1_EL1);
1134        read_sysreg_case(SYS_ID_MMFR2_EL1);
1135        read_sysreg_case(SYS_ID_MMFR3_EL1);
1136        read_sysreg_case(SYS_ID_MMFR4_EL1);
1137        read_sysreg_case(SYS_ID_MMFR5_EL1);
1138        read_sysreg_case(SYS_ID_ISAR0_EL1);
1139        read_sysreg_case(SYS_ID_ISAR1_EL1);
1140        read_sysreg_case(SYS_ID_ISAR2_EL1);
1141        read_sysreg_case(SYS_ID_ISAR3_EL1);
1142        read_sysreg_case(SYS_ID_ISAR4_EL1);
1143        read_sysreg_case(SYS_ID_ISAR5_EL1);
1144        read_sysreg_case(SYS_ID_ISAR6_EL1);
1145        read_sysreg_case(SYS_MVFR0_EL1);
1146        read_sysreg_case(SYS_MVFR1_EL1);
1147        read_sysreg_case(SYS_MVFR2_EL1);
1148
1149        read_sysreg_case(SYS_ID_AA64PFR0_EL1);
1150        read_sysreg_case(SYS_ID_AA64PFR1_EL1);
1151        read_sysreg_case(SYS_ID_AA64ZFR0_EL1);
1152        read_sysreg_case(SYS_ID_AA64DFR0_EL1);
1153        read_sysreg_case(SYS_ID_AA64DFR1_EL1);
1154        read_sysreg_case(SYS_ID_AA64MMFR0_EL1);
1155        read_sysreg_case(SYS_ID_AA64MMFR1_EL1);
1156        read_sysreg_case(SYS_ID_AA64MMFR2_EL1);
1157        read_sysreg_case(SYS_ID_AA64ISAR0_EL1);
1158        read_sysreg_case(SYS_ID_AA64ISAR1_EL1);
1159
1160        read_sysreg_case(SYS_CNTFRQ_EL0);
1161        read_sysreg_case(SYS_CTR_EL0);
1162        read_sysreg_case(SYS_DCZID_EL0);
1163
1164        default:
1165                BUG();
1166                return 0;
1167        }
1168}
1169
1170#include <linux/irqchip/arm-gic-v3.h>
1171
1172static bool
1173feature_matches(u64 reg, const struct arm64_cpu_capabilities *entry)
1174{
1175        int val = cpuid_feature_extract_field(reg, entry->field_pos, entry->sign);
1176
1177        return val >= entry->min_field_value;
1178}
1179
1180static bool
1181has_cpuid_feature(const struct arm64_cpu_capabilities *entry, int scope)
1182{
1183        u64 val;
1184
1185        WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
1186        if (scope == SCOPE_SYSTEM)
1187                val = read_sanitised_ftr_reg(entry->sys_reg);
1188        else
1189                val = __read_sysreg_by_encoding(entry->sys_reg);
1190
1191        return feature_matches(val, entry);
1192}
1193
1194static bool has_useable_gicv3_cpuif(const struct arm64_cpu_capabilities *entry, int scope)
1195{
1196        bool has_sre;
1197
1198        if (!has_cpuid_feature(entry, scope))
1199                return false;
1200
1201        has_sre = gic_enable_sre();
1202        if (!has_sre)
1203                pr_warn_once("%s present but disabled by higher exception level\n",
1204                             entry->desc);
1205
1206        return has_sre;
1207}
1208
1209static bool has_no_hw_prefetch(const struct arm64_cpu_capabilities *entry, int __unused)
1210{
1211        u32 midr = read_cpuid_id();
1212
1213        /* Cavium ThunderX pass 1.x and 2.x */
1214        return midr_is_cpu_model_range(midr, MIDR_THUNDERX,
1215                MIDR_CPU_VAR_REV(0, 0),
1216                MIDR_CPU_VAR_REV(1, MIDR_REVISION_MASK));
1217}
1218
1219static bool has_no_fpsimd(const struct arm64_cpu_capabilities *entry, int __unused)
1220{
1221        u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1222
1223        return cpuid_feature_extract_signed_field(pfr0,
1224                                        ID_AA64PFR0_FP_SHIFT) < 0;
1225}
1226
1227static bool has_cache_idc(const struct arm64_cpu_capabilities *entry,
1228                          int scope)
1229{
1230        u64 ctr;
1231
1232        if (scope == SCOPE_SYSTEM)
1233                ctr = arm64_ftr_reg_ctrel0.sys_val;
1234        else
1235                ctr = read_cpuid_effective_cachetype();
1236
1237        return ctr & BIT(CTR_IDC_SHIFT);
1238}
1239
1240static void cpu_emulate_effective_ctr(const struct arm64_cpu_capabilities *__unused)
1241{
1242        /*
1243         * If the CPU exposes raw CTR_EL0.IDC = 0, while effectively
1244         * CTR_EL0.IDC = 1 (from CLIDR values), we need to trap accesses
1245         * to the CTR_EL0 on this CPU and emulate it with the real/safe
1246         * value.
1247         */
1248        if (!(read_cpuid_cachetype() & BIT(CTR_IDC_SHIFT)))
1249                sysreg_clear_set(sctlr_el1, SCTLR_EL1_UCT, 0);
1250}
1251
1252static bool has_cache_dic(const struct arm64_cpu_capabilities *entry,
1253                          int scope)
1254{
1255        u64 ctr;
1256
1257        if (scope == SCOPE_SYSTEM)
1258                ctr = arm64_ftr_reg_ctrel0.sys_val;
1259        else
1260                ctr = read_cpuid_cachetype();
1261
1262        return ctr & BIT(CTR_DIC_SHIFT);
1263}
1264
1265static bool __maybe_unused
1266has_useable_cnp(const struct arm64_cpu_capabilities *entry, int scope)
1267{
1268        /*
1269         * Kdump isn't guaranteed to power-off all secondary CPUs, CNP
1270         * may share TLB entries with a CPU stuck in the crashed
1271         * kernel.
1272         */
1273         if (is_kdump_kernel())
1274                return false;
1275
1276        return has_cpuid_feature(entry, scope);
1277}
1278
1279/*
1280 * This check is triggered during the early boot before the cpufeature
1281 * is initialised. Checking the status on the local CPU allows the boot
1282 * CPU to detect the need for non-global mappings and thus avoiding a
1283 * pagetable re-write after all the CPUs are booted. This check will be
1284 * anyway run on individual CPUs, allowing us to get the consistent
1285 * state once the SMP CPUs are up and thus make the switch to non-global
1286 * mappings if required.
1287 */
1288bool kaslr_requires_kpti(void)
1289{
1290        if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
1291                return false;
1292
1293        /*
1294         * E0PD does a similar job to KPTI so can be used instead
1295         * where available.
1296         */
1297        if (IS_ENABLED(CONFIG_ARM64_E0PD)) {
1298                u64 mmfr2 = read_sysreg_s(SYS_ID_AA64MMFR2_EL1);
1299                if (cpuid_feature_extract_unsigned_field(mmfr2,
1300                                                ID_AA64MMFR2_E0PD_SHIFT))
1301                        return false;
1302        }
1303
1304        /*
1305         * Systems affected by Cavium erratum 24756 are incompatible
1306         * with KPTI.
1307         */
1308        if (IS_ENABLED(CONFIG_CAVIUM_ERRATUM_27456)) {
1309                extern const struct midr_range cavium_erratum_27456_cpus[];
1310
1311                if (is_midr_in_range_list(read_cpuid_id(),
1312                                          cavium_erratum_27456_cpus))
1313                        return false;
1314        }
1315
1316        return kaslr_offset() > 0;
1317}
1318
1319static bool __meltdown_safe = true;
1320static int __kpti_forced; /* 0: not forced, >0: forced on, <0: forced off */
1321
1322static bool unmap_kernel_at_el0(const struct arm64_cpu_capabilities *entry,
1323                                int scope)
1324{
1325        /* List of CPUs that are not vulnerable and don't need KPTI */
1326        static const struct midr_range kpti_safe_list[] = {
1327                MIDR_ALL_VERSIONS(MIDR_CAVIUM_THUNDERX2),
1328                MIDR_ALL_VERSIONS(MIDR_BRCM_VULCAN),
1329                MIDR_ALL_VERSIONS(MIDR_BRAHMA_B53),
1330                MIDR_ALL_VERSIONS(MIDR_CORTEX_A35),
1331                MIDR_ALL_VERSIONS(MIDR_CORTEX_A53),
1332                MIDR_ALL_VERSIONS(MIDR_CORTEX_A55),
1333                MIDR_ALL_VERSIONS(MIDR_CORTEX_A57),
1334                MIDR_ALL_VERSIONS(MIDR_CORTEX_A72),
1335                MIDR_ALL_VERSIONS(MIDR_CORTEX_A73),
1336                MIDR_ALL_VERSIONS(MIDR_HISI_TSV110),
1337                MIDR_ALL_VERSIONS(MIDR_NVIDIA_CARMEL),
1338                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_GOLD),
1339                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_2XX_SILVER),
1340                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_3XX_SILVER),
1341                MIDR_ALL_VERSIONS(MIDR_QCOM_KRYO_4XX_SILVER),
1342                { /* sentinel */ }
1343        };
1344        char const *str = "kpti command line option";
1345        bool meltdown_safe;
1346
1347        meltdown_safe = is_midr_in_range_list(read_cpuid_id(), kpti_safe_list);
1348
1349        /* Defer to CPU feature registers */
1350        if (has_cpuid_feature(entry, scope))
1351                meltdown_safe = true;
1352
1353        if (!meltdown_safe)
1354                __meltdown_safe = false;
1355
1356        /*
1357         * For reasons that aren't entirely clear, enabling KPTI on Cavium
1358         * ThunderX leads to apparent I-cache corruption of kernel text, which
1359         * ends as well as you might imagine. Don't even try.
1360         */
1361        if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_27456)) {
1362                str = "ARM64_WORKAROUND_CAVIUM_27456";
1363                __kpti_forced = -1;
1364        }
1365
1366        /* Useful for KASLR robustness */
1367        if (kaslr_requires_kpti()) {
1368                if (!__kpti_forced) {
1369                        str = "KASLR";
1370                        __kpti_forced = 1;
1371                }
1372        }
1373
1374        if (cpu_mitigations_off() && !__kpti_forced) {
1375                str = "mitigations=off";
1376                __kpti_forced = -1;
1377        }
1378
1379        if (!IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0)) {
1380                pr_info_once("kernel page table isolation disabled by kernel configuration\n");
1381                return false;
1382        }
1383
1384        /* Forced? */
1385        if (__kpti_forced) {
1386                pr_info_once("kernel page table isolation forced %s by %s\n",
1387                             __kpti_forced > 0 ? "ON" : "OFF", str);
1388                return __kpti_forced > 0;
1389        }
1390
1391        return !meltdown_safe;
1392}
1393
1394#ifdef CONFIG_UNMAP_KERNEL_AT_EL0
1395static void
1396kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1397{
1398        typedef void (kpti_remap_fn)(int, int, phys_addr_t);
1399        extern kpti_remap_fn idmap_kpti_install_ng_mappings;
1400        kpti_remap_fn *remap_fn;
1401
1402        int cpu = smp_processor_id();
1403
1404        /*
1405         * We don't need to rewrite the page-tables if either we've done
1406         * it already or we have KASLR enabled and therefore have not
1407         * created any global mappings at all.
1408         */
1409        if (arm64_use_ng_mappings)
1410                return;
1411
1412        remap_fn = (void *)__pa_symbol(idmap_kpti_install_ng_mappings);
1413
1414        cpu_install_idmap();
1415        remap_fn(cpu, num_online_cpus(), __pa_symbol(swapper_pg_dir));
1416        cpu_uninstall_idmap();
1417
1418        if (!cpu)
1419                arm64_use_ng_mappings = true;
1420
1421        return;
1422}
1423#else
1424static void
1425kpti_install_ng_mappings(const struct arm64_cpu_capabilities *__unused)
1426{
1427}
1428#endif  /* CONFIG_UNMAP_KERNEL_AT_EL0 */
1429
1430static int __init parse_kpti(char *str)
1431{
1432        bool enabled;
1433        int ret = strtobool(str, &enabled);
1434
1435        if (ret)
1436                return ret;
1437
1438        __kpti_forced = enabled ? 1 : -1;
1439        return 0;
1440}
1441early_param("kpti", parse_kpti);
1442
1443#ifdef CONFIG_ARM64_HW_AFDBM
1444static inline void __cpu_enable_hw_dbm(void)
1445{
1446        u64 tcr = read_sysreg(tcr_el1) | TCR_HD;
1447
1448        write_sysreg(tcr, tcr_el1);
1449        isb();
1450        local_flush_tlb_all();
1451}
1452
1453static bool cpu_has_broken_dbm(void)
1454{
1455        /* List of CPUs which have broken DBM support. */
1456        static const struct midr_range cpus[] = {
1457#ifdef CONFIG_ARM64_ERRATUM_1024718
1458                MIDR_RANGE(MIDR_CORTEX_A55, 0, 0, 1, 0),  // A55 r0p0 -r1p0
1459                /* Kryo4xx Silver (rdpe => r1p0) */
1460                MIDR_REV(MIDR_QCOM_KRYO_4XX_SILVER, 0xd, 0xe),
1461#endif
1462                {},
1463        };
1464
1465        return is_midr_in_range_list(read_cpuid_id(), cpus);
1466}
1467
1468static bool cpu_can_use_dbm(const struct arm64_cpu_capabilities *cap)
1469{
1470        return has_cpuid_feature(cap, SCOPE_LOCAL_CPU) &&
1471               !cpu_has_broken_dbm();
1472}
1473
1474static void cpu_enable_hw_dbm(struct arm64_cpu_capabilities const *cap)
1475{
1476        if (cpu_can_use_dbm(cap))
1477                __cpu_enable_hw_dbm();
1478}
1479
1480static bool has_hw_dbm(const struct arm64_cpu_capabilities *cap,
1481                       int __unused)
1482{
1483        static bool detected = false;
1484        /*
1485         * DBM is a non-conflicting feature. i.e, the kernel can safely
1486         * run a mix of CPUs with and without the feature. So, we
1487         * unconditionally enable the capability to allow any late CPU
1488         * to use the feature. We only enable the control bits on the
1489         * CPU, if it actually supports.
1490         *
1491         * We have to make sure we print the "feature" detection only
1492         * when at least one CPU actually uses it. So check if this CPU
1493         * can actually use it and print the message exactly once.
1494         *
1495         * This is safe as all CPUs (including secondary CPUs - due to the
1496         * LOCAL_CPU scope - and the hotplugged CPUs - via verification)
1497         * goes through the "matches" check exactly once. Also if a CPU
1498         * matches the criteria, it is guaranteed that the CPU will turn
1499         * the DBM on, as the capability is unconditionally enabled.
1500         */
1501        if (!detected && cpu_can_use_dbm(cap)) {
1502                detected = true;
1503                pr_info("detected: Hardware dirty bit management\n");
1504        }
1505
1506        return true;
1507}
1508
1509#endif
1510
1511#ifdef CONFIG_ARM64_AMU_EXTN
1512
1513/*
1514 * The "amu_cpus" cpumask only signals that the CPU implementation for the
1515 * flagged CPUs supports the Activity Monitors Unit (AMU) but does not provide
1516 * information regarding all the events that it supports. When a CPU bit is
1517 * set in the cpumask, the user of this feature can only rely on the presence
1518 * of the 4 fixed counters for that CPU. But this does not guarantee that the
1519 * counters are enabled or access to these counters is enabled by code
1520 * executed at higher exception levels (firmware).
1521 */
1522static struct cpumask amu_cpus __read_mostly;
1523
1524bool cpu_has_amu_feat(int cpu)
1525{
1526        return cpumask_test_cpu(cpu, &amu_cpus);
1527}
1528
1529int get_cpu_with_amu_feat(void)
1530{
1531        return cpumask_any(&amu_cpus);
1532}
1533
1534static void cpu_amu_enable(struct arm64_cpu_capabilities const *cap)
1535{
1536        if (has_cpuid_feature(cap, SCOPE_LOCAL_CPU)) {
1537                pr_info("detected CPU%d: Activity Monitors Unit (AMU)\n",
1538                        smp_processor_id());
1539                cpumask_set_cpu(smp_processor_id(), &amu_cpus);
1540                update_freq_counters_refs();
1541        }
1542}
1543
1544static bool has_amu(const struct arm64_cpu_capabilities *cap,
1545                    int __unused)
1546{
1547        /*
1548         * The AMU extension is a non-conflicting feature: the kernel can
1549         * safely run a mix of CPUs with and without support for the
1550         * activity monitors extension. Therefore, unconditionally enable
1551         * the capability to allow any late CPU to use the feature.
1552         *
1553         * With this feature unconditionally enabled, the cpu_enable
1554         * function will be called for all CPUs that match the criteria,
1555         * including secondary and hotplugged, marking this feature as
1556         * present on that respective CPU. The enable function will also
1557         * print a detection message.
1558         */
1559
1560        return true;
1561}
1562#else
1563int get_cpu_with_amu_feat(void)
1564{
1565        return nr_cpu_ids;
1566}
1567#endif
1568
1569#ifdef CONFIG_ARM64_VHE
1570static bool runs_at_el2(const struct arm64_cpu_capabilities *entry, int __unused)
1571{
1572        return is_kernel_in_hyp_mode();
1573}
1574
1575static void cpu_copy_el2regs(const struct arm64_cpu_capabilities *__unused)
1576{
1577        /*
1578         * Copy register values that aren't redirected by hardware.
1579         *
1580         * Before code patching, we only set tpidr_el1, all CPUs need to copy
1581         * this value to tpidr_el2 before we patch the code. Once we've done
1582         * that, freshly-onlined CPUs will set tpidr_el2, so we don't need to
1583         * do anything here.
1584         */
1585        if (!alternative_is_applied(ARM64_HAS_VIRT_HOST_EXTN))
1586                write_sysreg(read_sysreg(tpidr_el1), tpidr_el2);
1587}
1588#endif
1589
1590static void cpu_has_fwb(const struct arm64_cpu_capabilities *__unused)
1591{
1592        u64 val = read_sysreg_s(SYS_CLIDR_EL1);
1593
1594        /* Check that CLIDR_EL1.LOU{U,IS} are both 0 */
1595        WARN_ON(val & (7 << 27 | 7 << 21));
1596}
1597
1598#ifdef CONFIG_ARM64_PAN
1599static void cpu_enable_pan(const struct arm64_cpu_capabilities *__unused)
1600{
1601        /*
1602         * We modify PSTATE. This won't work from irq context as the PSTATE
1603         * is discarded once we return from the exception.
1604         */
1605        WARN_ON_ONCE(in_interrupt());
1606
1607        sysreg_clear_set(sctlr_el1, SCTLR_EL1_SPAN, 0);
1608        set_pstate_pan(1);
1609}
1610#endif /* CONFIG_ARM64_PAN */
1611
1612#ifdef CONFIG_ARM64_RAS_EXTN
1613static void cpu_clear_disr(const struct arm64_cpu_capabilities *__unused)
1614{
1615        /* Firmware may have left a deferred SError in this register. */
1616        write_sysreg_s(0, SYS_DISR_EL1);
1617}
1618#endif /* CONFIG_ARM64_RAS_EXTN */
1619
1620#ifdef CONFIG_ARM64_PTR_AUTH
1621static bool has_address_auth_cpucap(const struct arm64_cpu_capabilities *entry, int scope)
1622{
1623        int boot_val, sec_val;
1624
1625        /* We don't expect to be called with SCOPE_SYSTEM */
1626        WARN_ON(scope == SCOPE_SYSTEM);
1627        /*
1628         * The ptr-auth feature levels are not intercompatible with lower
1629         * levels. Hence we must match ptr-auth feature level of the secondary
1630         * CPUs with that of the boot CPU. The level of boot cpu is fetched
1631         * from the sanitised register whereas direct register read is done for
1632         * the secondary CPUs.
1633         * The sanitised feature state is guaranteed to match that of the
1634         * boot CPU as a mismatched secondary CPU is parked before it gets
1635         * a chance to update the state, with the capability.
1636         */
1637        boot_val = cpuid_feature_extract_field(read_sanitised_ftr_reg(entry->sys_reg),
1638                                               entry->field_pos, entry->sign);
1639        if (scope & SCOPE_BOOT_CPU)
1640                return boot_val >= entry->min_field_value;
1641        /* Now check for the secondary CPUs with SCOPE_LOCAL_CPU scope */
1642        sec_val = cpuid_feature_extract_field(__read_sysreg_by_encoding(entry->sys_reg),
1643                                              entry->field_pos, entry->sign);
1644        return sec_val == boot_val;
1645}
1646
1647static bool has_address_auth_metacap(const struct arm64_cpu_capabilities *entry,
1648                                     int scope)
1649{
1650        return has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_ARCH], scope) ||
1651               has_address_auth_cpucap(cpu_hwcaps_ptrs[ARM64_HAS_ADDRESS_AUTH_IMP_DEF], scope);
1652}
1653
1654static bool has_generic_auth(const struct arm64_cpu_capabilities *entry,
1655                             int __unused)
1656{
1657        return __system_matches_cap(ARM64_HAS_GENERIC_AUTH_ARCH) ||
1658               __system_matches_cap(ARM64_HAS_GENERIC_AUTH_IMP_DEF);
1659}
1660#endif /* CONFIG_ARM64_PTR_AUTH */
1661
1662#ifdef CONFIG_ARM64_E0PD
1663static void cpu_enable_e0pd(struct arm64_cpu_capabilities const *cap)
1664{
1665        if (this_cpu_has_cap(ARM64_HAS_E0PD))
1666                sysreg_clear_set(tcr_el1, 0, TCR_E0PD1);
1667}
1668#endif /* CONFIG_ARM64_E0PD */
1669
1670#ifdef CONFIG_ARM64_PSEUDO_NMI
1671static bool enable_pseudo_nmi;
1672
1673static int __init early_enable_pseudo_nmi(char *p)
1674{
1675        return strtobool(p, &enable_pseudo_nmi);
1676}
1677early_param("irqchip.gicv3_pseudo_nmi", early_enable_pseudo_nmi);
1678
1679static bool can_use_gic_priorities(const struct arm64_cpu_capabilities *entry,
1680                                   int scope)
1681{
1682        return enable_pseudo_nmi && has_useable_gicv3_cpuif(entry, scope);
1683}
1684#endif
1685
1686#ifdef CONFIG_ARM64_BTI
1687static void bti_enable(const struct arm64_cpu_capabilities *__unused)
1688{
1689        /*
1690         * Use of X16/X17 for tail-calls and trampolines that jump to
1691         * function entry points using BR is a requirement for
1692         * marking binaries with GNU_PROPERTY_AARCH64_FEATURE_1_BTI.
1693         * So, be strict and forbid other BRs using other registers to
1694         * jump onto a PACIxSP instruction:
1695         */
1696        sysreg_clear_set(sctlr_el1, 0, SCTLR_EL1_BT0 | SCTLR_EL1_BT1);
1697        isb();
1698}
1699#endif /* CONFIG_ARM64_BTI */
1700
1701#ifdef CONFIG_ARM64_MTE
1702static void cpu_enable_mte(struct arm64_cpu_capabilities const *cap)
1703{
1704        /*
1705         * Clear the tags in the zero page. This needs to be done via the
1706         * linear map which has the Tagged attribute.
1707         */
1708        if (!test_and_set_bit(PG_mte_tagged, &ZERO_PAGE(0)->flags))
1709                mte_clear_page_tags(lm_alias(empty_zero_page));
1710
1711        kasan_init_hw_tags_cpu();
1712}
1713#endif /* CONFIG_ARM64_MTE */
1714
1715#ifdef CONFIG_KVM
1716static bool is_kvm_protected_mode(const struct arm64_cpu_capabilities *entry, int __unused)
1717{
1718        if (kvm_get_mode() != KVM_MODE_PROTECTED)
1719                return false;
1720
1721        if (is_kernel_in_hyp_mode()) {
1722                pr_warn("Protected KVM not available with VHE\n");
1723                return false;
1724        }
1725
1726        return true;
1727}
1728#endif /* CONFIG_KVM */
1729
1730/* Internal helper functions to match cpu capability type */
1731static bool
1732cpucap_late_cpu_optional(const struct arm64_cpu_capabilities *cap)
1733{
1734        return !!(cap->type & ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU);
1735}
1736
1737static bool
1738cpucap_late_cpu_permitted(const struct arm64_cpu_capabilities *cap)
1739{
1740        return !!(cap->type & ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU);
1741}
1742
1743static bool
1744cpucap_panic_on_conflict(const struct arm64_cpu_capabilities *cap)
1745{
1746        return !!(cap->type & ARM64_CPUCAP_PANIC_ON_CONFLICT);
1747}
1748
1749static const struct arm64_cpu_capabilities arm64_features[] = {
1750        {
1751                .desc = "GIC system register CPU interface",
1752                .capability = ARM64_HAS_SYSREG_GIC_CPUIF,
1753                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1754                .matches = has_useable_gicv3_cpuif,
1755                .sys_reg = SYS_ID_AA64PFR0_EL1,
1756                .field_pos = ID_AA64PFR0_GIC_SHIFT,
1757                .sign = FTR_UNSIGNED,
1758                .min_field_value = 1,
1759        },
1760#ifdef CONFIG_ARM64_PAN
1761        {
1762                .desc = "Privileged Access Never",
1763                .capability = ARM64_HAS_PAN,
1764                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1765                .matches = has_cpuid_feature,
1766                .sys_reg = SYS_ID_AA64MMFR1_EL1,
1767                .field_pos = ID_AA64MMFR1_PAN_SHIFT,
1768                .sign = FTR_UNSIGNED,
1769                .min_field_value = 1,
1770                .cpu_enable = cpu_enable_pan,
1771        },
1772#endif /* CONFIG_ARM64_PAN */
1773#ifdef CONFIG_ARM64_LSE_ATOMICS
1774        {
1775                .desc = "LSE atomic instructions",
1776                .capability = ARM64_HAS_LSE_ATOMICS,
1777                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1778                .matches = has_cpuid_feature,
1779                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1780                .field_pos = ID_AA64ISAR0_ATOMICS_SHIFT,
1781                .sign = FTR_UNSIGNED,
1782                .min_field_value = 2,
1783        },
1784#endif /* CONFIG_ARM64_LSE_ATOMICS */
1785        {
1786                .desc = "Software prefetching using PRFM",
1787                .capability = ARM64_HAS_NO_HW_PREFETCH,
1788                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1789                .matches = has_no_hw_prefetch,
1790        },
1791#ifdef CONFIG_ARM64_VHE
1792        {
1793                .desc = "Virtualization Host Extensions",
1794                .capability = ARM64_HAS_VIRT_HOST_EXTN,
1795                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
1796                .matches = runs_at_el2,
1797                .cpu_enable = cpu_copy_el2regs,
1798        },
1799#endif  /* CONFIG_ARM64_VHE */
1800        {
1801                .desc = "32-bit EL0 Support",
1802                .capability = ARM64_HAS_32BIT_EL0,
1803                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1804                .matches = has_cpuid_feature,
1805                .sys_reg = SYS_ID_AA64PFR0_EL1,
1806                .sign = FTR_UNSIGNED,
1807                .field_pos = ID_AA64PFR0_EL0_SHIFT,
1808                .min_field_value = ID_AA64PFR0_EL0_32BIT_64BIT,
1809        },
1810#ifdef CONFIG_KVM
1811        {
1812                .desc = "32-bit EL1 Support",
1813                .capability = ARM64_HAS_32BIT_EL1,
1814                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1815                .matches = has_cpuid_feature,
1816                .sys_reg = SYS_ID_AA64PFR0_EL1,
1817                .sign = FTR_UNSIGNED,
1818                .field_pos = ID_AA64PFR0_EL1_SHIFT,
1819                .min_field_value = ID_AA64PFR0_EL1_32BIT_64BIT,
1820        },
1821        {
1822                .desc = "Protected KVM",
1823                .capability = ARM64_KVM_PROTECTED_MODE,
1824                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1825                .matches = is_kvm_protected_mode,
1826        },
1827#endif
1828        {
1829                .desc = "Kernel page table isolation (KPTI)",
1830                .capability = ARM64_UNMAP_KERNEL_AT_EL0,
1831                .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1832                /*
1833                 * The ID feature fields below are used to indicate that
1834                 * the CPU doesn't need KPTI. See unmap_kernel_at_el0 for
1835                 * more details.
1836                 */
1837                .sys_reg = SYS_ID_AA64PFR0_EL1,
1838                .field_pos = ID_AA64PFR0_CSV3_SHIFT,
1839                .min_field_value = 1,
1840                .matches = unmap_kernel_at_el0,
1841                .cpu_enable = kpti_install_ng_mappings,
1842        },
1843        {
1844                /* FP/SIMD is not implemented */
1845                .capability = ARM64_HAS_NO_FPSIMD,
1846                .type = ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE,
1847                .min_field_value = 0,
1848                .matches = has_no_fpsimd,
1849        },
1850#ifdef CONFIG_ARM64_PMEM
1851        {
1852                .desc = "Data cache clean to Point of Persistence",
1853                .capability = ARM64_HAS_DCPOP,
1854                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1855                .matches = has_cpuid_feature,
1856                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1857                .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1858                .min_field_value = 1,
1859        },
1860        {
1861                .desc = "Data cache clean to Point of Deep Persistence",
1862                .capability = ARM64_HAS_DCPODP,
1863                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1864                .matches = has_cpuid_feature,
1865                .sys_reg = SYS_ID_AA64ISAR1_EL1,
1866                .sign = FTR_UNSIGNED,
1867                .field_pos = ID_AA64ISAR1_DPB_SHIFT,
1868                .min_field_value = 2,
1869        },
1870#endif
1871#ifdef CONFIG_ARM64_SVE
1872        {
1873                .desc = "Scalable Vector Extension",
1874                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1875                .capability = ARM64_SVE,
1876                .sys_reg = SYS_ID_AA64PFR0_EL1,
1877                .sign = FTR_UNSIGNED,
1878                .field_pos = ID_AA64PFR0_SVE_SHIFT,
1879                .min_field_value = ID_AA64PFR0_SVE,
1880                .matches = has_cpuid_feature,
1881                .cpu_enable = sve_kernel_enable,
1882        },
1883#endif /* CONFIG_ARM64_SVE */
1884#ifdef CONFIG_ARM64_RAS_EXTN
1885        {
1886                .desc = "RAS Extension Support",
1887                .capability = ARM64_HAS_RAS_EXTN,
1888                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1889                .matches = has_cpuid_feature,
1890                .sys_reg = SYS_ID_AA64PFR0_EL1,
1891                .sign = FTR_UNSIGNED,
1892                .field_pos = ID_AA64PFR0_RAS_SHIFT,
1893                .min_field_value = ID_AA64PFR0_RAS_V1,
1894                .cpu_enable = cpu_clear_disr,
1895        },
1896#endif /* CONFIG_ARM64_RAS_EXTN */
1897#ifdef CONFIG_ARM64_AMU_EXTN
1898        {
1899                /*
1900                 * The feature is enabled by default if CONFIG_ARM64_AMU_EXTN=y.
1901                 * Therefore, don't provide .desc as we don't want the detection
1902                 * message to be shown until at least one CPU is detected to
1903                 * support the feature.
1904                 */
1905                .capability = ARM64_HAS_AMU_EXTN,
1906                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1907                .matches = has_amu,
1908                .sys_reg = SYS_ID_AA64PFR0_EL1,
1909                .sign = FTR_UNSIGNED,
1910                .field_pos = ID_AA64PFR0_AMU_SHIFT,
1911                .min_field_value = ID_AA64PFR0_AMU,
1912                .cpu_enable = cpu_amu_enable,
1913        },
1914#endif /* CONFIG_ARM64_AMU_EXTN */
1915        {
1916                .desc = "Data cache clean to the PoU not required for I/D coherence",
1917                .capability = ARM64_HAS_CACHE_IDC,
1918                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1919                .matches = has_cache_idc,
1920                .cpu_enable = cpu_emulate_effective_ctr,
1921        },
1922        {
1923                .desc = "Instruction cache invalidation not required for I/D coherence",
1924                .capability = ARM64_HAS_CACHE_DIC,
1925                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1926                .matches = has_cache_dic,
1927        },
1928        {
1929                .desc = "Stage-2 Force Write-Back",
1930                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1931                .capability = ARM64_HAS_STAGE2_FWB,
1932                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1933                .sign = FTR_UNSIGNED,
1934                .field_pos = ID_AA64MMFR2_FWB_SHIFT,
1935                .min_field_value = 1,
1936                .matches = has_cpuid_feature,
1937                .cpu_enable = cpu_has_fwb,
1938        },
1939        {
1940                .desc = "ARMv8.4 Translation Table Level",
1941                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1942                .capability = ARM64_HAS_ARMv8_4_TTL,
1943                .sys_reg = SYS_ID_AA64MMFR2_EL1,
1944                .sign = FTR_UNSIGNED,
1945                .field_pos = ID_AA64MMFR2_TTL_SHIFT,
1946                .min_field_value = 1,
1947                .matches = has_cpuid_feature,
1948        },
1949        {
1950                .desc = "TLB range maintenance instructions",
1951                .capability = ARM64_HAS_TLB_RANGE,
1952                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1953                .matches = has_cpuid_feature,
1954                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1955                .field_pos = ID_AA64ISAR0_TLB_SHIFT,
1956                .sign = FTR_UNSIGNED,
1957                .min_field_value = ID_AA64ISAR0_TLB_RANGE,
1958        },
1959#ifdef CONFIG_ARM64_HW_AFDBM
1960        {
1961                /*
1962                 * Since we turn this on always, we don't want the user to
1963                 * think that the feature is available when it may not be.
1964                 * So hide the description.
1965                 *
1966                 * .desc = "Hardware pagetable Dirty Bit Management",
1967                 *
1968                 */
1969                .type = ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE,
1970                .capability = ARM64_HW_DBM,
1971                .sys_reg = SYS_ID_AA64MMFR1_EL1,
1972                .sign = FTR_UNSIGNED,
1973                .field_pos = ID_AA64MMFR1_HADBS_SHIFT,
1974                .min_field_value = 2,
1975                .matches = has_hw_dbm,
1976                .cpu_enable = cpu_enable_hw_dbm,
1977        },
1978#endif
1979        {
1980                .desc = "CRC32 instructions",
1981                .capability = ARM64_HAS_CRC32,
1982                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1983                .matches = has_cpuid_feature,
1984                .sys_reg = SYS_ID_AA64ISAR0_EL1,
1985                .field_pos = ID_AA64ISAR0_CRC32_SHIFT,
1986                .min_field_value = 1,
1987        },
1988        {
1989                .desc = "Speculative Store Bypassing Safe (SSBS)",
1990                .capability = ARM64_SSBS,
1991                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
1992                .matches = has_cpuid_feature,
1993                .sys_reg = SYS_ID_AA64PFR1_EL1,
1994                .field_pos = ID_AA64PFR1_SSBS_SHIFT,
1995                .sign = FTR_UNSIGNED,
1996                .min_field_value = ID_AA64PFR1_SSBS_PSTATE_ONLY,
1997        },
1998#ifdef CONFIG_ARM64_CNP
1999        {
2000                .desc = "Common not Private translations",
2001                .capability = ARM64_HAS_CNP,
2002                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2003                .matches = has_useable_cnp,
2004                .sys_reg = SYS_ID_AA64MMFR2_EL1,
2005                .sign = FTR_UNSIGNED,
2006                .field_pos = ID_AA64MMFR2_CNP_SHIFT,
2007                .min_field_value = 1,
2008                .cpu_enable = cpu_enable_cnp,
2009        },
2010#endif
2011        {
2012                .desc = "Speculation barrier (SB)",
2013                .capability = ARM64_HAS_SB,
2014                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2015                .matches = has_cpuid_feature,
2016                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2017                .field_pos = ID_AA64ISAR1_SB_SHIFT,
2018                .sign = FTR_UNSIGNED,
2019                .min_field_value = 1,
2020        },
2021#ifdef CONFIG_ARM64_PTR_AUTH
2022        {
2023                .desc = "Address authentication (architected algorithm)",
2024                .capability = ARM64_HAS_ADDRESS_AUTH_ARCH,
2025                .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2026                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2027                .sign = FTR_UNSIGNED,
2028                .field_pos = ID_AA64ISAR1_APA_SHIFT,
2029                .min_field_value = ID_AA64ISAR1_APA_ARCHITECTED,
2030                .matches = has_address_auth_cpucap,
2031        },
2032        {
2033                .desc = "Address authentication (IMP DEF algorithm)",
2034                .capability = ARM64_HAS_ADDRESS_AUTH_IMP_DEF,
2035                .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2036                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2037                .sign = FTR_UNSIGNED,
2038                .field_pos = ID_AA64ISAR1_API_SHIFT,
2039                .min_field_value = ID_AA64ISAR1_API_IMP_DEF,
2040                .matches = has_address_auth_cpucap,
2041        },
2042        {
2043                .capability = ARM64_HAS_ADDRESS_AUTH,
2044                .type = ARM64_CPUCAP_BOOT_CPU_FEATURE,
2045                .matches = has_address_auth_metacap,
2046        },
2047        {
2048                .desc = "Generic authentication (architected algorithm)",
2049                .capability = ARM64_HAS_GENERIC_AUTH_ARCH,
2050                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2051                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2052                .sign = FTR_UNSIGNED,
2053                .field_pos = ID_AA64ISAR1_GPA_SHIFT,
2054                .min_field_value = ID_AA64ISAR1_GPA_ARCHITECTED,
2055                .matches = has_cpuid_feature,
2056        },
2057        {
2058                .desc = "Generic authentication (IMP DEF algorithm)",
2059                .capability = ARM64_HAS_GENERIC_AUTH_IMP_DEF,
2060                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2061                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2062                .sign = FTR_UNSIGNED,
2063                .field_pos = ID_AA64ISAR1_GPI_SHIFT,
2064                .min_field_value = ID_AA64ISAR1_GPI_IMP_DEF,
2065                .matches = has_cpuid_feature,
2066        },
2067        {
2068                .capability = ARM64_HAS_GENERIC_AUTH,
2069                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2070                .matches = has_generic_auth,
2071        },
2072#endif /* CONFIG_ARM64_PTR_AUTH */
2073#ifdef CONFIG_ARM64_PSEUDO_NMI
2074        {
2075                /*
2076                 * Depends on having GICv3
2077                 */
2078                .desc = "IRQ priority masking",
2079                .capability = ARM64_HAS_IRQ_PRIO_MASKING,
2080                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2081                .matches = can_use_gic_priorities,
2082                .sys_reg = SYS_ID_AA64PFR0_EL1,
2083                .field_pos = ID_AA64PFR0_GIC_SHIFT,
2084                .sign = FTR_UNSIGNED,
2085                .min_field_value = 1,
2086        },
2087#endif
2088#ifdef CONFIG_ARM64_E0PD
2089        {
2090                .desc = "E0PD",
2091                .capability = ARM64_HAS_E0PD,
2092                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2093                .sys_reg = SYS_ID_AA64MMFR2_EL1,
2094                .sign = FTR_UNSIGNED,
2095                .field_pos = ID_AA64MMFR2_E0PD_SHIFT,
2096                .matches = has_cpuid_feature,
2097                .min_field_value = 1,
2098                .cpu_enable = cpu_enable_e0pd,
2099        },
2100#endif
2101#ifdef CONFIG_ARCH_RANDOM
2102        {
2103                .desc = "Random Number Generator",
2104                .capability = ARM64_HAS_RNG,
2105                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2106                .matches = has_cpuid_feature,
2107                .sys_reg = SYS_ID_AA64ISAR0_EL1,
2108                .field_pos = ID_AA64ISAR0_RNDR_SHIFT,
2109                .sign = FTR_UNSIGNED,
2110                .min_field_value = 1,
2111        },
2112#endif
2113#ifdef CONFIG_ARM64_BTI
2114        {
2115                .desc = "Branch Target Identification",
2116                .capability = ARM64_BTI,
2117#ifdef CONFIG_ARM64_BTI_KERNEL
2118                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2119#else
2120                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2121#endif
2122                .matches = has_cpuid_feature,
2123                .cpu_enable = bti_enable,
2124                .sys_reg = SYS_ID_AA64PFR1_EL1,
2125                .field_pos = ID_AA64PFR1_BT_SHIFT,
2126                .min_field_value = ID_AA64PFR1_BT_BTI,
2127                .sign = FTR_UNSIGNED,
2128        },
2129#endif
2130#ifdef CONFIG_ARM64_MTE
2131        {
2132                .desc = "Memory Tagging Extension",
2133                .capability = ARM64_MTE,
2134                .type = ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE,
2135                .matches = has_cpuid_feature,
2136                .sys_reg = SYS_ID_AA64PFR1_EL1,
2137                .field_pos = ID_AA64PFR1_MTE_SHIFT,
2138                .min_field_value = ID_AA64PFR1_MTE,
2139                .sign = FTR_UNSIGNED,
2140                .cpu_enable = cpu_enable_mte,
2141        },
2142#endif /* CONFIG_ARM64_MTE */
2143        {
2144                .desc = "RCpc load-acquire (LDAPR)",
2145                .capability = ARM64_HAS_LDAPR,
2146                .type = ARM64_CPUCAP_SYSTEM_FEATURE,
2147                .sys_reg = SYS_ID_AA64ISAR1_EL1,
2148                .sign = FTR_UNSIGNED,
2149                .field_pos = ID_AA64ISAR1_LRCPC_SHIFT,
2150                .matches = has_cpuid_feature,
2151                .min_field_value = 1,
2152        },
2153        {},
2154};
2155
2156#define HWCAP_CPUID_MATCH(reg, field, s, min_value)                             \
2157                .matches = has_cpuid_feature,                                   \
2158                .sys_reg = reg,                                                 \
2159                .field_pos = field,                                             \
2160                .sign = s,                                                      \
2161                .min_field_value = min_value,
2162
2163#define __HWCAP_CAP(name, cap_type, cap)                                        \
2164                .desc = name,                                                   \
2165                .type = ARM64_CPUCAP_SYSTEM_FEATURE,                            \
2166                .hwcap_type = cap_type,                                         \
2167                .hwcap = cap,                                                   \
2168
2169#define HWCAP_CAP(reg, field, s, min_value, cap_type, cap)                      \
2170        {                                                                       \
2171                __HWCAP_CAP(#cap, cap_type, cap)                                \
2172                HWCAP_CPUID_MATCH(reg, field, s, min_value)                     \
2173        }
2174
2175#define HWCAP_MULTI_CAP(list, cap_type, cap)                                    \
2176        {                                                                       \
2177                __HWCAP_CAP(#cap, cap_type, cap)                                \
2178                .matches = cpucap_multi_entry_cap_matches,                      \
2179                .match_list = list,                                             \
2180        }
2181
2182#define HWCAP_CAP_MATCH(match, cap_type, cap)                                   \
2183        {                                                                       \
2184                __HWCAP_CAP(#cap, cap_type, cap)                                \
2185                .matches = match,                                               \
2186        }
2187
2188#ifdef CONFIG_ARM64_PTR_AUTH
2189static const struct arm64_cpu_capabilities ptr_auth_hwcap_addr_matches[] = {
2190        {
2191                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_APA_SHIFT,
2192                                  FTR_UNSIGNED, ID_AA64ISAR1_APA_ARCHITECTED)
2193        },
2194        {
2195                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_API_SHIFT,
2196                                  FTR_UNSIGNED, ID_AA64ISAR1_API_IMP_DEF)
2197        },
2198        {},
2199};
2200
2201static const struct arm64_cpu_capabilities ptr_auth_hwcap_gen_matches[] = {
2202        {
2203                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPA_SHIFT,
2204                                  FTR_UNSIGNED, ID_AA64ISAR1_GPA_ARCHITECTED)
2205        },
2206        {
2207                HWCAP_CPUID_MATCH(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_GPI_SHIFT,
2208                                  FTR_UNSIGNED, ID_AA64ISAR1_GPI_IMP_DEF)
2209        },
2210        {},
2211};
2212#endif
2213
2214static const struct arm64_cpu_capabilities arm64_elf_hwcaps[] = {
2215        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_PMULL),
2216        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_AES_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_AES),
2217        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA1),
2218        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA2),
2219        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA2_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_SHA512),
2220        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_CRC32),
2221        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_ATOMICS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ATOMICS),
2222        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RDM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDRDM),
2223        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SHA3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SHA3),
2224        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM3_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM3),
2225        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_SM4_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SM4),
2226        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_DP_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDDP),
2227        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_FHM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDFHM),
2228        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FLAGM),
2229        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_TS_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_FLAGM2),
2230        HWCAP_CAP(SYS_ID_AA64ISAR0_EL1, ID_AA64ISAR0_RNDR_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_RNG),
2231        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_FP),
2232        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_FP_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FPHP),
2233        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 0, CAP_HWCAP, KERNEL_HWCAP_ASIMD),
2234        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_ASIMD_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_ASIMDHP),
2235        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_DIT_SHIFT, FTR_SIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DIT),
2236        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DCPOP),
2237        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DPB_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_DCPODP),
2238        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_JSCVT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_JSCVT),
2239        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FCMA_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FCMA),
2240        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_LRCPC),
2241        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_LRCPC_SHIFT, FTR_UNSIGNED, 2, CAP_HWCAP, KERNEL_HWCAP_ILRCPC),
2242        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_FRINTTS_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_FRINT),
2243        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_SB_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_SB),
2244        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_BF16_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_BF16),
2245        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_DGH_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_DGH),
2246        HWCAP_CAP(SYS_ID_AA64ISAR1_EL1, ID_AA64ISAR1_I8MM_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_I8MM),
2247        HWCAP_CAP(SYS_ID_AA64MMFR2_EL1, ID_AA64MMFR2_AT_SHIFT, FTR_UNSIGNED, 1, CAP_HWCAP, KERNEL_HWCAP_USCAT),
2248#ifdef CONFIG_ARM64_SVE
2249        HWCAP_CAP(SYS_ID_AA64PFR0_EL1, ID_AA64PFR0_SVE_SHIFT, FTR_UNSIGNED, ID_AA64PFR0_SVE, CAP_HWCAP, KERNEL_HWCAP_SVE),
2250        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SVEVER_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SVEVER_SVE2, CAP_HWCAP, KERNEL_HWCAP_SVE2),
2251        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES, CAP_HWCAP, KERNEL_HWCAP_SVEAES),
2252        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_AES_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_AES_PMULL, CAP_HWCAP, KERNEL_HWCAP_SVEPMULL),
2253        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BITPERM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BITPERM, CAP_HWCAP, KERNEL_HWCAP_SVEBITPERM),
2254        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_BF16_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_BF16, CAP_HWCAP, KERNEL_HWCAP_SVEBF16),
2255        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SHA3_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SHA3, CAP_HWCAP, KERNEL_HWCAP_SVESHA3),
2256        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_SM4_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_SM4, CAP_HWCAP, KERNEL_HWCAP_SVESM4),
2257        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_I8MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_I8MM, CAP_HWCAP, KERNEL_HWCAP_SVEI8MM),
2258        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F32MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F32MM, CAP_HWCAP, KERNEL_HWCAP_SVEF32MM),
2259        HWCAP_CAP(SYS_ID_AA64ZFR0_EL1, ID_AA64ZFR0_F64MM_SHIFT, FTR_UNSIGNED, ID_AA64ZFR0_F64MM, CAP_HWCAP, KERNEL_HWCAP_SVEF64MM),
2260#endif
2261        HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_SSBS_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_SSBS_PSTATE_INSNS, CAP_HWCAP, KERNEL_HWCAP_SSBS),
2262#ifdef CONFIG_ARM64_BTI
2263        HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_BT_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_BT_BTI, CAP_HWCAP, KERNEL_HWCAP_BTI),
2264#endif
2265#ifdef CONFIG_ARM64_PTR_AUTH
2266        HWCAP_MULTI_CAP(ptr_auth_hwcap_addr_matches, CAP_HWCAP, KERNEL_HWCAP_PACA),
2267        HWCAP_MULTI_CAP(ptr_auth_hwcap_gen_matches, CAP_HWCAP, KERNEL_HWCAP_PACG),
2268#endif
2269#ifdef CONFIG_ARM64_MTE
2270        HWCAP_CAP(SYS_ID_AA64PFR1_EL1, ID_AA64PFR1_MTE_SHIFT, FTR_UNSIGNED, ID_AA64PFR1_MTE, CAP_HWCAP, KERNEL_HWCAP_MTE),
2271#endif /* CONFIG_ARM64_MTE */
2272        {},
2273};
2274
2275#ifdef CONFIG_COMPAT
2276static bool compat_has_neon(const struct arm64_cpu_capabilities *cap, int scope)
2277{
2278        /*
2279         * Check that all of MVFR1_EL1.{SIMDSP, SIMDInt, SIMDLS} are available,
2280         * in line with that of arm32 as in vfp_init(). We make sure that the
2281         * check is future proof, by making sure value is non-zero.
2282         */
2283        u32 mvfr1;
2284
2285        WARN_ON(scope == SCOPE_LOCAL_CPU && preemptible());
2286        if (scope == SCOPE_SYSTEM)
2287                mvfr1 = read_sanitised_ftr_reg(SYS_MVFR1_EL1);
2288        else
2289                mvfr1 = read_sysreg_s(SYS_MVFR1_EL1);
2290
2291        return cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDSP_SHIFT) &&
2292                cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDINT_SHIFT) &&
2293                cpuid_feature_extract_unsigned_field(mvfr1, MVFR1_SIMDLS_SHIFT);
2294}
2295#endif
2296
2297static const struct arm64_cpu_capabilities compat_elf_hwcaps[] = {
2298#ifdef CONFIG_COMPAT
2299        HWCAP_CAP_MATCH(compat_has_neon, CAP_COMPAT_HWCAP, COMPAT_HWCAP_NEON),
2300        HWCAP_CAP(SYS_MVFR1_EL1, MVFR1_SIMDFMAC_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv4),
2301        /* Arm v8 mandates MVFR0.FPDP == {0, 2}. So, piggy back on this for the presence of VFP support */
2302        HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFP),
2303        HWCAP_CAP(SYS_MVFR0_EL1, MVFR0_FPDP_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP, COMPAT_HWCAP_VFPv3),
2304        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 2, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_PMULL),
2305        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_AES_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_AES),
2306        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA1_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA1),
2307        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_SHA2_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_SHA2),
2308        HWCAP_CAP(SYS_ID_ISAR5_EL1, ID_ISAR5_CRC32_SHIFT, FTR_UNSIGNED, 1, CAP_COMPAT_HWCAP2, COMPAT_HWCAP2_CRC32),
2309#endif
2310        {},
2311};
2312
2313static void __init cap_set_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2314{
2315        switch (cap->hwcap_type) {
2316        case CAP_HWCAP:
2317                cpu_set_feature(cap->hwcap);
2318                break;
2319#ifdef CONFIG_COMPAT
2320        case CAP_COMPAT_HWCAP:
2321                compat_elf_hwcap |= (u32)cap->hwcap;
2322                break;
2323        case CAP_COMPAT_HWCAP2:
2324                compat_elf_hwcap2 |= (u32)cap->hwcap;
2325                break;
2326#endif
2327        default:
2328                WARN_ON(1);
2329                break;
2330        }
2331}
2332
2333/* Check if we have a particular HWCAP enabled */
2334static bool cpus_have_elf_hwcap(const struct arm64_cpu_capabilities *cap)
2335{
2336        bool rc;
2337
2338        switch (cap->hwcap_type) {
2339        case CAP_HWCAP:
2340                rc = cpu_have_feature(cap->hwcap);
2341                break;
2342#ifdef CONFIG_COMPAT
2343        case CAP_COMPAT_HWCAP:
2344                rc = (compat_elf_hwcap & (u32)cap->hwcap) != 0;
2345                break;
2346        case CAP_COMPAT_HWCAP2:
2347                rc = (compat_elf_hwcap2 & (u32)cap->hwcap) != 0;
2348                break;
2349#endif
2350        default:
2351                WARN_ON(1);
2352                rc = false;
2353        }
2354
2355        return rc;
2356}
2357
2358static void __init setup_elf_hwcaps(const struct arm64_cpu_capabilities *hwcaps)
2359{
2360        /* We support emulation of accesses to CPU ID feature registers */
2361        cpu_set_named_feature(CPUID);
2362        for (; hwcaps->matches; hwcaps++)
2363                if (hwcaps->matches(hwcaps, cpucap_default_scope(hwcaps)))
2364                        cap_set_elf_hwcap(hwcaps);
2365}
2366
2367static void update_cpu_capabilities(u16 scope_mask)
2368{
2369        int i;
2370        const struct arm64_cpu_capabilities *caps;
2371
2372        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2373        for (i = 0; i < ARM64_NCAPS; i++) {
2374                caps = cpu_hwcaps_ptrs[i];
2375                if (!caps || !(caps->type & scope_mask) ||
2376                    cpus_have_cap(caps->capability) ||
2377                    !caps->matches(caps, cpucap_default_scope(caps)))
2378                        continue;
2379
2380                if (caps->desc)
2381                        pr_info("detected: %s\n", caps->desc);
2382                cpus_set_cap(caps->capability);
2383
2384                if ((scope_mask & SCOPE_BOOT_CPU) && (caps->type & SCOPE_BOOT_CPU))
2385                        set_bit(caps->capability, boot_capabilities);
2386        }
2387}
2388
2389/*
2390 * Enable all the available capabilities on this CPU. The capabilities
2391 * with BOOT_CPU scope are handled separately and hence skipped here.
2392 */
2393static int cpu_enable_non_boot_scope_capabilities(void *__unused)
2394{
2395        int i;
2396        u16 non_boot_scope = SCOPE_ALL & ~SCOPE_BOOT_CPU;
2397
2398        for_each_available_cap(i) {
2399                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[i];
2400
2401                if (WARN_ON(!cap))
2402                        continue;
2403
2404                if (!(cap->type & non_boot_scope))
2405                        continue;
2406
2407                if (cap->cpu_enable)
2408                        cap->cpu_enable(cap);
2409        }
2410        return 0;
2411}
2412
2413/*
2414 * Run through the enabled capabilities and enable() it on all active
2415 * CPUs
2416 */
2417static void __init enable_cpu_capabilities(u16 scope_mask)
2418{
2419        int i;
2420        const struct arm64_cpu_capabilities *caps;
2421        bool boot_scope;
2422
2423        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2424        boot_scope = !!(scope_mask & SCOPE_BOOT_CPU);
2425
2426        for (i = 0; i < ARM64_NCAPS; i++) {
2427                unsigned int num;
2428
2429                caps = cpu_hwcaps_ptrs[i];
2430                if (!caps || !(caps->type & scope_mask))
2431                        continue;
2432                num = caps->capability;
2433                if (!cpus_have_cap(num))
2434                        continue;
2435
2436                /* Ensure cpus_have_const_cap(num) works */
2437                static_branch_enable(&cpu_hwcap_keys[num]);
2438
2439                if (boot_scope && caps->cpu_enable)
2440                        /*
2441                         * Capabilities with SCOPE_BOOT_CPU scope are finalised
2442                         * before any secondary CPU boots. Thus, each secondary
2443                         * will enable the capability as appropriate via
2444                         * check_local_cpu_capabilities(). The only exception is
2445                         * the boot CPU, for which the capability must be
2446                         * enabled here. This approach avoids costly
2447                         * stop_machine() calls for this case.
2448                         */
2449                        caps->cpu_enable(caps);
2450        }
2451
2452        /*
2453         * For all non-boot scope capabilities, use stop_machine()
2454         * as it schedules the work allowing us to modify PSTATE,
2455         * instead of on_each_cpu() which uses an IPI, giving us a
2456         * PSTATE that disappears when we return.
2457         */
2458        if (!boot_scope)
2459                stop_machine(cpu_enable_non_boot_scope_capabilities,
2460                             NULL, cpu_online_mask);
2461}
2462
2463/*
2464 * Run through the list of capabilities to check for conflicts.
2465 * If the system has already detected a capability, take necessary
2466 * action on this CPU.
2467 */
2468static void verify_local_cpu_caps(u16 scope_mask)
2469{
2470        int i;
2471        bool cpu_has_cap, system_has_cap;
2472        const struct arm64_cpu_capabilities *caps;
2473
2474        scope_mask &= ARM64_CPUCAP_SCOPE_MASK;
2475
2476        for (i = 0; i < ARM64_NCAPS; i++) {
2477                caps = cpu_hwcaps_ptrs[i];
2478                if (!caps || !(caps->type & scope_mask))
2479                        continue;
2480
2481                cpu_has_cap = caps->matches(caps, SCOPE_LOCAL_CPU);
2482                system_has_cap = cpus_have_cap(caps->capability);
2483
2484                if (system_has_cap) {
2485                        /*
2486                         * Check if the new CPU misses an advertised feature,
2487                         * which is not safe to miss.
2488                         */
2489                        if (!cpu_has_cap && !cpucap_late_cpu_optional(caps))
2490                                break;
2491                        /*
2492                         * We have to issue cpu_enable() irrespective of
2493                         * whether the CPU has it or not, as it is enabeld
2494                         * system wide. It is upto the call back to take
2495                         * appropriate action on this CPU.
2496                         */
2497                        if (caps->cpu_enable)
2498                                caps->cpu_enable(caps);
2499                } else {
2500                        /*
2501                         * Check if the CPU has this capability if it isn't
2502                         * safe to have when the system doesn't.
2503                         */
2504                        if (cpu_has_cap && !cpucap_late_cpu_permitted(caps))
2505                                break;
2506                }
2507        }
2508
2509        if (i < ARM64_NCAPS) {
2510                pr_crit("CPU%d: Detected conflict for capability %d (%s), System: %d, CPU: %d\n",
2511                        smp_processor_id(), caps->capability,
2512                        caps->desc, system_has_cap, cpu_has_cap);
2513
2514                if (cpucap_panic_on_conflict(caps))
2515                        cpu_panic_kernel();
2516                else
2517                        cpu_die_early();
2518        }
2519}
2520
2521/*
2522 * Check for CPU features that are used in early boot
2523 * based on the Boot CPU value.
2524 */
2525static void check_early_cpu_features(void)
2526{
2527        verify_cpu_asid_bits();
2528
2529        verify_local_cpu_caps(SCOPE_BOOT_CPU);
2530}
2531
2532static void
2533verify_local_elf_hwcaps(const struct arm64_cpu_capabilities *caps)
2534{
2535
2536        for (; caps->matches; caps++)
2537                if (cpus_have_elf_hwcap(caps) && !caps->matches(caps, SCOPE_LOCAL_CPU)) {
2538                        pr_crit("CPU%d: missing HWCAP: %s\n",
2539                                        smp_processor_id(), caps->desc);
2540                        cpu_die_early();
2541                }
2542}
2543
2544static void verify_sve_features(void)
2545{
2546        u64 safe_zcr = read_sanitised_ftr_reg(SYS_ZCR_EL1);
2547        u64 zcr = read_zcr_features();
2548
2549        unsigned int safe_len = safe_zcr & ZCR_ELx_LEN_MASK;
2550        unsigned int len = zcr & ZCR_ELx_LEN_MASK;
2551
2552        if (len < safe_len || sve_verify_vq_map()) {
2553                pr_crit("CPU%d: SVE: vector length support mismatch\n",
2554                        smp_processor_id());
2555                cpu_die_early();
2556        }
2557
2558        /* Add checks on other ZCR bits here if necessary */
2559}
2560
2561static void verify_hyp_capabilities(void)
2562{
2563        u64 safe_mmfr1, mmfr0, mmfr1;
2564        int parange, ipa_max;
2565        unsigned int safe_vmid_bits, vmid_bits;
2566
2567        if (!IS_ENABLED(CONFIG_KVM))
2568                return;
2569
2570        safe_mmfr1 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2571        mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
2572        mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
2573
2574        /* Verify VMID bits */
2575        safe_vmid_bits = get_vmid_bits(safe_mmfr1);
2576        vmid_bits = get_vmid_bits(mmfr1);
2577        if (vmid_bits < safe_vmid_bits) {
2578                pr_crit("CPU%d: VMID width mismatch\n", smp_processor_id());
2579                cpu_die_early();
2580        }
2581
2582        /* Verify IPA range */
2583        parange = cpuid_feature_extract_unsigned_field(mmfr0,
2584                                ID_AA64MMFR0_PARANGE_SHIFT);
2585        ipa_max = id_aa64mmfr0_parange_to_phys_shift(parange);
2586        if (ipa_max < get_kvm_ipa_limit()) {
2587                pr_crit("CPU%d: IPA range mismatch\n", smp_processor_id());
2588                cpu_die_early();
2589        }
2590}
2591
2592/*
2593 * Run through the enabled system capabilities and enable() it on this CPU.
2594 * The capabilities were decided based on the available CPUs at the boot time.
2595 * Any new CPU should match the system wide status of the capability. If the
2596 * new CPU doesn't have a capability which the system now has enabled, we
2597 * cannot do anything to fix it up and could cause unexpected failures. So
2598 * we park the CPU.
2599 */
2600static void verify_local_cpu_capabilities(void)
2601{
2602        /*
2603         * The capabilities with SCOPE_BOOT_CPU are checked from
2604         * check_early_cpu_features(), as they need to be verified
2605         * on all secondary CPUs.
2606         */
2607        verify_local_cpu_caps(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2608
2609        verify_local_elf_hwcaps(arm64_elf_hwcaps);
2610
2611        if (system_supports_32bit_el0())
2612                verify_local_elf_hwcaps(compat_elf_hwcaps);
2613
2614        if (system_supports_sve())
2615                verify_sve_features();
2616
2617        if (is_hyp_mode_available())
2618                verify_hyp_capabilities();
2619}
2620
2621void check_local_cpu_capabilities(void)
2622{
2623        /*
2624         * All secondary CPUs should conform to the early CPU features
2625         * in use by the kernel based on boot CPU.
2626         */
2627        check_early_cpu_features();
2628
2629        /*
2630         * If we haven't finalised the system capabilities, this CPU gets
2631         * a chance to update the errata work arounds and local features.
2632         * Otherwise, this CPU should verify that it has all the system
2633         * advertised capabilities.
2634         */
2635        if (!system_capabilities_finalized())
2636                update_cpu_capabilities(SCOPE_LOCAL_CPU);
2637        else
2638                verify_local_cpu_capabilities();
2639}
2640
2641static void __init setup_boot_cpu_capabilities(void)
2642{
2643        /* Detect capabilities with either SCOPE_BOOT_CPU or SCOPE_LOCAL_CPU */
2644        update_cpu_capabilities(SCOPE_BOOT_CPU | SCOPE_LOCAL_CPU);
2645        /* Enable the SCOPE_BOOT_CPU capabilities alone right away */
2646        enable_cpu_capabilities(SCOPE_BOOT_CPU);
2647}
2648
2649bool this_cpu_has_cap(unsigned int n)
2650{
2651        if (!WARN_ON(preemptible()) && n < ARM64_NCAPS) {
2652                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2653
2654                if (cap)
2655                        return cap->matches(cap, SCOPE_LOCAL_CPU);
2656        }
2657
2658        return false;
2659}
2660
2661/*
2662 * This helper function is used in a narrow window when,
2663 * - The system wide safe registers are set with all the SMP CPUs and,
2664 * - The SYSTEM_FEATURE cpu_hwcaps may not have been set.
2665 * In all other cases cpus_have_{const_}cap() should be used.
2666 */
2667static bool __maybe_unused __system_matches_cap(unsigned int n)
2668{
2669        if (n < ARM64_NCAPS) {
2670                const struct arm64_cpu_capabilities *cap = cpu_hwcaps_ptrs[n];
2671
2672                if (cap)
2673                        return cap->matches(cap, SCOPE_SYSTEM);
2674        }
2675        return false;
2676}
2677
2678void cpu_set_feature(unsigned int num)
2679{
2680        WARN_ON(num >= MAX_CPU_FEATURES);
2681        elf_hwcap |= BIT(num);
2682}
2683EXPORT_SYMBOL_GPL(cpu_set_feature);
2684
2685bool cpu_have_feature(unsigned int num)
2686{
2687        WARN_ON(num >= MAX_CPU_FEATURES);
2688        return elf_hwcap & BIT(num);
2689}
2690EXPORT_SYMBOL_GPL(cpu_have_feature);
2691
2692unsigned long cpu_get_elf_hwcap(void)
2693{
2694        /*
2695         * We currently only populate the first 32 bits of AT_HWCAP. Please
2696         * note that for userspace compatibility we guarantee that bits 62
2697         * and 63 will always be returned as 0.
2698         */
2699        return lower_32_bits(elf_hwcap);
2700}
2701
2702unsigned long cpu_get_elf_hwcap2(void)
2703{
2704        return upper_32_bits(elf_hwcap);
2705}
2706
2707static void __init setup_system_capabilities(void)
2708{
2709        /*
2710         * We have finalised the system-wide safe feature
2711         * registers, finalise the capabilities that depend
2712         * on it. Also enable all the available capabilities,
2713         * that are not enabled already.
2714         */
2715        update_cpu_capabilities(SCOPE_SYSTEM);
2716        enable_cpu_capabilities(SCOPE_ALL & ~SCOPE_BOOT_CPU);
2717}
2718
2719void __init setup_cpu_features(void)
2720{
2721        u32 cwg;
2722
2723        setup_system_capabilities();
2724        setup_elf_hwcaps(arm64_elf_hwcaps);
2725
2726        if (system_supports_32bit_el0())
2727                setup_elf_hwcaps(compat_elf_hwcaps);
2728
2729        if (system_uses_ttbr0_pan())
2730                pr_info("emulated: Privileged Access Never (PAN) using TTBR0_EL1 switching\n");
2731
2732        sve_setup();
2733        minsigstksz_setup();
2734
2735        /* Advertise that we have computed the system capabilities */
2736        finalize_system_capabilities();
2737
2738        /*
2739         * Check for sane CTR_EL0.CWG value.
2740         */
2741        cwg = cache_type_cwg();
2742        if (!cwg)
2743                pr_warn("No Cache Writeback Granule information, assuming %d\n",
2744                        ARCH_DMA_MINALIGN);
2745}
2746
2747static void __maybe_unused cpu_enable_cnp(struct arm64_cpu_capabilities const *cap)
2748{
2749        cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
2750}
2751
2752/*
2753 * We emulate only the following system register space.
2754 * Op0 = 0x3, CRn = 0x0, Op1 = 0x0, CRm = [0, 4 - 7]
2755 * See Table C5-6 System instruction encodings for System register accesses,
2756 * ARMv8 ARM(ARM DDI 0487A.f) for more details.
2757 */
2758static inline bool __attribute_const__ is_emulated(u32 id)
2759{
2760        return (sys_reg_Op0(id) == 0x3 &&
2761                sys_reg_CRn(id) == 0x0 &&
2762                sys_reg_Op1(id) == 0x0 &&
2763                (sys_reg_CRm(id) == 0 ||
2764                 ((sys_reg_CRm(id) >= 4) && (sys_reg_CRm(id) <= 7))));
2765}
2766
2767/*
2768 * With CRm == 0, reg should be one of :
2769 * MIDR_EL1, MPIDR_EL1 or REVIDR_EL1.
2770 */
2771static inline int emulate_id_reg(u32 id, u64 *valp)
2772{
2773        switch (id) {
2774        case SYS_MIDR_EL1:
2775                *valp = read_cpuid_id();
2776                break;
2777        case SYS_MPIDR_EL1:
2778                *valp = SYS_MPIDR_SAFE_VAL;
2779                break;
2780        case SYS_REVIDR_EL1:
2781                /* IMPLEMENTATION DEFINED values are emulated with 0 */
2782                *valp = 0;
2783                break;
2784        default:
2785                return -EINVAL;
2786        }
2787
2788        return 0;
2789}
2790
2791static int emulate_sys_reg(u32 id, u64 *valp)
2792{
2793        struct arm64_ftr_reg *regp;
2794
2795        if (!is_emulated(id))
2796                return -EINVAL;
2797
2798        if (sys_reg_CRm(id) == 0)
2799                return emulate_id_reg(id, valp);
2800
2801        regp = get_arm64_ftr_reg_nowarn(id);
2802        if (regp)
2803                *valp = arm64_ftr_reg_user_value(regp);
2804        else
2805                /*
2806                 * The untracked registers are either IMPLEMENTATION DEFINED
2807                 * (e.g, ID_AFR0_EL1) or reserved RAZ.
2808                 */
2809                *valp = 0;
2810        return 0;
2811}
2812
2813int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt)
2814{
2815        int rc;
2816        u64 val;
2817
2818        rc = emulate_sys_reg(sys_reg, &val);
2819        if (!rc) {
2820                pt_regs_write_reg(regs, rt, val);
2821                arm64_skip_faulting_instruction(regs, AARCH64_INSN_SIZE);
2822        }
2823        return rc;
2824}
2825
2826static int emulate_mrs(struct pt_regs *regs, u32 insn)
2827{
2828        u32 sys_reg, rt;
2829
2830        /*
2831         * sys_reg values are defined as used in mrs/msr instruction.
2832         * shift the imm value to get the encoding.
2833         */
2834        sys_reg = (u32)aarch64_insn_decode_immediate(AARCH64_INSN_IMM_16, insn) << 5;
2835        rt = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RT, insn);
2836        return do_emulate_mrs(regs, sys_reg, rt);
2837}
2838
2839static struct undef_hook mrs_hook = {
2840        .instr_mask = 0xfff00000,
2841        .instr_val  = 0xd5300000,
2842        .pstate_mask = PSR_AA32_MODE_MASK,
2843        .pstate_val = PSR_MODE_EL0t,
2844        .fn = emulate_mrs,
2845};
2846
2847static int __init enable_mrs_emulation(void)
2848{
2849        register_undef_hook(&mrs_hook);
2850        return 0;
2851}
2852
2853core_initcall(enable_mrs_emulation);
2854
2855enum mitigation_state arm64_get_meltdown_state(void)
2856{
2857        if (__meltdown_safe)
2858                return SPECTRE_UNAFFECTED;
2859
2860        if (arm64_kernel_unmapped_at_el0())
2861                return SPECTRE_MITIGATED;
2862
2863        return SPECTRE_VULNERABLE;
2864}
2865
2866ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr,
2867                          char *buf)
2868{
2869        switch (arm64_get_meltdown_state()) {
2870        case SPECTRE_UNAFFECTED:
2871                return sprintf(buf, "Not affected\n");
2872
2873        case SPECTRE_MITIGATED:
2874                return sprintf(buf, "Mitigation: PTI\n");
2875
2876        default:
2877                return sprintf(buf, "Vulnerable\n");
2878        }
2879}
2880