linux/arch/x86/mm/fault.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *  Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
   5 *  Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
   6 */
   7#include <linux/sched.h>                /* test_thread_flag(), ...      */
   8#include <linux/sched/task_stack.h>     /* task_stack_*(), ...          */
   9#include <linux/kdebug.h>               /* oops_begin/end, ...          */
  10#include <linux/extable.h>              /* search_exception_tables      */
  11#include <linux/memblock.h>             /* max_low_pfn                  */
  12#include <linux/kprobes.h>              /* NOKPROBE_SYMBOL, ...         */
  13#include <linux/mmiotrace.h>            /* kmmio_handler, ...           */
  14#include <linux/perf_event.h>           /* perf_sw_event                */
  15#include <linux/hugetlb.h>              /* hstate_index_to_shift        */
  16#include <linux/prefetch.h>             /* prefetchw                    */
  17#include <linux/context_tracking.h>     /* exception_enter(), ...       */
  18#include <linux/uaccess.h>              /* faulthandler_disabled()      */
  19#include <linux/efi.h>                  /* efi_recover_from_page_fault()*/
  20#include <linux/mm_types.h>
  21
  22#include <asm/cpufeature.h>             /* boot_cpu_has, ...            */
  23#include <asm/traps.h>                  /* dotraplinkage, ...           */
  24#include <asm/fixmap.h>                 /* VSYSCALL_ADDR                */
  25#include <asm/vsyscall.h>               /* emulate_vsyscall             */
  26#include <asm/vm86.h>                   /* struct vm86                  */
  27#include <asm/mmu_context.h>            /* vma_pkey()                   */
  28#include <asm/efi.h>                    /* efi_recover_from_page_fault()*/
  29#include <asm/desc.h>                   /* store_idt(), ...             */
  30#include <asm/cpu_entry_area.h>         /* exception stack              */
  31#include <asm/pgtable_areas.h>          /* VMALLOC_START, ...           */
  32#include <asm/kvm_para.h>               /* kvm_handle_async_pf          */
  33#include <asm/vdso.h>                   /* fixup_vdso_exception()       */
  34
  35#define CREATE_TRACE_POINTS
  36#include <asm/trace/exceptions.h>
  37
  38/*
  39 * Returns 0 if mmiotrace is disabled, or if the fault is not
  40 * handled by mmiotrace:
  41 */
  42static nokprobe_inline int
  43kmmio_fault(struct pt_regs *regs, unsigned long addr)
  44{
  45        if (unlikely(is_kmmio_active()))
  46                if (kmmio_handler(regs, addr) == 1)
  47                        return -1;
  48        return 0;
  49}
  50
  51/*
  52 * Prefetch quirks:
  53 *
  54 * 32-bit mode:
  55 *
  56 *   Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
  57 *   Check that here and ignore it.
  58 *
  59 * 64-bit mode:
  60 *
  61 *   Sometimes the CPU reports invalid exceptions on prefetch.
  62 *   Check that here and ignore it.
  63 *
  64 * Opcode checker based on code by Richard Brunner.
  65 */
  66static inline int
  67check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
  68                      unsigned char opcode, int *prefetch)
  69{
  70        unsigned char instr_hi = opcode & 0xf0;
  71        unsigned char instr_lo = opcode & 0x0f;
  72
  73        switch (instr_hi) {
  74        case 0x20:
  75        case 0x30:
  76                /*
  77                 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
  78                 * In X86_64 long mode, the CPU will signal invalid
  79                 * opcode if some of these prefixes are present so
  80                 * X86_64 will never get here anyway
  81                 */
  82                return ((instr_lo & 7) == 0x6);
  83#ifdef CONFIG_X86_64
  84        case 0x40:
  85                /*
  86                 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
  87                 * Need to figure out under what instruction mode the
  88                 * instruction was issued. Could check the LDT for lm,
  89                 * but for now it's good enough to assume that long
  90                 * mode only uses well known segments or kernel.
  91                 */
  92                return (!user_mode(regs) || user_64bit_mode(regs));
  93#endif
  94        case 0x60:
  95                /* 0x64 thru 0x67 are valid prefixes in all modes. */
  96                return (instr_lo & 0xC) == 0x4;
  97        case 0xF0:
  98                /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
  99                return !instr_lo || (instr_lo>>1) == 1;
 100        case 0x00:
 101                /* Prefetch instruction is 0x0F0D or 0x0F18 */
 102                if (get_kernel_nofault(opcode, instr))
 103                        return 0;
 104
 105                *prefetch = (instr_lo == 0xF) &&
 106                        (opcode == 0x0D || opcode == 0x18);
 107                return 0;
 108        default:
 109                return 0;
 110        }
 111}
 112
 113static int
 114is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
 115{
 116        unsigned char *max_instr;
 117        unsigned char *instr;
 118        int prefetch = 0;
 119
 120        /*
 121         * If it was a exec (instruction fetch) fault on NX page, then
 122         * do not ignore the fault:
 123         */
 124        if (error_code & X86_PF_INSTR)
 125                return 0;
 126
 127        instr = (void *)convert_ip_to_linear(current, regs);
 128        max_instr = instr + 15;
 129
 130        if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
 131                return 0;
 132
 133        while (instr < max_instr) {
 134                unsigned char opcode;
 135
 136                if (get_kernel_nofault(opcode, instr))
 137                        break;
 138
 139                instr++;
 140
 141                if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
 142                        break;
 143        }
 144        return prefetch;
 145}
 146
 147DEFINE_SPINLOCK(pgd_lock);
 148LIST_HEAD(pgd_list);
 149
 150#ifdef CONFIG_X86_32
 151static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
 152{
 153        unsigned index = pgd_index(address);
 154        pgd_t *pgd_k;
 155        p4d_t *p4d, *p4d_k;
 156        pud_t *pud, *pud_k;
 157        pmd_t *pmd, *pmd_k;
 158
 159        pgd += index;
 160        pgd_k = init_mm.pgd + index;
 161
 162        if (!pgd_present(*pgd_k))
 163                return NULL;
 164
 165        /*
 166         * set_pgd(pgd, *pgd_k); here would be useless on PAE
 167         * and redundant with the set_pmd() on non-PAE. As would
 168         * set_p4d/set_pud.
 169         */
 170        p4d = p4d_offset(pgd, address);
 171        p4d_k = p4d_offset(pgd_k, address);
 172        if (!p4d_present(*p4d_k))
 173                return NULL;
 174
 175        pud = pud_offset(p4d, address);
 176        pud_k = pud_offset(p4d_k, address);
 177        if (!pud_present(*pud_k))
 178                return NULL;
 179
 180        pmd = pmd_offset(pud, address);
 181        pmd_k = pmd_offset(pud_k, address);
 182
 183        if (pmd_present(*pmd) != pmd_present(*pmd_k))
 184                set_pmd(pmd, *pmd_k);
 185
 186        if (!pmd_present(*pmd_k))
 187                return NULL;
 188        else
 189                BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
 190
 191        return pmd_k;
 192}
 193
 194/*
 195 *   Handle a fault on the vmalloc or module mapping area
 196 *
 197 *   This is needed because there is a race condition between the time
 198 *   when the vmalloc mapping code updates the PMD to the point in time
 199 *   where it synchronizes this update with the other page-tables in the
 200 *   system.
 201 *
 202 *   In this race window another thread/CPU can map an area on the same
 203 *   PMD, finds it already present and does not synchronize it with the
 204 *   rest of the system yet. As a result v[mz]alloc might return areas
 205 *   which are not mapped in every page-table in the system, causing an
 206 *   unhandled page-fault when they are accessed.
 207 */
 208static noinline int vmalloc_fault(unsigned long address)
 209{
 210        unsigned long pgd_paddr;
 211        pmd_t *pmd_k;
 212        pte_t *pte_k;
 213
 214        /* Make sure we are in vmalloc area: */
 215        if (!(address >= VMALLOC_START && address < VMALLOC_END))
 216                return -1;
 217
 218        /*
 219         * Synchronize this task's top level page-table
 220         * with the 'reference' page table.
 221         *
 222         * Do _not_ use "current" here. We might be inside
 223         * an interrupt in the middle of a task switch..
 224         */
 225        pgd_paddr = read_cr3_pa();
 226        pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
 227        if (!pmd_k)
 228                return -1;
 229
 230        if (pmd_large(*pmd_k))
 231                return 0;
 232
 233        pte_k = pte_offset_kernel(pmd_k, address);
 234        if (!pte_present(*pte_k))
 235                return -1;
 236
 237        return 0;
 238}
 239NOKPROBE_SYMBOL(vmalloc_fault);
 240
 241void arch_sync_kernel_mappings(unsigned long start, unsigned long end)
 242{
 243        unsigned long addr;
 244
 245        for (addr = start & PMD_MASK;
 246             addr >= TASK_SIZE_MAX && addr < VMALLOC_END;
 247             addr += PMD_SIZE) {
 248                struct page *page;
 249
 250                spin_lock(&pgd_lock);
 251                list_for_each_entry(page, &pgd_list, lru) {
 252                        spinlock_t *pgt_lock;
 253
 254                        /* the pgt_lock only for Xen */
 255                        pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
 256
 257                        spin_lock(pgt_lock);
 258                        vmalloc_sync_one(page_address(page), addr);
 259                        spin_unlock(pgt_lock);
 260                }
 261                spin_unlock(&pgd_lock);
 262        }
 263}
 264
 265/*
 266 * Did it hit the DOS screen memory VA from vm86 mode?
 267 */
 268static inline void
 269check_v8086_mode(struct pt_regs *regs, unsigned long address,
 270                 struct task_struct *tsk)
 271{
 272#ifdef CONFIG_VM86
 273        unsigned long bit;
 274
 275        if (!v8086_mode(regs) || !tsk->thread.vm86)
 276                return;
 277
 278        bit = (address - 0xA0000) >> PAGE_SHIFT;
 279        if (bit < 32)
 280                tsk->thread.vm86->screen_bitmap |= 1 << bit;
 281#endif
 282}
 283
 284static bool low_pfn(unsigned long pfn)
 285{
 286        return pfn < max_low_pfn;
 287}
 288
 289static void dump_pagetable(unsigned long address)
 290{
 291        pgd_t *base = __va(read_cr3_pa());
 292        pgd_t *pgd = &base[pgd_index(address)];
 293        p4d_t *p4d;
 294        pud_t *pud;
 295        pmd_t *pmd;
 296        pte_t *pte;
 297
 298#ifdef CONFIG_X86_PAE
 299        pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
 300        if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
 301                goto out;
 302#define pr_pde pr_cont
 303#else
 304#define pr_pde pr_info
 305#endif
 306        p4d = p4d_offset(pgd, address);
 307        pud = pud_offset(p4d, address);
 308        pmd = pmd_offset(pud, address);
 309        pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
 310#undef pr_pde
 311
 312        /*
 313         * We must not directly access the pte in the highpte
 314         * case if the page table is located in highmem.
 315         * And let's rather not kmap-atomic the pte, just in case
 316         * it's allocated already:
 317         */
 318        if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
 319                goto out;
 320
 321        pte = pte_offset_kernel(pmd, address);
 322        pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
 323out:
 324        pr_cont("\n");
 325}
 326
 327#else /* CONFIG_X86_64: */
 328
 329#ifdef CONFIG_CPU_SUP_AMD
 330static const char errata93_warning[] =
 331KERN_ERR 
 332"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
 333"******* Working around it, but it may cause SEGVs or burn power.\n"
 334"******* Please consider a BIOS update.\n"
 335"******* Disabling USB legacy in the BIOS may also help.\n";
 336#endif
 337
 338/*
 339 * No vm86 mode in 64-bit mode:
 340 */
 341static inline void
 342check_v8086_mode(struct pt_regs *regs, unsigned long address,
 343                 struct task_struct *tsk)
 344{
 345}
 346
 347static int bad_address(void *p)
 348{
 349        unsigned long dummy;
 350
 351        return get_kernel_nofault(dummy, (unsigned long *)p);
 352}
 353
 354static void dump_pagetable(unsigned long address)
 355{
 356        pgd_t *base = __va(read_cr3_pa());
 357        pgd_t *pgd = base + pgd_index(address);
 358        p4d_t *p4d;
 359        pud_t *pud;
 360        pmd_t *pmd;
 361        pte_t *pte;
 362
 363        if (bad_address(pgd))
 364                goto bad;
 365
 366        pr_info("PGD %lx ", pgd_val(*pgd));
 367
 368        if (!pgd_present(*pgd))
 369                goto out;
 370
 371        p4d = p4d_offset(pgd, address);
 372        if (bad_address(p4d))
 373                goto bad;
 374
 375        pr_cont("P4D %lx ", p4d_val(*p4d));
 376        if (!p4d_present(*p4d) || p4d_large(*p4d))
 377                goto out;
 378
 379        pud = pud_offset(p4d, address);
 380        if (bad_address(pud))
 381                goto bad;
 382
 383        pr_cont("PUD %lx ", pud_val(*pud));
 384        if (!pud_present(*pud) || pud_large(*pud))
 385                goto out;
 386
 387        pmd = pmd_offset(pud, address);
 388        if (bad_address(pmd))
 389                goto bad;
 390
 391        pr_cont("PMD %lx ", pmd_val(*pmd));
 392        if (!pmd_present(*pmd) || pmd_large(*pmd))
 393                goto out;
 394
 395        pte = pte_offset_kernel(pmd, address);
 396        if (bad_address(pte))
 397                goto bad;
 398
 399        pr_cont("PTE %lx", pte_val(*pte));
 400out:
 401        pr_cont("\n");
 402        return;
 403bad:
 404        pr_info("BAD\n");
 405}
 406
 407#endif /* CONFIG_X86_64 */
 408
 409/*
 410 * Workaround for K8 erratum #93 & buggy BIOS.
 411 *
 412 * BIOS SMM functions are required to use a specific workaround
 413 * to avoid corruption of the 64bit RIP register on C stepping K8.
 414 *
 415 * A lot of BIOS that didn't get tested properly miss this.
 416 *
 417 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
 418 * Try to work around it here.
 419 *
 420 * Note we only handle faults in kernel here.
 421 * Does nothing on 32-bit.
 422 */
 423static int is_errata93(struct pt_regs *regs, unsigned long address)
 424{
 425#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
 426        if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
 427            || boot_cpu_data.x86 != 0xf)
 428                return 0;
 429
 430        if (address != regs->ip)
 431                return 0;
 432
 433        if ((address >> 32) != 0)
 434                return 0;
 435
 436        address |= 0xffffffffUL << 32;
 437        if ((address >= (u64)_stext && address <= (u64)_etext) ||
 438            (address >= MODULES_VADDR && address <= MODULES_END)) {
 439                printk_once(errata93_warning);
 440                regs->ip = address;
 441                return 1;
 442        }
 443#endif
 444        return 0;
 445}
 446
 447/*
 448 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
 449 * to illegal addresses >4GB.
 450 *
 451 * We catch this in the page fault handler because these addresses
 452 * are not reachable. Just detect this case and return.  Any code
 453 * segment in LDT is compatibility mode.
 454 */
 455static int is_errata100(struct pt_regs *regs, unsigned long address)
 456{
 457#ifdef CONFIG_X86_64
 458        if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
 459                return 1;
 460#endif
 461        return 0;
 462}
 463
 464/* Pentium F0 0F C7 C8 bug workaround: */
 465static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
 466{
 467#ifdef CONFIG_X86_F00F_BUG
 468        if (boot_cpu_has_bug(X86_BUG_F00F) && idt_is_f00f_address(address)) {
 469                handle_invalid_op(regs);
 470                return 1;
 471        }
 472#endif
 473        return 0;
 474}
 475
 476static void show_ldttss(const struct desc_ptr *gdt, const char *name, u16 index)
 477{
 478        u32 offset = (index >> 3) * sizeof(struct desc_struct);
 479        unsigned long addr;
 480        struct ldttss_desc desc;
 481
 482        if (index == 0) {
 483                pr_alert("%s: NULL\n", name);
 484                return;
 485        }
 486
 487        if (offset + sizeof(struct ldttss_desc) >= gdt->size) {
 488                pr_alert("%s: 0x%hx -- out of bounds\n", name, index);
 489                return;
 490        }
 491
 492        if (copy_from_kernel_nofault(&desc, (void *)(gdt->address + offset),
 493                              sizeof(struct ldttss_desc))) {
 494                pr_alert("%s: 0x%hx -- GDT entry is not readable\n",
 495                         name, index);
 496                return;
 497        }
 498
 499        addr = desc.base0 | (desc.base1 << 16) | ((unsigned long)desc.base2 << 24);
 500#ifdef CONFIG_X86_64
 501        addr |= ((u64)desc.base3 << 32);
 502#endif
 503        pr_alert("%s: 0x%hx -- base=0x%lx limit=0x%x\n",
 504                 name, index, addr, (desc.limit0 | (desc.limit1 << 16)));
 505}
 506
 507static void
 508show_fault_oops(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 509{
 510        if (!oops_may_print())
 511                return;
 512
 513        if (error_code & X86_PF_INSTR) {
 514                unsigned int level;
 515                pgd_t *pgd;
 516                pte_t *pte;
 517
 518                pgd = __va(read_cr3_pa());
 519                pgd += pgd_index(address);
 520
 521                pte = lookup_address_in_pgd(pgd, address, &level);
 522
 523                if (pte && pte_present(*pte) && !pte_exec(*pte))
 524                        pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
 525                                from_kuid(&init_user_ns, current_uid()));
 526                if (pte && pte_present(*pte) && pte_exec(*pte) &&
 527                                (pgd_flags(*pgd) & _PAGE_USER) &&
 528                                (__read_cr4() & X86_CR4_SMEP))
 529                        pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
 530                                from_kuid(&init_user_ns, current_uid()));
 531        }
 532
 533        if (address < PAGE_SIZE && !user_mode(regs))
 534                pr_alert("BUG: kernel NULL pointer dereference, address: %px\n",
 535                        (void *)address);
 536        else
 537                pr_alert("BUG: unable to handle page fault for address: %px\n",
 538                        (void *)address);
 539
 540        pr_alert("#PF: %s %s in %s mode\n",
 541                 (error_code & X86_PF_USER)  ? "user" : "supervisor",
 542                 (error_code & X86_PF_INSTR) ? "instruction fetch" :
 543                 (error_code & X86_PF_WRITE) ? "write access" :
 544                                               "read access",
 545                             user_mode(regs) ? "user" : "kernel");
 546        pr_alert("#PF: error_code(0x%04lx) - %s\n", error_code,
 547                 !(error_code & X86_PF_PROT) ? "not-present page" :
 548                 (error_code & X86_PF_RSVD)  ? "reserved bit violation" :
 549                 (error_code & X86_PF_PK)    ? "protection keys violation" :
 550                                               "permissions violation");
 551
 552        if (!(error_code & X86_PF_USER) && user_mode(regs)) {
 553                struct desc_ptr idt, gdt;
 554                u16 ldtr, tr;
 555
 556                /*
 557                 * This can happen for quite a few reasons.  The more obvious
 558                 * ones are faults accessing the GDT, or LDT.  Perhaps
 559                 * surprisingly, if the CPU tries to deliver a benign or
 560                 * contributory exception from user code and gets a page fault
 561                 * during delivery, the page fault can be delivered as though
 562                 * it originated directly from user code.  This could happen
 563                 * due to wrong permissions on the IDT, GDT, LDT, TSS, or
 564                 * kernel or IST stack.
 565                 */
 566                store_idt(&idt);
 567
 568                /* Usable even on Xen PV -- it's just slow. */
 569                native_store_gdt(&gdt);
 570
 571                pr_alert("IDT: 0x%lx (limit=0x%hx) GDT: 0x%lx (limit=0x%hx)\n",
 572                         idt.address, idt.size, gdt.address, gdt.size);
 573
 574                store_ldt(ldtr);
 575                show_ldttss(&gdt, "LDTR", ldtr);
 576
 577                store_tr(tr);
 578                show_ldttss(&gdt, "TR", tr);
 579        }
 580
 581        dump_pagetable(address);
 582}
 583
 584static noinline void
 585pgtable_bad(struct pt_regs *regs, unsigned long error_code,
 586            unsigned long address)
 587{
 588        struct task_struct *tsk;
 589        unsigned long flags;
 590        int sig;
 591
 592        flags = oops_begin();
 593        tsk = current;
 594        sig = SIGKILL;
 595
 596        printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
 597               tsk->comm, address);
 598        dump_pagetable(address);
 599
 600        if (__die("Bad pagetable", regs, error_code))
 601                sig = 0;
 602
 603        oops_end(flags, regs, sig);
 604}
 605
 606static void sanitize_error_code(unsigned long address,
 607                                unsigned long *error_code)
 608{
 609        /*
 610         * To avoid leaking information about the kernel page
 611         * table layout, pretend that user-mode accesses to
 612         * kernel addresses are always protection faults.
 613         *
 614         * NB: This means that failed vsyscalls with vsyscall=none
 615         * will have the PROT bit.  This doesn't leak any
 616         * information and does not appear to cause any problems.
 617         */
 618        if (address >= TASK_SIZE_MAX)
 619                *error_code |= X86_PF_PROT;
 620}
 621
 622static void set_signal_archinfo(unsigned long address,
 623                                unsigned long error_code)
 624{
 625        struct task_struct *tsk = current;
 626
 627        tsk->thread.trap_nr = X86_TRAP_PF;
 628        tsk->thread.error_code = error_code | X86_PF_USER;
 629        tsk->thread.cr2 = address;
 630}
 631
 632static noinline void
 633no_context(struct pt_regs *regs, unsigned long error_code,
 634           unsigned long address, int signal, int si_code)
 635{
 636        struct task_struct *tsk = current;
 637        unsigned long flags;
 638        int sig;
 639
 640        if (user_mode(regs)) {
 641                /*
 642                 * This is an implicit supervisor-mode access from user
 643                 * mode.  Bypass all the kernel-mode recovery code and just
 644                 * OOPS.
 645                 */
 646                goto oops;
 647        }
 648
 649        /* Are we prepared to handle this kernel fault? */
 650        if (fixup_exception(regs, X86_TRAP_PF, error_code, address)) {
 651                /*
 652                 * Any interrupt that takes a fault gets the fixup. This makes
 653                 * the below recursive fault logic only apply to a faults from
 654                 * task context.
 655                 */
 656                if (in_interrupt())
 657                        return;
 658
 659                /*
 660                 * Per the above we're !in_interrupt(), aka. task context.
 661                 *
 662                 * In this case we need to make sure we're not recursively
 663                 * faulting through the emulate_vsyscall() logic.
 664                 */
 665                if (current->thread.sig_on_uaccess_err && signal) {
 666                        sanitize_error_code(address, &error_code);
 667
 668                        set_signal_archinfo(address, error_code);
 669
 670                        /* XXX: hwpoison faults will set the wrong code. */
 671                        force_sig_fault(signal, si_code, (void __user *)address);
 672                }
 673
 674                /*
 675                 * Barring that, we can do the fixup and be happy.
 676                 */
 677                return;
 678        }
 679
 680#ifdef CONFIG_VMAP_STACK
 681        /*
 682         * Stack overflow?  During boot, we can fault near the initial
 683         * stack in the direct map, but that's not an overflow -- check
 684         * that we're in vmalloc space to avoid this.
 685         */
 686        if (is_vmalloc_addr((void *)address) &&
 687            (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
 688             address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
 689                unsigned long stack = __this_cpu_ist_top_va(DF) - sizeof(void *);
 690                /*
 691                 * We're likely to be running with very little stack space
 692                 * left.  It's plausible that we'd hit this condition but
 693                 * double-fault even before we get this far, in which case
 694                 * we're fine: the double-fault handler will deal with it.
 695                 *
 696                 * We don't want to make it all the way into the oops code
 697                 * and then double-fault, though, because we're likely to
 698                 * break the console driver and lose most of the stack dump.
 699                 */
 700                asm volatile ("movq %[stack], %%rsp\n\t"
 701                              "call handle_stack_overflow\n\t"
 702                              "1: jmp 1b"
 703                              : ASM_CALL_CONSTRAINT
 704                              : "D" ("kernel stack overflow (page fault)"),
 705                                "S" (regs), "d" (address),
 706                                [stack] "rm" (stack));
 707                unreachable();
 708        }
 709#endif
 710
 711        /*
 712         * 32-bit:
 713         *
 714         *   Valid to do another page fault here, because if this fault
 715         *   had been triggered by is_prefetch fixup_exception would have
 716         *   handled it.
 717         *
 718         * 64-bit:
 719         *
 720         *   Hall of shame of CPU/BIOS bugs.
 721         */
 722        if (is_prefetch(regs, error_code, address))
 723                return;
 724
 725        if (is_errata93(regs, address))
 726                return;
 727
 728        /*
 729         * Buggy firmware could access regions which might page fault, try to
 730         * recover from such faults.
 731         */
 732        if (IS_ENABLED(CONFIG_EFI))
 733                efi_recover_from_page_fault(address);
 734
 735oops:
 736        /*
 737         * Oops. The kernel tried to access some bad page. We'll have to
 738         * terminate things with extreme prejudice:
 739         */
 740        flags = oops_begin();
 741
 742        show_fault_oops(regs, error_code, address);
 743
 744        if (task_stack_end_corrupted(tsk))
 745                printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
 746
 747        sig = SIGKILL;
 748        if (__die("Oops", regs, error_code))
 749                sig = 0;
 750
 751        /* Executive summary in case the body of the oops scrolled away */
 752        printk(KERN_DEFAULT "CR2: %016lx\n", address);
 753
 754        oops_end(flags, regs, sig);
 755}
 756
 757/*
 758 * Print out info about fatal segfaults, if the show_unhandled_signals
 759 * sysctl is set:
 760 */
 761static inline void
 762show_signal_msg(struct pt_regs *regs, unsigned long error_code,
 763                unsigned long address, struct task_struct *tsk)
 764{
 765        const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
 766
 767        if (!unhandled_signal(tsk, SIGSEGV))
 768                return;
 769
 770        if (!printk_ratelimit())
 771                return;
 772
 773        printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
 774                loglvl, tsk->comm, task_pid_nr(tsk), address,
 775                (void *)regs->ip, (void *)regs->sp, error_code);
 776
 777        print_vma_addr(KERN_CONT " in ", regs->ip);
 778
 779        printk(KERN_CONT "\n");
 780
 781        show_opcodes(regs, loglvl);
 782}
 783
 784/*
 785 * The (legacy) vsyscall page is the long page in the kernel portion
 786 * of the address space that has user-accessible permissions.
 787 */
 788static bool is_vsyscall_vaddr(unsigned long vaddr)
 789{
 790        return unlikely((vaddr & PAGE_MASK) == VSYSCALL_ADDR);
 791}
 792
 793static void
 794__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 795                       unsigned long address, u32 pkey, int si_code)
 796{
 797        struct task_struct *tsk = current;
 798
 799        /* User mode accesses just cause a SIGSEGV */
 800        if (user_mode(regs) && (error_code & X86_PF_USER)) {
 801                /*
 802                 * It's possible to have interrupts off here:
 803                 */
 804                local_irq_enable();
 805
 806                /*
 807                 * Valid to do another page fault here because this one came
 808                 * from user space:
 809                 */
 810                if (is_prefetch(regs, error_code, address))
 811                        return;
 812
 813                if (is_errata100(regs, address))
 814                        return;
 815
 816                sanitize_error_code(address, &error_code);
 817
 818                if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 819                        return;
 820
 821                if (likely(show_unhandled_signals))
 822                        show_signal_msg(regs, error_code, address, tsk);
 823
 824                set_signal_archinfo(address, error_code);
 825
 826                if (si_code == SEGV_PKUERR)
 827                        force_sig_pkuerr((void __user *)address, pkey);
 828
 829                force_sig_fault(SIGSEGV, si_code, (void __user *)address);
 830
 831                local_irq_disable();
 832
 833                return;
 834        }
 835
 836        if (is_f00f_bug(regs, address))
 837                return;
 838
 839        no_context(regs, error_code, address, SIGSEGV, si_code);
 840}
 841
 842static noinline void
 843bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
 844                     unsigned long address)
 845{
 846        __bad_area_nosemaphore(regs, error_code, address, 0, SEGV_MAPERR);
 847}
 848
 849static void
 850__bad_area(struct pt_regs *regs, unsigned long error_code,
 851           unsigned long address, u32 pkey, int si_code)
 852{
 853        struct mm_struct *mm = current->mm;
 854        /*
 855         * Something tried to access memory that isn't in our memory map..
 856         * Fix it, but check if it's kernel or user first..
 857         */
 858        mmap_read_unlock(mm);
 859
 860        __bad_area_nosemaphore(regs, error_code, address, pkey, si_code);
 861}
 862
 863static noinline void
 864bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
 865{
 866        __bad_area(regs, error_code, address, 0, SEGV_MAPERR);
 867}
 868
 869static inline bool bad_area_access_from_pkeys(unsigned long error_code,
 870                struct vm_area_struct *vma)
 871{
 872        /* This code is always called on the current mm */
 873        bool foreign = false;
 874
 875        if (!boot_cpu_has(X86_FEATURE_OSPKE))
 876                return false;
 877        if (error_code & X86_PF_PK)
 878                return true;
 879        /* this checks permission keys on the VMA: */
 880        if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
 881                                       (error_code & X86_PF_INSTR), foreign))
 882                return true;
 883        return false;
 884}
 885
 886static noinline void
 887bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
 888                      unsigned long address, struct vm_area_struct *vma)
 889{
 890        /*
 891         * This OSPKE check is not strictly necessary at runtime.
 892         * But, doing it this way allows compiler optimizations
 893         * if pkeys are compiled out.
 894         */
 895        if (bad_area_access_from_pkeys(error_code, vma)) {
 896                /*
 897                 * A protection key fault means that the PKRU value did not allow
 898                 * access to some PTE.  Userspace can figure out what PKRU was
 899                 * from the XSAVE state.  This function captures the pkey from
 900                 * the vma and passes it to userspace so userspace can discover
 901                 * which protection key was set on the PTE.
 902                 *
 903                 * If we get here, we know that the hardware signaled a X86_PF_PK
 904                 * fault and that there was a VMA once we got in the fault
 905                 * handler.  It does *not* guarantee that the VMA we find here
 906                 * was the one that we faulted on.
 907                 *
 908                 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
 909                 * 2. T1   : set PKRU to deny access to pkey=4, touches page
 910                 * 3. T1   : faults...
 911                 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
 912                 * 5. T1   : enters fault handler, takes mmap_lock, etc...
 913                 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
 914                 *           faulted on a pte with its pkey=4.
 915                 */
 916                u32 pkey = vma_pkey(vma);
 917
 918                __bad_area(regs, error_code, address, pkey, SEGV_PKUERR);
 919        } else {
 920                __bad_area(regs, error_code, address, 0, SEGV_ACCERR);
 921        }
 922}
 923
 924static void
 925do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
 926          vm_fault_t fault)
 927{
 928        /* Kernel mode? Handle exceptions or die: */
 929        if (!(error_code & X86_PF_USER)) {
 930                no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
 931                return;
 932        }
 933
 934        /* User-space => ok to do another page fault: */
 935        if (is_prefetch(regs, error_code, address))
 936                return;
 937
 938        sanitize_error_code(address, &error_code);
 939
 940        if (fixup_vdso_exception(regs, X86_TRAP_PF, error_code, address))
 941                return;
 942
 943        set_signal_archinfo(address, error_code);
 944
 945#ifdef CONFIG_MEMORY_FAILURE
 946        if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
 947                struct task_struct *tsk = current;
 948                unsigned lsb = 0;
 949
 950                pr_err(
 951        "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
 952                        tsk->comm, tsk->pid, address);
 953                if (fault & VM_FAULT_HWPOISON_LARGE)
 954                        lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
 955                if (fault & VM_FAULT_HWPOISON)
 956                        lsb = PAGE_SHIFT;
 957                force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
 958                return;
 959        }
 960#endif
 961        force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
 962}
 963
 964static noinline void
 965mm_fault_error(struct pt_regs *regs, unsigned long error_code,
 966               unsigned long address, vm_fault_t fault)
 967{
 968        if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
 969                no_context(regs, error_code, address, 0, 0);
 970                return;
 971        }
 972
 973        if (fault & VM_FAULT_OOM) {
 974                /* Kernel mode? Handle exceptions or die: */
 975                if (!(error_code & X86_PF_USER)) {
 976                        no_context(regs, error_code, address,
 977                                   SIGSEGV, SEGV_MAPERR);
 978                        return;
 979                }
 980
 981                /*
 982                 * We ran out of memory, call the OOM killer, and return the
 983                 * userspace (which will retry the fault, or kill us if we got
 984                 * oom-killed):
 985                 */
 986                pagefault_out_of_memory();
 987        } else {
 988                if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
 989                             VM_FAULT_HWPOISON_LARGE))
 990                        do_sigbus(regs, error_code, address, fault);
 991                else if (fault & VM_FAULT_SIGSEGV)
 992                        bad_area_nosemaphore(regs, error_code, address);
 993                else
 994                        BUG();
 995        }
 996}
 997
 998static int spurious_kernel_fault_check(unsigned long error_code, pte_t *pte)
 999{
1000        if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1001                return 0;
1002
1003        if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1004                return 0;
1005
1006        return 1;
1007}
1008
1009/*
1010 * Handle a spurious fault caused by a stale TLB entry.
1011 *
1012 * This allows us to lazily refresh the TLB when increasing the
1013 * permissions of a kernel page (RO -> RW or NX -> X).  Doing it
1014 * eagerly is very expensive since that implies doing a full
1015 * cross-processor TLB flush, even if no stale TLB entries exist
1016 * on other processors.
1017 *
1018 * Spurious faults may only occur if the TLB contains an entry with
1019 * fewer permission than the page table entry.  Non-present (P = 0)
1020 * and reserved bit (R = 1) faults are never spurious.
1021 *
1022 * There are no security implications to leaving a stale TLB when
1023 * increasing the permissions on a page.
1024 *
1025 * Returns non-zero if a spurious fault was handled, zero otherwise.
1026 *
1027 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1028 * (Optional Invalidation).
1029 */
1030static noinline int
1031spurious_kernel_fault(unsigned long error_code, unsigned long address)
1032{
1033        pgd_t *pgd;
1034        p4d_t *p4d;
1035        pud_t *pud;
1036        pmd_t *pmd;
1037        pte_t *pte;
1038        int ret;
1039
1040        /*
1041         * Only writes to RO or instruction fetches from NX may cause
1042         * spurious faults.
1043         *
1044         * These could be from user or supervisor accesses but the TLB
1045         * is only lazily flushed after a kernel mapping protection
1046         * change, so user accesses are not expected to cause spurious
1047         * faults.
1048         */
1049        if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1050            error_code != (X86_PF_INSTR | X86_PF_PROT))
1051                return 0;
1052
1053        pgd = init_mm.pgd + pgd_index(address);
1054        if (!pgd_present(*pgd))
1055                return 0;
1056
1057        p4d = p4d_offset(pgd, address);
1058        if (!p4d_present(*p4d))
1059                return 0;
1060
1061        if (p4d_large(*p4d))
1062                return spurious_kernel_fault_check(error_code, (pte_t *) p4d);
1063
1064        pud = pud_offset(p4d, address);
1065        if (!pud_present(*pud))
1066                return 0;
1067
1068        if (pud_large(*pud))
1069                return spurious_kernel_fault_check(error_code, (pte_t *) pud);
1070
1071        pmd = pmd_offset(pud, address);
1072        if (!pmd_present(*pmd))
1073                return 0;
1074
1075        if (pmd_large(*pmd))
1076                return spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1077
1078        pte = pte_offset_kernel(pmd, address);
1079        if (!pte_present(*pte))
1080                return 0;
1081
1082        ret = spurious_kernel_fault_check(error_code, pte);
1083        if (!ret)
1084                return 0;
1085
1086        /*
1087         * Make sure we have permissions in PMD.
1088         * If not, then there's a bug in the page tables:
1089         */
1090        ret = spurious_kernel_fault_check(error_code, (pte_t *) pmd);
1091        WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1092
1093        return ret;
1094}
1095NOKPROBE_SYMBOL(spurious_kernel_fault);
1096
1097int show_unhandled_signals = 1;
1098
1099static inline int
1100access_error(unsigned long error_code, struct vm_area_struct *vma)
1101{
1102        /* This is only called for the current mm, so: */
1103        bool foreign = false;
1104
1105        /*
1106         * Read or write was blocked by protection keys.  This is
1107         * always an unconditional error and can never result in
1108         * a follow-up action to resolve the fault, like a COW.
1109         */
1110        if (error_code & X86_PF_PK)
1111                return 1;
1112
1113        /*
1114         * SGX hardware blocked the access.  This usually happens
1115         * when the enclave memory contents have been destroyed, like
1116         * after a suspend/resume cycle. In any case, the kernel can't
1117         * fix the cause of the fault.  Handle the fault as an access
1118         * error even in cases where no actual access violation
1119         * occurred.  This allows userspace to rebuild the enclave in
1120         * response to the signal.
1121         */
1122        if (unlikely(error_code & X86_PF_SGX))
1123                return 1;
1124
1125        /*
1126         * Make sure to check the VMA so that we do not perform
1127         * faults just to hit a X86_PF_PK as soon as we fill in a
1128         * page.
1129         */
1130        if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1131                                       (error_code & X86_PF_INSTR), foreign))
1132                return 1;
1133
1134        if (error_code & X86_PF_WRITE) {
1135                /* write, present and write, not present: */
1136                if (unlikely(!(vma->vm_flags & VM_WRITE)))
1137                        return 1;
1138                return 0;
1139        }
1140
1141        /* read, present: */
1142        if (unlikely(error_code & X86_PF_PROT))
1143                return 1;
1144
1145        /* read, not present: */
1146        if (unlikely(!vma_is_accessible(vma)))
1147                return 1;
1148
1149        return 0;
1150}
1151
1152bool fault_in_kernel_space(unsigned long address)
1153{
1154        /*
1155         * On 64-bit systems, the vsyscall page is at an address above
1156         * TASK_SIZE_MAX, but is not considered part of the kernel
1157         * address space.
1158         */
1159        if (IS_ENABLED(CONFIG_X86_64) && is_vsyscall_vaddr(address))
1160                return false;
1161
1162        return address >= TASK_SIZE_MAX;
1163}
1164
1165/*
1166 * Called for all faults where 'address' is part of the kernel address
1167 * space.  Might get called for faults that originate from *code* that
1168 * ran in userspace or the kernel.
1169 */
1170static void
1171do_kern_addr_fault(struct pt_regs *regs, unsigned long hw_error_code,
1172                   unsigned long address)
1173{
1174        /*
1175         * Protection keys exceptions only happen on user pages.  We
1176         * have no user pages in the kernel portion of the address
1177         * space, so do not expect them here.
1178         */
1179        WARN_ON_ONCE(hw_error_code & X86_PF_PK);
1180
1181#ifdef CONFIG_X86_32
1182        /*
1183         * We can fault-in kernel-space virtual memory on-demand. The
1184         * 'reference' page table is init_mm.pgd.
1185         *
1186         * NOTE! We MUST NOT take any locks for this case. We may
1187         * be in an interrupt or a critical region, and should
1188         * only copy the information from the master page table,
1189         * nothing more.
1190         *
1191         * Before doing this on-demand faulting, ensure that the
1192         * fault is not any of the following:
1193         * 1. A fault on a PTE with a reserved bit set.
1194         * 2. A fault caused by a user-mode access.  (Do not demand-
1195         *    fault kernel memory due to user-mode accesses).
1196         * 3. A fault caused by a page-level protection violation.
1197         *    (A demand fault would be on a non-present page which
1198         *     would have X86_PF_PROT==0).
1199         *
1200         * This is only needed to close a race condition on x86-32 in
1201         * the vmalloc mapping/unmapping code. See the comment above
1202         * vmalloc_fault() for details. On x86-64 the race does not
1203         * exist as the vmalloc mappings don't need to be synchronized
1204         * there.
1205         */
1206        if (!(hw_error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1207                if (vmalloc_fault(address) >= 0)
1208                        return;
1209        }
1210#endif
1211
1212        /* Was the fault spurious, caused by lazy TLB invalidation? */
1213        if (spurious_kernel_fault(hw_error_code, address))
1214                return;
1215
1216        /* kprobes don't want to hook the spurious faults: */
1217        if (kprobe_page_fault(regs, X86_TRAP_PF))
1218                return;
1219
1220        /*
1221         * Note, despite being a "bad area", there are quite a few
1222         * acceptable reasons to get here, such as erratum fixups
1223         * and handling kernel code that can fault, like get_user().
1224         *
1225         * Don't take the mm semaphore here. If we fixup a prefetch
1226         * fault we could otherwise deadlock:
1227         */
1228        bad_area_nosemaphore(regs, hw_error_code, address);
1229}
1230NOKPROBE_SYMBOL(do_kern_addr_fault);
1231
1232/* Handle faults in the user portion of the address space */
1233static inline
1234void do_user_addr_fault(struct pt_regs *regs,
1235                        unsigned long hw_error_code,
1236                        unsigned long address)
1237{
1238        struct vm_area_struct *vma;
1239        struct task_struct *tsk;
1240        struct mm_struct *mm;
1241        vm_fault_t fault;
1242        unsigned int flags = FAULT_FLAG_DEFAULT;
1243
1244        tsk = current;
1245        mm = tsk->mm;
1246
1247        /* kprobes don't want to hook the spurious faults: */
1248        if (unlikely(kprobe_page_fault(regs, X86_TRAP_PF)))
1249                return;
1250
1251        /*
1252         * Reserved bits are never expected to be set on
1253         * entries in the user portion of the page tables.
1254         */
1255        if (unlikely(hw_error_code & X86_PF_RSVD))
1256                pgtable_bad(regs, hw_error_code, address);
1257
1258        /*
1259         * If SMAP is on, check for invalid kernel (supervisor) access to user
1260         * pages in the user address space.  The odd case here is WRUSS,
1261         * which, according to the preliminary documentation, does not respect
1262         * SMAP and will have the USER bit set so, in all cases, SMAP
1263         * enforcement appears to be consistent with the USER bit.
1264         */
1265        if (unlikely(cpu_feature_enabled(X86_FEATURE_SMAP) &&
1266                     !(hw_error_code & X86_PF_USER) &&
1267                     !(regs->flags & X86_EFLAGS_AC)))
1268        {
1269                bad_area_nosemaphore(regs, hw_error_code, address);
1270                return;
1271        }
1272
1273        /*
1274         * If we're in an interrupt, have no user context or are running
1275         * in a region with pagefaults disabled then we must not take the fault
1276         */
1277        if (unlikely(faulthandler_disabled() || !mm)) {
1278                bad_area_nosemaphore(regs, hw_error_code, address);
1279                return;
1280        }
1281
1282        /*
1283         * It's safe to allow irq's after cr2 has been saved and the
1284         * vmalloc fault has been handled.
1285         *
1286         * User-mode registers count as a user access even for any
1287         * potential system fault or CPU buglet:
1288         */
1289        if (user_mode(regs)) {
1290                local_irq_enable();
1291                flags |= FAULT_FLAG_USER;
1292        } else {
1293                if (regs->flags & X86_EFLAGS_IF)
1294                        local_irq_enable();
1295        }
1296
1297        perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1298
1299        if (hw_error_code & X86_PF_WRITE)
1300                flags |= FAULT_FLAG_WRITE;
1301        if (hw_error_code & X86_PF_INSTR)
1302                flags |= FAULT_FLAG_INSTRUCTION;
1303
1304#ifdef CONFIG_X86_64
1305        /*
1306         * Faults in the vsyscall page might need emulation.  The
1307         * vsyscall page is at a high address (>PAGE_OFFSET), but is
1308         * considered to be part of the user address space.
1309         *
1310         * The vsyscall page does not have a "real" VMA, so do this
1311         * emulation before we go searching for VMAs.
1312         *
1313         * PKRU never rejects instruction fetches, so we don't need
1314         * to consider the PF_PK bit.
1315         */
1316        if (is_vsyscall_vaddr(address)) {
1317                if (emulate_vsyscall(hw_error_code, regs, address))
1318                        return;
1319        }
1320#endif
1321
1322        /*
1323         * Kernel-mode access to the user address space should only occur
1324         * on well-defined single instructions listed in the exception
1325         * tables.  But, an erroneous kernel fault occurring outside one of
1326         * those areas which also holds mmap_lock might deadlock attempting
1327         * to validate the fault against the address space.
1328         *
1329         * Only do the expensive exception table search when we might be at
1330         * risk of a deadlock.  This happens if we
1331         * 1. Failed to acquire mmap_lock, and
1332         * 2. The access did not originate in userspace.
1333         */
1334        if (unlikely(!mmap_read_trylock(mm))) {
1335                if (!user_mode(regs) && !search_exception_tables(regs->ip)) {
1336                        /*
1337                         * Fault from code in kernel from
1338                         * which we do not expect faults.
1339                         */
1340                        bad_area_nosemaphore(regs, hw_error_code, address);
1341                        return;
1342                }
1343retry:
1344                mmap_read_lock(mm);
1345        } else {
1346                /*
1347                 * The above down_read_trylock() might have succeeded in
1348                 * which case we'll have missed the might_sleep() from
1349                 * down_read():
1350                 */
1351                might_sleep();
1352        }
1353
1354        vma = find_vma(mm, address);
1355        if (unlikely(!vma)) {
1356                bad_area(regs, hw_error_code, address);
1357                return;
1358        }
1359        if (likely(vma->vm_start <= address))
1360                goto good_area;
1361        if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1362                bad_area(regs, hw_error_code, address);
1363                return;
1364        }
1365        if (unlikely(expand_stack(vma, address))) {
1366                bad_area(regs, hw_error_code, address);
1367                return;
1368        }
1369
1370        /*
1371         * Ok, we have a good vm_area for this memory access, so
1372         * we can handle it..
1373         */
1374good_area:
1375        if (unlikely(access_error(hw_error_code, vma))) {
1376                bad_area_access_error(regs, hw_error_code, address, vma);
1377                return;
1378        }
1379
1380        /*
1381         * If for any reason at all we couldn't handle the fault,
1382         * make sure we exit gracefully rather than endlessly redo
1383         * the fault.  Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1384         * we get VM_FAULT_RETRY back, the mmap_lock has been unlocked.
1385         *
1386         * Note that handle_userfault() may also release and reacquire mmap_lock
1387         * (and not return with VM_FAULT_RETRY), when returning to userland to
1388         * repeat the page fault later with a VM_FAULT_NOPAGE retval
1389         * (potentially after handling any pending signal during the return to
1390         * userland). The return to userland is identified whenever
1391         * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1392         */
1393        fault = handle_mm_fault(vma, address, flags, regs);
1394
1395        /* Quick path to respond to signals */
1396        if (fault_signal_pending(fault, regs)) {
1397                if (!user_mode(regs))
1398                        no_context(regs, hw_error_code, address, SIGBUS,
1399                                   BUS_ADRERR);
1400                return;
1401        }
1402
1403        /*
1404         * If we need to retry the mmap_lock has already been released,
1405         * and if there is a fatal signal pending there is no guarantee
1406         * that we made any progress. Handle this case first.
1407         */
1408        if (unlikely((fault & VM_FAULT_RETRY) &&
1409                     (flags & FAULT_FLAG_ALLOW_RETRY))) {
1410                flags |= FAULT_FLAG_TRIED;
1411                goto retry;
1412        }
1413
1414        mmap_read_unlock(mm);
1415        if (unlikely(fault & VM_FAULT_ERROR)) {
1416                mm_fault_error(regs, hw_error_code, address, fault);
1417                return;
1418        }
1419
1420        check_v8086_mode(regs, address, tsk);
1421}
1422NOKPROBE_SYMBOL(do_user_addr_fault);
1423
1424static __always_inline void
1425trace_page_fault_entries(struct pt_regs *regs, unsigned long error_code,
1426                         unsigned long address)
1427{
1428        if (!trace_pagefault_enabled())
1429                return;
1430
1431        if (user_mode(regs))
1432                trace_page_fault_user(address, regs, error_code);
1433        else
1434                trace_page_fault_kernel(address, regs, error_code);
1435}
1436
1437static __always_inline void
1438handle_page_fault(struct pt_regs *regs, unsigned long error_code,
1439                              unsigned long address)
1440{
1441        trace_page_fault_entries(regs, error_code, address);
1442
1443        if (unlikely(kmmio_fault(regs, address)))
1444                return;
1445
1446        /* Was the fault on kernel-controlled part of the address space? */
1447        if (unlikely(fault_in_kernel_space(address))) {
1448                do_kern_addr_fault(regs, error_code, address);
1449        } else {
1450                do_user_addr_fault(regs, error_code, address);
1451                /*
1452                 * User address page fault handling might have reenabled
1453                 * interrupts. Fixing up all potential exit points of
1454                 * do_user_addr_fault() and its leaf functions is just not
1455                 * doable w/o creating an unholy mess or turning the code
1456                 * upside down.
1457                 */
1458                local_irq_disable();
1459        }
1460}
1461
1462DEFINE_IDTENTRY_RAW_ERRORCODE(exc_page_fault)
1463{
1464        unsigned long address = read_cr2();
1465        irqentry_state_t state;
1466
1467        prefetchw(&current->mm->mmap_lock);
1468
1469        /*
1470         * KVM uses #PF vector to deliver 'page not present' events to guests
1471         * (asynchronous page fault mechanism). The event happens when a
1472         * userspace task is trying to access some valid (from guest's point of
1473         * view) memory which is not currently mapped by the host (e.g. the
1474         * memory is swapped out). Note, the corresponding "page ready" event
1475         * which is injected when the memory becomes available, is delived via
1476         * an interrupt mechanism and not a #PF exception
1477         * (see arch/x86/kernel/kvm.c: sysvec_kvm_asyncpf_interrupt()).
1478         *
1479         * We are relying on the interrupted context being sane (valid RSP,
1480         * relevant locks not held, etc.), which is fine as long as the
1481         * interrupted context had IF=1.  We are also relying on the KVM
1482         * async pf type field and CR2 being read consistently instead of
1483         * getting values from real and async page faults mixed up.
1484         *
1485         * Fingers crossed.
1486         *
1487         * The async #PF handling code takes care of idtentry handling
1488         * itself.
1489         */
1490        if (kvm_handle_async_pf(regs, (u32)address))
1491                return;
1492
1493        /*
1494         * Entry handling for valid #PF from kernel mode is slightly
1495         * different: RCU is already watching and rcu_irq_enter() must not
1496         * be invoked because a kernel fault on a user space address might
1497         * sleep.
1498         *
1499         * In case the fault hit a RCU idle region the conditional entry
1500         * code reenabled RCU to avoid subsequent wreckage which helps
1501         * debugability.
1502         */
1503        state = irqentry_enter(regs);
1504
1505        instrumentation_begin();
1506        handle_page_fault(regs, error_code, address);
1507        instrumentation_end();
1508
1509        irqentry_exit(regs, state);
1510}
1511