linux/arch/x86/kvm/mmu.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef __KVM_X86_MMU_H
   3#define __KVM_X86_MMU_H
   4
   5#include <linux/kvm_host.h>
   6#include "kvm_cache_regs.h"
   7#include "cpuid.h"
   8
   9#define PT64_PT_BITS 9
  10#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  11#define PT32_PT_BITS 10
  12#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  13
  14#define PT_WRITABLE_SHIFT 1
  15#define PT_USER_SHIFT 2
  16
  17#define PT_PRESENT_MASK (1ULL << 0)
  18#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  19#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
  20#define PT_PWT_MASK (1ULL << 3)
  21#define PT_PCD_MASK (1ULL << 4)
  22#define PT_ACCESSED_SHIFT 5
  23#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
  24#define PT_DIRTY_SHIFT 6
  25#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
  26#define PT_PAGE_SIZE_SHIFT 7
  27#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
  28#define PT_PAT_MASK (1ULL << 7)
  29#define PT_GLOBAL_MASK (1ULL << 8)
  30#define PT64_NX_SHIFT 63
  31#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
  32
  33#define PT_PAT_SHIFT 7
  34#define PT_DIR_PAT_SHIFT 12
  35#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  36
  37#define PT32_DIR_PSE36_SIZE 4
  38#define PT32_DIR_PSE36_SHIFT 13
  39#define PT32_DIR_PSE36_MASK \
  40        (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  41
  42#define PT64_ROOT_5LEVEL 5
  43#define PT64_ROOT_4LEVEL 4
  44#define PT32_ROOT_LEVEL 2
  45#define PT32E_ROOT_LEVEL 3
  46
  47static __always_inline u64 rsvd_bits(int s, int e)
  48{
  49        BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
  50
  51        if (__builtin_constant_p(e))
  52                BUILD_BUG_ON(e > 63);
  53        else
  54                e &= 63;
  55
  56        if (e < s)
  57                return 0;
  58
  59        return ((2ULL << (e - s)) - 1) << s;
  60}
  61
  62void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask);
  63
  64void
  65reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
  66
  67void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
  68void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
  69                             gpa_t nested_cr3);
  70void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
  71                             bool accessed_dirty, gpa_t new_eptp);
  72bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
  73int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
  74                                u64 fault_address, char *insn, int insn_len);
  75
  76static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
  77{
  78        if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
  79                return 0;
  80
  81        return kvm_mmu_load(vcpu);
  82}
  83
  84static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
  85{
  86        BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
  87
  88        return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
  89               ? cr3 & X86_CR3_PCID_MASK
  90               : 0;
  91}
  92
  93static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
  94{
  95        return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
  96}
  97
  98static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
  99{
 100        u64 root_hpa = vcpu->arch.mmu->root_hpa;
 101
 102        if (!VALID_PAGE(root_hpa))
 103                return;
 104
 105        kvm_x86_ops.load_mmu_pgd(vcpu, root_hpa | kvm_get_active_pcid(vcpu),
 106                                 vcpu->arch.mmu->shadow_root_level);
 107}
 108
 109int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
 110                       bool prefault);
 111
 112static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
 113                                        u32 err, bool prefault)
 114{
 115#ifdef CONFIG_RETPOLINE
 116        if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
 117                return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
 118#endif
 119        return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
 120}
 121
 122/*
 123 * Currently, we have two sorts of write-protection, a) the first one
 124 * write-protects guest page to sync the guest modification, b) another one is
 125 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
 126 * between these two sorts are:
 127 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
 128 * 2) the first case requires flushing tlb immediately avoiding corrupting
 129 *    shadow page table between all vcpus so it should be in the protection of
 130 *    mmu-lock. And the another case does not need to flush tlb until returning
 131 *    the dirty bitmap to userspace since it only write-protects the page
 132 *    logged in the bitmap, that means the page in the dirty bitmap is not
 133 *    missed, so it can flush tlb out of mmu-lock.
 134 *
 135 * So, there is the problem: the first case can meet the corrupted tlb caused
 136 * by another case which write-protects pages but without flush tlb
 137 * immediately. In order to making the first case be aware this problem we let
 138 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
 139 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
 140 *
 141 * Anyway, whenever a spte is updated (only permission and status bits are
 142 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
 143 * readonly, if that happens, we need to flush tlb. Fortunately,
 144 * mmu_spte_update() has already handled it perfectly.
 145 *
 146 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
 147 * - if we want to see if it has writable tlb entry or if the spte can be
 148 *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
 149 *   case, otherwise
 150 * - if we fix page fault on the spte or do write-protection by dirty logging,
 151 *   check PT_WRITABLE_MASK.
 152 *
 153 * TODO: introduce APIs to split these two cases.
 154 */
 155static inline int is_writable_pte(unsigned long pte)
 156{
 157        return pte & PT_WRITABLE_MASK;
 158}
 159
 160static inline bool is_write_protection(struct kvm_vcpu *vcpu)
 161{
 162        return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 163}
 164
 165/*
 166 * Check if a given access (described through the I/D, W/R and U/S bits of a
 167 * page fault error code pfec) causes a permission fault with the given PTE
 168 * access rights (in ACC_* format).
 169 *
 170 * Return zero if the access does not fault; return the page fault error code
 171 * if the access faults.
 172 */
 173static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 174                                  unsigned pte_access, unsigned pte_pkey,
 175                                  unsigned pfec)
 176{
 177        int cpl = kvm_x86_ops.get_cpl(vcpu);
 178        unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
 179
 180        /*
 181         * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 182         *
 183         * If CPL = 3, SMAP applies to all supervisor-mode data accesses
 184         * (these are implicit supervisor accesses) regardless of the value
 185         * of EFLAGS.AC.
 186         *
 187         * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
 188         * the result in X86_EFLAGS_AC. We then insert it in place of
 189         * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
 190         * but it will be one in index if SMAP checks are being overridden.
 191         * It is important to keep this branchless.
 192         */
 193        unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
 194        int index = (pfec >> 1) +
 195                    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 196        bool fault = (mmu->permissions[index] >> pte_access) & 1;
 197        u32 errcode = PFERR_PRESENT_MASK;
 198
 199        WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
 200        if (unlikely(mmu->pkru_mask)) {
 201                u32 pkru_bits, offset;
 202
 203                /*
 204                * PKRU defines 32 bits, there are 16 domains and 2
 205                * attribute bits per domain in pkru.  pte_pkey is the
 206                * index of the protection domain, so pte_pkey * 2 is
 207                * is the index of the first bit for the domain.
 208                */
 209                pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
 210
 211                /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
 212                offset = (pfec & ~1) +
 213                        ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
 214
 215                pkru_bits &= mmu->pkru_mask >> offset;
 216                errcode |= -pkru_bits & PFERR_PK_MASK;
 217                fault |= (pkru_bits != 0);
 218        }
 219
 220        return -(u32)fault & errcode;
 221}
 222
 223void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
 224
 225int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
 226
 227int kvm_mmu_post_init_vm(struct kvm *kvm);
 228void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
 229
 230#endif
 231