linux/arch/x86/power/cpu.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Suspend support specific for i386/x86-64.
   4 *
   5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
   6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
   8 */
   9
  10#include <linux/suspend.h>
  11#include <linux/export.h>
  12#include <linux/smp.h>
  13#include <linux/perf_event.h>
  14#include <linux/tboot.h>
  15#include <linux/dmi.h>
  16#include <linux/pgtable.h>
  17
  18#include <asm/proto.h>
  19#include <asm/mtrr.h>
  20#include <asm/page.h>
  21#include <asm/mce.h>
  22#include <asm/suspend.h>
  23#include <asm/fpu/internal.h>
  24#include <asm/debugreg.h>
  25#include <asm/cpu.h>
  26#include <asm/mmu_context.h>
  27#include <asm/cpu_device_id.h>
  28
  29#ifdef CONFIG_X86_32
  30__visible unsigned long saved_context_ebx;
  31__visible unsigned long saved_context_esp, saved_context_ebp;
  32__visible unsigned long saved_context_esi, saved_context_edi;
  33__visible unsigned long saved_context_eflags;
  34#endif
  35struct saved_context saved_context;
  36
  37static void msr_save_context(struct saved_context *ctxt)
  38{
  39        struct saved_msr *msr = ctxt->saved_msrs.array;
  40        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  41
  42        while (msr < end) {
  43                msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
  44                msr++;
  45        }
  46}
  47
  48static void msr_restore_context(struct saved_context *ctxt)
  49{
  50        struct saved_msr *msr = ctxt->saved_msrs.array;
  51        struct saved_msr *end = msr + ctxt->saved_msrs.num;
  52
  53        while (msr < end) {
  54                if (msr->valid)
  55                        wrmsrl(msr->info.msr_no, msr->info.reg.q);
  56                msr++;
  57        }
  58}
  59
  60/**
  61 *      __save_processor_state - save CPU registers before creating a
  62 *              hibernation image and before restoring the memory state from it
  63 *      @ctxt - structure to store the registers contents in
  64 *
  65 *      NOTE: If there is a CPU register the modification of which by the
  66 *      boot kernel (ie. the kernel used for loading the hibernation image)
  67 *      might affect the operations of the restored target kernel (ie. the one
  68 *      saved in the hibernation image), then its contents must be saved by this
  69 *      function.  In other words, if kernel A is hibernated and different
  70 *      kernel B is used for loading the hibernation image into memory, the
  71 *      kernel A's __save_processor_state() function must save all registers
  72 *      needed by kernel A, so that it can operate correctly after the resume
  73 *      regardless of what kernel B does in the meantime.
  74 */
  75static void __save_processor_state(struct saved_context *ctxt)
  76{
  77#ifdef CONFIG_X86_32
  78        mtrr_save_fixed_ranges(NULL);
  79#endif
  80        kernel_fpu_begin();
  81
  82        /*
  83         * descriptor tables
  84         */
  85        store_idt(&ctxt->idt);
  86
  87        /*
  88         * We save it here, but restore it only in the hibernate case.
  89         * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
  90         * mode in "secondary_startup_64". In 32-bit mode it is done via
  91         * 'pmode_gdt' in wakeup_start.
  92         */
  93        ctxt->gdt_desc.size = GDT_SIZE - 1;
  94        ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
  95
  96        store_tr(ctxt->tr);
  97
  98        /* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
  99        /*
 100         * segment registers
 101         */
 102#ifdef CONFIG_X86_32_LAZY_GS
 103        savesegment(gs, ctxt->gs);
 104#endif
 105#ifdef CONFIG_X86_64
 106        savesegment(gs, ctxt->gs);
 107        savesegment(fs, ctxt->fs);
 108        savesegment(ds, ctxt->ds);
 109        savesegment(es, ctxt->es);
 110
 111        rdmsrl(MSR_FS_BASE, ctxt->fs_base);
 112        rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 113        rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 114        mtrr_save_fixed_ranges(NULL);
 115
 116        rdmsrl(MSR_EFER, ctxt->efer);
 117#endif
 118
 119        /*
 120         * control registers
 121         */
 122        ctxt->cr0 = read_cr0();
 123        ctxt->cr2 = read_cr2();
 124        ctxt->cr3 = __read_cr3();
 125        ctxt->cr4 = __read_cr4();
 126        ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
 127                                               &ctxt->misc_enable);
 128        msr_save_context(ctxt);
 129}
 130
 131/* Needed by apm.c */
 132void save_processor_state(void)
 133{
 134        __save_processor_state(&saved_context);
 135        x86_platform.save_sched_clock_state();
 136}
 137#ifdef CONFIG_X86_32
 138EXPORT_SYMBOL(save_processor_state);
 139#endif
 140
 141static void do_fpu_end(void)
 142{
 143        /*
 144         * Restore FPU regs if necessary.
 145         */
 146        kernel_fpu_end();
 147}
 148
 149static void fix_processor_context(void)
 150{
 151        int cpu = smp_processor_id();
 152#ifdef CONFIG_X86_64
 153        struct desc_struct *desc = get_cpu_gdt_rw(cpu);
 154        tss_desc tss;
 155#endif
 156
 157        /*
 158         * We need to reload TR, which requires that we change the
 159         * GDT entry to indicate "available" first.
 160         *
 161         * XXX: This could probably all be replaced by a call to
 162         * force_reload_TR().
 163         */
 164        set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
 165
 166#ifdef CONFIG_X86_64
 167        memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
 168        tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
 169        write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
 170
 171        syscall_init();                         /* This sets MSR_*STAR and related */
 172#else
 173        if (boot_cpu_has(X86_FEATURE_SEP))
 174                enable_sep_cpu();
 175#endif
 176        load_TR_desc();                         /* This does ltr */
 177        load_mm_ldt(current->active_mm);        /* This does lldt */
 178        initialize_tlbstate_and_flush();
 179
 180        fpu__resume_cpu();
 181
 182        /* The processor is back on the direct GDT, load back the fixmap */
 183        load_fixmap_gdt(cpu);
 184}
 185
 186/**
 187 * __restore_processor_state - restore the contents of CPU registers saved
 188 *                             by __save_processor_state()
 189 * @ctxt - structure to load the registers contents from
 190 *
 191 * The asm code that gets us here will have restored a usable GDT, although
 192 * it will be pointing to the wrong alias.
 193 */
 194static void notrace __restore_processor_state(struct saved_context *ctxt)
 195{
 196        struct cpuinfo_x86 *c;
 197
 198        if (ctxt->misc_enable_saved)
 199                wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
 200        /*
 201         * control registers
 202         */
 203        /* cr4 was introduced in the Pentium CPU */
 204#ifdef CONFIG_X86_32
 205        if (ctxt->cr4)
 206                __write_cr4(ctxt->cr4);
 207#else
 208/* CONFIG X86_64 */
 209        wrmsrl(MSR_EFER, ctxt->efer);
 210        __write_cr4(ctxt->cr4);
 211#endif
 212        write_cr3(ctxt->cr3);
 213        write_cr2(ctxt->cr2);
 214        write_cr0(ctxt->cr0);
 215
 216        /* Restore the IDT. */
 217        load_idt(&ctxt->idt);
 218
 219        /*
 220         * Just in case the asm code got us here with the SS, DS, or ES
 221         * out of sync with the GDT, update them.
 222         */
 223        loadsegment(ss, __KERNEL_DS);
 224        loadsegment(ds, __USER_DS);
 225        loadsegment(es, __USER_DS);
 226
 227        /*
 228         * Restore percpu access.  Percpu access can happen in exception
 229         * handlers or in complicated helpers like load_gs_index().
 230         */
 231#ifdef CONFIG_X86_64
 232        wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
 233#else
 234        loadsegment(fs, __KERNEL_PERCPU);
 235        loadsegment(gs, __KERNEL_STACK_CANARY);
 236#endif
 237
 238        /* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
 239        fix_processor_context();
 240
 241        /*
 242         * Now that we have descriptor tables fully restored and working
 243         * exception handling, restore the usermode segments.
 244         */
 245#ifdef CONFIG_X86_64
 246        loadsegment(ds, ctxt->es);
 247        loadsegment(es, ctxt->es);
 248        loadsegment(fs, ctxt->fs);
 249        load_gs_index(ctxt->gs);
 250
 251        /*
 252         * Restore FSBASE and GSBASE after restoring the selectors, since
 253         * restoring the selectors clobbers the bases.  Keep in mind
 254         * that MSR_KERNEL_GS_BASE is horribly misnamed.
 255         */
 256        wrmsrl(MSR_FS_BASE, ctxt->fs_base);
 257        wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
 258#elif defined(CONFIG_X86_32_LAZY_GS)
 259        loadsegment(gs, ctxt->gs);
 260#endif
 261
 262        do_fpu_end();
 263        tsc_verify_tsc_adjust(true);
 264        x86_platform.restore_sched_clock_state();
 265        mtrr_bp_restore();
 266        perf_restore_debug_store();
 267        msr_restore_context(ctxt);
 268
 269        c = &cpu_data(smp_processor_id());
 270        if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
 271                init_ia32_feat_ctl(c);
 272}
 273
 274/* Needed by apm.c */
 275void notrace restore_processor_state(void)
 276{
 277        __restore_processor_state(&saved_context);
 278}
 279#ifdef CONFIG_X86_32
 280EXPORT_SYMBOL(restore_processor_state);
 281#endif
 282
 283#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
 284static void resume_play_dead(void)
 285{
 286        play_dead_common();
 287        tboot_shutdown(TB_SHUTDOWN_WFS);
 288        hlt_play_dead();
 289}
 290
 291int hibernate_resume_nonboot_cpu_disable(void)
 292{
 293        void (*play_dead)(void) = smp_ops.play_dead;
 294        int ret;
 295
 296        /*
 297         * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
 298         * during hibernate image restoration, because it is likely that the
 299         * monitored address will be actually written to at that time and then
 300         * the "dead" CPU will attempt to execute instructions again, but the
 301         * address in its instruction pointer may not be possible to resolve
 302         * any more at that point (the page tables used by it previously may
 303         * have been overwritten by hibernate image data).
 304         *
 305         * First, make sure that we wake up all the potentially disabled SMT
 306         * threads which have been initially brought up and then put into
 307         * mwait/cpuidle sleep.
 308         * Those will be put to proper (not interfering with hibernation
 309         * resume) sleep afterwards, and the resumed kernel will decide itself
 310         * what to do with them.
 311         */
 312        ret = cpuhp_smt_enable();
 313        if (ret)
 314                return ret;
 315        smp_ops.play_dead = resume_play_dead;
 316        ret = freeze_secondary_cpus(0);
 317        smp_ops.play_dead = play_dead;
 318        return ret;
 319}
 320#endif
 321
 322/*
 323 * When bsp_check() is called in hibernate and suspend, cpu hotplug
 324 * is disabled already. So it's unnessary to handle race condition between
 325 * cpumask query and cpu hotplug.
 326 */
 327static int bsp_check(void)
 328{
 329        if (cpumask_first(cpu_online_mask) != 0) {
 330                pr_warn("CPU0 is offline.\n");
 331                return -ENODEV;
 332        }
 333
 334        return 0;
 335}
 336
 337static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
 338                           void *ptr)
 339{
 340        int ret = 0;
 341
 342        switch (action) {
 343        case PM_SUSPEND_PREPARE:
 344        case PM_HIBERNATION_PREPARE:
 345                ret = bsp_check();
 346                break;
 347#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
 348        case PM_RESTORE_PREPARE:
 349                /*
 350                 * When system resumes from hibernation, online CPU0 because
 351                 * 1. it's required for resume and
 352                 * 2. the CPU was online before hibernation
 353                 */
 354                if (!cpu_online(0))
 355                        _debug_hotplug_cpu(0, 1);
 356                break;
 357        case PM_POST_RESTORE:
 358                /*
 359                 * When a resume really happens, this code won't be called.
 360                 *
 361                 * This code is called only when user space hibernation software
 362                 * prepares for snapshot device during boot time. So we just
 363                 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
 364                 * preparing the snapshot device.
 365                 *
 366                 * This works for normal boot case in our CPU0 hotplug debug
 367                 * mode, i.e. CPU0 is offline and user mode hibernation
 368                 * software initializes during boot time.
 369                 *
 370                 * If CPU0 is online and user application accesses snapshot
 371                 * device after boot time, this will offline CPU0 and user may
 372                 * see different CPU0 state before and after accessing
 373                 * the snapshot device. But hopefully this is not a case when
 374                 * user debugging CPU0 hotplug. Even if users hit this case,
 375                 * they can easily online CPU0 back.
 376                 *
 377                 * To simplify this debug code, we only consider normal boot
 378                 * case. Otherwise we need to remember CPU0's state and restore
 379                 * to that state and resolve racy conditions etc.
 380                 */
 381                _debug_hotplug_cpu(0, 0);
 382                break;
 383#endif
 384        default:
 385                break;
 386        }
 387        return notifier_from_errno(ret);
 388}
 389
 390static int __init bsp_pm_check_init(void)
 391{
 392        /*
 393         * Set this bsp_pm_callback as lower priority than
 394         * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
 395         * earlier to disable cpu hotplug before bsp online check.
 396         */
 397        pm_notifier(bsp_pm_callback, -INT_MAX);
 398        return 0;
 399}
 400
 401core_initcall(bsp_pm_check_init);
 402
 403static int msr_build_context(const u32 *msr_id, const int num)
 404{
 405        struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
 406        struct saved_msr *msr_array;
 407        int total_num;
 408        int i, j;
 409
 410        total_num = saved_msrs->num + num;
 411
 412        msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
 413        if (!msr_array) {
 414                pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
 415                return -ENOMEM;
 416        }
 417
 418        if (saved_msrs->array) {
 419                /*
 420                 * Multiple callbacks can invoke this function, so copy any
 421                 * MSR save requests from previous invocations.
 422                 */
 423                memcpy(msr_array, saved_msrs->array,
 424                       sizeof(struct saved_msr) * saved_msrs->num);
 425
 426                kfree(saved_msrs->array);
 427        }
 428
 429        for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
 430                msr_array[i].info.msr_no        = msr_id[j];
 431                msr_array[i].valid              = false;
 432                msr_array[i].info.reg.q         = 0;
 433        }
 434        saved_msrs->num   = total_num;
 435        saved_msrs->array = msr_array;
 436
 437        return 0;
 438}
 439
 440/*
 441 * The following sections are a quirk framework for problematic BIOSen:
 442 * Sometimes MSRs are modified by the BIOSen after suspended to
 443 * RAM, this might cause unexpected behavior after wakeup.
 444 * Thus we save/restore these specified MSRs across suspend/resume
 445 * in order to work around it.
 446 *
 447 * For any further problematic BIOSen/platforms,
 448 * please add your own function similar to msr_initialize_bdw.
 449 */
 450static int msr_initialize_bdw(const struct dmi_system_id *d)
 451{
 452        /* Add any extra MSR ids into this array. */
 453        u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
 454
 455        pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
 456        return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
 457}
 458
 459static const struct dmi_system_id msr_save_dmi_table[] = {
 460        {
 461         .callback = msr_initialize_bdw,
 462         .ident = "BROADWELL BDX_EP",
 463         .matches = {
 464                DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
 465                DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
 466                },
 467        },
 468        {}
 469};
 470
 471static int msr_save_cpuid_features(const struct x86_cpu_id *c)
 472{
 473        u32 cpuid_msr_id[] = {
 474                MSR_AMD64_CPUID_FN_1,
 475        };
 476
 477        pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
 478                c->family);
 479
 480        return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
 481}
 482
 483static const struct x86_cpu_id msr_save_cpu_table[] = {
 484        X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
 485        X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
 486        {}
 487};
 488
 489typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
 490static int pm_cpu_check(const struct x86_cpu_id *c)
 491{
 492        const struct x86_cpu_id *m;
 493        int ret = 0;
 494
 495        m = x86_match_cpu(msr_save_cpu_table);
 496        if (m) {
 497                pm_cpu_match_t fn;
 498
 499                fn = (pm_cpu_match_t)m->driver_data;
 500                ret = fn(m);
 501        }
 502
 503        return ret;
 504}
 505
 506static int pm_check_save_msr(void)
 507{
 508        dmi_check_system(msr_save_dmi_table);
 509        pm_cpu_check(msr_save_cpu_table);
 510
 511        return 0;
 512}
 513
 514device_initcall(pm_check_save_msr);
 515