linux/arch/powerpc/mm/numa.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * pSeries NUMA support
   4 *
   5 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
   6 */
   7#define pr_fmt(fmt) "numa: " fmt
   8
   9#include <linux/threads.h>
  10#include <linux/memblock.h>
  11#include <linux/init.h>
  12#include <linux/mm.h>
  13#include <linux/mmzone.h>
  14#include <linux/export.h>
  15#include <linux/nodemask.h>
  16#include <linux/cpu.h>
  17#include <linux/notifier.h>
  18#include <linux/of.h>
  19#include <linux/pfn.h>
  20#include <linux/cpuset.h>
  21#include <linux/node.h>
  22#include <linux/stop_machine.h>
  23#include <linux/proc_fs.h>
  24#include <linux/seq_file.h>
  25#include <linux/uaccess.h>
  26#include <linux/slab.h>
  27#include <asm/cputhreads.h>
  28#include <asm/sparsemem.h>
  29#include <asm/prom.h>
  30#include <asm/smp.h>
  31#include <asm/topology.h>
  32#include <asm/firmware.h>
  33#include <asm/paca.h>
  34#include <asm/hvcall.h>
  35#include <asm/setup.h>
  36#include <asm/vdso.h>
  37#include <asm/drmem.h>
  38
  39static int numa_enabled = 1;
  40
  41static char *cmdline __initdata;
  42
  43static int numa_debug;
  44#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
  45
  46int numa_cpu_lookup_table[NR_CPUS];
  47cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
  48struct pglist_data *node_data[MAX_NUMNODES];
  49
  50EXPORT_SYMBOL(numa_cpu_lookup_table);
  51EXPORT_SYMBOL(node_to_cpumask_map);
  52EXPORT_SYMBOL(node_data);
  53
  54static int min_common_depth;
  55static int n_mem_addr_cells, n_mem_size_cells;
  56static int form1_affinity;
  57
  58#define MAX_DISTANCE_REF_POINTS 4
  59static int distance_ref_points_depth;
  60static const __be32 *distance_ref_points;
  61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
  62
  63/*
  64 * Allocate node_to_cpumask_map based on number of available nodes
  65 * Requires node_possible_map to be valid.
  66 *
  67 * Note: cpumask_of_node() is not valid until after this is done.
  68 */
  69static void __init setup_node_to_cpumask_map(void)
  70{
  71        unsigned int node;
  72
  73        /* setup nr_node_ids if not done yet */
  74        if (nr_node_ids == MAX_NUMNODES)
  75                setup_nr_node_ids();
  76
  77        /* allocate the map */
  78        for_each_node(node)
  79                alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
  80
  81        /* cpumask_of_node() will now work */
  82        dbg("Node to cpumask map for %u nodes\n", nr_node_ids);
  83}
  84
  85static int __init fake_numa_create_new_node(unsigned long end_pfn,
  86                                                unsigned int *nid)
  87{
  88        unsigned long long mem;
  89        char *p = cmdline;
  90        static unsigned int fake_nid;
  91        static unsigned long long curr_boundary;
  92
  93        /*
  94         * Modify node id, iff we started creating NUMA nodes
  95         * We want to continue from where we left of the last time
  96         */
  97        if (fake_nid)
  98                *nid = fake_nid;
  99        /*
 100         * In case there are no more arguments to parse, the
 101         * node_id should be the same as the last fake node id
 102         * (we've handled this above).
 103         */
 104        if (!p)
 105                return 0;
 106
 107        mem = memparse(p, &p);
 108        if (!mem)
 109                return 0;
 110
 111        if (mem < curr_boundary)
 112                return 0;
 113
 114        curr_boundary = mem;
 115
 116        if ((end_pfn << PAGE_SHIFT) > mem) {
 117                /*
 118                 * Skip commas and spaces
 119                 */
 120                while (*p == ',' || *p == ' ' || *p == '\t')
 121                        p++;
 122
 123                cmdline = p;
 124                fake_nid++;
 125                *nid = fake_nid;
 126                dbg("created new fake_node with id %d\n", fake_nid);
 127                return 1;
 128        }
 129        return 0;
 130}
 131
 132static void reset_numa_cpu_lookup_table(void)
 133{
 134        unsigned int cpu;
 135
 136        for_each_possible_cpu(cpu)
 137                numa_cpu_lookup_table[cpu] = -1;
 138}
 139
 140static void map_cpu_to_node(int cpu, int node)
 141{
 142        update_numa_cpu_lookup_table(cpu, node);
 143
 144        dbg("adding cpu %d to node %d\n", cpu, node);
 145
 146        if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
 147                cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
 148}
 149
 150#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
 151static void unmap_cpu_from_node(unsigned long cpu)
 152{
 153        int node = numa_cpu_lookup_table[cpu];
 154
 155        dbg("removing cpu %lu from node %d\n", cpu, node);
 156
 157        if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
 158                cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
 159        } else {
 160                printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 161                       cpu, node);
 162        }
 163}
 164#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
 165
 166int cpu_distance(__be32 *cpu1_assoc, __be32 *cpu2_assoc)
 167{
 168        int dist = 0;
 169
 170        int i, index;
 171
 172        for (i = 0; i < distance_ref_points_depth; i++) {
 173                index = be32_to_cpu(distance_ref_points[i]);
 174                if (cpu1_assoc[index] == cpu2_assoc[index])
 175                        break;
 176                dist++;
 177        }
 178
 179        return dist;
 180}
 181
 182/* must hold reference to node during call */
 183static const __be32 *of_get_associativity(struct device_node *dev)
 184{
 185        return of_get_property(dev, "ibm,associativity", NULL);
 186}
 187
 188int __node_distance(int a, int b)
 189{
 190        int i;
 191        int distance = LOCAL_DISTANCE;
 192
 193        if (!form1_affinity)
 194                return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
 195
 196        for (i = 0; i < distance_ref_points_depth; i++) {
 197                if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
 198                        break;
 199
 200                /* Double the distance for each NUMA level */
 201                distance *= 2;
 202        }
 203
 204        return distance;
 205}
 206EXPORT_SYMBOL(__node_distance);
 207
 208static void initialize_distance_lookup_table(int nid,
 209                const __be32 *associativity)
 210{
 211        int i;
 212
 213        if (!form1_affinity)
 214                return;
 215
 216        for (i = 0; i < distance_ref_points_depth; i++) {
 217                const __be32 *entry;
 218
 219                entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
 220                distance_lookup_table[nid][i] = of_read_number(entry, 1);
 221        }
 222}
 223
 224/*
 225 * Returns nid in the range [0..nr_node_ids], or -1 if no useful NUMA
 226 * info is found.
 227 */
 228static int associativity_to_nid(const __be32 *associativity)
 229{
 230        int nid = NUMA_NO_NODE;
 231
 232        if (!numa_enabled)
 233                goto out;
 234
 235        if (of_read_number(associativity, 1) >= min_common_depth)
 236                nid = of_read_number(&associativity[min_common_depth], 1);
 237
 238        /* POWER4 LPAR uses 0xffff as invalid node */
 239        if (nid == 0xffff || nid >= nr_node_ids)
 240                nid = NUMA_NO_NODE;
 241
 242        if (nid > 0 &&
 243                of_read_number(associativity, 1) >= distance_ref_points_depth) {
 244                /*
 245                 * Skip the length field and send start of associativity array
 246                 */
 247                initialize_distance_lookup_table(nid, associativity + 1);
 248        }
 249
 250out:
 251        return nid;
 252}
 253
 254/* Returns the nid associated with the given device tree node,
 255 * or -1 if not found.
 256 */
 257static int of_node_to_nid_single(struct device_node *device)
 258{
 259        int nid = NUMA_NO_NODE;
 260        const __be32 *tmp;
 261
 262        tmp = of_get_associativity(device);
 263        if (tmp)
 264                nid = associativity_to_nid(tmp);
 265        return nid;
 266}
 267
 268/* Walk the device tree upwards, looking for an associativity id */
 269int of_node_to_nid(struct device_node *device)
 270{
 271        int nid = NUMA_NO_NODE;
 272
 273        of_node_get(device);
 274        while (device) {
 275                nid = of_node_to_nid_single(device);
 276                if (nid != -1)
 277                        break;
 278
 279                device = of_get_next_parent(device);
 280        }
 281        of_node_put(device);
 282
 283        return nid;
 284}
 285EXPORT_SYMBOL(of_node_to_nid);
 286
 287static int __init find_min_common_depth(void)
 288{
 289        int depth;
 290        struct device_node *root;
 291
 292        if (firmware_has_feature(FW_FEATURE_OPAL))
 293                root = of_find_node_by_path("/ibm,opal");
 294        else
 295                root = of_find_node_by_path("/rtas");
 296        if (!root)
 297                root = of_find_node_by_path("/");
 298
 299        /*
 300         * This property is a set of 32-bit integers, each representing
 301         * an index into the ibm,associativity nodes.
 302         *
 303         * With form 0 affinity the first integer is for an SMP configuration
 304         * (should be all 0's) and the second is for a normal NUMA
 305         * configuration. We have only one level of NUMA.
 306         *
 307         * With form 1 affinity the first integer is the most significant
 308         * NUMA boundary and the following are progressively less significant
 309         * boundaries. There can be more than one level of NUMA.
 310         */
 311        distance_ref_points = of_get_property(root,
 312                                        "ibm,associativity-reference-points",
 313                                        &distance_ref_points_depth);
 314
 315        if (!distance_ref_points) {
 316                dbg("NUMA: ibm,associativity-reference-points not found.\n");
 317                goto err;
 318        }
 319
 320        distance_ref_points_depth /= sizeof(int);
 321
 322        if (firmware_has_feature(FW_FEATURE_OPAL) ||
 323            firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
 324                dbg("Using form 1 affinity\n");
 325                form1_affinity = 1;
 326        }
 327
 328        if (form1_affinity) {
 329                depth = of_read_number(distance_ref_points, 1);
 330        } else {
 331                if (distance_ref_points_depth < 2) {
 332                        printk(KERN_WARNING "NUMA: "
 333                                "short ibm,associativity-reference-points\n");
 334                        goto err;
 335                }
 336
 337                depth = of_read_number(&distance_ref_points[1], 1);
 338        }
 339
 340        /*
 341         * Warn and cap if the hardware supports more than
 342         * MAX_DISTANCE_REF_POINTS domains.
 343         */
 344        if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
 345                printk(KERN_WARNING "NUMA: distance array capped at "
 346                        "%d entries\n", MAX_DISTANCE_REF_POINTS);
 347                distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
 348        }
 349
 350        of_node_put(root);
 351        return depth;
 352
 353err:
 354        of_node_put(root);
 355        return -1;
 356}
 357
 358static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 359{
 360        struct device_node *memory = NULL;
 361
 362        memory = of_find_node_by_type(memory, "memory");
 363        if (!memory)
 364                panic("numa.c: No memory nodes found!");
 365
 366        *n_addr_cells = of_n_addr_cells(memory);
 367        *n_size_cells = of_n_size_cells(memory);
 368        of_node_put(memory);
 369}
 370
 371static unsigned long read_n_cells(int n, const __be32 **buf)
 372{
 373        unsigned long result = 0;
 374
 375        while (n--) {
 376                result = (result << 32) | of_read_number(*buf, 1);
 377                (*buf)++;
 378        }
 379        return result;
 380}
 381
 382struct assoc_arrays {
 383        u32     n_arrays;
 384        u32     array_sz;
 385        const __be32 *arrays;
 386};
 387
 388/*
 389 * Retrieve and validate the list of associativity arrays for drconf
 390 * memory from the ibm,associativity-lookup-arrays property of the
 391 * device tree..
 392 *
 393 * The layout of the ibm,associativity-lookup-arrays property is a number N
 394 * indicating the number of associativity arrays, followed by a number M
 395 * indicating the size of each associativity array, followed by a list
 396 * of N associativity arrays.
 397 */
 398static int of_get_assoc_arrays(struct assoc_arrays *aa)
 399{
 400        struct device_node *memory;
 401        const __be32 *prop;
 402        u32 len;
 403
 404        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 405        if (!memory)
 406                return -1;
 407
 408        prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 409        if (!prop || len < 2 * sizeof(unsigned int)) {
 410                of_node_put(memory);
 411                return -1;
 412        }
 413
 414        aa->n_arrays = of_read_number(prop++, 1);
 415        aa->array_sz = of_read_number(prop++, 1);
 416
 417        of_node_put(memory);
 418
 419        /* Now that we know the number of arrays and size of each array,
 420         * revalidate the size of the property read in.
 421         */
 422        if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 423                return -1;
 424
 425        aa->arrays = prop;
 426        return 0;
 427}
 428
 429/*
 430 * This is like of_node_to_nid_single() for memory represented in the
 431 * ibm,dynamic-reconfiguration-memory node.
 432 */
 433int of_drconf_to_nid_single(struct drmem_lmb *lmb)
 434{
 435        struct assoc_arrays aa = { .arrays = NULL };
 436        int default_nid = NUMA_NO_NODE;
 437        int nid = default_nid;
 438        int rc, index;
 439
 440        if ((min_common_depth < 0) || !numa_enabled)
 441                return default_nid;
 442
 443        rc = of_get_assoc_arrays(&aa);
 444        if (rc)
 445                return default_nid;
 446
 447        if (min_common_depth <= aa.array_sz &&
 448            !(lmb->flags & DRCONF_MEM_AI_INVALID) && lmb->aa_index < aa.n_arrays) {
 449                index = lmb->aa_index * aa.array_sz + min_common_depth - 1;
 450                nid = of_read_number(&aa.arrays[index], 1);
 451
 452                if (nid == 0xffff || nid >= nr_node_ids)
 453                        nid = default_nid;
 454
 455                if (nid > 0) {
 456                        index = lmb->aa_index * aa.array_sz;
 457                        initialize_distance_lookup_table(nid,
 458                                                        &aa.arrays[index]);
 459                }
 460        }
 461
 462        return nid;
 463}
 464
 465#ifdef CONFIG_PPC_SPLPAR
 466static int vphn_get_nid(long lcpu)
 467{
 468        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
 469        long rc, hwid;
 470
 471        /*
 472         * On a shared lpar, device tree will not have node associativity.
 473         * At this time lppaca, or its __old_status field may not be
 474         * updated. Hence kernel cannot detect if its on a shared lpar. So
 475         * request an explicit associativity irrespective of whether the
 476         * lpar is shared or dedicated. Use the device tree property as a
 477         * fallback. cpu_to_phys_id is only valid between
 478         * smp_setup_cpu_maps() and smp_setup_pacas().
 479         */
 480        if (firmware_has_feature(FW_FEATURE_VPHN)) {
 481                if (cpu_to_phys_id)
 482                        hwid = cpu_to_phys_id[lcpu];
 483                else
 484                        hwid = get_hard_smp_processor_id(lcpu);
 485
 486                rc = hcall_vphn(hwid, VPHN_FLAG_VCPU, associativity);
 487                if (rc == H_SUCCESS)
 488                        return associativity_to_nid(associativity);
 489        }
 490
 491        return NUMA_NO_NODE;
 492}
 493#else
 494static int vphn_get_nid(long unused)
 495{
 496        return NUMA_NO_NODE;
 497}
 498#endif  /* CONFIG_PPC_SPLPAR */
 499
 500/*
 501 * Figure out to which domain a cpu belongs and stick it there.
 502 * Return the id of the domain used.
 503 */
 504static int numa_setup_cpu(unsigned long lcpu)
 505{
 506        struct device_node *cpu;
 507        int fcpu = cpu_first_thread_sibling(lcpu);
 508        int nid = NUMA_NO_NODE;
 509
 510        if (!cpu_present(lcpu)) {
 511                set_cpu_numa_node(lcpu, first_online_node);
 512                return first_online_node;
 513        }
 514
 515        /*
 516         * If a valid cpu-to-node mapping is already available, use it
 517         * directly instead of querying the firmware, since it represents
 518         * the most recent mapping notified to us by the platform (eg: VPHN).
 519         * Since cpu_to_node binding remains the same for all threads in the
 520         * core. If a valid cpu-to-node mapping is already available, for
 521         * the first thread in the core, use it.
 522         */
 523        nid = numa_cpu_lookup_table[fcpu];
 524        if (nid >= 0) {
 525                map_cpu_to_node(lcpu, nid);
 526                return nid;
 527        }
 528
 529        nid = vphn_get_nid(lcpu);
 530        if (nid != NUMA_NO_NODE)
 531                goto out_present;
 532
 533        cpu = of_get_cpu_node(lcpu, NULL);
 534
 535        if (!cpu) {
 536                WARN_ON(1);
 537                if (cpu_present(lcpu))
 538                        goto out_present;
 539                else
 540                        goto out;
 541        }
 542
 543        nid = of_node_to_nid_single(cpu);
 544        of_node_put(cpu);
 545
 546out_present:
 547        if (nid < 0 || !node_possible(nid))
 548                nid = first_online_node;
 549
 550        /*
 551         * Update for the first thread of the core. All threads of a core
 552         * have to be part of the same node. This not only avoids querying
 553         * for every other thread in the core, but always avoids a case
 554         * where virtual node associativity change causes subsequent threads
 555         * of a core to be associated with different nid. However if first
 556         * thread is already online, expect it to have a valid mapping.
 557         */
 558        if (fcpu != lcpu) {
 559                WARN_ON(cpu_online(fcpu));
 560                map_cpu_to_node(fcpu, nid);
 561        }
 562
 563        map_cpu_to_node(lcpu, nid);
 564out:
 565        return nid;
 566}
 567
 568static void verify_cpu_node_mapping(int cpu, int node)
 569{
 570        int base, sibling, i;
 571
 572        /* Verify that all the threads in the core belong to the same node */
 573        base = cpu_first_thread_sibling(cpu);
 574
 575        for (i = 0; i < threads_per_core; i++) {
 576                sibling = base + i;
 577
 578                if (sibling == cpu || cpu_is_offline(sibling))
 579                        continue;
 580
 581                if (cpu_to_node(sibling) != node) {
 582                        WARN(1, "CPU thread siblings %d and %d don't belong"
 583                                " to the same node!\n", cpu, sibling);
 584                        break;
 585                }
 586        }
 587}
 588
 589/* Must run before sched domains notifier. */
 590static int ppc_numa_cpu_prepare(unsigned int cpu)
 591{
 592        int nid;
 593
 594        nid = numa_setup_cpu(cpu);
 595        verify_cpu_node_mapping(cpu, nid);
 596        return 0;
 597}
 598
 599static int ppc_numa_cpu_dead(unsigned int cpu)
 600{
 601#ifdef CONFIG_HOTPLUG_CPU
 602        unmap_cpu_from_node(cpu);
 603#endif
 604        return 0;
 605}
 606
 607/*
 608 * Check and possibly modify a memory region to enforce the memory limit.
 609 *
 610 * Returns the size the region should have to enforce the memory limit.
 611 * This will either be the original value of size, a truncated value,
 612 * or zero. If the returned value of size is 0 the region should be
 613 * discarded as it lies wholly above the memory limit.
 614 */
 615static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 616                                                      unsigned long size)
 617{
 618        /*
 619         * We use memblock_end_of_DRAM() in here instead of memory_limit because
 620         * we've already adjusted it for the limit and it takes care of
 621         * having memory holes below the limit.  Also, in the case of
 622         * iommu_is_off, memory_limit is not set but is implicitly enforced.
 623         */
 624
 625        if (start + size <= memblock_end_of_DRAM())
 626                return size;
 627
 628        if (start >= memblock_end_of_DRAM())
 629                return 0;
 630
 631        return memblock_end_of_DRAM() - start;
 632}
 633
 634/*
 635 * Reads the counter for a given entry in
 636 * linux,drconf-usable-memory property
 637 */
 638static inline int __init read_usm_ranges(const __be32 **usm)
 639{
 640        /*
 641         * For each lmb in ibm,dynamic-memory a corresponding
 642         * entry in linux,drconf-usable-memory property contains
 643         * a counter followed by that many (base, size) duple.
 644         * read the counter from linux,drconf-usable-memory
 645         */
 646        return read_n_cells(n_mem_size_cells, usm);
 647}
 648
 649/*
 650 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 651 * node.  This assumes n_mem_{addr,size}_cells have been set.
 652 */
 653static int __init numa_setup_drmem_lmb(struct drmem_lmb *lmb,
 654                                        const __be32 **usm,
 655                                        void *data)
 656{
 657        unsigned int ranges, is_kexec_kdump = 0;
 658        unsigned long base, size, sz;
 659        int nid;
 660
 661        /*
 662         * Skip this block if the reserved bit is set in flags (0x80)
 663         * or if the block is not assigned to this partition (0x8)
 664         */
 665        if ((lmb->flags & DRCONF_MEM_RESERVED)
 666            || !(lmb->flags & DRCONF_MEM_ASSIGNED))
 667                return 0;
 668
 669        if (*usm)
 670                is_kexec_kdump = 1;
 671
 672        base = lmb->base_addr;
 673        size = drmem_lmb_size();
 674        ranges = 1;
 675
 676        if (is_kexec_kdump) {
 677                ranges = read_usm_ranges(usm);
 678                if (!ranges) /* there are no (base, size) duple */
 679                        return 0;
 680        }
 681
 682        do {
 683                if (is_kexec_kdump) {
 684                        base = read_n_cells(n_mem_addr_cells, usm);
 685                        size = read_n_cells(n_mem_size_cells, usm);
 686                }
 687
 688                nid = of_drconf_to_nid_single(lmb);
 689                fake_numa_create_new_node(((base + size) >> PAGE_SHIFT),
 690                                          &nid);
 691                node_set_online(nid);
 692                sz = numa_enforce_memory_limit(base, size);
 693                if (sz)
 694                        memblock_set_node(base, sz, &memblock.memory, nid);
 695        } while (--ranges);
 696
 697        return 0;
 698}
 699
 700static int __init parse_numa_properties(void)
 701{
 702        struct device_node *memory;
 703        int default_nid = 0;
 704        unsigned long i;
 705
 706        if (numa_enabled == 0) {
 707                printk(KERN_WARNING "NUMA disabled by user\n");
 708                return -1;
 709        }
 710
 711        min_common_depth = find_min_common_depth();
 712
 713        if (min_common_depth < 0) {
 714                /*
 715                 * if we fail to parse min_common_depth from device tree
 716                 * mark the numa disabled, boot with numa disabled.
 717                 */
 718                numa_enabled = false;
 719                return min_common_depth;
 720        }
 721
 722        dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 723
 724        /*
 725         * Even though we connect cpus to numa domains later in SMP
 726         * init, we need to know the node ids now. This is because
 727         * each node to be onlined must have NODE_DATA etc backing it.
 728         */
 729        for_each_present_cpu(i) {
 730                struct device_node *cpu;
 731                int nid = vphn_get_nid(i);
 732
 733                /*
 734                 * Don't fall back to default_nid yet -- we will plug
 735                 * cpus into nodes once the memory scan has discovered
 736                 * the topology.
 737                 */
 738                if (nid == NUMA_NO_NODE) {
 739                        cpu = of_get_cpu_node(i, NULL);
 740                        BUG_ON(!cpu);
 741                        nid = of_node_to_nid_single(cpu);
 742                        of_node_put(cpu);
 743                }
 744
 745                node_set_online(nid);
 746        }
 747
 748        get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 749
 750        for_each_node_by_type(memory, "memory") {
 751                unsigned long start;
 752                unsigned long size;
 753                int nid;
 754                int ranges;
 755                const __be32 *memcell_buf;
 756                unsigned int len;
 757
 758                memcell_buf = of_get_property(memory,
 759                        "linux,usable-memory", &len);
 760                if (!memcell_buf || len <= 0)
 761                        memcell_buf = of_get_property(memory, "reg", &len);
 762                if (!memcell_buf || len <= 0)
 763                        continue;
 764
 765                /* ranges in cell */
 766                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 767new_range:
 768                /* these are order-sensitive, and modify the buffer pointer */
 769                start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 770                size = read_n_cells(n_mem_size_cells, &memcell_buf);
 771
 772                /*
 773                 * Assumption: either all memory nodes or none will
 774                 * have associativity properties.  If none, then
 775                 * everything goes to default_nid.
 776                 */
 777                nid = of_node_to_nid_single(memory);
 778                if (nid < 0)
 779                        nid = default_nid;
 780
 781                fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 782                node_set_online(nid);
 783
 784                size = numa_enforce_memory_limit(start, size);
 785                if (size)
 786                        memblock_set_node(start, size, &memblock.memory, nid);
 787
 788                if (--ranges)
 789                        goto new_range;
 790        }
 791
 792        /*
 793         * Now do the same thing for each MEMBLOCK listed in the
 794         * ibm,dynamic-memory property in the
 795         * ibm,dynamic-reconfiguration-memory node.
 796         */
 797        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 798        if (memory) {
 799                walk_drmem_lmbs(memory, NULL, numa_setup_drmem_lmb);
 800                of_node_put(memory);
 801        }
 802
 803        return 0;
 804}
 805
 806static void __init setup_nonnuma(void)
 807{
 808        unsigned long top_of_ram = memblock_end_of_DRAM();
 809        unsigned long total_ram = memblock_phys_mem_size();
 810        unsigned long start_pfn, end_pfn;
 811        unsigned int nid = 0;
 812        int i;
 813
 814        printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 815               top_of_ram, total_ram);
 816        printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 817               (top_of_ram - total_ram) >> 20);
 818
 819        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
 820                fake_numa_create_new_node(end_pfn, &nid);
 821                memblock_set_node(PFN_PHYS(start_pfn),
 822                                  PFN_PHYS(end_pfn - start_pfn),
 823                                  &memblock.memory, nid);
 824                node_set_online(nid);
 825        }
 826}
 827
 828void __init dump_numa_cpu_topology(void)
 829{
 830        unsigned int node;
 831        unsigned int cpu, count;
 832
 833        if (!numa_enabled)
 834                return;
 835
 836        for_each_online_node(node) {
 837                pr_info("Node %d CPUs:", node);
 838
 839                count = 0;
 840                /*
 841                 * If we used a CPU iterator here we would miss printing
 842                 * the holes in the cpumap.
 843                 */
 844                for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
 845                        if (cpumask_test_cpu(cpu,
 846                                        node_to_cpumask_map[node])) {
 847                                if (count == 0)
 848                                        pr_cont(" %u", cpu);
 849                                ++count;
 850                        } else {
 851                                if (count > 1)
 852                                        pr_cont("-%u", cpu - 1);
 853                                count = 0;
 854                        }
 855                }
 856
 857                if (count > 1)
 858                        pr_cont("-%u", nr_cpu_ids - 1);
 859                pr_cont("\n");
 860        }
 861}
 862
 863/* Initialize NODE_DATA for a node on the local memory */
 864static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
 865{
 866        u64 spanned_pages = end_pfn - start_pfn;
 867        const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
 868        u64 nd_pa;
 869        void *nd;
 870        int tnid;
 871
 872        nd_pa = memblock_phys_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
 873        if (!nd_pa)
 874                panic("Cannot allocate %zu bytes for node %d data\n",
 875                      nd_size, nid);
 876
 877        nd = __va(nd_pa);
 878
 879        /* report and initialize */
 880        pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
 881                nd_pa, nd_pa + nd_size - 1);
 882        tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
 883        if (tnid != nid)
 884                pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
 885
 886        node_data[nid] = nd;
 887        memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
 888        NODE_DATA(nid)->node_id = nid;
 889        NODE_DATA(nid)->node_start_pfn = start_pfn;
 890        NODE_DATA(nid)->node_spanned_pages = spanned_pages;
 891}
 892
 893static void __init find_possible_nodes(void)
 894{
 895        struct device_node *rtas;
 896        const __be32 *domains;
 897        int prop_length, max_nodes;
 898        u32 i;
 899
 900        if (!numa_enabled)
 901                return;
 902
 903        rtas = of_find_node_by_path("/rtas");
 904        if (!rtas)
 905                return;
 906
 907        /*
 908         * ibm,current-associativity-domains is a fairly recent property. If
 909         * it doesn't exist, then fallback on ibm,max-associativity-domains.
 910         * Current denotes what the platform can support compared to max
 911         * which denotes what the Hypervisor can support.
 912         */
 913        domains = of_get_property(rtas, "ibm,current-associativity-domains",
 914                                        &prop_length);
 915        if (!domains) {
 916                domains = of_get_property(rtas, "ibm,max-associativity-domains",
 917                                        &prop_length);
 918                if (!domains)
 919                        goto out;
 920        }
 921
 922        max_nodes = of_read_number(&domains[min_common_depth], 1);
 923        for (i = 0; i < max_nodes; i++) {
 924                if (!node_possible(i))
 925                        node_set(i, node_possible_map);
 926        }
 927
 928        prop_length /= sizeof(int);
 929        if (prop_length > min_common_depth + 2)
 930                coregroup_enabled = 1;
 931
 932out:
 933        of_node_put(rtas);
 934}
 935
 936void __init mem_topology_setup(void)
 937{
 938        int cpu;
 939
 940        /*
 941         * Linux/mm assumes node 0 to be online at boot. However this is not
 942         * true on PowerPC, where node 0 is similar to any other node, it
 943         * could be cpuless, memoryless node. So force node 0 to be offline
 944         * for now. This will prevent cpuless, memoryless node 0 showing up
 945         * unnecessarily as online. If a node has cpus or memory that need
 946         * to be online, then node will anyway be marked online.
 947         */
 948        node_set_offline(0);
 949
 950        if (parse_numa_properties())
 951                setup_nonnuma();
 952
 953        /*
 954         * Modify the set of possible NUMA nodes to reflect information
 955         * available about the set of online nodes, and the set of nodes
 956         * that we expect to make use of for this platform's affinity
 957         * calculations.
 958         */
 959        nodes_and(node_possible_map, node_possible_map, node_online_map);
 960
 961        find_possible_nodes();
 962
 963        setup_node_to_cpumask_map();
 964
 965        reset_numa_cpu_lookup_table();
 966
 967        for_each_possible_cpu(cpu) {
 968                /*
 969                 * Powerpc with CONFIG_NUMA always used to have a node 0,
 970                 * even if it was memoryless or cpuless. For all cpus that
 971                 * are possible but not present, cpu_to_node() would point
 972                 * to node 0. To remove a cpuless, memoryless dummy node,
 973                 * powerpc need to make sure all possible but not present
 974                 * cpu_to_node are set to a proper node.
 975                 */
 976                numa_setup_cpu(cpu);
 977        }
 978}
 979
 980void __init initmem_init(void)
 981{
 982        int nid;
 983
 984        max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
 985        max_pfn = max_low_pfn;
 986
 987        memblock_dump_all();
 988
 989        for_each_online_node(nid) {
 990                unsigned long start_pfn, end_pfn;
 991
 992                get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 993                setup_node_data(nid, start_pfn, end_pfn);
 994        }
 995
 996        sparse_init();
 997
 998        /*
 999         * We need the numa_cpu_lookup_table to be accurate for all CPUs,
1000         * even before we online them, so that we can use cpu_to_{node,mem}
1001         * early in boot, cf. smp_prepare_cpus().
1002         * _nocalls() + manual invocation is used because cpuhp is not yet
1003         * initialized for the boot CPU.
1004         */
1005        cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "powerpc/numa:prepare",
1006                                  ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
1007}
1008
1009static int __init early_numa(char *p)
1010{
1011        if (!p)
1012                return 0;
1013
1014        if (strstr(p, "off"))
1015                numa_enabled = 0;
1016
1017        if (strstr(p, "debug"))
1018                numa_debug = 1;
1019
1020        p = strstr(p, "fake=");
1021        if (p)
1022                cmdline = p + strlen("fake=");
1023
1024        return 0;
1025}
1026early_param("numa", early_numa);
1027
1028#ifdef CONFIG_MEMORY_HOTPLUG
1029/*
1030 * Find the node associated with a hot added memory section for
1031 * memory represented in the device tree by the property
1032 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1033 */
1034static int hot_add_drconf_scn_to_nid(unsigned long scn_addr)
1035{
1036        struct drmem_lmb *lmb;
1037        unsigned long lmb_size;
1038        int nid = NUMA_NO_NODE;
1039
1040        lmb_size = drmem_lmb_size();
1041
1042        for_each_drmem_lmb(lmb) {
1043                /* skip this block if it is reserved or not assigned to
1044                 * this partition */
1045                if ((lmb->flags & DRCONF_MEM_RESERVED)
1046                    || !(lmb->flags & DRCONF_MEM_ASSIGNED))
1047                        continue;
1048
1049                if ((scn_addr < lmb->base_addr)
1050                    || (scn_addr >= (lmb->base_addr + lmb_size)))
1051                        continue;
1052
1053                nid = of_drconf_to_nid_single(lmb);
1054                break;
1055        }
1056
1057        return nid;
1058}
1059
1060/*
1061 * Find the node associated with a hot added memory section for memory
1062 * represented in the device tree as a node (i.e. memory@XXXX) for
1063 * each memblock.
1064 */
1065static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1066{
1067        struct device_node *memory;
1068        int nid = NUMA_NO_NODE;
1069
1070        for_each_node_by_type(memory, "memory") {
1071                unsigned long start, size;
1072                int ranges;
1073                const __be32 *memcell_buf;
1074                unsigned int len;
1075
1076                memcell_buf = of_get_property(memory, "reg", &len);
1077                if (!memcell_buf || len <= 0)
1078                        continue;
1079
1080                /* ranges in cell */
1081                ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1082
1083                while (ranges--) {
1084                        start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1085                        size = read_n_cells(n_mem_size_cells, &memcell_buf);
1086
1087                        if ((scn_addr < start) || (scn_addr >= (start + size)))
1088                                continue;
1089
1090                        nid = of_node_to_nid_single(memory);
1091                        break;
1092                }
1093
1094                if (nid >= 0)
1095                        break;
1096        }
1097
1098        of_node_put(memory);
1099
1100        return nid;
1101}
1102
1103/*
1104 * Find the node associated with a hot added memory section.  Section
1105 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
1106 * sections are fully contained within a single MEMBLOCK.
1107 */
1108int hot_add_scn_to_nid(unsigned long scn_addr)
1109{
1110        struct device_node *memory = NULL;
1111        int nid;
1112
1113        if (!numa_enabled)
1114                return first_online_node;
1115
1116        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1117        if (memory) {
1118                nid = hot_add_drconf_scn_to_nid(scn_addr);
1119                of_node_put(memory);
1120        } else {
1121                nid = hot_add_node_scn_to_nid(scn_addr);
1122        }
1123
1124        if (nid < 0 || !node_possible(nid))
1125                nid = first_online_node;
1126
1127        return nid;
1128}
1129
1130static u64 hot_add_drconf_memory_max(void)
1131{
1132        struct device_node *memory = NULL;
1133        struct device_node *dn = NULL;
1134        const __be64 *lrdr = NULL;
1135
1136        dn = of_find_node_by_path("/rtas");
1137        if (dn) {
1138                lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1139                of_node_put(dn);
1140                if (lrdr)
1141                        return be64_to_cpup(lrdr);
1142        }
1143
1144        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1145        if (memory) {
1146                of_node_put(memory);
1147                return drmem_lmb_memory_max();
1148        }
1149        return 0;
1150}
1151
1152/*
1153 * memory_hotplug_max - return max address of memory that may be added
1154 *
1155 * This is currently only used on systems that support drconfig memory
1156 * hotplug.
1157 */
1158u64 memory_hotplug_max(void)
1159{
1160        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1161}
1162#endif /* CONFIG_MEMORY_HOTPLUG */
1163
1164/* Virtual Processor Home Node (VPHN) support */
1165#ifdef CONFIG_PPC_SPLPAR
1166static int topology_inited;
1167
1168/*
1169 * Retrieve the new associativity information for a virtual processor's
1170 * home node.
1171 */
1172static long vphn_get_associativity(unsigned long cpu,
1173                                        __be32 *associativity)
1174{
1175        long rc;
1176
1177        rc = hcall_vphn(get_hard_smp_processor_id(cpu),
1178                                VPHN_FLAG_VCPU, associativity);
1179
1180        switch (rc) {
1181        case H_SUCCESS:
1182                dbg("VPHN hcall succeeded. Reset polling...\n");
1183                goto out;
1184
1185        case H_FUNCTION:
1186                pr_err_ratelimited("VPHN unsupported. Disabling polling...\n");
1187                break;
1188        case H_HARDWARE:
1189                pr_err_ratelimited("hcall_vphn() experienced a hardware fault "
1190                        "preventing VPHN. Disabling polling...\n");
1191                break;
1192        case H_PARAMETER:
1193                pr_err_ratelimited("hcall_vphn() was passed an invalid parameter. "
1194                        "Disabling polling...\n");
1195                break;
1196        default:
1197                pr_err_ratelimited("hcall_vphn() returned %ld. Disabling polling...\n"
1198                        , rc);
1199                break;
1200        }
1201out:
1202        return rc;
1203}
1204
1205int find_and_online_cpu_nid(int cpu)
1206{
1207        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1208        int new_nid;
1209
1210        /* Use associativity from first thread for all siblings */
1211        if (vphn_get_associativity(cpu, associativity))
1212                return cpu_to_node(cpu);
1213
1214        new_nid = associativity_to_nid(associativity);
1215        if (new_nid < 0 || !node_possible(new_nid))
1216                new_nid = first_online_node;
1217
1218        if (NODE_DATA(new_nid) == NULL) {
1219#ifdef CONFIG_MEMORY_HOTPLUG
1220                /*
1221                 * Need to ensure that NODE_DATA is initialized for a node from
1222                 * available memory (see memblock_alloc_try_nid). If unable to
1223                 * init the node, then default to nearest node that has memory
1224                 * installed. Skip onlining a node if the subsystems are not
1225                 * yet initialized.
1226                 */
1227                if (!topology_inited || try_online_node(new_nid))
1228                        new_nid = first_online_node;
1229#else
1230                /*
1231                 * Default to using the nearest node that has memory installed.
1232                 * Otherwise, it would be necessary to patch the kernel MM code
1233                 * to deal with more memoryless-node error conditions.
1234                 */
1235                new_nid = first_online_node;
1236#endif
1237        }
1238
1239        pr_debug("%s:%d cpu %d nid %d\n", __FUNCTION__, __LINE__,
1240                cpu, new_nid);
1241        return new_nid;
1242}
1243
1244int cpu_to_coregroup_id(int cpu)
1245{
1246        __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1247        int index;
1248
1249        if (cpu < 0 || cpu > nr_cpu_ids)
1250                return -1;
1251
1252        if (!coregroup_enabled)
1253                goto out;
1254
1255        if (!firmware_has_feature(FW_FEATURE_VPHN))
1256                goto out;
1257
1258        if (vphn_get_associativity(cpu, associativity))
1259                goto out;
1260
1261        index = of_read_number(associativity, 1);
1262        if (index > min_common_depth + 1)
1263                return of_read_number(&associativity[index - 1], 1);
1264
1265out:
1266        return cpu_to_core_id(cpu);
1267}
1268
1269static int topology_update_init(void)
1270{
1271        topology_inited = 1;
1272        return 0;
1273}
1274device_initcall(topology_update_init);
1275#endif /* CONFIG_PPC_SPLPAR */
1276