linux/drivers/atm/fore200e.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
  24#include <linux/atm_suni.h>
  25#include <linux/dma-mapping.h>
  26#include <linux/delay.h>
  27#include <linux/firmware.h>
  28#include <linux/pgtable.h>
  29#include <asm/io.h>
  30#include <asm/string.h>
  31#include <asm/page.h>
  32#include <asm/irq.h>
  33#include <asm/dma.h>
  34#include <asm/byteorder.h>
  35#include <linux/uaccess.h>
  36#include <linux/atomic.h>
  37
  38#ifdef CONFIG_SBUS
  39#include <linux/of.h>
  40#include <linux/of_device.h>
  41#include <asm/idprom.h>
  42#include <asm/openprom.h>
  43#include <asm/oplib.h>
  44#endif
  45
  46#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  47#define FORE200E_USE_TASKLET
  48#endif
  49
  50#if 0 /* enable the debugging code of the buffer supply queues */
  51#define FORE200E_BSQ_DEBUG
  52#endif
  53
  54#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  55#define FORE200E_52BYTE_AAL0_SDU
  56#endif
  57
  58#include "fore200e.h"
  59#include "suni.h"
  60
  61#define FORE200E_VERSION "0.3e"
  62
  63#define FORE200E         "fore200e: "
  64
  65#if 0 /* override .config */
  66#define CONFIG_ATM_FORE200E_DEBUG 1
  67#endif
  68#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  69#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  70                                                  printk(FORE200E format, ##args); } while (0)
  71#else
  72#define DPRINTK(level, format, args...)  do {} while (0)
  73#endif
  74
  75
  76#define FORE200E_ALIGN(addr, alignment) \
  77        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  78
  79#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  80
  81#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  82
  83#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  84
  85#if 1
  86#define ASSERT(expr)     if (!(expr)) { \
  87                             printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  88                                    __func__, __LINE__, #expr); \
  89                             panic(FORE200E "%s", __func__); \
  90                         }
  91#else
  92#define ASSERT(expr)     do {} while (0)
  93#endif
  94
  95
  96static const struct atmdev_ops   fore200e_ops;
  97
  98static LIST_HEAD(fore200e_boards);
  99
 100
 101MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 102MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 103MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 104
 105
 106static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 107    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 108    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 109};
 110
 111static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 112    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 113    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 114};
 115
 116
 117#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 118static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 119#endif
 120
 121
 122#if 0 /* currently unused */
 123static int 
 124fore200e_fore2atm_aal(enum fore200e_aal aal)
 125{
 126    switch(aal) {
 127    case FORE200E_AAL0:  return ATM_AAL0;
 128    case FORE200E_AAL34: return ATM_AAL34;
 129    case FORE200E_AAL5:  return ATM_AAL5;
 130    }
 131
 132    return -EINVAL;
 133}
 134#endif
 135
 136
 137static enum fore200e_aal
 138fore200e_atm2fore_aal(int aal)
 139{
 140    switch(aal) {
 141    case ATM_AAL0:  return FORE200E_AAL0;
 142    case ATM_AAL34: return FORE200E_AAL34;
 143    case ATM_AAL1:
 144    case ATM_AAL2:
 145    case ATM_AAL5:  return FORE200E_AAL5;
 146    }
 147
 148    return -EINVAL;
 149}
 150
 151
 152static char*
 153fore200e_irq_itoa(int irq)
 154{
 155    static char str[8];
 156    sprintf(str, "%d", irq);
 157    return str;
 158}
 159
 160
 161/* allocate and align a chunk of memory intended to hold the data behing exchanged
 162   between the driver and the adapter (using streaming DVMA) */
 163
 164static int
 165fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 166{
 167    unsigned long offset = 0;
 168
 169    if (alignment <= sizeof(int))
 170        alignment = 0;
 171
 172    chunk->alloc_size = size + alignment;
 173    chunk->direction  = direction;
 174
 175    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 176    if (chunk->alloc_addr == NULL)
 177        return -ENOMEM;
 178
 179    if (alignment > 0)
 180        offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 181    
 182    chunk->align_addr = chunk->alloc_addr + offset;
 183
 184    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 185                                     size, direction);
 186    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 187        kfree(chunk->alloc_addr);
 188        return -ENOMEM;
 189    }
 190    return 0;
 191}
 192
 193
 194/* free a chunk of memory */
 195
 196static void
 197fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 198{
 199    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 200                     chunk->direction);
 201    kfree(chunk->alloc_addr);
 202}
 203
 204/*
 205 * Allocate a DMA consistent chunk of memory intended to act as a communication
 206 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 207 * and the adapter.
 208 */
 209static int
 210fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 211                int size, int nbr, int alignment)
 212{
 213        /* returned chunks are page-aligned */
 214        chunk->alloc_size = size * nbr;
 215        chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 216                                               &chunk->dma_addr, GFP_KERNEL);
 217        if (!chunk->alloc_addr)
 218                return -ENOMEM;
 219        chunk->align_addr = chunk->alloc_addr;
 220        return 0;
 221}
 222
 223/*
 224 * Free a DMA consistent chunk of memory.
 225 */
 226static void
 227fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 228{
 229        dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 230                          chunk->dma_addr);
 231}
 232
 233static void
 234fore200e_spin(int msecs)
 235{
 236    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 237    while (time_before(jiffies, timeout));
 238}
 239
 240
 241static int
 242fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 243{
 244    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 245    int           ok;
 246
 247    mb();
 248    do {
 249        if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 250            break;
 251
 252    } while (time_before(jiffies, timeout));
 253
 254#if 1
 255    if (!ok) {
 256        printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 257               *addr, val);
 258    }
 259#endif
 260
 261    return ok;
 262}
 263
 264
 265static int
 266fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 267{
 268    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 269    int           ok;
 270
 271    do {
 272        if ((ok = (fore200e->bus->read(addr) == val)))
 273            break;
 274
 275    } while (time_before(jiffies, timeout));
 276
 277#if 1
 278    if (!ok) {
 279        printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 280               fore200e->bus->read(addr), val);
 281    }
 282#endif
 283
 284    return ok;
 285}
 286
 287
 288static void
 289fore200e_free_rx_buf(struct fore200e* fore200e)
 290{
 291    int scheme, magn, nbr;
 292    struct buffer* buffer;
 293
 294    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 295        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 296
 297            if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 298
 299                for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 300
 301                    struct chunk* data = &buffer[ nbr ].data;
 302
 303                    if (data->alloc_addr != NULL)
 304                        fore200e_chunk_free(fore200e, data);
 305                }
 306            }
 307        }
 308    }
 309}
 310
 311
 312static void
 313fore200e_uninit_bs_queue(struct fore200e* fore200e)
 314{
 315    int scheme, magn;
 316    
 317    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 318        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 319
 320            struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 321            struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 322            
 323            if (status->alloc_addr)
 324                fore200e_dma_chunk_free(fore200e, status);
 325            
 326            if (rbd_block->alloc_addr)
 327                fore200e_dma_chunk_free(fore200e, rbd_block);
 328        }
 329    }
 330}
 331
 332
 333static int
 334fore200e_reset(struct fore200e* fore200e, int diag)
 335{
 336    int ok;
 337
 338    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 339    
 340    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 341
 342    fore200e->bus->reset(fore200e);
 343
 344    if (diag) {
 345        ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 346        if (ok == 0) {
 347            
 348            printk(FORE200E "device %s self-test failed\n", fore200e->name);
 349            return -ENODEV;
 350        }
 351
 352        printk(FORE200E "device %s self-test passed\n", fore200e->name);
 353        
 354        fore200e->state = FORE200E_STATE_RESET;
 355    }
 356
 357    return 0;
 358}
 359
 360
 361static void
 362fore200e_shutdown(struct fore200e* fore200e)
 363{
 364    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 365           fore200e->name, fore200e->phys_base, 
 366           fore200e_irq_itoa(fore200e->irq));
 367    
 368    if (fore200e->state > FORE200E_STATE_RESET) {
 369        /* first, reset the board to prevent further interrupts or data transfers */
 370        fore200e_reset(fore200e, 0);
 371    }
 372    
 373    /* then, release all allocated resources */
 374    switch(fore200e->state) {
 375
 376    case FORE200E_STATE_COMPLETE:
 377        kfree(fore200e->stats);
 378
 379        fallthrough;
 380    case FORE200E_STATE_IRQ:
 381        free_irq(fore200e->irq, fore200e->atm_dev);
 382
 383        fallthrough;
 384    case FORE200E_STATE_ALLOC_BUF:
 385        fore200e_free_rx_buf(fore200e);
 386
 387        fallthrough;
 388    case FORE200E_STATE_INIT_BSQ:
 389        fore200e_uninit_bs_queue(fore200e);
 390
 391        fallthrough;
 392    case FORE200E_STATE_INIT_RXQ:
 393        fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 394        fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 395
 396        fallthrough;
 397    case FORE200E_STATE_INIT_TXQ:
 398        fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 399        fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 400
 401        fallthrough;
 402    case FORE200E_STATE_INIT_CMDQ:
 403        fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 404
 405        fallthrough;
 406    case FORE200E_STATE_INITIALIZE:
 407        /* nothing to do for that state */
 408
 409    case FORE200E_STATE_START_FW:
 410        /* nothing to do for that state */
 411
 412    case FORE200E_STATE_RESET:
 413        /* nothing to do for that state */
 414
 415    case FORE200E_STATE_MAP:
 416        fore200e->bus->unmap(fore200e);
 417
 418        fallthrough;
 419    case FORE200E_STATE_CONFIGURE:
 420        /* nothing to do for that state */
 421
 422    case FORE200E_STATE_REGISTER:
 423        /* XXX shouldn't we *start* by deregistering the device? */
 424        atm_dev_deregister(fore200e->atm_dev);
 425
 426    case FORE200E_STATE_BLANK:
 427        /* nothing to do for that state */
 428        break;
 429    }
 430}
 431
 432
 433#ifdef CONFIG_PCI
 434
 435static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 436{
 437    /* on big-endian hosts, the board is configured to convert
 438       the endianess of slave RAM accesses  */
 439    return le32_to_cpu(readl(addr));
 440}
 441
 442
 443static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 444{
 445    /* on big-endian hosts, the board is configured to convert
 446       the endianess of slave RAM accesses  */
 447    writel(cpu_to_le32(val), addr);
 448}
 449
 450static int
 451fore200e_pca_irq_check(struct fore200e* fore200e)
 452{
 453    /* this is a 1 bit register */
 454    int irq_posted = readl(fore200e->regs.pca.psr);
 455
 456#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 457    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 458        DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 459    }
 460#endif
 461
 462    return irq_posted;
 463}
 464
 465
 466static void
 467fore200e_pca_irq_ack(struct fore200e* fore200e)
 468{
 469    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 470}
 471
 472
 473static void
 474fore200e_pca_reset(struct fore200e* fore200e)
 475{
 476    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 477    fore200e_spin(10);
 478    writel(0, fore200e->regs.pca.hcr);
 479}
 480
 481
 482static int fore200e_pca_map(struct fore200e* fore200e)
 483{
 484    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 485
 486    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 487    
 488    if (fore200e->virt_base == NULL) {
 489        printk(FORE200E "can't map device %s\n", fore200e->name);
 490        return -EFAULT;
 491    }
 492
 493    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 494
 495    /* gain access to the PCA specific registers  */
 496    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 497    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 498    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 499
 500    fore200e->state = FORE200E_STATE_MAP;
 501    return 0;
 502}
 503
 504
 505static void
 506fore200e_pca_unmap(struct fore200e* fore200e)
 507{
 508    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 509
 510    if (fore200e->virt_base != NULL)
 511        iounmap(fore200e->virt_base);
 512}
 513
 514
 515static int fore200e_pca_configure(struct fore200e *fore200e)
 516{
 517    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 518    u8              master_ctrl, latency;
 519
 520    DPRINTK(2, "device %s being configured\n", fore200e->name);
 521
 522    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 523        printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 524        return -EIO;
 525    }
 526
 527    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 528
 529    master_ctrl = master_ctrl
 530#if defined(__BIG_ENDIAN)
 531        /* request the PCA board to convert the endianess of slave RAM accesses */
 532        | PCA200E_CTRL_CONVERT_ENDIAN
 533#endif
 534#if 0
 535        | PCA200E_CTRL_DIS_CACHE_RD
 536        | PCA200E_CTRL_DIS_WRT_INVAL
 537        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 538        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 539#endif
 540        | PCA200E_CTRL_LARGE_PCI_BURSTS;
 541    
 542    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 543
 544    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 545       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 546       this may impact the performances of other PCI devices on the same bus, though */
 547    latency = 192;
 548    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 549
 550    fore200e->state = FORE200E_STATE_CONFIGURE;
 551    return 0;
 552}
 553
 554
 555static int __init
 556fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 557{
 558    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 559    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 560    struct prom_opcode      opcode;
 561    int                     ok;
 562    u32                     prom_dma;
 563
 564    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 565
 566    opcode.opcode = OPCODE_GET_PROM;
 567    opcode.pad    = 0;
 568
 569    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 570                              DMA_FROM_DEVICE);
 571    if (dma_mapping_error(fore200e->dev, prom_dma))
 572        return -ENOMEM;
 573
 574    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 575    
 576    *entry->status = STATUS_PENDING;
 577
 578    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 579
 580    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 581
 582    *entry->status = STATUS_FREE;
 583
 584    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 585
 586    if (ok == 0) {
 587        printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 588        return -EIO;
 589    }
 590
 591#if defined(__BIG_ENDIAN)
 592    
 593#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 594
 595    /* MAC address is stored as little-endian */
 596    swap_here(&prom->mac_addr[0]);
 597    swap_here(&prom->mac_addr[4]);
 598#endif
 599    
 600    return 0;
 601}
 602
 603
 604static int
 605fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 606{
 607    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 608
 609    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 610                   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 611}
 612
 613static const struct fore200e_bus fore200e_pci_ops = {
 614        .model_name             = "PCA-200E",
 615        .proc_name              = "pca200e",
 616        .descr_alignment        = 32,
 617        .buffer_alignment       = 4,
 618        .status_alignment       = 32,
 619        .read                   = fore200e_pca_read,
 620        .write                  = fore200e_pca_write,
 621        .configure              = fore200e_pca_configure,
 622        .map                    = fore200e_pca_map,
 623        .reset                  = fore200e_pca_reset,
 624        .prom_read              = fore200e_pca_prom_read,
 625        .unmap                  = fore200e_pca_unmap,
 626        .irq_check              = fore200e_pca_irq_check,
 627        .irq_ack                = fore200e_pca_irq_ack,
 628        .proc_read              = fore200e_pca_proc_read,
 629};
 630#endif /* CONFIG_PCI */
 631
 632#ifdef CONFIG_SBUS
 633
 634static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 635{
 636    return sbus_readl(addr);
 637}
 638
 639static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 640{
 641    sbus_writel(val, addr);
 642}
 643
 644static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 645{
 646        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 647        fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 648}
 649
 650static int fore200e_sba_irq_check(struct fore200e *fore200e)
 651{
 652        return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 653}
 654
 655static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 656{
 657        u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 658        fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 659}
 660
 661static void fore200e_sba_reset(struct fore200e *fore200e)
 662{
 663        fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 664        fore200e_spin(10);
 665        fore200e->bus->write(0, fore200e->regs.sba.hcr);
 666}
 667
 668static int __init fore200e_sba_map(struct fore200e *fore200e)
 669{
 670        struct platform_device *op = to_platform_device(fore200e->dev);
 671        unsigned int bursts;
 672
 673        /* gain access to the SBA specific registers  */
 674        fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 675        fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 676        fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 677        fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 678
 679        if (!fore200e->virt_base) {
 680                printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 681                return -EFAULT;
 682        }
 683
 684        DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 685    
 686        fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 687
 688        /* get the supported DVMA burst sizes */
 689        bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 690
 691        if (sbus_can_dma_64bit())
 692                sbus_set_sbus64(&op->dev, bursts);
 693
 694        fore200e->state = FORE200E_STATE_MAP;
 695        return 0;
 696}
 697
 698static void fore200e_sba_unmap(struct fore200e *fore200e)
 699{
 700        struct platform_device *op = to_platform_device(fore200e->dev);
 701
 702        of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 703        of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 704        of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 705        of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 706}
 707
 708static int __init fore200e_sba_configure(struct fore200e *fore200e)
 709{
 710        fore200e->state = FORE200E_STATE_CONFIGURE;
 711        return 0;
 712}
 713
 714static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 715{
 716        struct platform_device *op = to_platform_device(fore200e->dev);
 717        const u8 *prop;
 718        int len;
 719
 720        prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 721        if (!prop)
 722                return -ENODEV;
 723        memcpy(&prom->mac_addr[4], prop, 4);
 724
 725        prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 726        if (!prop)
 727                return -ENODEV;
 728        memcpy(&prom->mac_addr[2], prop, 4);
 729
 730        prom->serial_number = of_getintprop_default(op->dev.of_node,
 731                                                    "serialnumber", 0);
 732        prom->hw_revision = of_getintprop_default(op->dev.of_node,
 733                                                  "promversion", 0);
 734    
 735        return 0;
 736}
 737
 738static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 739{
 740        struct platform_device *op = to_platform_device(fore200e->dev);
 741        const struct linux_prom_registers *regs;
 742
 743        regs = of_get_property(op->dev.of_node, "reg", NULL);
 744
 745        return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 746                       (regs ? regs->which_io : 0), op->dev.of_node);
 747}
 748
 749static const struct fore200e_bus fore200e_sbus_ops = {
 750        .model_name             = "SBA-200E",
 751        .proc_name              = "sba200e",
 752        .descr_alignment        = 32,
 753        .buffer_alignment       = 64,
 754        .status_alignment       = 32,
 755        .read                   = fore200e_sba_read,
 756        .write                  = fore200e_sba_write,
 757        .configure              = fore200e_sba_configure,
 758        .map                    = fore200e_sba_map,
 759        .reset                  = fore200e_sba_reset,
 760        .prom_read              = fore200e_sba_prom_read,
 761        .unmap                  = fore200e_sba_unmap,
 762        .irq_enable             = fore200e_sba_irq_enable,
 763        .irq_check              = fore200e_sba_irq_check,
 764        .irq_ack                = fore200e_sba_irq_ack,
 765        .proc_read              = fore200e_sba_proc_read,
 766};
 767#endif /* CONFIG_SBUS */
 768
 769static void
 770fore200e_tx_irq(struct fore200e* fore200e)
 771{
 772    struct host_txq*        txq = &fore200e->host_txq;
 773    struct host_txq_entry*  entry;
 774    struct atm_vcc*         vcc;
 775    struct fore200e_vc_map* vc_map;
 776
 777    if (fore200e->host_txq.txing == 0)
 778        return;
 779
 780    for (;;) {
 781        
 782        entry = &txq->host_entry[ txq->tail ];
 783
 784        if ((*entry->status & STATUS_COMPLETE) == 0) {
 785            break;
 786        }
 787
 788        DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 789                entry, txq->tail, entry->vc_map, entry->skb);
 790
 791        /* free copy of misaligned data */
 792        kfree(entry->data);
 793        
 794        /* remove DMA mapping */
 795        dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 796                                 DMA_TO_DEVICE);
 797
 798        vc_map = entry->vc_map;
 799
 800        /* vcc closed since the time the entry was submitted for tx? */
 801        if ((vc_map->vcc == NULL) ||
 802            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 803
 804            DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 805                    fore200e->atm_dev->number);
 806
 807            dev_kfree_skb_any(entry->skb);
 808        }
 809        else {
 810            ASSERT(vc_map->vcc);
 811
 812            /* vcc closed then immediately re-opened? */
 813            if (vc_map->incarn != entry->incarn) {
 814
 815                /* when a vcc is closed, some PDUs may be still pending in the tx queue.
 816                   if the same vcc is immediately re-opened, those pending PDUs must
 817                   not be popped after the completion of their emission, as they refer
 818                   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 819                   would be decremented by the size of the (unrelated) skb, possibly
 820                   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 821                   we thus bind the tx entry to the current incarnation of the vcc
 822                   when the entry is submitted for tx. When the tx later completes,
 823                   if the incarnation number of the tx entry does not match the one
 824                   of the vcc, then this implies that the vcc has been closed then re-opened.
 825                   we thus just drop the skb here. */
 826
 827                DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 828                        fore200e->atm_dev->number);
 829
 830                dev_kfree_skb_any(entry->skb);
 831            }
 832            else {
 833                vcc = vc_map->vcc;
 834                ASSERT(vcc);
 835
 836                /* notify tx completion */
 837                if (vcc->pop) {
 838                    vcc->pop(vcc, entry->skb);
 839                }
 840                else {
 841                    dev_kfree_skb_any(entry->skb);
 842                }
 843
 844                /* check error condition */
 845                if (*entry->status & STATUS_ERROR)
 846                    atomic_inc(&vcc->stats->tx_err);
 847                else
 848                    atomic_inc(&vcc->stats->tx);
 849            }
 850        }
 851
 852        *entry->status = STATUS_FREE;
 853
 854        fore200e->host_txq.txing--;
 855
 856        FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 857    }
 858}
 859
 860
 861#ifdef FORE200E_BSQ_DEBUG
 862int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 863{
 864    struct buffer* buffer;
 865    int count = 0;
 866
 867    buffer = bsq->freebuf;
 868    while (buffer) {
 869
 870        if (buffer->supplied) {
 871            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 872                   where, scheme, magn, buffer->index);
 873        }
 874
 875        if (buffer->magn != magn) {
 876            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 877                   where, scheme, magn, buffer->index, buffer->magn);
 878        }
 879
 880        if (buffer->scheme != scheme) {
 881            printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 882                   where, scheme, magn, buffer->index, buffer->scheme);
 883        }
 884
 885        if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 886            printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 887                   where, scheme, magn, buffer->index);
 888        }
 889
 890        count++;
 891        buffer = buffer->next;
 892    }
 893
 894    if (count != bsq->freebuf_count) {
 895        printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 896               where, scheme, magn, count, bsq->freebuf_count);
 897    }
 898    return 0;
 899}
 900#endif
 901
 902
 903static void
 904fore200e_supply(struct fore200e* fore200e)
 905{
 906    int  scheme, magn, i;
 907
 908    struct host_bsq*       bsq;
 909    struct host_bsq_entry* entry;
 910    struct buffer*         buffer;
 911
 912    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 913        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 914
 915            bsq = &fore200e->host_bsq[ scheme ][ magn ];
 916
 917#ifdef FORE200E_BSQ_DEBUG
 918            bsq_audit(1, bsq, scheme, magn);
 919#endif
 920            while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 921
 922                DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 923                        RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 924
 925                entry = &bsq->host_entry[ bsq->head ];
 926
 927                for (i = 0; i < RBD_BLK_SIZE; i++) {
 928
 929                    /* take the first buffer in the free buffer list */
 930                    buffer = bsq->freebuf;
 931                    if (!buffer) {
 932                        printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 933                               scheme, magn, bsq->freebuf_count);
 934                        return;
 935                    }
 936                    bsq->freebuf = buffer->next;
 937                    
 938#ifdef FORE200E_BSQ_DEBUG
 939                    if (buffer->supplied)
 940                        printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 941                               scheme, magn, buffer->index);
 942                    buffer->supplied = 1;
 943#endif
 944                    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 945                    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 946                }
 947
 948                FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 949
 950                /* decrease accordingly the number of free rx buffers */
 951                bsq->freebuf_count -= RBD_BLK_SIZE;
 952
 953                *entry->status = STATUS_PENDING;
 954                fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 955            }
 956        }
 957    }
 958}
 959
 960
 961static int
 962fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 963{
 964    struct sk_buff*      skb;
 965    struct buffer*       buffer;
 966    struct fore200e_vcc* fore200e_vcc;
 967    int                  i, pdu_len = 0;
 968#ifdef FORE200E_52BYTE_AAL0_SDU
 969    u32                  cell_header = 0;
 970#endif
 971
 972    ASSERT(vcc);
 973    
 974    fore200e_vcc = FORE200E_VCC(vcc);
 975    ASSERT(fore200e_vcc);
 976
 977#ifdef FORE200E_52BYTE_AAL0_SDU
 978    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 979
 980        cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 981                      (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 982                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 983                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 984                       rpd->atm_header.clp;
 985        pdu_len = 4;
 986    }
 987#endif
 988    
 989    /* compute total PDU length */
 990    for (i = 0; i < rpd->nseg; i++)
 991        pdu_len += rpd->rsd[ i ].length;
 992    
 993    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 994    if (skb == NULL) {
 995        DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 996
 997        atomic_inc(&vcc->stats->rx_drop);
 998        return -ENOMEM;
 999    } 
1000
1001    __net_timestamp(skb);
1002    
1003#ifdef FORE200E_52BYTE_AAL0_SDU
1004    if (cell_header) {
1005        *((u32*)skb_put(skb, 4)) = cell_header;
1006    }
1007#endif
1008
1009    /* reassemble segments */
1010    for (i = 0; i < rpd->nseg; i++) {
1011        
1012        /* rebuild rx buffer address from rsd handle */
1013        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1014        
1015        /* Make device DMA transfer visible to CPU.  */
1016        dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1017                                rpd->rsd[i].length, DMA_FROM_DEVICE);
1018        
1019        skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1020
1021        /* Now let the device get at it again.  */
1022        dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1023                                   rpd->rsd[i].length, DMA_FROM_DEVICE);
1024    }
1025
1026    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1027    
1028    if (pdu_len < fore200e_vcc->rx_min_pdu)
1029        fore200e_vcc->rx_min_pdu = pdu_len;
1030    if (pdu_len > fore200e_vcc->rx_max_pdu)
1031        fore200e_vcc->rx_max_pdu = pdu_len;
1032    fore200e_vcc->rx_pdu++;
1033
1034    /* push PDU */
1035    if (atm_charge(vcc, skb->truesize) == 0) {
1036
1037        DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1038                vcc->itf, vcc->vpi, vcc->vci);
1039
1040        dev_kfree_skb_any(skb);
1041
1042        atomic_inc(&vcc->stats->rx_drop);
1043        return -ENOMEM;
1044    }
1045
1046    vcc->push(vcc, skb);
1047    atomic_inc(&vcc->stats->rx);
1048
1049    return 0;
1050}
1051
1052
1053static void
1054fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1055{
1056    struct host_bsq* bsq;
1057    struct buffer*   buffer;
1058    int              i;
1059    
1060    for (i = 0; i < rpd->nseg; i++) {
1061
1062        /* rebuild rx buffer address from rsd handle */
1063        buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1064
1065        bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1066
1067#ifdef FORE200E_BSQ_DEBUG
1068        bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1069
1070        if (buffer->supplied == 0)
1071            printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1072                   buffer->scheme, buffer->magn, buffer->index);
1073        buffer->supplied = 0;
1074#endif
1075
1076        /* re-insert the buffer into the free buffer list */
1077        buffer->next = bsq->freebuf;
1078        bsq->freebuf = buffer;
1079
1080        /* then increment the number of free rx buffers */
1081        bsq->freebuf_count++;
1082    }
1083}
1084
1085
1086static void
1087fore200e_rx_irq(struct fore200e* fore200e)
1088{
1089    struct host_rxq*        rxq = &fore200e->host_rxq;
1090    struct host_rxq_entry*  entry;
1091    struct atm_vcc*         vcc;
1092    struct fore200e_vc_map* vc_map;
1093
1094    for (;;) {
1095        
1096        entry = &rxq->host_entry[ rxq->head ];
1097
1098        /* no more received PDUs */
1099        if ((*entry->status & STATUS_COMPLETE) == 0)
1100            break;
1101
1102        vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1103
1104        if ((vc_map->vcc == NULL) ||
1105            (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1106
1107            DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1108                    fore200e->atm_dev->number,
1109                    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1110        }
1111        else {
1112            vcc = vc_map->vcc;
1113            ASSERT(vcc);
1114
1115            if ((*entry->status & STATUS_ERROR) == 0) {
1116
1117                fore200e_push_rpd(fore200e, vcc, entry->rpd);
1118            }
1119            else {
1120                DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1121                        fore200e->atm_dev->number,
1122                        entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1123                atomic_inc(&vcc->stats->rx_err);
1124            }
1125        }
1126
1127        FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1128
1129        fore200e_collect_rpd(fore200e, entry->rpd);
1130
1131        /* rewrite the rpd address to ack the received PDU */
1132        fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1133        *entry->status = STATUS_FREE;
1134
1135        fore200e_supply(fore200e);
1136    }
1137}
1138
1139
1140#ifndef FORE200E_USE_TASKLET
1141static void
1142fore200e_irq(struct fore200e* fore200e)
1143{
1144    unsigned long flags;
1145
1146    spin_lock_irqsave(&fore200e->q_lock, flags);
1147    fore200e_rx_irq(fore200e);
1148    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1149
1150    spin_lock_irqsave(&fore200e->q_lock, flags);
1151    fore200e_tx_irq(fore200e);
1152    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1153}
1154#endif
1155
1156
1157static irqreturn_t
1158fore200e_interrupt(int irq, void* dev)
1159{
1160    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1161
1162    if (fore200e->bus->irq_check(fore200e) == 0) {
1163        
1164        DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1165        return IRQ_NONE;
1166    }
1167    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1168
1169#ifdef FORE200E_USE_TASKLET
1170    tasklet_schedule(&fore200e->tx_tasklet);
1171    tasklet_schedule(&fore200e->rx_tasklet);
1172#else
1173    fore200e_irq(fore200e);
1174#endif
1175    
1176    fore200e->bus->irq_ack(fore200e);
1177    return IRQ_HANDLED;
1178}
1179
1180
1181#ifdef FORE200E_USE_TASKLET
1182static void
1183fore200e_tx_tasklet(unsigned long data)
1184{
1185    struct fore200e* fore200e = (struct fore200e*) data;
1186    unsigned long flags;
1187
1188    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1189
1190    spin_lock_irqsave(&fore200e->q_lock, flags);
1191    fore200e_tx_irq(fore200e);
1192    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1193}
1194
1195
1196static void
1197fore200e_rx_tasklet(unsigned long data)
1198{
1199    struct fore200e* fore200e = (struct fore200e*) data;
1200    unsigned long    flags;
1201
1202    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1203
1204    spin_lock_irqsave(&fore200e->q_lock, flags);
1205    fore200e_rx_irq((struct fore200e*) data);
1206    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1207}
1208#endif
1209
1210
1211static int
1212fore200e_select_scheme(struct atm_vcc* vcc)
1213{
1214    /* fairly balance the VCs over (identical) buffer schemes */
1215    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1216
1217    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1218            vcc->itf, vcc->vpi, vcc->vci, scheme);
1219
1220    return scheme;
1221}
1222
1223
1224static int 
1225fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1226{
1227    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1228    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1229    struct activate_opcode   activ_opcode;
1230    struct deactivate_opcode deactiv_opcode;
1231    struct vpvc              vpvc;
1232    int                      ok;
1233    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1234
1235    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1236    
1237    if (activate) {
1238        FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1239        
1240        activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1241        activ_opcode.aal    = aal;
1242        activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1243        activ_opcode.pad    = 0;
1244    }
1245    else {
1246        deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1247        deactiv_opcode.pad    = 0;
1248    }
1249
1250    vpvc.vci = vcc->vci;
1251    vpvc.vpi = vcc->vpi;
1252
1253    *entry->status = STATUS_PENDING;
1254
1255    if (activate) {
1256
1257#ifdef FORE200E_52BYTE_AAL0_SDU
1258        mtu = 48;
1259#endif
1260        /* the MTU is not used by the cp, except in the case of AAL0 */
1261        fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1262        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1263        fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1264    }
1265    else {
1266        fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1267        fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1268    }
1269
1270    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1271
1272    *entry->status = STATUS_FREE;
1273
1274    if (ok == 0) {
1275        printk(FORE200E "unable to %s VC %d.%d.%d\n",
1276               activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1277        return -EIO;
1278    }
1279
1280    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1281            activate ? "open" : "clos");
1282
1283    return 0;
1284}
1285
1286
1287#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1288
1289static void
1290fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1291{
1292    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1293    
1294        /* compute the data cells to idle cells ratio from the tx PCR */
1295        rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1296        rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1297    }
1298    else {
1299        /* disable rate control */
1300        rate->data_cells = rate->idle_cells = 0;
1301    }
1302}
1303
1304
1305static int
1306fore200e_open(struct atm_vcc *vcc)
1307{
1308    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1309    struct fore200e_vcc*    fore200e_vcc;
1310    struct fore200e_vc_map* vc_map;
1311    unsigned long           flags;
1312    int                     vci = vcc->vci;
1313    short                   vpi = vcc->vpi;
1314
1315    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1316    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1317
1318    spin_lock_irqsave(&fore200e->q_lock, flags);
1319
1320    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1321    if (vc_map->vcc) {
1322
1323        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1324
1325        printk(FORE200E "VC %d.%d.%d already in use\n",
1326               fore200e->atm_dev->number, vpi, vci);
1327
1328        return -EINVAL;
1329    }
1330
1331    vc_map->vcc = vcc;
1332
1333    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1334
1335    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1336    if (fore200e_vcc == NULL) {
1337        vc_map->vcc = NULL;
1338        return -ENOMEM;
1339    }
1340
1341    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1342            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1343            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1344            fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1345            vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1346            fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1347            vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1348    
1349    /* pseudo-CBR bandwidth requested? */
1350    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1351        
1352        mutex_lock(&fore200e->rate_mtx);
1353        if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1354            mutex_unlock(&fore200e->rate_mtx);
1355
1356            kfree(fore200e_vcc);
1357            vc_map->vcc = NULL;
1358            return -EAGAIN;
1359        }
1360
1361        /* reserve bandwidth */
1362        fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1363        mutex_unlock(&fore200e->rate_mtx);
1364    }
1365    
1366    vcc->itf = vcc->dev->number;
1367
1368    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1369    set_bit(ATM_VF_ADDR, &vcc->flags);
1370
1371    vcc->dev_data = fore200e_vcc;
1372    
1373    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1374
1375        vc_map->vcc = NULL;
1376
1377        clear_bit(ATM_VF_ADDR, &vcc->flags);
1378        clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1379
1380        vcc->dev_data = NULL;
1381
1382        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1383
1384        kfree(fore200e_vcc);
1385        return -EINVAL;
1386    }
1387    
1388    /* compute rate control parameters */
1389    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1390        
1391        fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1392        set_bit(ATM_VF_HASQOS, &vcc->flags);
1393
1394        DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1395                vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1396                vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1397                fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1398    }
1399    
1400    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1401    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1402    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1403
1404    /* new incarnation of the vcc */
1405    vc_map->incarn = ++fore200e->incarn_count;
1406
1407    /* VC unusable before this flag is set */
1408    set_bit(ATM_VF_READY, &vcc->flags);
1409
1410    return 0;
1411}
1412
1413
1414static void
1415fore200e_close(struct atm_vcc* vcc)
1416{
1417    struct fore200e_vcc*    fore200e_vcc;
1418    struct fore200e*        fore200e;
1419    struct fore200e_vc_map* vc_map;
1420    unsigned long           flags;
1421
1422    ASSERT(vcc);
1423    fore200e = FORE200E_DEV(vcc->dev);
1424
1425    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1426    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1427
1428    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1429
1430    clear_bit(ATM_VF_READY, &vcc->flags);
1431
1432    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1433
1434    spin_lock_irqsave(&fore200e->q_lock, flags);
1435
1436    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1437
1438    /* the vc is no longer considered as "in use" by fore200e_open() */
1439    vc_map->vcc = NULL;
1440
1441    vcc->itf = vcc->vci = vcc->vpi = 0;
1442
1443    fore200e_vcc = FORE200E_VCC(vcc);
1444    vcc->dev_data = NULL;
1445
1446    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1447
1448    /* release reserved bandwidth, if any */
1449    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1450
1451        mutex_lock(&fore200e->rate_mtx);
1452        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1453        mutex_unlock(&fore200e->rate_mtx);
1454
1455        clear_bit(ATM_VF_HASQOS, &vcc->flags);
1456    }
1457
1458    clear_bit(ATM_VF_ADDR, &vcc->flags);
1459    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1460
1461    ASSERT(fore200e_vcc);
1462    kfree(fore200e_vcc);
1463}
1464
1465
1466static int
1467fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1468{
1469    struct fore200e*        fore200e;
1470    struct fore200e_vcc*    fore200e_vcc;
1471    struct fore200e_vc_map* vc_map;
1472    struct host_txq*        txq;
1473    struct host_txq_entry*  entry;
1474    struct tpd*             tpd;
1475    struct tpd_haddr        tpd_haddr;
1476    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1477    int                     tx_copy      = 0;
1478    int                     tx_len       = skb->len;
1479    u32*                    cell_header  = NULL;
1480    unsigned char*          skb_data;
1481    int                     skb_len;
1482    unsigned char*          data;
1483    unsigned long           flags;
1484
1485    if (!vcc)
1486        return -EINVAL;
1487
1488    fore200e = FORE200E_DEV(vcc->dev);
1489    fore200e_vcc = FORE200E_VCC(vcc);
1490
1491    if (!fore200e)
1492        return -EINVAL;
1493
1494    txq = &fore200e->host_txq;
1495    if (!fore200e_vcc)
1496        return -EINVAL;
1497
1498    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1499        DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1500        dev_kfree_skb_any(skb);
1501        return -EINVAL;
1502    }
1503
1504#ifdef FORE200E_52BYTE_AAL0_SDU
1505    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1506        cell_header = (u32*) skb->data;
1507        skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1508        skb_len     = tx_len = skb->len  - 4;
1509
1510        DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1511    }
1512    else 
1513#endif
1514    {
1515        skb_data = skb->data;
1516        skb_len  = skb->len;
1517    }
1518    
1519    if (((unsigned long)skb_data) & 0x3) {
1520
1521        DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1522        tx_copy = 1;
1523        tx_len  = skb_len;
1524    }
1525
1526    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1527
1528        /* this simply NUKES the PCA board */
1529        DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1530        tx_copy = 1;
1531        tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1532    }
1533    
1534    if (tx_copy) {
1535        data = kmalloc(tx_len, GFP_ATOMIC);
1536        if (data == NULL) {
1537            if (vcc->pop) {
1538                vcc->pop(vcc, skb);
1539            }
1540            else {
1541                dev_kfree_skb_any(skb);
1542            }
1543            return -ENOMEM;
1544        }
1545
1546        memcpy(data, skb_data, skb_len);
1547        if (skb_len < tx_len)
1548            memset(data + skb_len, 0x00, tx_len - skb_len);
1549    }
1550    else {
1551        data = skb_data;
1552    }
1553
1554    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1555    ASSERT(vc_map->vcc == vcc);
1556
1557  retry_here:
1558
1559    spin_lock_irqsave(&fore200e->q_lock, flags);
1560
1561    entry = &txq->host_entry[ txq->head ];
1562
1563    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1564
1565        /* try to free completed tx queue entries */
1566        fore200e_tx_irq(fore200e);
1567
1568        if (*entry->status != STATUS_FREE) {
1569
1570            spin_unlock_irqrestore(&fore200e->q_lock, flags);
1571
1572            /* retry once again? */
1573            if (--retry > 0) {
1574                udelay(50);
1575                goto retry_here;
1576            }
1577
1578            atomic_inc(&vcc->stats->tx_err);
1579
1580            fore200e->tx_sat++;
1581            DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1582                    fore200e->name, fore200e->cp_queues->heartbeat);
1583            if (vcc->pop) {
1584                vcc->pop(vcc, skb);
1585            }
1586            else {
1587                dev_kfree_skb_any(skb);
1588            }
1589
1590            if (tx_copy)
1591                kfree(data);
1592
1593            return -ENOBUFS;
1594        }
1595    }
1596
1597    entry->incarn = vc_map->incarn;
1598    entry->vc_map = vc_map;
1599    entry->skb    = skb;
1600    entry->data   = tx_copy ? data : NULL;
1601
1602    tpd = entry->tpd;
1603    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1604                                          DMA_TO_DEVICE);
1605    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1606        if (tx_copy)
1607            kfree(data);
1608        spin_unlock_irqrestore(&fore200e->q_lock, flags);
1609        return -ENOMEM;
1610    }
1611    tpd->tsd[ 0 ].length = tx_len;
1612
1613    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1614    txq->txing++;
1615
1616    /* The dma_map call above implies a dma_sync so the device can use it,
1617     * thus no explicit dma_sync call is necessary here.
1618     */
1619    
1620    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1621            vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1622            tpd->tsd[0].length, skb_len);
1623
1624    if (skb_len < fore200e_vcc->tx_min_pdu)
1625        fore200e_vcc->tx_min_pdu = skb_len;
1626    if (skb_len > fore200e_vcc->tx_max_pdu)
1627        fore200e_vcc->tx_max_pdu = skb_len;
1628    fore200e_vcc->tx_pdu++;
1629
1630    /* set tx rate control information */
1631    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1632    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1633
1634    if (cell_header) {
1635        tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1636        tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1637        tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1638        tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1639        tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1640    }
1641    else {
1642        /* set the ATM header, common to all cells conveying the PDU */
1643        tpd->atm_header.clp = 0;
1644        tpd->atm_header.plt = 0;
1645        tpd->atm_header.vci = vcc->vci;
1646        tpd->atm_header.vpi = vcc->vpi;
1647        tpd->atm_header.gfc = 0;
1648    }
1649
1650    tpd->spec.length = tx_len;
1651    tpd->spec.nseg   = 1;
1652    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1653    tpd->spec.intr   = 1;
1654
1655    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1656    tpd_haddr.pad   = 0;
1657    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1658
1659    *entry->status = STATUS_PENDING;
1660    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1661
1662    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1663
1664    return 0;
1665}
1666
1667
1668static int
1669fore200e_getstats(struct fore200e* fore200e)
1670{
1671    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1672    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1673    struct stats_opcode     opcode;
1674    int                     ok;
1675    u32                     stats_dma_addr;
1676
1677    if (fore200e->stats == NULL) {
1678        fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1679        if (fore200e->stats == NULL)
1680            return -ENOMEM;
1681    }
1682    
1683    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1684                                    sizeof(struct stats), DMA_FROM_DEVICE);
1685    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1686        return -ENOMEM;
1687    
1688    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1689
1690    opcode.opcode = OPCODE_GET_STATS;
1691    opcode.pad    = 0;
1692
1693    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1694    
1695    *entry->status = STATUS_PENDING;
1696
1697    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1698
1699    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1700
1701    *entry->status = STATUS_FREE;
1702
1703    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1704    
1705    if (ok == 0) {
1706        printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1707        return -EIO;
1708    }
1709
1710    return 0;
1711}
1712
1713#if 0 /* currently unused */
1714static int
1715fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1716{
1717    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1718    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1719    struct oc3_opcode       opcode;
1720    int                     ok;
1721    u32                     oc3_regs_dma_addr;
1722
1723    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1724
1725    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1726
1727    opcode.opcode = OPCODE_GET_OC3;
1728    opcode.reg    = 0;
1729    opcode.value  = 0;
1730    opcode.mask   = 0;
1731
1732    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1733    
1734    *entry->status = STATUS_PENDING;
1735
1736    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1737
1738    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1739
1740    *entry->status = STATUS_FREE;
1741
1742    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1743    
1744    if (ok == 0) {
1745        printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1746        return -EIO;
1747    }
1748
1749    return 0;
1750}
1751#endif
1752
1753
1754static int
1755fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1756{
1757    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1758    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1759    struct oc3_opcode       opcode;
1760    int                     ok;
1761
1762    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1763
1764    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1765
1766    opcode.opcode = OPCODE_SET_OC3;
1767    opcode.reg    = reg;
1768    opcode.value  = value;
1769    opcode.mask   = mask;
1770
1771    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1772    
1773    *entry->status = STATUS_PENDING;
1774
1775    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1776
1777    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1778
1779    *entry->status = STATUS_FREE;
1780
1781    if (ok == 0) {
1782        printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1783        return -EIO;
1784    }
1785
1786    return 0;
1787}
1788
1789
1790static int
1791fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1792{
1793    u32 mct_value, mct_mask;
1794    int error;
1795
1796    if (!capable(CAP_NET_ADMIN))
1797        return -EPERM;
1798    
1799    switch (loop_mode) {
1800
1801    case ATM_LM_NONE:
1802        mct_value = 0; 
1803        mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1804        break;
1805        
1806    case ATM_LM_LOC_PHY:
1807        mct_value = mct_mask = SUNI_MCT_DLE;
1808        break;
1809
1810    case ATM_LM_RMT_PHY:
1811        mct_value = mct_mask = SUNI_MCT_LLE;
1812        break;
1813
1814    default:
1815        return -EINVAL;
1816    }
1817
1818    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1819    if (error == 0)
1820        fore200e->loop_mode = loop_mode;
1821
1822    return error;
1823}
1824
1825
1826static int
1827fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1828{
1829    struct sonet_stats tmp;
1830
1831    if (fore200e_getstats(fore200e) < 0)
1832        return -EIO;
1833
1834    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1835    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1836    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1837    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1838    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1839    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1840    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1841    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1842                      be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1843                      be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1844    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1845                      be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1846                      be32_to_cpu(fore200e->stats->aal5.cells_received);
1847
1848    if (arg)
1849        return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;       
1850    
1851    return 0;
1852}
1853
1854
1855static int
1856fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1857{
1858    struct fore200e* fore200e = FORE200E_DEV(dev);
1859    
1860    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1861
1862    switch (cmd) {
1863
1864    case SONET_GETSTAT:
1865        return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1866
1867    case SONET_GETDIAG:
1868        return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1869
1870    case ATM_SETLOOP:
1871        return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1872
1873    case ATM_GETLOOP:
1874        return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1875
1876    case ATM_QUERYLOOP:
1877        return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1878    }
1879
1880    return -ENOSYS; /* not implemented */
1881}
1882
1883
1884static int
1885fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1886{
1887    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1888    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1889
1890    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1891        DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1892        return -EINVAL;
1893    }
1894
1895    DPRINTK(2, "change_qos %d.%d.%d, "
1896            "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1897            "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1898            "available_cell_rate = %u",
1899            vcc->itf, vcc->vpi, vcc->vci,
1900            fore200e_traffic_class[ qos->txtp.traffic_class ],
1901            qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1902            fore200e_traffic_class[ qos->rxtp.traffic_class ],
1903            qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1904            flags, fore200e->available_cell_rate);
1905
1906    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1907
1908        mutex_lock(&fore200e->rate_mtx);
1909        if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1910            mutex_unlock(&fore200e->rate_mtx);
1911            return -EAGAIN;
1912        }
1913
1914        fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1915        fore200e->available_cell_rate -= qos->txtp.max_pcr;
1916
1917        mutex_unlock(&fore200e->rate_mtx);
1918        
1919        memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1920        
1921        /* update rate control parameters */
1922        fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1923
1924        set_bit(ATM_VF_HASQOS, &vcc->flags);
1925
1926        return 0;
1927    }
1928    
1929    return -EINVAL;
1930}
1931    
1932
1933static int fore200e_irq_request(struct fore200e *fore200e)
1934{
1935    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1936
1937        printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1938               fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939        return -EBUSY;
1940    }
1941
1942    printk(FORE200E "IRQ %s reserved for device %s\n",
1943           fore200e_irq_itoa(fore200e->irq), fore200e->name);
1944
1945#ifdef FORE200E_USE_TASKLET
1946    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1947    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1948#endif
1949
1950    fore200e->state = FORE200E_STATE_IRQ;
1951    return 0;
1952}
1953
1954
1955static int fore200e_get_esi(struct fore200e *fore200e)
1956{
1957    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1958    int ok, i;
1959
1960    if (!prom)
1961        return -ENOMEM;
1962
1963    ok = fore200e->bus->prom_read(fore200e, prom);
1964    if (ok < 0) {
1965        kfree(prom);
1966        return -EBUSY;
1967    }
1968        
1969    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1970           fore200e->name, 
1971           (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1972           prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1973        
1974    for (i = 0; i < ESI_LEN; i++) {
1975        fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1976    }
1977    
1978    kfree(prom);
1979
1980    return 0;
1981}
1982
1983
1984static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
1985{
1986    int scheme, magn, nbr, size, i;
1987
1988    struct host_bsq* bsq;
1989    struct buffer*   buffer;
1990
1991    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1992        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1993
1994            bsq = &fore200e->host_bsq[ scheme ][ magn ];
1995
1996            nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1997            size = fore200e_rx_buf_size[ scheme ][ magn ];
1998
1999            DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2000
2001            /* allocate the array of receive buffers */
2002            buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2003                                           GFP_KERNEL);
2004
2005            if (buffer == NULL)
2006                return -ENOMEM;
2007
2008            bsq->freebuf = NULL;
2009
2010            for (i = 0; i < nbr; i++) {
2011
2012                buffer[ i ].scheme = scheme;
2013                buffer[ i ].magn   = magn;
2014#ifdef FORE200E_BSQ_DEBUG
2015                buffer[ i ].index  = i;
2016                buffer[ i ].supplied = 0;
2017#endif
2018
2019                /* allocate the receive buffer body */
2020                if (fore200e_chunk_alloc(fore200e,
2021                                         &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2022                                         DMA_FROM_DEVICE) < 0) {
2023                    
2024                    while (i > 0)
2025                        fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2026                    kfree(buffer);
2027                    
2028                    return -ENOMEM;
2029                }
2030
2031                /* insert the buffer into the free buffer list */
2032                buffer[ i ].next = bsq->freebuf;
2033                bsq->freebuf = &buffer[ i ];
2034            }
2035            /* all the buffers are free, initially */
2036            bsq->freebuf_count = nbr;
2037
2038#ifdef FORE200E_BSQ_DEBUG
2039            bsq_audit(3, bsq, scheme, magn);
2040#endif
2041        }
2042    }
2043
2044    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2045    return 0;
2046}
2047
2048
2049static int fore200e_init_bs_queue(struct fore200e *fore200e)
2050{
2051    int scheme, magn, i;
2052
2053    struct host_bsq*     bsq;
2054    struct cp_bsq_entry __iomem * cp_entry;
2055
2056    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2057        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2058
2059            DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2060
2061            bsq = &fore200e->host_bsq[ scheme ][ magn ];
2062
2063            /* allocate and align the array of status words */
2064            if (fore200e_dma_chunk_alloc(fore200e,
2065                                               &bsq->status,
2066                                               sizeof(enum status), 
2067                                               QUEUE_SIZE_BS,
2068                                               fore200e->bus->status_alignment) < 0) {
2069                return -ENOMEM;
2070            }
2071
2072            /* allocate and align the array of receive buffer descriptors */
2073            if (fore200e_dma_chunk_alloc(fore200e,
2074                                               &bsq->rbd_block,
2075                                               sizeof(struct rbd_block),
2076                                               QUEUE_SIZE_BS,
2077                                               fore200e->bus->descr_alignment) < 0) {
2078                
2079                fore200e_dma_chunk_free(fore200e, &bsq->status);
2080                return -ENOMEM;
2081            }
2082            
2083            /* get the base address of the cp resident buffer supply queue entries */
2084            cp_entry = fore200e->virt_base + 
2085                       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2086            
2087            /* fill the host resident and cp resident buffer supply queue entries */
2088            for (i = 0; i < QUEUE_SIZE_BS; i++) {
2089                
2090                bsq->host_entry[ i ].status = 
2091                                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2092                bsq->host_entry[ i ].rbd_block =
2093                                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2094                bsq->host_entry[ i ].rbd_block_dma =
2095                                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2096                bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2097                
2098                *bsq->host_entry[ i ].status = STATUS_FREE;
2099                
2100                fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2101                                     &cp_entry[ i ].status_haddr);
2102            }
2103        }
2104    }
2105
2106    fore200e->state = FORE200E_STATE_INIT_BSQ;
2107    return 0;
2108}
2109
2110
2111static int fore200e_init_rx_queue(struct fore200e *fore200e)
2112{
2113    struct host_rxq*     rxq =  &fore200e->host_rxq;
2114    struct cp_rxq_entry __iomem * cp_entry;
2115    int i;
2116
2117    DPRINTK(2, "receive queue is being initialized\n");
2118
2119    /* allocate and align the array of status words */
2120    if (fore200e_dma_chunk_alloc(fore200e,
2121                                       &rxq->status,
2122                                       sizeof(enum status), 
2123                                       QUEUE_SIZE_RX,
2124                                       fore200e->bus->status_alignment) < 0) {
2125        return -ENOMEM;
2126    }
2127
2128    /* allocate and align the array of receive PDU descriptors */
2129    if (fore200e_dma_chunk_alloc(fore200e,
2130                                       &rxq->rpd,
2131                                       sizeof(struct rpd), 
2132                                       QUEUE_SIZE_RX,
2133                                       fore200e->bus->descr_alignment) < 0) {
2134        
2135        fore200e_dma_chunk_free(fore200e, &rxq->status);
2136        return -ENOMEM;
2137    }
2138
2139    /* get the base address of the cp resident rx queue entries */
2140    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2141
2142    /* fill the host resident and cp resident rx entries */
2143    for (i=0; i < QUEUE_SIZE_RX; i++) {
2144        
2145        rxq->host_entry[ i ].status = 
2146                             FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2147        rxq->host_entry[ i ].rpd = 
2148                             FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2149        rxq->host_entry[ i ].rpd_dma = 
2150                             FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2151        rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2152
2153        *rxq->host_entry[ i ].status = STATUS_FREE;
2154
2155        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2156                             &cp_entry[ i ].status_haddr);
2157
2158        fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2159                             &cp_entry[ i ].rpd_haddr);
2160    }
2161
2162    /* set the head entry of the queue */
2163    rxq->head = 0;
2164
2165    fore200e->state = FORE200E_STATE_INIT_RXQ;
2166    return 0;
2167}
2168
2169
2170static int fore200e_init_tx_queue(struct fore200e *fore200e)
2171{
2172    struct host_txq*     txq =  &fore200e->host_txq;
2173    struct cp_txq_entry __iomem * cp_entry;
2174    int i;
2175
2176    DPRINTK(2, "transmit queue is being initialized\n");
2177
2178    /* allocate and align the array of status words */
2179    if (fore200e_dma_chunk_alloc(fore200e,
2180                                       &txq->status,
2181                                       sizeof(enum status), 
2182                                       QUEUE_SIZE_TX,
2183                                       fore200e->bus->status_alignment) < 0) {
2184        return -ENOMEM;
2185    }
2186
2187    /* allocate and align the array of transmit PDU descriptors */
2188    if (fore200e_dma_chunk_alloc(fore200e,
2189                                       &txq->tpd,
2190                                       sizeof(struct tpd), 
2191                                       QUEUE_SIZE_TX,
2192                                       fore200e->bus->descr_alignment) < 0) {
2193        
2194        fore200e_dma_chunk_free(fore200e, &txq->status);
2195        return -ENOMEM;
2196    }
2197
2198    /* get the base address of the cp resident tx queue entries */
2199    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2200
2201    /* fill the host resident and cp resident tx entries */
2202    for (i=0; i < QUEUE_SIZE_TX; i++) {
2203        
2204        txq->host_entry[ i ].status = 
2205                             FORE200E_INDEX(txq->status.align_addr, enum status, i);
2206        txq->host_entry[ i ].tpd = 
2207                             FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2208        txq->host_entry[ i ].tpd_dma  = 
2209                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2210        txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2211
2212        *txq->host_entry[ i ].status = STATUS_FREE;
2213        
2214        fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2215                             &cp_entry[ i ].status_haddr);
2216        
2217        /* although there is a one-to-one mapping of tx queue entries and tpds,
2218           we do not write here the DMA (physical) base address of each tpd into
2219           the related cp resident entry, because the cp relies on this write
2220           operation to detect that a new pdu has been submitted for tx */
2221    }
2222
2223    /* set the head and tail entries of the queue */
2224    txq->head = 0;
2225    txq->tail = 0;
2226
2227    fore200e->state = FORE200E_STATE_INIT_TXQ;
2228    return 0;
2229}
2230
2231
2232static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2233{
2234    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2235    struct cp_cmdq_entry __iomem * cp_entry;
2236    int i;
2237
2238    DPRINTK(2, "command queue is being initialized\n");
2239
2240    /* allocate and align the array of status words */
2241    if (fore200e_dma_chunk_alloc(fore200e,
2242                                       &cmdq->status,
2243                                       sizeof(enum status), 
2244                                       QUEUE_SIZE_CMD,
2245                                       fore200e->bus->status_alignment) < 0) {
2246        return -ENOMEM;
2247    }
2248    
2249    /* get the base address of the cp resident cmd queue entries */
2250    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2251
2252    /* fill the host resident and cp resident cmd entries */
2253    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2254        
2255        cmdq->host_entry[ i ].status   = 
2256                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2257        cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258
2259        *cmdq->host_entry[ i ].status = STATUS_FREE;
2260
2261        fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2262                             &cp_entry[ i ].status_haddr);
2263    }
2264
2265    /* set the head entry of the queue */
2266    cmdq->head = 0;
2267
2268    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2269    return 0;
2270}
2271
2272
2273static void fore200e_param_bs_queue(struct fore200e *fore200e,
2274                                    enum buffer_scheme scheme,
2275                                    enum buffer_magn magn, int queue_length,
2276                                    int pool_size, int supply_blksize)
2277{
2278    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2279
2280    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2281    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2282    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2283    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2284}
2285
2286
2287static int fore200e_initialize(struct fore200e *fore200e)
2288{
2289    struct cp_queues __iomem * cpq;
2290    int               ok, scheme, magn;
2291
2292    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2293
2294    mutex_init(&fore200e->rate_mtx);
2295    spin_lock_init(&fore200e->q_lock);
2296
2297    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2298
2299    /* enable cp to host interrupts */
2300    fore200e->bus->write(1, &cpq->imask);
2301
2302    if (fore200e->bus->irq_enable)
2303        fore200e->bus->irq_enable(fore200e);
2304    
2305    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2306
2307    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2308    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2309    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2310
2311    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2312    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2313
2314    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2315        for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2316            fore200e_param_bs_queue(fore200e, scheme, magn,
2317                                    QUEUE_SIZE_BS, 
2318                                    fore200e_rx_buf_nbr[ scheme ][ magn ],
2319                                    RBD_BLK_SIZE);
2320
2321    /* issue the initialize command */
2322    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2323    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2324
2325    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2326    if (ok == 0) {
2327        printk(FORE200E "device %s initialization failed\n", fore200e->name);
2328        return -ENODEV;
2329    }
2330
2331    printk(FORE200E "device %s initialized\n", fore200e->name);
2332
2333    fore200e->state = FORE200E_STATE_INITIALIZE;
2334    return 0;
2335}
2336
2337
2338static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2339{
2340    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2341
2342#if 0
2343    printk("%c", c);
2344#endif
2345    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2346}
2347
2348
2349static int fore200e_monitor_getc(struct fore200e *fore200e)
2350{
2351    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2352    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2353    int                c;
2354
2355    while (time_before(jiffies, timeout)) {
2356
2357        c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2358
2359        if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2360
2361            fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2362#if 0
2363            printk("%c", c & 0xFF);
2364#endif
2365            return c & 0xFF;
2366        }
2367    }
2368
2369    return -1;
2370}
2371
2372
2373static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2374{
2375    while (*str) {
2376
2377        /* the i960 monitor doesn't accept any new character if it has something to say */
2378        while (fore200e_monitor_getc(fore200e) >= 0);
2379        
2380        fore200e_monitor_putc(fore200e, *str++);
2381    }
2382
2383    while (fore200e_monitor_getc(fore200e) >= 0);
2384}
2385
2386#ifdef __LITTLE_ENDIAN
2387#define FW_EXT ".bin"
2388#else
2389#define FW_EXT "_ecd.bin2"
2390#endif
2391
2392static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2393{
2394    const struct firmware *firmware;
2395    const struct fw_header *fw_header;
2396    const __le32 *fw_data;
2397    u32 fw_size;
2398    u32 __iomem *load_addr;
2399    char buf[48];
2400    int err;
2401
2402    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2403    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2404        printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2405        return err;
2406    }
2407
2408    fw_data = (const __le32 *)firmware->data;
2409    fw_size = firmware->size / sizeof(u32);
2410    fw_header = (const struct fw_header *)firmware->data;
2411    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2412
2413    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2414            fore200e->name, load_addr, fw_size);
2415
2416    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2417        printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2418        goto release;
2419    }
2420
2421    for (; fw_size--; fw_data++, load_addr++)
2422        fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2423
2424    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2425
2426#if defined(__sparc_v9__)
2427    /* reported to be required by SBA cards on some sparc64 hosts */
2428    fore200e_spin(100);
2429#endif
2430
2431    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2432    fore200e_monitor_puts(fore200e, buf);
2433
2434    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2435        printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2436        goto release;
2437    }
2438
2439    printk(FORE200E "device %s firmware started\n", fore200e->name);
2440
2441    fore200e->state = FORE200E_STATE_START_FW;
2442    err = 0;
2443
2444release:
2445    release_firmware(firmware);
2446    return err;
2447}
2448
2449
2450static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2451{
2452    struct atm_dev* atm_dev;
2453
2454    DPRINTK(2, "device %s being registered\n", fore200e->name);
2455
2456    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2457                               -1, NULL);
2458    if (atm_dev == NULL) {
2459        printk(FORE200E "unable to register device %s\n", fore200e->name);
2460        return -ENODEV;
2461    }
2462
2463    atm_dev->dev_data = fore200e;
2464    fore200e->atm_dev = atm_dev;
2465
2466    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2467    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2468
2469    fore200e->available_cell_rate = ATM_OC3_PCR;
2470
2471    fore200e->state = FORE200E_STATE_REGISTER;
2472    return 0;
2473}
2474
2475
2476static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2477{
2478    if (fore200e_register(fore200e, parent) < 0)
2479        return -ENODEV;
2480    
2481    if (fore200e->bus->configure(fore200e) < 0)
2482        return -ENODEV;
2483
2484    if (fore200e->bus->map(fore200e) < 0)
2485        return -ENODEV;
2486
2487    if (fore200e_reset(fore200e, 1) < 0)
2488        return -ENODEV;
2489
2490    if (fore200e_load_and_start_fw(fore200e) < 0)
2491        return -ENODEV;
2492
2493    if (fore200e_initialize(fore200e) < 0)
2494        return -ENODEV;
2495
2496    if (fore200e_init_cmd_queue(fore200e) < 0)
2497        return -ENOMEM;
2498
2499    if (fore200e_init_tx_queue(fore200e) < 0)
2500        return -ENOMEM;
2501
2502    if (fore200e_init_rx_queue(fore200e) < 0)
2503        return -ENOMEM;
2504
2505    if (fore200e_init_bs_queue(fore200e) < 0)
2506        return -ENOMEM;
2507
2508    if (fore200e_alloc_rx_buf(fore200e) < 0)
2509        return -ENOMEM;
2510
2511    if (fore200e_get_esi(fore200e) < 0)
2512        return -EIO;
2513
2514    if (fore200e_irq_request(fore200e) < 0)
2515        return -EBUSY;
2516
2517    fore200e_supply(fore200e);
2518
2519    /* all done, board initialization is now complete */
2520    fore200e->state = FORE200E_STATE_COMPLETE;
2521    return 0;
2522}
2523
2524#ifdef CONFIG_SBUS
2525static const struct of_device_id fore200e_sba_match[];
2526static int fore200e_sba_probe(struct platform_device *op)
2527{
2528        const struct of_device_id *match;
2529        struct fore200e *fore200e;
2530        static int index = 0;
2531        int err;
2532
2533        match = of_match_device(fore200e_sba_match, &op->dev);
2534        if (!match)
2535                return -EINVAL;
2536
2537        fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2538        if (!fore200e)
2539                return -ENOMEM;
2540
2541        fore200e->bus = &fore200e_sbus_ops;
2542        fore200e->dev = &op->dev;
2543        fore200e->irq = op->archdata.irqs[0];
2544        fore200e->phys_base = op->resource[0].start;
2545
2546        sprintf(fore200e->name, "SBA-200E-%d", index);
2547
2548        err = fore200e_init(fore200e, &op->dev);
2549        if (err < 0) {
2550                fore200e_shutdown(fore200e);
2551                kfree(fore200e);
2552                return err;
2553        }
2554
2555        index++;
2556        dev_set_drvdata(&op->dev, fore200e);
2557
2558        return 0;
2559}
2560
2561static int fore200e_sba_remove(struct platform_device *op)
2562{
2563        struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2564
2565        fore200e_shutdown(fore200e);
2566        kfree(fore200e);
2567
2568        return 0;
2569}
2570
2571static const struct of_device_id fore200e_sba_match[] = {
2572        {
2573                .name = SBA200E_PROM_NAME,
2574        },
2575        {},
2576};
2577MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2578
2579static struct platform_driver fore200e_sba_driver = {
2580        .driver = {
2581                .name = "fore_200e",
2582                .of_match_table = fore200e_sba_match,
2583        },
2584        .probe          = fore200e_sba_probe,
2585        .remove         = fore200e_sba_remove,
2586};
2587#endif
2588
2589#ifdef CONFIG_PCI
2590static int fore200e_pca_detect(struct pci_dev *pci_dev,
2591                               const struct pci_device_id *pci_ent)
2592{
2593    struct fore200e* fore200e;
2594    int err = 0;
2595    static int index = 0;
2596
2597    if (pci_enable_device(pci_dev)) {
2598        err = -EINVAL;
2599        goto out;
2600    }
2601
2602    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2603        err = -EINVAL;
2604        goto out;
2605    }
2606    
2607    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2608    if (fore200e == NULL) {
2609        err = -ENOMEM;
2610        goto out_disable;
2611    }
2612
2613    fore200e->bus       = &fore200e_pci_ops;
2614    fore200e->dev       = &pci_dev->dev;
2615    fore200e->irq       = pci_dev->irq;
2616    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2617
2618    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2619
2620    pci_set_master(pci_dev);
2621
2622    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
2623           fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2624
2625    sprintf(fore200e->name, "PCA-200E-%d", index);
2626
2627    err = fore200e_init(fore200e, &pci_dev->dev);
2628    if (err < 0) {
2629        fore200e_shutdown(fore200e);
2630        goto out_free;
2631    }
2632
2633    ++index;
2634    pci_set_drvdata(pci_dev, fore200e);
2635
2636out:
2637    return err;
2638
2639out_free:
2640    kfree(fore200e);
2641out_disable:
2642    pci_disable_device(pci_dev);
2643    goto out;
2644}
2645
2646
2647static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2648{
2649    struct fore200e *fore200e;
2650
2651    fore200e = pci_get_drvdata(pci_dev);
2652
2653    fore200e_shutdown(fore200e);
2654    kfree(fore200e);
2655    pci_disable_device(pci_dev);
2656}
2657
2658
2659static const struct pci_device_id fore200e_pca_tbl[] = {
2660    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
2661    { 0, }
2662};
2663
2664MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2665
2666static struct pci_driver fore200e_pca_driver = {
2667    .name =     "fore_200e",
2668    .probe =    fore200e_pca_detect,
2669    .remove =   fore200e_pca_remove_one,
2670    .id_table = fore200e_pca_tbl,
2671};
2672#endif
2673
2674static int __init fore200e_module_init(void)
2675{
2676        int err = 0;
2677
2678        printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2679
2680#ifdef CONFIG_SBUS
2681        err = platform_driver_register(&fore200e_sba_driver);
2682        if (err)
2683                return err;
2684#endif
2685
2686#ifdef CONFIG_PCI
2687        err = pci_register_driver(&fore200e_pca_driver);
2688#endif
2689
2690#ifdef CONFIG_SBUS
2691        if (err)
2692                platform_driver_unregister(&fore200e_sba_driver);
2693#endif
2694
2695        return err;
2696}
2697
2698static void __exit fore200e_module_cleanup(void)
2699{
2700#ifdef CONFIG_PCI
2701        pci_unregister_driver(&fore200e_pca_driver);
2702#endif
2703#ifdef CONFIG_SBUS
2704        platform_driver_unregister(&fore200e_sba_driver);
2705#endif
2706}
2707
2708static int
2709fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2710{
2711    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2712    struct fore200e_vcc* fore200e_vcc;
2713    struct atm_vcc*      vcc;
2714    int                  i, len, left = *pos;
2715    unsigned long        flags;
2716
2717    if (!left--) {
2718
2719        if (fore200e_getstats(fore200e) < 0)
2720            return -EIO;
2721
2722        len = sprintf(page,"\n"
2723                       " device:\n"
2724                       "   internal name:\t\t%s\n", fore200e->name);
2725
2726        /* print bus-specific information */
2727        if (fore200e->bus->proc_read)
2728            len += fore200e->bus->proc_read(fore200e, page + len);
2729        
2730        len += sprintf(page + len,
2731                "   interrupt line:\t\t%s\n"
2732                "   physical base address:\t0x%p\n"
2733                "   virtual base address:\t0x%p\n"
2734                "   factory address (ESI):\t%pM\n"
2735                "   board serial number:\t\t%d\n\n",
2736                fore200e_irq_itoa(fore200e->irq),
2737                (void*)fore200e->phys_base,
2738                fore200e->virt_base,
2739                fore200e->esi,
2740                fore200e->esi[4] * 256 + fore200e->esi[5]);
2741
2742        return len;
2743    }
2744
2745    if (!left--)
2746        return sprintf(page,
2747                       "   free small bufs, scheme 1:\t%d\n"
2748                       "   free large bufs, scheme 1:\t%d\n"
2749                       "   free small bufs, scheme 2:\t%d\n"
2750                       "   free large bufs, scheme 2:\t%d\n",
2751                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2752                       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2753                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2754                       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2755
2756    if (!left--) {
2757        u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2758
2759        len = sprintf(page,"\n\n"
2760                      " cell processor:\n"
2761                      "   heartbeat state:\t\t");
2762        
2763        if (hb >> 16 != 0xDEAD)
2764            len += sprintf(page + len, "0x%08x\n", hb);
2765        else
2766            len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2767
2768        return len;
2769    }
2770
2771    if (!left--) {
2772        static const char* media_name[] = {
2773            "unshielded twisted pair",
2774            "multimode optical fiber ST",
2775            "multimode optical fiber SC",
2776            "single-mode optical fiber ST",
2777            "single-mode optical fiber SC",
2778            "unknown"
2779        };
2780
2781        static const char* oc3_mode[] = {
2782            "normal operation",
2783            "diagnostic loopback",
2784            "line loopback",
2785            "unknown"
2786        };
2787
2788        u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2789        u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2790        u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2791        u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2792        u32 oc3_index;
2793
2794        if (media_index > 4)
2795                media_index = 5;
2796        
2797        switch (fore200e->loop_mode) {
2798            case ATM_LM_NONE:    oc3_index = 0;
2799                                 break;
2800            case ATM_LM_LOC_PHY: oc3_index = 1;
2801                                 break;
2802            case ATM_LM_RMT_PHY: oc3_index = 2;
2803                                 break;
2804            default:             oc3_index = 3;
2805        }
2806
2807        return sprintf(page,
2808                       "   firmware release:\t\t%d.%d.%d\n"
2809                       "   monitor release:\t\t%d.%d\n"
2810                       "   media type:\t\t\t%s\n"
2811                       "   OC-3 revision:\t\t0x%x\n"
2812                       "   OC-3 mode:\t\t\t%s",
2813                       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2814                       mon960_release >> 16, mon960_release << 16 >> 16,
2815                       media_name[ media_index ],
2816                       oc3_revision,
2817                       oc3_mode[ oc3_index ]);
2818    }
2819
2820    if (!left--) {
2821        struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2822
2823        return sprintf(page,
2824                       "\n\n"
2825                       " monitor:\n"
2826                       "   version number:\t\t%d\n"
2827                       "   boot status word:\t\t0x%08x\n",
2828                       fore200e->bus->read(&cp_monitor->mon_version),
2829                       fore200e->bus->read(&cp_monitor->bstat));
2830    }
2831
2832    if (!left--)
2833        return sprintf(page,
2834                       "\n"
2835                       " device statistics:\n"
2836                       "  4b5b:\n"
2837                       "     crc_header_errors:\t\t%10u\n"
2838                       "     framing_errors:\t\t%10u\n",
2839                       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2840                       be32_to_cpu(fore200e->stats->phy.framing_errors));
2841    
2842    if (!left--)
2843        return sprintf(page, "\n"
2844                       "  OC-3:\n"
2845                       "     section_bip8_errors:\t%10u\n"
2846                       "     path_bip8_errors:\t\t%10u\n"
2847                       "     line_bip24_errors:\t\t%10u\n"
2848                       "     line_febe_errors:\t\t%10u\n"
2849                       "     path_febe_errors:\t\t%10u\n"
2850                       "     corr_hcs_errors:\t\t%10u\n"
2851                       "     ucorr_hcs_errors:\t\t%10u\n",
2852                       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2853                       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2854                       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2855                       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2856                       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2857                       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2858                       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2859
2860    if (!left--)
2861        return sprintf(page,"\n"
2862                       "   ATM:\t\t\t\t     cells\n"
2863                       "     TX:\t\t\t%10u\n"
2864                       "     RX:\t\t\t%10u\n"
2865                       "     vpi out of range:\t\t%10u\n"
2866                       "     vpi no conn:\t\t%10u\n"
2867                       "     vci out of range:\t\t%10u\n"
2868                       "     vci no conn:\t\t%10u\n",
2869                       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2870                       be32_to_cpu(fore200e->stats->atm.cells_received),
2871                       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2872                       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2873                       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2874                       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2875    
2876    if (!left--)
2877        return sprintf(page,"\n"
2878                       "   AAL0:\t\t\t     cells\n"
2879                       "     TX:\t\t\t%10u\n"
2880                       "     RX:\t\t\t%10u\n"
2881                       "     dropped:\t\t\t%10u\n",
2882                       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2883                       be32_to_cpu(fore200e->stats->aal0.cells_received),
2884                       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2885    
2886    if (!left--)
2887        return sprintf(page,"\n"
2888                       "   AAL3/4:\n"
2889                       "     SAR sublayer:\t\t     cells\n"
2890                       "       TX:\t\t\t%10u\n"
2891                       "       RX:\t\t\t%10u\n"
2892                       "       dropped:\t\t\t%10u\n"
2893                       "       CRC errors:\t\t%10u\n"
2894                       "       protocol errors:\t\t%10u\n\n"
2895                       "     CS  sublayer:\t\t      PDUs\n"
2896                       "       TX:\t\t\t%10u\n"
2897                       "       RX:\t\t\t%10u\n"
2898                       "       dropped:\t\t\t%10u\n"
2899                       "       protocol errors:\t\t%10u\n",
2900                       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2901                       be32_to_cpu(fore200e->stats->aal34.cells_received),
2902                       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2903                       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2904                       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2905                       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2906                       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2907                       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2908                       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2909    
2910    if (!left--)
2911        return sprintf(page,"\n"
2912                       "   AAL5:\n"
2913                       "     SAR sublayer:\t\t     cells\n"
2914                       "       TX:\t\t\t%10u\n"
2915                       "       RX:\t\t\t%10u\n"
2916                       "       dropped:\t\t\t%10u\n"
2917                       "       congestions:\t\t%10u\n\n"
2918                       "     CS  sublayer:\t\t      PDUs\n"
2919                       "       TX:\t\t\t%10u\n"
2920                       "       RX:\t\t\t%10u\n"
2921                       "       dropped:\t\t\t%10u\n"
2922                       "       CRC errors:\t\t%10u\n"
2923                       "       protocol errors:\t\t%10u\n",
2924                       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2925                       be32_to_cpu(fore200e->stats->aal5.cells_received),
2926                       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2927                       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2928                       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2929                       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2930                       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2931                       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2932                       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2933    
2934    if (!left--)
2935        return sprintf(page,"\n"
2936                       "   AUX:\t\t       allocation failures\n"
2937                       "     small b1:\t\t\t%10u\n"
2938                       "     large b1:\t\t\t%10u\n"
2939                       "     small b2:\t\t\t%10u\n"
2940                       "     large b2:\t\t\t%10u\n"
2941                       "     RX PDUs:\t\t\t%10u\n"
2942                       "     TX PDUs:\t\t\t%10lu\n",
2943                       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2944                       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2945                       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2946                       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2947                       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2948                       fore200e->tx_sat);
2949    
2950    if (!left--)
2951        return sprintf(page,"\n"
2952                       " receive carrier:\t\t\t%s\n",
2953                       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2954    
2955    if (!left--) {
2956        return sprintf(page,"\n"
2957                       " VCCs:\n  address   VPI VCI   AAL "
2958                       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2959    }
2960
2961    for (i = 0; i < NBR_CONNECT; i++) {
2962
2963        vcc = fore200e->vc_map[i].vcc;
2964
2965        if (vcc == NULL)
2966            continue;
2967
2968        spin_lock_irqsave(&fore200e->q_lock, flags);
2969
2970        if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2971
2972            fore200e_vcc = FORE200E_VCC(vcc);
2973            ASSERT(fore200e_vcc);
2974
2975            len = sprintf(page,
2976                          "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2977                          vcc,
2978                          vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2979                          fore200e_vcc->tx_pdu,
2980                          fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2981                          fore200e_vcc->tx_max_pdu,
2982                          fore200e_vcc->rx_pdu,
2983                          fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2984                          fore200e_vcc->rx_max_pdu);
2985
2986            spin_unlock_irqrestore(&fore200e->q_lock, flags);
2987            return len;
2988        }
2989
2990        spin_unlock_irqrestore(&fore200e->q_lock, flags);
2991    }
2992    
2993    return 0;
2994}
2995
2996module_init(fore200e_module_init);
2997module_exit(fore200e_module_cleanup);
2998
2999
3000static const struct atmdev_ops fore200e_ops = {
3001        .open       = fore200e_open,
3002        .close      = fore200e_close,
3003        .ioctl      = fore200e_ioctl,
3004        .send       = fore200e_send,
3005        .change_qos = fore200e_change_qos,
3006        .proc_read  = fore200e_proc_read,
3007        .owner      = THIS_MODULE
3008};
3009
3010MODULE_LICENSE("GPL");
3011#ifdef CONFIG_PCI
3012#ifdef __LITTLE_ENDIAN__
3013MODULE_FIRMWARE("pca200e.bin");
3014#else
3015MODULE_FIRMWARE("pca200e_ecd.bin2");
3016#endif
3017#endif /* CONFIG_PCI */
3018#ifdef CONFIG_SBUS
3019MODULE_FIRMWARE("sba200e_ecd.bin2");
3020#endif
3021