linux/arch/ia64/kernel/efi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Extensible Firmware Interface
   4 *
   5 * Based on Extensible Firmware Interface Specification version 0.9
   6 * April 30, 1999
   7 *
   8 * Copyright (C) 1999 VA Linux Systems
   9 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
  10 * Copyright (C) 1999-2003 Hewlett-Packard Co.
  11 *      David Mosberger-Tang <davidm@hpl.hp.com>
  12 *      Stephane Eranian <eranian@hpl.hp.com>
  13 * (c) Copyright 2006 Hewlett-Packard Development Company, L.P.
  14 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
  15 *
  16 * All EFI Runtime Services are not implemented yet as EFI only
  17 * supports physical mode addressing on SoftSDV. This is to be fixed
  18 * in a future version.  --drummond 1999-07-20
  19 *
  20 * Implemented EFI runtime services and virtual mode calls.  --davidm
  21 *
  22 * Goutham Rao: <goutham.rao@intel.com>
  23 *      Skip non-WB memory and ignore empty memory ranges.
  24 */
  25#include <linux/module.h>
  26#include <linux/memblock.h>
  27#include <linux/crash_dump.h>
  28#include <linux/kernel.h>
  29#include <linux/init.h>
  30#include <linux/types.h>
  31#include <linux/slab.h>
  32#include <linux/time.h>
  33#include <linux/efi.h>
  34#include <linux/kexec.h>
  35#include <linux/mm.h>
  36
  37#include <asm/io.h>
  38#include <asm/kregs.h>
  39#include <asm/meminit.h>
  40#include <asm/processor.h>
  41#include <asm/mca.h>
  42#include <asm/setup.h>
  43#include <asm/tlbflush.h>
  44
  45#define EFI_DEBUG       0
  46
  47#define ESI_TABLE_GUID                                  \
  48    EFI_GUID(0x43EA58DC, 0xCF28, 0x4b06, 0xB3,          \
  49             0x91, 0xB7, 0x50, 0x59, 0x34, 0x2B, 0xD4)
  50
  51static unsigned long mps_phys = EFI_INVALID_TABLE_ADDR;
  52static __initdata unsigned long palo_phys;
  53
  54unsigned long __initdata esi_phys = EFI_INVALID_TABLE_ADDR;
  55unsigned long hcdp_phys = EFI_INVALID_TABLE_ADDR;
  56unsigned long sal_systab_phys = EFI_INVALID_TABLE_ADDR;
  57
  58static const efi_config_table_type_t arch_tables[] __initconst = {
  59        {ESI_TABLE_GUID,                                &esi_phys,              "ESI"           },
  60        {HCDP_TABLE_GUID,                               &hcdp_phys,             "HCDP"          },
  61        {MPS_TABLE_GUID,                                &mps_phys,              "MPS"           },
  62        {PROCESSOR_ABSTRACTION_LAYER_OVERWRITE_GUID,    &palo_phys,             "PALO"          },
  63        {SAL_SYSTEM_TABLE_GUID,                         &sal_systab_phys,       "SALsystab"     },
  64        {},
  65};
  66
  67extern efi_status_t efi_call_phys (void *, ...);
  68
  69static efi_runtime_services_t *runtime;
  70static u64 mem_limit = ~0UL, max_addr = ~0UL, min_addr = 0UL;
  71
  72#define efi_call_virt(f, args...)       (*(f))(args)
  73
  74#define STUB_GET_TIME(prefix, adjust_arg)                                      \
  75static efi_status_t                                                            \
  76prefix##_get_time (efi_time_t *tm, efi_time_cap_t *tc)                         \
  77{                                                                              \
  78        struct ia64_fpreg fr[6];                                               \
  79        efi_time_cap_t *atc = NULL;                                            \
  80        efi_status_t ret;                                                      \
  81                                                                               \
  82        if (tc)                                                                \
  83                atc = adjust_arg(tc);                                          \
  84        ia64_save_scratch_fpregs(fr);                                          \
  85        ret = efi_call_##prefix((efi_get_time_t *) __va(runtime->get_time),    \
  86                                adjust_arg(tm), atc);                          \
  87        ia64_load_scratch_fpregs(fr);                                          \
  88        return ret;                                                            \
  89}
  90
  91#define STUB_SET_TIME(prefix, adjust_arg)                                      \
  92static efi_status_t                                                            \
  93prefix##_set_time (efi_time_t *tm)                                             \
  94{                                                                              \
  95        struct ia64_fpreg fr[6];                                               \
  96        efi_status_t ret;                                                      \
  97                                                                               \
  98        ia64_save_scratch_fpregs(fr);                                          \
  99        ret = efi_call_##prefix((efi_set_time_t *) __va(runtime->set_time),    \
 100                                adjust_arg(tm));                               \
 101        ia64_load_scratch_fpregs(fr);                                          \
 102        return ret;                                                            \
 103}
 104
 105#define STUB_GET_WAKEUP_TIME(prefix, adjust_arg)                               \
 106static efi_status_t                                                            \
 107prefix##_get_wakeup_time (efi_bool_t *enabled, efi_bool_t *pending,            \
 108                          efi_time_t *tm)                                      \
 109{                                                                              \
 110        struct ia64_fpreg fr[6];                                               \
 111        efi_status_t ret;                                                      \
 112                                                                               \
 113        ia64_save_scratch_fpregs(fr);                                          \
 114        ret = efi_call_##prefix(                                               \
 115                (efi_get_wakeup_time_t *) __va(runtime->get_wakeup_time),      \
 116                adjust_arg(enabled), adjust_arg(pending), adjust_arg(tm));     \
 117        ia64_load_scratch_fpregs(fr);                                          \
 118        return ret;                                                            \
 119}
 120
 121#define STUB_SET_WAKEUP_TIME(prefix, adjust_arg)                               \
 122static efi_status_t                                                            \
 123prefix##_set_wakeup_time (efi_bool_t enabled, efi_time_t *tm)                  \
 124{                                                                              \
 125        struct ia64_fpreg fr[6];                                               \
 126        efi_time_t *atm = NULL;                                                \
 127        efi_status_t ret;                                                      \
 128                                                                               \
 129        if (tm)                                                                \
 130                atm = adjust_arg(tm);                                          \
 131        ia64_save_scratch_fpregs(fr);                                          \
 132        ret = efi_call_##prefix(                                               \
 133                (efi_set_wakeup_time_t *) __va(runtime->set_wakeup_time),      \
 134                enabled, atm);                                                 \
 135        ia64_load_scratch_fpregs(fr);                                          \
 136        return ret;                                                            \
 137}
 138
 139#define STUB_GET_VARIABLE(prefix, adjust_arg)                                  \
 140static efi_status_t                                                            \
 141prefix##_get_variable (efi_char16_t *name, efi_guid_t *vendor, u32 *attr,      \
 142                       unsigned long *data_size, void *data)                   \
 143{                                                                              \
 144        struct ia64_fpreg fr[6];                                               \
 145        u32 *aattr = NULL;                                                     \
 146        efi_status_t ret;                                                      \
 147                                                                               \
 148        if (attr)                                                              \
 149                aattr = adjust_arg(attr);                                      \
 150        ia64_save_scratch_fpregs(fr);                                          \
 151        ret = efi_call_##prefix(                                               \
 152                (efi_get_variable_t *) __va(runtime->get_variable),            \
 153                adjust_arg(name), adjust_arg(vendor), aattr,                   \
 154                adjust_arg(data_size), adjust_arg(data));                      \
 155        ia64_load_scratch_fpregs(fr);                                          \
 156        return ret;                                                            \
 157}
 158
 159#define STUB_GET_NEXT_VARIABLE(prefix, adjust_arg)                             \
 160static efi_status_t                                                            \
 161prefix##_get_next_variable (unsigned long *name_size, efi_char16_t *name,      \
 162                            efi_guid_t *vendor)                                \
 163{                                                                              \
 164        struct ia64_fpreg fr[6];                                               \
 165        efi_status_t ret;                                                      \
 166                                                                               \
 167        ia64_save_scratch_fpregs(fr);                                          \
 168        ret = efi_call_##prefix(                                               \
 169                (efi_get_next_variable_t *) __va(runtime->get_next_variable),  \
 170                adjust_arg(name_size), adjust_arg(name), adjust_arg(vendor));  \
 171        ia64_load_scratch_fpregs(fr);                                          \
 172        return ret;                                                            \
 173}
 174
 175#define STUB_SET_VARIABLE(prefix, adjust_arg)                                  \
 176static efi_status_t                                                            \
 177prefix##_set_variable (efi_char16_t *name, efi_guid_t *vendor,                 \
 178                       u32 attr, unsigned long data_size,                      \
 179                       void *data)                                             \
 180{                                                                              \
 181        struct ia64_fpreg fr[6];                                               \
 182        efi_status_t ret;                                                      \
 183                                                                               \
 184        ia64_save_scratch_fpregs(fr);                                          \
 185        ret = efi_call_##prefix(                                               \
 186                (efi_set_variable_t *) __va(runtime->set_variable),            \
 187                adjust_arg(name), adjust_arg(vendor), attr, data_size,         \
 188                adjust_arg(data));                                             \
 189        ia64_load_scratch_fpregs(fr);                                          \
 190        return ret;                                                            \
 191}
 192
 193#define STUB_GET_NEXT_HIGH_MONO_COUNT(prefix, adjust_arg)                      \
 194static efi_status_t                                                            \
 195prefix##_get_next_high_mono_count (u32 *count)                                 \
 196{                                                                              \
 197        struct ia64_fpreg fr[6];                                               \
 198        efi_status_t ret;                                                      \
 199                                                                               \
 200        ia64_save_scratch_fpregs(fr);                                          \
 201        ret = efi_call_##prefix((efi_get_next_high_mono_count_t *)             \
 202                                __va(runtime->get_next_high_mono_count),       \
 203                                adjust_arg(count));                            \
 204        ia64_load_scratch_fpregs(fr);                                          \
 205        return ret;                                                            \
 206}
 207
 208#define STUB_RESET_SYSTEM(prefix, adjust_arg)                                  \
 209static void                                                                    \
 210prefix##_reset_system (int reset_type, efi_status_t status,                    \
 211                       unsigned long data_size, efi_char16_t *data)            \
 212{                                                                              \
 213        struct ia64_fpreg fr[6];                                               \
 214        efi_char16_t *adata = NULL;                                            \
 215                                                                               \
 216        if (data)                                                              \
 217                adata = adjust_arg(data);                                      \
 218                                                                               \
 219        ia64_save_scratch_fpregs(fr);                                          \
 220        efi_call_##prefix(                                                     \
 221                (efi_reset_system_t *) __va(runtime->reset_system),            \
 222                reset_type, status, data_size, adata);                         \
 223        /* should not return, but just in case... */                           \
 224        ia64_load_scratch_fpregs(fr);                                          \
 225}
 226
 227#define phys_ptr(arg)   ((__typeof__(arg)) ia64_tpa(arg))
 228
 229STUB_GET_TIME(phys, phys_ptr)
 230STUB_SET_TIME(phys, phys_ptr)
 231STUB_GET_WAKEUP_TIME(phys, phys_ptr)
 232STUB_SET_WAKEUP_TIME(phys, phys_ptr)
 233STUB_GET_VARIABLE(phys, phys_ptr)
 234STUB_GET_NEXT_VARIABLE(phys, phys_ptr)
 235STUB_SET_VARIABLE(phys, phys_ptr)
 236STUB_GET_NEXT_HIGH_MONO_COUNT(phys, phys_ptr)
 237STUB_RESET_SYSTEM(phys, phys_ptr)
 238
 239#define id(arg) arg
 240
 241STUB_GET_TIME(virt, id)
 242STUB_SET_TIME(virt, id)
 243STUB_GET_WAKEUP_TIME(virt, id)
 244STUB_SET_WAKEUP_TIME(virt, id)
 245STUB_GET_VARIABLE(virt, id)
 246STUB_GET_NEXT_VARIABLE(virt, id)
 247STUB_SET_VARIABLE(virt, id)
 248STUB_GET_NEXT_HIGH_MONO_COUNT(virt, id)
 249STUB_RESET_SYSTEM(virt, id)
 250
 251void
 252efi_gettimeofday (struct timespec64 *ts)
 253{
 254        efi_time_t tm;
 255
 256        if ((*efi.get_time)(&tm, NULL) != EFI_SUCCESS) {
 257                memset(ts, 0, sizeof(*ts));
 258                return;
 259        }
 260
 261        ts->tv_sec = mktime64(tm.year, tm.month, tm.day,
 262                            tm.hour, tm.minute, tm.second);
 263        ts->tv_nsec = tm.nanosecond;
 264}
 265
 266static int
 267is_memory_available (efi_memory_desc_t *md)
 268{
 269        if (!(md->attribute & EFI_MEMORY_WB))
 270                return 0;
 271
 272        switch (md->type) {
 273              case EFI_LOADER_CODE:
 274              case EFI_LOADER_DATA:
 275              case EFI_BOOT_SERVICES_CODE:
 276              case EFI_BOOT_SERVICES_DATA:
 277              case EFI_CONVENTIONAL_MEMORY:
 278                return 1;
 279        }
 280        return 0;
 281}
 282
 283typedef struct kern_memdesc {
 284        u64 attribute;
 285        u64 start;
 286        u64 num_pages;
 287} kern_memdesc_t;
 288
 289static kern_memdesc_t *kern_memmap;
 290
 291#define efi_md_size(md) (md->num_pages << EFI_PAGE_SHIFT)
 292
 293static inline u64
 294kmd_end(kern_memdesc_t *kmd)
 295{
 296        return (kmd->start + (kmd->num_pages << EFI_PAGE_SHIFT));
 297}
 298
 299static inline u64
 300efi_md_end(efi_memory_desc_t *md)
 301{
 302        return (md->phys_addr + efi_md_size(md));
 303}
 304
 305static inline int
 306efi_wb(efi_memory_desc_t *md)
 307{
 308        return (md->attribute & EFI_MEMORY_WB);
 309}
 310
 311static inline int
 312efi_uc(efi_memory_desc_t *md)
 313{
 314        return (md->attribute & EFI_MEMORY_UC);
 315}
 316
 317static void
 318walk (efi_freemem_callback_t callback, void *arg, u64 attr)
 319{
 320        kern_memdesc_t *k;
 321        u64 start, end, voff;
 322
 323        voff = (attr == EFI_MEMORY_WB) ? PAGE_OFFSET : __IA64_UNCACHED_OFFSET;
 324        for (k = kern_memmap; k->start != ~0UL; k++) {
 325                if (k->attribute != attr)
 326                        continue;
 327                start = PAGE_ALIGN(k->start);
 328                end = (k->start + (k->num_pages << EFI_PAGE_SHIFT)) & PAGE_MASK;
 329                if (start < end)
 330                        if ((*callback)(start + voff, end + voff, arg) < 0)
 331                                return;
 332        }
 333}
 334
 335/*
 336 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 337 * descriptor that has memory that is available for OS use.
 338 */
 339void
 340efi_memmap_walk (efi_freemem_callback_t callback, void *arg)
 341{
 342        walk(callback, arg, EFI_MEMORY_WB);
 343}
 344
 345/*
 346 * Walk the EFI memory map and call CALLBACK once for each EFI memory
 347 * descriptor that has memory that is available for uncached allocator.
 348 */
 349void
 350efi_memmap_walk_uc (efi_freemem_callback_t callback, void *arg)
 351{
 352        walk(callback, arg, EFI_MEMORY_UC);
 353}
 354
 355/*
 356 * Look for the PAL_CODE region reported by EFI and map it using an
 357 * ITR to enable safe PAL calls in virtual mode.  See IA-64 Processor
 358 * Abstraction Layer chapter 11 in ADAG
 359 */
 360void *
 361efi_get_pal_addr (void)
 362{
 363        void *efi_map_start, *efi_map_end, *p;
 364        efi_memory_desc_t *md;
 365        u64 efi_desc_size;
 366        int pal_code_count = 0;
 367        u64 vaddr, mask;
 368
 369        efi_map_start = __va(ia64_boot_param->efi_memmap);
 370        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 371        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 372
 373        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 374                md = p;
 375                if (md->type != EFI_PAL_CODE)
 376                        continue;
 377
 378                if (++pal_code_count > 1) {
 379                        printk(KERN_ERR "Too many EFI Pal Code memory ranges, "
 380                               "dropped @ %llx\n", md->phys_addr);
 381                        continue;
 382                }
 383                /*
 384                 * The only ITLB entry in region 7 that is used is the one
 385                 * installed by __start().  That entry covers a 64MB range.
 386                 */
 387                mask  = ~((1 << KERNEL_TR_PAGE_SHIFT) - 1);
 388                vaddr = PAGE_OFFSET + md->phys_addr;
 389
 390                /*
 391                 * We must check that the PAL mapping won't overlap with the
 392                 * kernel mapping.
 393                 *
 394                 * PAL code is guaranteed to be aligned on a power of 2 between
 395                 * 4k and 256KB and that only one ITR is needed to map it. This
 396                 * implies that the PAL code is always aligned on its size,
 397                 * i.e., the closest matching page size supported by the TLB.
 398                 * Therefore PAL code is guaranteed never to cross a 64MB unless
 399                 * it is bigger than 64MB (very unlikely!).  So for now the
 400                 * following test is enough to determine whether or not we need
 401                 * a dedicated ITR for the PAL code.
 402                 */
 403                if ((vaddr & mask) == (KERNEL_START & mask)) {
 404                        printk(KERN_INFO "%s: no need to install ITR for PAL code\n",
 405                               __func__);
 406                        continue;
 407                }
 408
 409                if (efi_md_size(md) > IA64_GRANULE_SIZE)
 410                        panic("Whoa!  PAL code size bigger than a granule!");
 411
 412#if EFI_DEBUG
 413                mask  = ~((1 << IA64_GRANULE_SHIFT) - 1);
 414
 415                printk(KERN_INFO "CPU %d: mapping PAL code "
 416                       "[0x%lx-0x%lx) into [0x%lx-0x%lx)\n",
 417                       smp_processor_id(), md->phys_addr,
 418                       md->phys_addr + efi_md_size(md),
 419                       vaddr & mask, (vaddr & mask) + IA64_GRANULE_SIZE);
 420#endif
 421                return __va(md->phys_addr);
 422        }
 423        printk(KERN_WARNING "%s: no PAL-code memory-descriptor found\n",
 424               __func__);
 425        return NULL;
 426}
 427
 428
 429static u8 __init palo_checksum(u8 *buffer, u32 length)
 430{
 431        u8 sum = 0;
 432        u8 *end = buffer + length;
 433
 434        while (buffer < end)
 435                sum = (u8) (sum + *(buffer++));
 436
 437        return sum;
 438}
 439
 440/*
 441 * Parse and handle PALO table which is published at:
 442 * http://www.dig64.org/home/DIG64_PALO_R1_0.pdf
 443 */
 444static void __init handle_palo(unsigned long phys_addr)
 445{
 446        struct palo_table *palo = __va(phys_addr);
 447        u8  checksum;
 448
 449        if (strncmp(palo->signature, PALO_SIG, sizeof(PALO_SIG) - 1)) {
 450                printk(KERN_INFO "PALO signature incorrect.\n");
 451                return;
 452        }
 453
 454        checksum = palo_checksum((u8 *)palo, palo->length);
 455        if (checksum) {
 456                printk(KERN_INFO "PALO checksum incorrect.\n");
 457                return;
 458        }
 459
 460        setup_ptcg_sem(palo->max_tlb_purges, NPTCG_FROM_PALO);
 461}
 462
 463void
 464efi_map_pal_code (void)
 465{
 466        void *pal_vaddr = efi_get_pal_addr ();
 467        u64 psr;
 468
 469        if (!pal_vaddr)
 470                return;
 471
 472        /*
 473         * Cannot write to CRx with PSR.ic=1
 474         */
 475        psr = ia64_clear_ic();
 476        ia64_itr(0x1, IA64_TR_PALCODE,
 477                 GRANULEROUNDDOWN((unsigned long) pal_vaddr),
 478                 pte_val(pfn_pte(__pa(pal_vaddr) >> PAGE_SHIFT, PAGE_KERNEL)),
 479                 IA64_GRANULE_SHIFT);
 480        ia64_set_psr(psr);              /* restore psr */
 481}
 482
 483void __init
 484efi_init (void)
 485{
 486        const efi_system_table_t *efi_systab;
 487        void *efi_map_start, *efi_map_end;
 488        u64 efi_desc_size;
 489        char *cp;
 490
 491        set_bit(EFI_BOOT, &efi.flags);
 492        set_bit(EFI_64BIT, &efi.flags);
 493
 494        /*
 495         * It's too early to be able to use the standard kernel command line
 496         * support...
 497         */
 498        for (cp = boot_command_line; *cp; ) {
 499                if (memcmp(cp, "mem=", 4) == 0) {
 500                        mem_limit = memparse(cp + 4, &cp);
 501                } else if (memcmp(cp, "max_addr=", 9) == 0) {
 502                        max_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 503                } else if (memcmp(cp, "min_addr=", 9) == 0) {
 504                        min_addr = GRANULEROUNDDOWN(memparse(cp + 9, &cp));
 505                } else {
 506                        while (*cp != ' ' && *cp)
 507                                ++cp;
 508                        while (*cp == ' ')
 509                                ++cp;
 510                }
 511        }
 512        if (min_addr != 0UL)
 513                printk(KERN_INFO "Ignoring memory below %lluMB\n",
 514                       min_addr >> 20);
 515        if (max_addr != ~0UL)
 516                printk(KERN_INFO "Ignoring memory above %lluMB\n",
 517                       max_addr >> 20);
 518
 519        efi_systab = __va(ia64_boot_param->efi_systab);
 520
 521        /*
 522         * Verify the EFI Table
 523         */
 524        if (efi_systab == NULL)
 525                panic("Whoa! Can't find EFI system table.\n");
 526        if (efi_systab_check_header(&efi_systab->hdr, 1))
 527                panic("Whoa! EFI system table signature incorrect\n");
 528
 529        efi_systab_report_header(&efi_systab->hdr, efi_systab->fw_vendor);
 530
 531        palo_phys      = EFI_INVALID_TABLE_ADDR;
 532
 533        if (efi_config_parse_tables(__va(efi_systab->tables),
 534                                    efi_systab->nr_tables,
 535                                    arch_tables) != 0)
 536                return;
 537
 538        if (palo_phys != EFI_INVALID_TABLE_ADDR)
 539                handle_palo(palo_phys);
 540
 541        runtime = __va(efi_systab->runtime);
 542        efi.get_time = phys_get_time;
 543        efi.set_time = phys_set_time;
 544        efi.get_wakeup_time = phys_get_wakeup_time;
 545        efi.set_wakeup_time = phys_set_wakeup_time;
 546        efi.get_variable = phys_get_variable;
 547        efi.get_next_variable = phys_get_next_variable;
 548        efi.set_variable = phys_set_variable;
 549        efi.get_next_high_mono_count = phys_get_next_high_mono_count;
 550        efi.reset_system = phys_reset_system;
 551
 552        efi_map_start = __va(ia64_boot_param->efi_memmap);
 553        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 554        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 555
 556#if EFI_DEBUG
 557        /* print EFI memory map: */
 558        {
 559                efi_memory_desc_t *md;
 560                void *p;
 561
 562                for (i = 0, p = efi_map_start; p < efi_map_end;
 563                     ++i, p += efi_desc_size)
 564                {
 565                        const char *unit;
 566                        unsigned long size;
 567                        char buf[64];
 568
 569                        md = p;
 570                        size = md->num_pages << EFI_PAGE_SHIFT;
 571
 572                        if ((size >> 40) > 0) {
 573                                size >>= 40;
 574                                unit = "TB";
 575                        } else if ((size >> 30) > 0) {
 576                                size >>= 30;
 577                                unit = "GB";
 578                        } else if ((size >> 20) > 0) {
 579                                size >>= 20;
 580                                unit = "MB";
 581                        } else {
 582                                size >>= 10;
 583                                unit = "KB";
 584                        }
 585
 586                        printk("mem%02d: %s "
 587                               "range=[0x%016lx-0x%016lx) (%4lu%s)\n",
 588                               i, efi_md_typeattr_format(buf, sizeof(buf), md),
 589                               md->phys_addr,
 590                               md->phys_addr + efi_md_size(md), size, unit);
 591                }
 592        }
 593#endif
 594
 595        efi_map_pal_code();
 596        efi_enter_virtual_mode();
 597}
 598
 599void
 600efi_enter_virtual_mode (void)
 601{
 602        void *efi_map_start, *efi_map_end, *p;
 603        efi_memory_desc_t *md;
 604        efi_status_t status;
 605        u64 efi_desc_size;
 606
 607        efi_map_start = __va(ia64_boot_param->efi_memmap);
 608        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 609        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 610
 611        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 612                md = p;
 613                if (md->attribute & EFI_MEMORY_RUNTIME) {
 614                        /*
 615                         * Some descriptors have multiple bits set, so the
 616                         * order of the tests is relevant.
 617                         */
 618                        if (md->attribute & EFI_MEMORY_WB) {
 619                                md->virt_addr = (u64) __va(md->phys_addr);
 620                        } else if (md->attribute & EFI_MEMORY_UC) {
 621                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 622                        } else if (md->attribute & EFI_MEMORY_WC) {
 623#if 0
 624                                md->virt_addr = ia64_remap(md->phys_addr,
 625                                                           (_PAGE_A |
 626                                                            _PAGE_P |
 627                                                            _PAGE_D |
 628                                                            _PAGE_MA_WC |
 629                                                            _PAGE_PL_0 |
 630                                                            _PAGE_AR_RW));
 631#else
 632                                printk(KERN_INFO "EFI_MEMORY_WC mapping\n");
 633                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 634#endif
 635                        } else if (md->attribute & EFI_MEMORY_WT) {
 636#if 0
 637                                md->virt_addr = ia64_remap(md->phys_addr,
 638                                                           (_PAGE_A |
 639                                                            _PAGE_P |
 640                                                            _PAGE_D |
 641                                                            _PAGE_MA_WT |
 642                                                            _PAGE_PL_0 |
 643                                                            _PAGE_AR_RW));
 644#else
 645                                printk(KERN_INFO "EFI_MEMORY_WT mapping\n");
 646                                md->virt_addr = (u64) ioremap(md->phys_addr, 0);
 647#endif
 648                        }
 649                }
 650        }
 651
 652        status = efi_call_phys(__va(runtime->set_virtual_address_map),
 653                               ia64_boot_param->efi_memmap_size,
 654                               efi_desc_size,
 655                               ia64_boot_param->efi_memdesc_version,
 656                               ia64_boot_param->efi_memmap);
 657        if (status != EFI_SUCCESS) {
 658                printk(KERN_WARNING "warning: unable to switch EFI into "
 659                       "virtual mode (status=%lu)\n", status);
 660                return;
 661        }
 662
 663        set_bit(EFI_RUNTIME_SERVICES, &efi.flags);
 664
 665        /*
 666         * Now that EFI is in virtual mode, we call the EFI functions more
 667         * efficiently:
 668         */
 669        efi.get_time = virt_get_time;
 670        efi.set_time = virt_set_time;
 671        efi.get_wakeup_time = virt_get_wakeup_time;
 672        efi.set_wakeup_time = virt_set_wakeup_time;
 673        efi.get_variable = virt_get_variable;
 674        efi.get_next_variable = virt_get_next_variable;
 675        efi.set_variable = virt_set_variable;
 676        efi.get_next_high_mono_count = virt_get_next_high_mono_count;
 677        efi.reset_system = virt_reset_system;
 678}
 679
 680/*
 681 * Walk the EFI memory map looking for the I/O port range.  There can only be
 682 * one entry of this type, other I/O port ranges should be described via ACPI.
 683 */
 684u64
 685efi_get_iobase (void)
 686{
 687        void *efi_map_start, *efi_map_end, *p;
 688        efi_memory_desc_t *md;
 689        u64 efi_desc_size;
 690
 691        efi_map_start = __va(ia64_boot_param->efi_memmap);
 692        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 693        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 694
 695        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 696                md = p;
 697                if (md->type == EFI_MEMORY_MAPPED_IO_PORT_SPACE) {
 698                        if (md->attribute & EFI_MEMORY_UC)
 699                                return md->phys_addr;
 700                }
 701        }
 702        return 0;
 703}
 704
 705static struct kern_memdesc *
 706kern_memory_descriptor (unsigned long phys_addr)
 707{
 708        struct kern_memdesc *md;
 709
 710        for (md = kern_memmap; md->start != ~0UL; md++) {
 711                if (phys_addr - md->start < (md->num_pages << EFI_PAGE_SHIFT))
 712                         return md;
 713        }
 714        return NULL;
 715}
 716
 717static efi_memory_desc_t *
 718efi_memory_descriptor (unsigned long phys_addr)
 719{
 720        void *efi_map_start, *efi_map_end, *p;
 721        efi_memory_desc_t *md;
 722        u64 efi_desc_size;
 723
 724        efi_map_start = __va(ia64_boot_param->efi_memmap);
 725        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 726        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 727
 728        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 729                md = p;
 730
 731                if (phys_addr - md->phys_addr < efi_md_size(md))
 732                         return md;
 733        }
 734        return NULL;
 735}
 736
 737static int
 738efi_memmap_intersects (unsigned long phys_addr, unsigned long size)
 739{
 740        void *efi_map_start, *efi_map_end, *p;
 741        efi_memory_desc_t *md;
 742        u64 efi_desc_size;
 743        unsigned long end;
 744
 745        efi_map_start = __va(ia64_boot_param->efi_memmap);
 746        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 747        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 748
 749        end = phys_addr + size;
 750
 751        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
 752                md = p;
 753                if (md->phys_addr < end && efi_md_end(md) > phys_addr)
 754                        return 1;
 755        }
 756        return 0;
 757}
 758
 759int
 760efi_mem_type (unsigned long phys_addr)
 761{
 762        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 763
 764        if (md)
 765                return md->type;
 766        return -EINVAL;
 767}
 768
 769u64
 770efi_mem_attributes (unsigned long phys_addr)
 771{
 772        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 773
 774        if (md)
 775                return md->attribute;
 776        return 0;
 777}
 778EXPORT_SYMBOL(efi_mem_attributes);
 779
 780u64
 781efi_mem_attribute (unsigned long phys_addr, unsigned long size)
 782{
 783        unsigned long end = phys_addr + size;
 784        efi_memory_desc_t *md = efi_memory_descriptor(phys_addr);
 785        u64 attr;
 786
 787        if (!md)
 788                return 0;
 789
 790        /*
 791         * EFI_MEMORY_RUNTIME is not a memory attribute; it just tells
 792         * the kernel that firmware needs this region mapped.
 793         */
 794        attr = md->attribute & ~EFI_MEMORY_RUNTIME;
 795        do {
 796                unsigned long md_end = efi_md_end(md);
 797
 798                if (end <= md_end)
 799                        return attr;
 800
 801                md = efi_memory_descriptor(md_end);
 802                if (!md || (md->attribute & ~EFI_MEMORY_RUNTIME) != attr)
 803                        return 0;
 804        } while (md);
 805        return 0;       /* never reached */
 806}
 807
 808u64
 809kern_mem_attribute (unsigned long phys_addr, unsigned long size)
 810{
 811        unsigned long end = phys_addr + size;
 812        struct kern_memdesc *md;
 813        u64 attr;
 814
 815        /*
 816         * This is a hack for ioremap calls before we set up kern_memmap.
 817         * Maybe we should do efi_memmap_init() earlier instead.
 818         */
 819        if (!kern_memmap) {
 820                attr = efi_mem_attribute(phys_addr, size);
 821                if (attr & EFI_MEMORY_WB)
 822                        return EFI_MEMORY_WB;
 823                return 0;
 824        }
 825
 826        md = kern_memory_descriptor(phys_addr);
 827        if (!md)
 828                return 0;
 829
 830        attr = md->attribute;
 831        do {
 832                unsigned long md_end = kmd_end(md);
 833
 834                if (end <= md_end)
 835                        return attr;
 836
 837                md = kern_memory_descriptor(md_end);
 838                if (!md || md->attribute != attr)
 839                        return 0;
 840        } while (md);
 841        return 0;       /* never reached */
 842}
 843
 844int
 845valid_phys_addr_range (phys_addr_t phys_addr, unsigned long size)
 846{
 847        u64 attr;
 848
 849        /*
 850         * /dev/mem reads and writes use copy_to_user(), which implicitly
 851         * uses a granule-sized kernel identity mapping.  It's really
 852         * only safe to do this for regions in kern_memmap.  For more
 853         * details, see Documentation/ia64/aliasing.rst.
 854         */
 855        attr = kern_mem_attribute(phys_addr, size);
 856        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 857                return 1;
 858        return 0;
 859}
 860
 861int
 862valid_mmap_phys_addr_range (unsigned long pfn, unsigned long size)
 863{
 864        unsigned long phys_addr = pfn << PAGE_SHIFT;
 865        u64 attr;
 866
 867        attr = efi_mem_attribute(phys_addr, size);
 868
 869        /*
 870         * /dev/mem mmap uses normal user pages, so we don't need the entire
 871         * granule, but the entire region we're mapping must support the same
 872         * attribute.
 873         */
 874        if (attr & EFI_MEMORY_WB || attr & EFI_MEMORY_UC)
 875                return 1;
 876
 877        /*
 878         * Intel firmware doesn't tell us about all the MMIO regions, so
 879         * in general we have to allow mmap requests.  But if EFI *does*
 880         * tell us about anything inside this region, we should deny it.
 881         * The user can always map a smaller region to avoid the overlap.
 882         */
 883        if (efi_memmap_intersects(phys_addr, size))
 884                return 0;
 885
 886        return 1;
 887}
 888
 889pgprot_t
 890phys_mem_access_prot(struct file *file, unsigned long pfn, unsigned long size,
 891                     pgprot_t vma_prot)
 892{
 893        unsigned long phys_addr = pfn << PAGE_SHIFT;
 894        u64 attr;
 895
 896        /*
 897         * For /dev/mem mmap, we use user mappings, but if the region is
 898         * in kern_memmap (and hence may be covered by a kernel mapping),
 899         * we must use the same attribute as the kernel mapping.
 900         */
 901        attr = kern_mem_attribute(phys_addr, size);
 902        if (attr & EFI_MEMORY_WB)
 903                return pgprot_cacheable(vma_prot);
 904        else if (attr & EFI_MEMORY_UC)
 905                return pgprot_noncached(vma_prot);
 906
 907        /*
 908         * Some chipsets don't support UC access to memory.  If
 909         * WB is supported, we prefer that.
 910         */
 911        if (efi_mem_attribute(phys_addr, size) & EFI_MEMORY_WB)
 912                return pgprot_cacheable(vma_prot);
 913
 914        return pgprot_noncached(vma_prot);
 915}
 916
 917int __init
 918efi_uart_console_only(void)
 919{
 920        efi_status_t status;
 921        char *s, name[] = "ConOut";
 922        efi_guid_t guid = EFI_GLOBAL_VARIABLE_GUID;
 923        efi_char16_t *utf16, name_utf16[32];
 924        unsigned char data[1024];
 925        unsigned long size = sizeof(data);
 926        struct efi_generic_dev_path *hdr, *end_addr;
 927        int uart = 0;
 928
 929        /* Convert to UTF-16 */
 930        utf16 = name_utf16;
 931        s = name;
 932        while (*s)
 933                *utf16++ = *s++ & 0x7f;
 934        *utf16 = 0;
 935
 936        status = efi.get_variable(name_utf16, &guid, NULL, &size, data);
 937        if (status != EFI_SUCCESS) {
 938                printk(KERN_ERR "No EFI %s variable?\n", name);
 939                return 0;
 940        }
 941
 942        hdr = (struct efi_generic_dev_path *) data;
 943        end_addr = (struct efi_generic_dev_path *) ((u8 *) data + size);
 944        while (hdr < end_addr) {
 945                if (hdr->type == EFI_DEV_MSG &&
 946                    hdr->sub_type == EFI_DEV_MSG_UART)
 947                        uart = 1;
 948                else if (hdr->type == EFI_DEV_END_PATH ||
 949                          hdr->type == EFI_DEV_END_PATH2) {
 950                        if (!uart)
 951                                return 0;
 952                        if (hdr->sub_type == EFI_DEV_END_ENTIRE)
 953                                return 1;
 954                        uart = 0;
 955                }
 956                hdr = (struct efi_generic_dev_path *)((u8 *) hdr + hdr->length);
 957        }
 958        printk(KERN_ERR "Malformed %s value\n", name);
 959        return 0;
 960}
 961
 962/*
 963 * Look for the first granule aligned memory descriptor memory
 964 * that is big enough to hold EFI memory map. Make sure this
 965 * descriptor is at least granule sized so it does not get trimmed
 966 */
 967struct kern_memdesc *
 968find_memmap_space (void)
 969{
 970        u64     contig_low=0, contig_high=0;
 971        u64     as = 0, ae;
 972        void *efi_map_start, *efi_map_end, *p, *q;
 973        efi_memory_desc_t *md, *pmd = NULL, *check_md;
 974        u64     space_needed, efi_desc_size;
 975        unsigned long total_mem = 0;
 976
 977        efi_map_start = __va(ia64_boot_param->efi_memmap);
 978        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
 979        efi_desc_size = ia64_boot_param->efi_memdesc_size;
 980
 981        /*
 982         * Worst case: we need 3 kernel descriptors for each efi descriptor
 983         * (if every entry has a WB part in the middle, and UC head and tail),
 984         * plus one for the end marker.
 985         */
 986        space_needed = sizeof(kern_memdesc_t) *
 987                (3 * (ia64_boot_param->efi_memmap_size/efi_desc_size) + 1);
 988
 989        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
 990                md = p;
 991                if (!efi_wb(md)) {
 992                        continue;
 993                }
 994                if (pmd == NULL || !efi_wb(pmd) ||
 995                    efi_md_end(pmd) != md->phys_addr) {
 996                        contig_low = GRANULEROUNDUP(md->phys_addr);
 997                        contig_high = efi_md_end(md);
 998                        for (q = p + efi_desc_size; q < efi_map_end;
 999                             q += efi_desc_size) {
1000                                check_md = q;
1001                                if (!efi_wb(check_md))
1002                                        break;
1003                                if (contig_high != check_md->phys_addr)
1004                                        break;
1005                                contig_high = efi_md_end(check_md);
1006                        }
1007                        contig_high = GRANULEROUNDDOWN(contig_high);
1008                }
1009                if (!is_memory_available(md) || md->type == EFI_LOADER_DATA)
1010                        continue;
1011
1012                /* Round ends inward to granule boundaries */
1013                as = max(contig_low, md->phys_addr);
1014                ae = min(contig_high, efi_md_end(md));
1015
1016                /* keep within max_addr= and min_addr= command line arg */
1017                as = max(as, min_addr);
1018                ae = min(ae, max_addr);
1019                if (ae <= as)
1020                        continue;
1021
1022                /* avoid going over mem= command line arg */
1023                if (total_mem + (ae - as) > mem_limit)
1024                        ae -= total_mem + (ae - as) - mem_limit;
1025
1026                if (ae <= as)
1027                        continue;
1028
1029                if (ae - as > space_needed)
1030                        break;
1031        }
1032        if (p >= efi_map_end)
1033                panic("Can't allocate space for kernel memory descriptors");
1034
1035        return __va(as);
1036}
1037
1038/*
1039 * Walk the EFI memory map and gather all memory available for kernel
1040 * to use.  We can allocate partial granules only if the unavailable
1041 * parts exist, and are WB.
1042 */
1043unsigned long
1044efi_memmap_init(u64 *s, u64 *e)
1045{
1046        struct kern_memdesc *k, *prev = NULL;
1047        u64     contig_low=0, contig_high=0;
1048        u64     as, ae, lim;
1049        void *efi_map_start, *efi_map_end, *p, *q;
1050        efi_memory_desc_t *md, *pmd = NULL, *check_md;
1051        u64     efi_desc_size;
1052        unsigned long total_mem = 0;
1053
1054        k = kern_memmap = find_memmap_space();
1055
1056        efi_map_start = __va(ia64_boot_param->efi_memmap);
1057        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1058        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1059
1060        for (p = efi_map_start; p < efi_map_end; pmd = md, p += efi_desc_size) {
1061                md = p;
1062                if (!efi_wb(md)) {
1063                        if (efi_uc(md) &&
1064                            (md->type == EFI_CONVENTIONAL_MEMORY ||
1065                             md->type == EFI_BOOT_SERVICES_DATA)) {
1066                                k->attribute = EFI_MEMORY_UC;
1067                                k->start = md->phys_addr;
1068                                k->num_pages = md->num_pages;
1069                                k++;
1070                        }
1071                        continue;
1072                }
1073                if (pmd == NULL || !efi_wb(pmd) ||
1074                    efi_md_end(pmd) != md->phys_addr) {
1075                        contig_low = GRANULEROUNDUP(md->phys_addr);
1076                        contig_high = efi_md_end(md);
1077                        for (q = p + efi_desc_size; q < efi_map_end;
1078                             q += efi_desc_size) {
1079                                check_md = q;
1080                                if (!efi_wb(check_md))
1081                                        break;
1082                                if (contig_high != check_md->phys_addr)
1083                                        break;
1084                                contig_high = efi_md_end(check_md);
1085                        }
1086                        contig_high = GRANULEROUNDDOWN(contig_high);
1087                }
1088                if (!is_memory_available(md))
1089                        continue;
1090
1091                /*
1092                 * Round ends inward to granule boundaries
1093                 * Give trimmings to uncached allocator
1094                 */
1095                if (md->phys_addr < contig_low) {
1096                        lim = min(efi_md_end(md), contig_low);
1097                        if (efi_uc(md)) {
1098                                if (k > kern_memmap &&
1099                                    (k-1)->attribute == EFI_MEMORY_UC &&
1100                                    kmd_end(k-1) == md->phys_addr) {
1101                                        (k-1)->num_pages +=
1102                                                (lim - md->phys_addr)
1103                                                >> EFI_PAGE_SHIFT;
1104                                } else {
1105                                        k->attribute = EFI_MEMORY_UC;
1106                                        k->start = md->phys_addr;
1107                                        k->num_pages = (lim - md->phys_addr)
1108                                                >> EFI_PAGE_SHIFT;
1109                                        k++;
1110                                }
1111                        }
1112                        as = contig_low;
1113                } else
1114                        as = md->phys_addr;
1115
1116                if (efi_md_end(md) > contig_high) {
1117                        lim = max(md->phys_addr, contig_high);
1118                        if (efi_uc(md)) {
1119                                if (lim == md->phys_addr && k > kern_memmap &&
1120                                    (k-1)->attribute == EFI_MEMORY_UC &&
1121                                    kmd_end(k-1) == md->phys_addr) {
1122                                        (k-1)->num_pages += md->num_pages;
1123                                } else {
1124                                        k->attribute = EFI_MEMORY_UC;
1125                                        k->start = lim;
1126                                        k->num_pages = (efi_md_end(md) - lim)
1127                                                >> EFI_PAGE_SHIFT;
1128                                        k++;
1129                                }
1130                        }
1131                        ae = contig_high;
1132                } else
1133                        ae = efi_md_end(md);
1134
1135                /* keep within max_addr= and min_addr= command line arg */
1136                as = max(as, min_addr);
1137                ae = min(ae, max_addr);
1138                if (ae <= as)
1139                        continue;
1140
1141                /* avoid going over mem= command line arg */
1142                if (total_mem + (ae - as) > mem_limit)
1143                        ae -= total_mem + (ae - as) - mem_limit;
1144
1145                if (ae <= as)
1146                        continue;
1147                if (prev && kmd_end(prev) == md->phys_addr) {
1148                        prev->num_pages += (ae - as) >> EFI_PAGE_SHIFT;
1149                        total_mem += ae - as;
1150                        continue;
1151                }
1152                k->attribute = EFI_MEMORY_WB;
1153                k->start = as;
1154                k->num_pages = (ae - as) >> EFI_PAGE_SHIFT;
1155                total_mem += ae - as;
1156                prev = k++;
1157        }
1158        k->start = ~0L; /* end-marker */
1159
1160        /* reserve the memory we are using for kern_memmap */
1161        *s = (u64)kern_memmap;
1162        *e = (u64)++k;
1163
1164        return total_mem;
1165}
1166
1167void
1168efi_initialize_iomem_resources(struct resource *code_resource,
1169                               struct resource *data_resource,
1170                               struct resource *bss_resource)
1171{
1172        struct resource *res;
1173        void *efi_map_start, *efi_map_end, *p;
1174        efi_memory_desc_t *md;
1175        u64 efi_desc_size;
1176        char *name;
1177        unsigned long flags, desc;
1178
1179        efi_map_start = __va(ia64_boot_param->efi_memmap);
1180        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1181        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1182
1183        res = NULL;
1184
1185        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1186                md = p;
1187
1188                if (md->num_pages == 0) /* should not happen */
1189                        continue;
1190
1191                flags = IORESOURCE_MEM | IORESOURCE_BUSY;
1192                desc = IORES_DESC_NONE;
1193
1194                switch (md->type) {
1195
1196                        case EFI_MEMORY_MAPPED_IO:
1197                        case EFI_MEMORY_MAPPED_IO_PORT_SPACE:
1198                                continue;
1199
1200                        case EFI_LOADER_CODE:
1201                        case EFI_LOADER_DATA:
1202                        case EFI_BOOT_SERVICES_DATA:
1203                        case EFI_BOOT_SERVICES_CODE:
1204                        case EFI_CONVENTIONAL_MEMORY:
1205                                if (md->attribute & EFI_MEMORY_WP) {
1206                                        name = "System ROM";
1207                                        flags |= IORESOURCE_READONLY;
1208                                } else if (md->attribute == EFI_MEMORY_UC) {
1209                                        name = "Uncached RAM";
1210                                } else {
1211                                        name = "System RAM";
1212                                        flags |= IORESOURCE_SYSRAM;
1213                                }
1214                                break;
1215
1216                        case EFI_ACPI_MEMORY_NVS:
1217                                name = "ACPI Non-volatile Storage";
1218                                desc = IORES_DESC_ACPI_NV_STORAGE;
1219                                break;
1220
1221                        case EFI_UNUSABLE_MEMORY:
1222                                name = "reserved";
1223                                flags |= IORESOURCE_DISABLED;
1224                                break;
1225
1226                        case EFI_PERSISTENT_MEMORY:
1227                                name = "Persistent Memory";
1228                                desc = IORES_DESC_PERSISTENT_MEMORY;
1229                                break;
1230
1231                        case EFI_RESERVED_TYPE:
1232                        case EFI_RUNTIME_SERVICES_CODE:
1233                        case EFI_RUNTIME_SERVICES_DATA:
1234                        case EFI_ACPI_RECLAIM_MEMORY:
1235                        default:
1236                                name = "reserved";
1237                                break;
1238                }
1239
1240                if ((res = kzalloc(sizeof(struct resource),
1241                                   GFP_KERNEL)) == NULL) {
1242                        printk(KERN_ERR
1243                               "failed to allocate resource for iomem\n");
1244                        return;
1245                }
1246
1247                res->name = name;
1248                res->start = md->phys_addr;
1249                res->end = md->phys_addr + efi_md_size(md) - 1;
1250                res->flags = flags;
1251                res->desc = desc;
1252
1253                if (insert_resource(&iomem_resource, res) < 0)
1254                        kfree(res);
1255                else {
1256                        /*
1257                         * We don't know which region contains
1258                         * kernel data so we try it repeatedly and
1259                         * let the resource manager test it.
1260                         */
1261                        insert_resource(res, code_resource);
1262                        insert_resource(res, data_resource);
1263                        insert_resource(res, bss_resource);
1264#ifdef CONFIG_KEXEC
1265                        insert_resource(res, &efi_memmap_res);
1266                        insert_resource(res, &boot_param_res);
1267                        if (crashk_res.end > crashk_res.start)
1268                                insert_resource(res, &crashk_res);
1269#endif
1270                }
1271        }
1272}
1273
1274#ifdef CONFIG_KEXEC
1275/* find a block of memory aligned to 64M exclude reserved regions
1276   rsvd_regions are sorted
1277 */
1278unsigned long __init
1279kdump_find_rsvd_region (unsigned long size, struct rsvd_region *r, int n)
1280{
1281        int i;
1282        u64 start, end;
1283        u64 alignment = 1UL << _PAGE_SIZE_64M;
1284        void *efi_map_start, *efi_map_end, *p;
1285        efi_memory_desc_t *md;
1286        u64 efi_desc_size;
1287
1288        efi_map_start = __va(ia64_boot_param->efi_memmap);
1289        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1290        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1291
1292        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1293                md = p;
1294                if (!efi_wb(md))
1295                        continue;
1296                start = ALIGN(md->phys_addr, alignment);
1297                end = efi_md_end(md);
1298                for (i = 0; i < n; i++) {
1299                        if (__pa(r[i].start) >= start && __pa(r[i].end) < end) {
1300                                if (__pa(r[i].start) > start + size)
1301                                        return start;
1302                                start = ALIGN(__pa(r[i].end), alignment);
1303                                if (i < n-1 &&
1304                                    __pa(r[i+1].start) < start + size)
1305                                        continue;
1306                                else
1307                                        break;
1308                        }
1309                }
1310                if (end > start + size)
1311                        return start;
1312        }
1313
1314        printk(KERN_WARNING
1315               "Cannot reserve 0x%lx byte of memory for crashdump\n", size);
1316        return ~0UL;
1317}
1318#endif
1319
1320#ifdef CONFIG_CRASH_DUMP
1321/* locate the size find a the descriptor at a certain address */
1322unsigned long __init
1323vmcore_find_descriptor_size (unsigned long address)
1324{
1325        void *efi_map_start, *efi_map_end, *p;
1326        efi_memory_desc_t *md;
1327        u64 efi_desc_size;
1328        unsigned long ret = 0;
1329
1330        efi_map_start = __va(ia64_boot_param->efi_memmap);
1331        efi_map_end   = efi_map_start + ia64_boot_param->efi_memmap_size;
1332        efi_desc_size = ia64_boot_param->efi_memdesc_size;
1333
1334        for (p = efi_map_start; p < efi_map_end; p += efi_desc_size) {
1335                md = p;
1336                if (efi_wb(md) && md->type == EFI_LOADER_DATA
1337                    && md->phys_addr == address) {
1338                        ret = efi_md_size(md);
1339                        break;
1340                }
1341        }
1342
1343        if (ret == 0)
1344                printk(KERN_WARNING "Cannot locate EFI vmcore descriptor\n");
1345
1346        return ret;
1347}
1348#endif
1349
1350char *efi_systab_show_arch(char *str)
1351{
1352        if (mps_phys != EFI_INVALID_TABLE_ADDR)
1353                str += sprintf(str, "MPS=0x%lx\n", mps_phys);
1354        if (hcdp_phys != EFI_INVALID_TABLE_ADDR)
1355                str += sprintf(str, "HCDP=0x%lx\n", hcdp_phys);
1356        return str;
1357}
1358