linux/arch/arm64/kernel/machine_kexec.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec for arm64
   4 *
   5 * Copyright (C) Linaro.
   6 * Copyright (C) Huawei Futurewei Technologies.
   7 */
   8
   9#include <linux/interrupt.h>
  10#include <linux/irq.h>
  11#include <linux/kernel.h>
  12#include <linux/kexec.h>
  13#include <linux/page-flags.h>
  14#include <linux/smp.h>
  15
  16#include <asm/cacheflush.h>
  17#include <asm/cpu_ops.h>
  18#include <asm/daifflags.h>
  19#include <asm/memory.h>
  20#include <asm/mmu.h>
  21#include <asm/mmu_context.h>
  22#include <asm/page.h>
  23
  24#include "cpu-reset.h"
  25
  26/* Global variables for the arm64_relocate_new_kernel routine. */
  27extern const unsigned char arm64_relocate_new_kernel[];
  28extern const unsigned long arm64_relocate_new_kernel_size;
  29
  30/**
  31 * kexec_image_info - For debugging output.
  32 */
  33#define kexec_image_info(_i) _kexec_image_info(__func__, __LINE__, _i)
  34static void _kexec_image_info(const char *func, int line,
  35        const struct kimage *kimage)
  36{
  37        unsigned long i;
  38
  39        pr_debug("%s:%d:\n", func, line);
  40        pr_debug("  kexec kimage info:\n");
  41        pr_debug("    type:        %d\n", kimage->type);
  42        pr_debug("    start:       %lx\n", kimage->start);
  43        pr_debug("    head:        %lx\n", kimage->head);
  44        pr_debug("    nr_segments: %lu\n", kimage->nr_segments);
  45
  46        for (i = 0; i < kimage->nr_segments; i++) {
  47                pr_debug("      segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
  48                        i,
  49                        kimage->segment[i].mem,
  50                        kimage->segment[i].mem + kimage->segment[i].memsz,
  51                        kimage->segment[i].memsz,
  52                        kimage->segment[i].memsz /  PAGE_SIZE);
  53        }
  54}
  55
  56void machine_kexec_cleanup(struct kimage *kimage)
  57{
  58        /* Empty routine needed to avoid build errors. */
  59}
  60
  61/**
  62 * machine_kexec_prepare - Prepare for a kexec reboot.
  63 *
  64 * Called from the core kexec code when a kernel image is loaded.
  65 * Forbid loading a kexec kernel if we have no way of hotplugging cpus or cpus
  66 * are stuck in the kernel. This avoids a panic once we hit machine_kexec().
  67 */
  68int machine_kexec_prepare(struct kimage *kimage)
  69{
  70        kexec_image_info(kimage);
  71
  72        if (kimage->type != KEXEC_TYPE_CRASH && cpus_are_stuck_in_kernel()) {
  73                pr_err("Can't kexec: CPUs are stuck in the kernel.\n");
  74                return -EBUSY;
  75        }
  76
  77        return 0;
  78}
  79
  80/**
  81 * kexec_list_flush - Helper to flush the kimage list and source pages to PoC.
  82 */
  83static void kexec_list_flush(struct kimage *kimage)
  84{
  85        kimage_entry_t *entry;
  86
  87        for (entry = &kimage->head; ; entry++) {
  88                unsigned int flag;
  89                void *addr;
  90
  91                /* flush the list entries. */
  92                __flush_dcache_area(entry, sizeof(kimage_entry_t));
  93
  94                flag = *entry & IND_FLAGS;
  95                if (flag == IND_DONE)
  96                        break;
  97
  98                addr = phys_to_virt(*entry & PAGE_MASK);
  99
 100                switch (flag) {
 101                case IND_INDIRECTION:
 102                        /* Set entry point just before the new list page. */
 103                        entry = (kimage_entry_t *)addr - 1;
 104                        break;
 105                case IND_SOURCE:
 106                        /* flush the source pages. */
 107                        __flush_dcache_area(addr, PAGE_SIZE);
 108                        break;
 109                case IND_DESTINATION:
 110                        break;
 111                default:
 112                        BUG();
 113                }
 114        }
 115}
 116
 117/**
 118 * kexec_segment_flush - Helper to flush the kimage segments to PoC.
 119 */
 120static void kexec_segment_flush(const struct kimage *kimage)
 121{
 122        unsigned long i;
 123
 124        pr_debug("%s:\n", __func__);
 125
 126        for (i = 0; i < kimage->nr_segments; i++) {
 127                pr_debug("  segment[%lu]: %016lx - %016lx, 0x%lx bytes, %lu pages\n",
 128                        i,
 129                        kimage->segment[i].mem,
 130                        kimage->segment[i].mem + kimage->segment[i].memsz,
 131                        kimage->segment[i].memsz,
 132                        kimage->segment[i].memsz /  PAGE_SIZE);
 133
 134                __flush_dcache_area(phys_to_virt(kimage->segment[i].mem),
 135                        kimage->segment[i].memsz);
 136        }
 137}
 138
 139/**
 140 * machine_kexec - Do the kexec reboot.
 141 *
 142 * Called from the core kexec code for a sys_reboot with LINUX_REBOOT_CMD_KEXEC.
 143 */
 144void machine_kexec(struct kimage *kimage)
 145{
 146        phys_addr_t reboot_code_buffer_phys;
 147        void *reboot_code_buffer;
 148        bool in_kexec_crash = (kimage == kexec_crash_image);
 149        bool stuck_cpus = cpus_are_stuck_in_kernel();
 150
 151        /*
 152         * New cpus may have become stuck_in_kernel after we loaded the image.
 153         */
 154        BUG_ON(!in_kexec_crash && (stuck_cpus || (num_online_cpus() > 1)));
 155        WARN(in_kexec_crash && (stuck_cpus || smp_crash_stop_failed()),
 156                "Some CPUs may be stale, kdump will be unreliable.\n");
 157
 158        reboot_code_buffer_phys = page_to_phys(kimage->control_code_page);
 159        reboot_code_buffer = phys_to_virt(reboot_code_buffer_phys);
 160
 161        kexec_image_info(kimage);
 162
 163        /*
 164         * Copy arm64_relocate_new_kernel to the reboot_code_buffer for use
 165         * after the kernel is shut down.
 166         */
 167        memcpy(reboot_code_buffer, arm64_relocate_new_kernel,
 168                arm64_relocate_new_kernel_size);
 169
 170        /* Flush the reboot_code_buffer in preparation for its execution. */
 171        __flush_dcache_area(reboot_code_buffer, arm64_relocate_new_kernel_size);
 172
 173        /*
 174         * Although we've killed off the secondary CPUs, we don't update
 175         * the online mask if we're handling a crash kernel and consequently
 176         * need to avoid flush_icache_range(), which will attempt to IPI
 177         * the offline CPUs. Therefore, we must use the __* variant here.
 178         */
 179        __flush_icache_range((uintptr_t)reboot_code_buffer,
 180                             (uintptr_t)reboot_code_buffer +
 181                             arm64_relocate_new_kernel_size);
 182
 183        /* Flush the kimage list and its buffers. */
 184        kexec_list_flush(kimage);
 185
 186        /* Flush the new image if already in place. */
 187        if ((kimage != kexec_crash_image) && (kimage->head & IND_DONE))
 188                kexec_segment_flush(kimage);
 189
 190        pr_info("Bye!\n");
 191
 192        local_daif_mask();
 193
 194        /*
 195         * cpu_soft_restart will shutdown the MMU, disable data caches, then
 196         * transfer control to the reboot_code_buffer which contains a copy of
 197         * the arm64_relocate_new_kernel routine.  arm64_relocate_new_kernel
 198         * uses physical addressing to relocate the new image to its final
 199         * position and transfers control to the image entry point when the
 200         * relocation is complete.
 201         * In kexec case, kimage->start points to purgatory assuming that
 202         * kernel entry and dtb address are embedded in purgatory by
 203         * userspace (kexec-tools).
 204         * In kexec_file case, the kernel starts directly without purgatory.
 205         */
 206        cpu_soft_restart(reboot_code_buffer_phys, kimage->head, kimage->start,
 207#ifdef CONFIG_KEXEC_FILE
 208                                                kimage->arch.dtb_mem);
 209#else
 210                                                0);
 211#endif
 212
 213        BUG(); /* Should never get here. */
 214}
 215
 216static void machine_kexec_mask_interrupts(void)
 217{
 218        unsigned int i;
 219        struct irq_desc *desc;
 220
 221        for_each_irq_desc(i, desc) {
 222                struct irq_chip *chip;
 223                int ret;
 224
 225                chip = irq_desc_get_chip(desc);
 226                if (!chip)
 227                        continue;
 228
 229                /*
 230                 * First try to remove the active state. If this
 231                 * fails, try to EOI the interrupt.
 232                 */
 233                ret = irq_set_irqchip_state(i, IRQCHIP_STATE_ACTIVE, false);
 234
 235                if (ret && irqd_irq_inprogress(&desc->irq_data) &&
 236                    chip->irq_eoi)
 237                        chip->irq_eoi(&desc->irq_data);
 238
 239                if (chip->irq_mask)
 240                        chip->irq_mask(&desc->irq_data);
 241
 242                if (chip->irq_disable && !irqd_irq_disabled(&desc->irq_data))
 243                        chip->irq_disable(&desc->irq_data);
 244        }
 245}
 246
 247/**
 248 * machine_crash_shutdown - shutdown non-crashing cpus and save registers
 249 */
 250void machine_crash_shutdown(struct pt_regs *regs)
 251{
 252        local_irq_disable();
 253
 254        /* shutdown non-crashing cpus */
 255        crash_smp_send_stop();
 256
 257        /* for crashing cpu */
 258        crash_save_cpu(regs, smp_processor_id());
 259        machine_kexec_mask_interrupts();
 260
 261        pr_info("Starting crashdump kernel...\n");
 262}
 263
 264void arch_kexec_protect_crashkres(void)
 265{
 266        int i;
 267
 268        kexec_segment_flush(kexec_crash_image);
 269
 270        for (i = 0; i < kexec_crash_image->nr_segments; i++)
 271                set_memory_valid(
 272                        __phys_to_virt(kexec_crash_image->segment[i].mem),
 273                        kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 0);
 274}
 275
 276void arch_kexec_unprotect_crashkres(void)
 277{
 278        int i;
 279
 280        for (i = 0; i < kexec_crash_image->nr_segments; i++)
 281                set_memory_valid(
 282                        __phys_to_virt(kexec_crash_image->segment[i].mem),
 283                        kexec_crash_image->segment[i].memsz >> PAGE_SHIFT, 1);
 284}
 285
 286#ifdef CONFIG_HIBERNATION
 287/*
 288 * To preserve the crash dump kernel image, the relevant memory segments
 289 * should be mapped again around the hibernation.
 290 */
 291void crash_prepare_suspend(void)
 292{
 293        if (kexec_crash_image)
 294                arch_kexec_unprotect_crashkres();
 295}
 296
 297void crash_post_resume(void)
 298{
 299        if (kexec_crash_image)
 300                arch_kexec_protect_crashkres();
 301}
 302
 303/*
 304 * crash_is_nosave
 305 *
 306 * Return true only if a page is part of reserved memory for crash dump kernel,
 307 * but does not hold any data of loaded kernel image.
 308 *
 309 * Note that all the pages in crash dump kernel memory have been initially
 310 * marked as Reserved as memory was allocated via memblock_reserve().
 311 *
 312 * In hibernation, the pages which are Reserved and yet "nosave" are excluded
 313 * from the hibernation iamge. crash_is_nosave() does thich check for crash
 314 * dump kernel and will reduce the total size of hibernation image.
 315 */
 316
 317bool crash_is_nosave(unsigned long pfn)
 318{
 319        int i;
 320        phys_addr_t addr;
 321
 322        if (!crashk_res.end)
 323                return false;
 324
 325        /* in reserved memory? */
 326        addr = __pfn_to_phys(pfn);
 327        if ((addr < crashk_res.start) || (crashk_res.end < addr))
 328                return false;
 329
 330        if (!kexec_crash_image)
 331                return true;
 332
 333        /* not part of loaded kernel image? */
 334        for (i = 0; i < kexec_crash_image->nr_segments; i++)
 335                if (addr >= kexec_crash_image->segment[i].mem &&
 336                                addr < (kexec_crash_image->segment[i].mem +
 337                                        kexec_crash_image->segment[i].memsz))
 338                        return false;
 339
 340        return true;
 341}
 342
 343void crash_free_reserved_phys_range(unsigned long begin, unsigned long end)
 344{
 345        unsigned long addr;
 346        struct page *page;
 347
 348        for (addr = begin; addr < end; addr += PAGE_SIZE) {
 349                page = phys_to_page(addr);
 350                free_reserved_page(page);
 351        }
 352}
 353#endif /* CONFIG_HIBERNATION */
 354