linux/arch/x86/include/asm/efi.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _ASM_X86_EFI_H
   3#define _ASM_X86_EFI_H
   4
   5#include <asm/fpu/api.h>
   6#include <asm/processor-flags.h>
   7#include <asm/tlb.h>
   8#include <asm/nospec-branch.h>
   9#include <asm/mmu_context.h>
  10#include <linux/build_bug.h>
  11#include <linux/kernel.h>
  12#include <linux/pgtable.h>
  13
  14extern unsigned long efi_fw_vendor, efi_config_table;
  15
  16/*
  17 * We map the EFI regions needed for runtime services non-contiguously,
  18 * with preserved alignment on virtual addresses starting from -4G down
  19 * for a total max space of 64G. This way, we provide for stable runtime
  20 * services addresses across kernels so that a kexec'd kernel can still
  21 * use them.
  22 *
  23 * This is the main reason why we're doing stable VA mappings for RT
  24 * services.
  25 */
  26
  27#define EFI32_LOADER_SIGNATURE  "EL32"
  28#define EFI64_LOADER_SIGNATURE  "EL64"
  29
  30#define ARCH_EFI_IRQ_FLAGS_MASK X86_EFLAGS_IF
  31
  32/*
  33 * The EFI services are called through variadic functions in many cases. These
  34 * functions are implemented in assembler and support only a fixed number of
  35 * arguments. The macros below allows us to check at build time that we don't
  36 * try to call them with too many arguments.
  37 *
  38 * __efi_nargs() will return the number of arguments if it is 7 or less, and
  39 * cause a BUILD_BUG otherwise. The limitations of the C preprocessor make it
  40 * impossible to calculate the exact number of arguments beyond some
  41 * pre-defined limit. The maximum number of arguments currently supported by
  42 * any of the thunks is 7, so this is good enough for now and can be extended
  43 * in the obvious way if we ever need more.
  44 */
  45
  46#define __efi_nargs(...) __efi_nargs_(__VA_ARGS__)
  47#define __efi_nargs_(...) __efi_nargs__(0, ##__VA_ARGS__,       \
  48        __efi_arg_sentinel(7), __efi_arg_sentinel(6),           \
  49        __efi_arg_sentinel(5), __efi_arg_sentinel(4),           \
  50        __efi_arg_sentinel(3), __efi_arg_sentinel(2),           \
  51        __efi_arg_sentinel(1), __efi_arg_sentinel(0))
  52#define __efi_nargs__(_0, _1, _2, _3, _4, _5, _6, _7, n, ...)   \
  53        __take_second_arg(n,                                    \
  54                ({ BUILD_BUG_ON_MSG(1, "__efi_nargs limit exceeded"); 8; }))
  55#define __efi_arg_sentinel(n) , n
  56
  57/*
  58 * __efi_nargs_check(f, n, ...) will cause a BUILD_BUG if the ellipsis
  59 * represents more than n arguments.
  60 */
  61
  62#define __efi_nargs_check(f, n, ...)                                    \
  63        __efi_nargs_check_(f, __efi_nargs(__VA_ARGS__), n)
  64#define __efi_nargs_check_(f, p, n) __efi_nargs_check__(f, p, n)
  65#define __efi_nargs_check__(f, p, n) ({                                 \
  66        BUILD_BUG_ON_MSG(                                               \
  67                (p) > (n),                                              \
  68                #f " called with too many arguments (" #p ">" #n ")");  \
  69})
  70
  71#ifdef CONFIG_X86_32
  72#define arch_efi_call_virt_setup()                                      \
  73({                                                                      \
  74        kernel_fpu_begin();                                             \
  75        firmware_restrict_branch_speculation_start();                   \
  76})
  77
  78#define arch_efi_call_virt_teardown()                                   \
  79({                                                                      \
  80        firmware_restrict_branch_speculation_end();                     \
  81        kernel_fpu_end();                                               \
  82})
  83
  84#define arch_efi_call_virt(p, f, args...)       p->f(args)
  85
  86#else /* !CONFIG_X86_32 */
  87
  88#define EFI_LOADER_SIGNATURE    "EL64"
  89
  90extern asmlinkage u64 __efi_call(void *fp, ...);
  91
  92#define efi_call(...) ({                                                \
  93        __efi_nargs_check(efi_call, 7, __VA_ARGS__);                    \
  94        __efi_call(__VA_ARGS__);                                        \
  95})
  96
  97/*
  98 * struct efi_scratch - Scratch space used while switching to/from efi_mm
  99 * @phys_stack: stack used during EFI Mixed Mode
 100 * @prev_mm:    store/restore stolen mm_struct while switching to/from efi_mm
 101 */
 102struct efi_scratch {
 103        u64                     phys_stack;
 104        struct mm_struct        *prev_mm;
 105} __packed;
 106
 107#define arch_efi_call_virt_setup()                                      \
 108({                                                                      \
 109        efi_sync_low_kernel_mappings();                                 \
 110        kernel_fpu_begin();                                             \
 111        firmware_restrict_branch_speculation_start();                   \
 112        efi_switch_mm(&efi_mm);                                         \
 113})
 114
 115#define arch_efi_call_virt(p, f, args...)                               \
 116        efi_call((void *)p->f, args)                                    \
 117
 118#define arch_efi_call_virt_teardown()                                   \
 119({                                                                      \
 120        efi_switch_mm(efi_scratch.prev_mm);                             \
 121        firmware_restrict_branch_speculation_end();                     \
 122        kernel_fpu_end();                                               \
 123})
 124
 125#ifdef CONFIG_KASAN
 126/*
 127 * CONFIG_KASAN may redefine memset to __memset.  __memset function is present
 128 * only in kernel binary.  Since the EFI stub linked into a separate binary it
 129 * doesn't have __memset().  So we should use standard memset from
 130 * arch/x86/boot/compressed/string.c.  The same applies to memcpy and memmove.
 131 */
 132#undef memcpy
 133#undef memset
 134#undef memmove
 135#endif
 136
 137#endif /* CONFIG_X86_32 */
 138
 139extern struct efi_scratch efi_scratch;
 140extern int __init efi_memblock_x86_reserve_range(void);
 141extern void __init efi_print_memmap(void);
 142extern void __init efi_map_region(efi_memory_desc_t *md);
 143extern void __init efi_map_region_fixed(efi_memory_desc_t *md);
 144extern void efi_sync_low_kernel_mappings(void);
 145extern int __init efi_alloc_page_tables(void);
 146extern int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages);
 147extern void __init efi_runtime_update_mappings(void);
 148extern void __init efi_dump_pagetable(void);
 149extern void __init efi_apply_memmap_quirks(void);
 150extern int __init efi_reuse_config(u64 tables, int nr_tables);
 151extern void efi_delete_dummy_variable(void);
 152extern void efi_switch_mm(struct mm_struct *mm);
 153extern void efi_recover_from_page_fault(unsigned long phys_addr);
 154extern void efi_free_boot_services(void);
 155
 156/* kexec external ABI */
 157struct efi_setup_data {
 158        u64 fw_vendor;
 159        u64 __unused;
 160        u64 tables;
 161        u64 smbios;
 162        u64 reserved[8];
 163};
 164
 165extern u64 efi_setup;
 166
 167#ifdef CONFIG_EFI
 168extern efi_status_t __efi64_thunk(u32, ...);
 169
 170#define efi64_thunk(...) ({                                             \
 171        __efi_nargs_check(efi64_thunk, 6, __VA_ARGS__);                 \
 172        __efi64_thunk(__VA_ARGS__);                                     \
 173})
 174
 175static inline bool efi_is_mixed(void)
 176{
 177        if (!IS_ENABLED(CONFIG_EFI_MIXED))
 178                return false;
 179        return IS_ENABLED(CONFIG_X86_64) && !efi_enabled(EFI_64BIT);
 180}
 181
 182static inline bool efi_runtime_supported(void)
 183{
 184        if (IS_ENABLED(CONFIG_X86_64) == efi_enabled(EFI_64BIT))
 185                return true;
 186
 187        return IS_ENABLED(CONFIG_EFI_MIXED);
 188}
 189
 190extern void parse_efi_setup(u64 phys_addr, u32 data_len);
 191
 192extern void efifb_setup_from_dmi(struct screen_info *si, const char *opt);
 193
 194extern void efi_thunk_runtime_setup(void);
 195efi_status_t efi_set_virtual_address_map(unsigned long memory_map_size,
 196                                         unsigned long descriptor_size,
 197                                         u32 descriptor_version,
 198                                         efi_memory_desc_t *virtual_map,
 199                                         unsigned long systab_phys);
 200
 201/* arch specific definitions used by the stub code */
 202
 203#ifdef CONFIG_EFI_MIXED
 204
 205#define ARCH_HAS_EFISTUB_WRAPPERS
 206
 207static inline bool efi_is_64bit(void)
 208{
 209        extern const bool efi_is64;
 210
 211        return efi_is64;
 212}
 213
 214static inline bool efi_is_native(void)
 215{
 216        return efi_is_64bit();
 217}
 218
 219#define efi_mixed_mode_cast(attr)                                       \
 220        __builtin_choose_expr(                                          \
 221                __builtin_types_compatible_p(u32, __typeof__(attr)),    \
 222                        (unsigned long)(attr), (attr))
 223
 224#define efi_table_attr(inst, attr)                                      \
 225        (efi_is_native()                                                \
 226                ? inst->attr                                            \
 227                : (__typeof__(inst->attr))                              \
 228                        efi_mixed_mode_cast(inst->mixed_mode.attr))
 229
 230/*
 231 * The following macros allow translating arguments if necessary from native to
 232 * mixed mode. The use case for this is to initialize the upper 32 bits of
 233 * output parameters, and where the 32-bit method requires a 64-bit argument,
 234 * which must be split up into two arguments to be thunked properly.
 235 *
 236 * As examples, the AllocatePool boot service returns the address of the
 237 * allocation, but it will not set the high 32 bits of the address. To ensure
 238 * that the full 64-bit address is initialized, we zero-init the address before
 239 * calling the thunk.
 240 *
 241 * The FreePages boot service takes a 64-bit physical address even in 32-bit
 242 * mode. For the thunk to work correctly, a native 64-bit call of
 243 *      free_pages(addr, size)
 244 * must be translated to
 245 *      efi64_thunk(free_pages, addr & U32_MAX, addr >> 32, size)
 246 * so that the two 32-bit halves of addr get pushed onto the stack separately.
 247 */
 248
 249static inline void *efi64_zero_upper(void *p)
 250{
 251        ((u32 *)p)[1] = 0;
 252        return p;
 253}
 254
 255static inline u32 efi64_convert_status(efi_status_t status)
 256{
 257        return (u32)(status | (u64)status >> 32);
 258}
 259
 260#define __efi64_argmap_free_pages(addr, size)                           \
 261        ((addr), 0, (size))
 262
 263#define __efi64_argmap_get_memory_map(mm_size, mm, key, size, ver)      \
 264        ((mm_size), (mm), efi64_zero_upper(key), efi64_zero_upper(size), (ver))
 265
 266#define __efi64_argmap_allocate_pool(type, size, buffer)                \
 267        ((type), (size), efi64_zero_upper(buffer))
 268
 269#define __efi64_argmap_create_event(type, tpl, f, c, event)             \
 270        ((type), (tpl), (f), (c), efi64_zero_upper(event))
 271
 272#define __efi64_argmap_set_timer(event, type, time)                     \
 273        ((event), (type), lower_32_bits(time), upper_32_bits(time))
 274
 275#define __efi64_argmap_wait_for_event(num, event, index)                \
 276        ((num), (event), efi64_zero_upper(index))
 277
 278#define __efi64_argmap_handle_protocol(handle, protocol, interface)     \
 279        ((handle), (protocol), efi64_zero_upper(interface))
 280
 281#define __efi64_argmap_locate_protocol(protocol, reg, interface)        \
 282        ((protocol), (reg), efi64_zero_upper(interface))
 283
 284#define __efi64_argmap_locate_device_path(protocol, path, handle)       \
 285        ((protocol), (path), efi64_zero_upper(handle))
 286
 287#define __efi64_argmap_exit(handle, status, size, data)                 \
 288        ((handle), efi64_convert_status(status), (size), (data))
 289
 290/* PCI I/O */
 291#define __efi64_argmap_get_location(protocol, seg, bus, dev, func)      \
 292        ((protocol), efi64_zero_upper(seg), efi64_zero_upper(bus),      \
 293         efi64_zero_upper(dev), efi64_zero_upper(func))
 294
 295/* LoadFile */
 296#define __efi64_argmap_load_file(protocol, path, policy, bufsize, buf)  \
 297        ((protocol), (path), (policy), efi64_zero_upper(bufsize), (buf))
 298
 299/* Graphics Output Protocol */
 300#define __efi64_argmap_query_mode(gop, mode, size, info)                \
 301        ((gop), (mode), efi64_zero_upper(size), efi64_zero_upper(info))
 302
 303/*
 304 * The macros below handle the plumbing for the argument mapping. To add a
 305 * mapping for a specific EFI method, simply define a macro
 306 * __efi64_argmap_<method name>, following the examples above.
 307 */
 308
 309#define __efi64_thunk_map(inst, func, ...)                              \
 310        efi64_thunk(inst->mixed_mode.func,                              \
 311                __efi64_argmap(__efi64_argmap_ ## func(__VA_ARGS__),    \
 312                               (__VA_ARGS__)))
 313
 314#define __efi64_argmap(mapped, args)                                    \
 315        __PASTE(__efi64_argmap__, __efi_nargs(__efi_eat mapped))(mapped, args)
 316#define __efi64_argmap__0(mapped, args) __efi_eval mapped
 317#define __efi64_argmap__1(mapped, args) __efi_eval args
 318
 319#define __efi_eat(...)
 320#define __efi_eval(...) __VA_ARGS__
 321
 322/* The three macros below handle dispatching via the thunk if needed */
 323
 324#define efi_call_proto(inst, func, ...)                                 \
 325        (efi_is_native()                                                \
 326                ? inst->func(inst, ##__VA_ARGS__)                       \
 327                : __efi64_thunk_map(inst, func, inst, ##__VA_ARGS__))
 328
 329#define efi_bs_call(func, ...)                                          \
 330        (efi_is_native()                                                \
 331                ? efi_system_table->boottime->func(__VA_ARGS__)         \
 332                : __efi64_thunk_map(efi_table_attr(efi_system_table,    \
 333                                                   boottime),           \
 334                                    func, __VA_ARGS__))
 335
 336#define efi_rt_call(func, ...)                                          \
 337        (efi_is_native()                                                \
 338                ? efi_system_table->runtime->func(__VA_ARGS__)          \
 339                : __efi64_thunk_map(efi_table_attr(efi_system_table,    \
 340                                                   runtime),            \
 341                                    func, __VA_ARGS__))
 342
 343#else /* CONFIG_EFI_MIXED */
 344
 345static inline bool efi_is_64bit(void)
 346{
 347        return IS_ENABLED(CONFIG_X86_64);
 348}
 349
 350#endif /* CONFIG_EFI_MIXED */
 351
 352extern bool efi_reboot_required(void);
 353extern bool efi_is_table_address(unsigned long phys_addr);
 354
 355extern void efi_find_mirror(void);
 356extern void efi_reserve_boot_services(void);
 357#else
 358static inline void parse_efi_setup(u64 phys_addr, u32 data_len) {}
 359static inline bool efi_reboot_required(void)
 360{
 361        return false;
 362}
 363static inline  bool efi_is_table_address(unsigned long phys_addr)
 364{
 365        return false;
 366}
 367static inline void efi_find_mirror(void)
 368{
 369}
 370static inline void efi_reserve_boot_services(void)
 371{
 372}
 373#endif /* CONFIG_EFI */
 374
 375#ifdef CONFIG_EFI_FAKE_MEMMAP
 376extern void __init efi_fake_memmap_early(void);
 377#else
 378static inline void efi_fake_memmap_early(void)
 379{
 380}
 381#endif
 382
 383#define arch_ima_efi_boot_mode  \
 384        ({ extern struct boot_params boot_params; boot_params.secure_boot; })
 385
 386#endif /* _ASM_X86_EFI_H */
 387