linux/drivers/clk/ti/clkt_dpll.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * OMAP2/3/4 DPLL clock functions
   4 *
   5 * Copyright (C) 2005-2008 Texas Instruments, Inc.
   6 * Copyright (C) 2004-2010 Nokia Corporation
   7 *
   8 * Contacts:
   9 * Richard Woodruff <r-woodruff2@ti.com>
  10 * Paul Walmsley
  11 */
  12#undef DEBUG
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/clk.h>
  17#include <linux/clk-provider.h>
  18#include <linux/io.h>
  19#include <linux/clk/ti.h>
  20
  21#include <asm/div64.h>
  22
  23#include "clock.h"
  24
  25/* DPLL rate rounding: minimum DPLL multiplier, divider values */
  26#define DPLL_MIN_MULTIPLIER             2
  27#define DPLL_MIN_DIVIDER                1
  28
  29/* Possible error results from _dpll_test_mult */
  30#define DPLL_MULT_UNDERFLOW             -1
  31
  32/*
  33 * Scale factor to mitigate roundoff errors in DPLL rate rounding.
  34 * The higher the scale factor, the greater the risk of arithmetic overflow,
  35 * but the closer the rounded rate to the target rate.  DPLL_SCALE_FACTOR
  36 * must be a power of DPLL_SCALE_BASE.
  37 */
  38#define DPLL_SCALE_FACTOR               64
  39#define DPLL_SCALE_BASE                 2
  40#define DPLL_ROUNDING_VAL               ((DPLL_SCALE_BASE / 2) * \
  41                                         (DPLL_SCALE_FACTOR / DPLL_SCALE_BASE))
  42
  43/*
  44 * DPLL valid Fint frequency range for OMAP36xx and OMAP4xxx.
  45 * From device data manual section 4.3 "DPLL and DLL Specifications".
  46 */
  47#define OMAP3PLUS_DPLL_FINT_JTYPE_MIN   500000
  48#define OMAP3PLUS_DPLL_FINT_JTYPE_MAX   2500000
  49
  50/* _dpll_test_fint() return codes */
  51#define DPLL_FINT_UNDERFLOW             -1
  52#define DPLL_FINT_INVALID               -2
  53
  54/* Private functions */
  55
  56/*
  57 * _dpll_test_fint - test whether an Fint value is valid for the DPLL
  58 * @clk: DPLL struct clk to test
  59 * @n: divider value (N) to test
  60 *
  61 * Tests whether a particular divider @n will result in a valid DPLL
  62 * internal clock frequency Fint. See the 34xx TRM 4.7.6.2 "DPLL Jitter
  63 * Correction".  Returns 0 if OK, -1 if the enclosing loop can terminate
  64 * (assuming that it is counting N upwards), or -2 if the enclosing loop
  65 * should skip to the next iteration (again assuming N is increasing).
  66 */
  67static int _dpll_test_fint(struct clk_hw_omap *clk, unsigned int n)
  68{
  69        struct dpll_data *dd;
  70        long fint, fint_min, fint_max;
  71        int ret = 0;
  72
  73        dd = clk->dpll_data;
  74
  75        /* DPLL divider must result in a valid jitter correction val */
  76        fint = clk_hw_get_rate(clk_hw_get_parent(&clk->hw)) / n;
  77
  78        if (dd->flags & DPLL_J_TYPE) {
  79                fint_min = OMAP3PLUS_DPLL_FINT_JTYPE_MIN;
  80                fint_max = OMAP3PLUS_DPLL_FINT_JTYPE_MAX;
  81        } else {
  82                fint_min = ti_clk_get_features()->fint_min;
  83                fint_max = ti_clk_get_features()->fint_max;
  84        }
  85
  86        if (!fint_min || !fint_max) {
  87                WARN(1, "No fint limits available!\n");
  88                return DPLL_FINT_INVALID;
  89        }
  90
  91        if (fint < ti_clk_get_features()->fint_min) {
  92                pr_debug("rejecting n=%d due to Fint failure, lowering max_divider\n",
  93                         n);
  94                dd->max_divider = n;
  95                ret = DPLL_FINT_UNDERFLOW;
  96        } else if (fint > ti_clk_get_features()->fint_max) {
  97                pr_debug("rejecting n=%d due to Fint failure, boosting min_divider\n",
  98                         n);
  99                dd->min_divider = n;
 100                ret = DPLL_FINT_INVALID;
 101        } else if (fint > ti_clk_get_features()->fint_band1_max &&
 102                   fint < ti_clk_get_features()->fint_band2_min) {
 103                pr_debug("rejecting n=%d due to Fint failure\n", n);
 104                ret = DPLL_FINT_INVALID;
 105        }
 106
 107        return ret;
 108}
 109
 110static unsigned long _dpll_compute_new_rate(unsigned long parent_rate,
 111                                            unsigned int m, unsigned int n)
 112{
 113        unsigned long long num;
 114
 115        num = (unsigned long long)parent_rate * m;
 116        do_div(num, n);
 117        return num;
 118}
 119
 120/*
 121 * _dpll_test_mult - test a DPLL multiplier value
 122 * @m: pointer to the DPLL m (multiplier) value under test
 123 * @n: current DPLL n (divider) value under test
 124 * @new_rate: pointer to storage for the resulting rounded rate
 125 * @target_rate: the desired DPLL rate
 126 * @parent_rate: the DPLL's parent clock rate
 127 *
 128 * This code tests a DPLL multiplier value, ensuring that the
 129 * resulting rate will not be higher than the target_rate, and that
 130 * the multiplier value itself is valid for the DPLL.  Initially, the
 131 * integer pointed to by the m argument should be prescaled by
 132 * multiplying by DPLL_SCALE_FACTOR.  The code will replace this with
 133 * a non-scaled m upon return.  This non-scaled m will result in a
 134 * new_rate as close as possible to target_rate (but not greater than
 135 * target_rate) given the current (parent_rate, n, prescaled m)
 136 * triple. Returns DPLL_MULT_UNDERFLOW in the event that the
 137 * non-scaled m attempted to underflow, which can allow the calling
 138 * function to bail out early; or 0 upon success.
 139 */
 140static int _dpll_test_mult(int *m, int n, unsigned long *new_rate,
 141                           unsigned long target_rate,
 142                           unsigned long parent_rate)
 143{
 144        int r = 0, carry = 0;
 145
 146        /* Unscale m and round if necessary */
 147        if (*m % DPLL_SCALE_FACTOR >= DPLL_ROUNDING_VAL)
 148                carry = 1;
 149        *m = (*m / DPLL_SCALE_FACTOR) + carry;
 150
 151        /*
 152         * The new rate must be <= the target rate to avoid programming
 153         * a rate that is impossible for the hardware to handle
 154         */
 155        *new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
 156        if (*new_rate > target_rate) {
 157                (*m)--;
 158                *new_rate = 0;
 159        }
 160
 161        /* Guard against m underflow */
 162        if (*m < DPLL_MIN_MULTIPLIER) {
 163                *m = DPLL_MIN_MULTIPLIER;
 164                *new_rate = 0;
 165                r = DPLL_MULT_UNDERFLOW;
 166        }
 167
 168        if (*new_rate == 0)
 169                *new_rate = _dpll_compute_new_rate(parent_rate, *m, n);
 170
 171        return r;
 172}
 173
 174/**
 175 * _omap2_dpll_is_in_bypass - check if DPLL is in bypass mode or not
 176 * @v: bitfield value of the DPLL enable
 177 *
 178 * Checks given DPLL enable bitfield to see whether the DPLL is in bypass
 179 * mode or not. Returns 1 if the DPLL is in bypass, 0 otherwise.
 180 */
 181static int _omap2_dpll_is_in_bypass(u32 v)
 182{
 183        u8 mask, val;
 184
 185        mask = ti_clk_get_features()->dpll_bypass_vals;
 186
 187        /*
 188         * Each set bit in the mask corresponds to a bypass value equal
 189         * to the bitshift. Go through each set-bit in the mask and
 190         * compare against the given register value.
 191         */
 192        while (mask) {
 193                val = __ffs(mask);
 194                mask ^= (1 << val);
 195                if (v == val)
 196                        return 1;
 197        }
 198
 199        return 0;
 200}
 201
 202/* Public functions */
 203u8 omap2_init_dpll_parent(struct clk_hw *hw)
 204{
 205        struct clk_hw_omap *clk = to_clk_hw_omap(hw);
 206        u32 v;
 207        struct dpll_data *dd;
 208
 209        dd = clk->dpll_data;
 210        if (!dd)
 211                return -EINVAL;
 212
 213        v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
 214        v &= dd->enable_mask;
 215        v >>= __ffs(dd->enable_mask);
 216
 217        /* Reparent the struct clk in case the dpll is in bypass */
 218        if (_omap2_dpll_is_in_bypass(v))
 219                return 1;
 220
 221        return 0;
 222}
 223
 224/**
 225 * omap2_get_dpll_rate - returns the current DPLL CLKOUT rate
 226 * @clk: struct clk * of a DPLL
 227 *
 228 * DPLLs can be locked or bypassed - basically, enabled or disabled.
 229 * When locked, the DPLL output depends on the M and N values.  When
 230 * bypassed, on OMAP2xxx, the output rate is either the 32KiHz clock
 231 * or sys_clk.  Bypass rates on OMAP3 depend on the DPLL: DPLLs 1 and
 232 * 2 are bypassed with dpll1_fclk and dpll2_fclk respectively
 233 * (generated by DPLL3), while DPLL 3, 4, and 5 bypass rates are sys_clk.
 234 * Returns the current DPLL CLKOUT rate (*not* CLKOUTX2) if the DPLL is
 235 * locked, or the appropriate bypass rate if the DPLL is bypassed, or 0
 236 * if the clock @clk is not a DPLL.
 237 */
 238unsigned long omap2_get_dpll_rate(struct clk_hw_omap *clk)
 239{
 240        u64 dpll_clk;
 241        u32 dpll_mult, dpll_div, v;
 242        struct dpll_data *dd;
 243
 244        dd = clk->dpll_data;
 245        if (!dd)
 246                return 0;
 247
 248        /* Return bypass rate if DPLL is bypassed */
 249        v = ti_clk_ll_ops->clk_readl(&dd->control_reg);
 250        v &= dd->enable_mask;
 251        v >>= __ffs(dd->enable_mask);
 252
 253        if (_omap2_dpll_is_in_bypass(v))
 254                return clk_hw_get_rate(dd->clk_bypass);
 255
 256        v = ti_clk_ll_ops->clk_readl(&dd->mult_div1_reg);
 257        dpll_mult = v & dd->mult_mask;
 258        dpll_mult >>= __ffs(dd->mult_mask);
 259        dpll_div = v & dd->div1_mask;
 260        dpll_div >>= __ffs(dd->div1_mask);
 261
 262        dpll_clk = (u64)clk_hw_get_rate(dd->clk_ref) * dpll_mult;
 263        do_div(dpll_clk, dpll_div + 1);
 264
 265        return dpll_clk;
 266}
 267
 268/* DPLL rate rounding code */
 269
 270/**
 271 * omap2_dpll_round_rate - round a target rate for an OMAP DPLL
 272 * @clk: struct clk * for a DPLL
 273 * @target_rate: desired DPLL clock rate
 274 *
 275 * Given a DPLL and a desired target rate, round the target rate to a
 276 * possible, programmable rate for this DPLL.  Attempts to select the
 277 * minimum possible n.  Stores the computed (m, n) in the DPLL's
 278 * dpll_data structure so set_rate() will not need to call this
 279 * (expensive) function again.  Returns ~0 if the target rate cannot
 280 * be rounded, or the rounded rate upon success.
 281 */
 282long omap2_dpll_round_rate(struct clk_hw *hw, unsigned long target_rate,
 283                           unsigned long *parent_rate)
 284{
 285        struct clk_hw_omap *clk = to_clk_hw_omap(hw);
 286        int m, n, r, scaled_max_m;
 287        int min_delta_m = INT_MAX, min_delta_n = INT_MAX;
 288        unsigned long scaled_rt_rp;
 289        unsigned long new_rate = 0;
 290        struct dpll_data *dd;
 291        unsigned long ref_rate;
 292        long delta;
 293        long prev_min_delta = LONG_MAX;
 294        const char *clk_name;
 295
 296        if (!clk || !clk->dpll_data)
 297                return ~0;
 298
 299        dd = clk->dpll_data;
 300
 301        if (dd->max_rate && target_rate > dd->max_rate)
 302                target_rate = dd->max_rate;
 303
 304        ref_rate = clk_hw_get_rate(dd->clk_ref);
 305        clk_name = clk_hw_get_name(hw);
 306        pr_debug("clock: %s: starting DPLL round_rate, target rate %lu\n",
 307                 clk_name, target_rate);
 308
 309        scaled_rt_rp = target_rate / (ref_rate / DPLL_SCALE_FACTOR);
 310        scaled_max_m = dd->max_multiplier * DPLL_SCALE_FACTOR;
 311
 312        dd->last_rounded_rate = 0;
 313
 314        for (n = dd->min_divider; n <= dd->max_divider; n++) {
 315                /* Is the (input clk, divider) pair valid for the DPLL? */
 316                r = _dpll_test_fint(clk, n);
 317                if (r == DPLL_FINT_UNDERFLOW)
 318                        break;
 319                else if (r == DPLL_FINT_INVALID)
 320                        continue;
 321
 322                /* Compute the scaled DPLL multiplier, based on the divider */
 323                m = scaled_rt_rp * n;
 324
 325                /*
 326                 * Since we're counting n up, a m overflow means we
 327                 * can bail out completely (since as n increases in
 328                 * the next iteration, there's no way that m can
 329                 * increase beyond the current m)
 330                 */
 331                if (m > scaled_max_m)
 332                        break;
 333
 334                r = _dpll_test_mult(&m, n, &new_rate, target_rate,
 335                                    ref_rate);
 336
 337                /* m can't be set low enough for this n - try with a larger n */
 338                if (r == DPLL_MULT_UNDERFLOW)
 339                        continue;
 340
 341                /* skip rates above our target rate */
 342                delta = target_rate - new_rate;
 343                if (delta < 0)
 344                        continue;
 345
 346                if (delta < prev_min_delta) {
 347                        prev_min_delta = delta;
 348                        min_delta_m = m;
 349                        min_delta_n = n;
 350                }
 351
 352                pr_debug("clock: %s: m = %d: n = %d: new_rate = %lu\n",
 353                         clk_name, m, n, new_rate);
 354
 355                if (delta == 0)
 356                        break;
 357        }
 358
 359        if (prev_min_delta == LONG_MAX) {
 360                pr_debug("clock: %s: cannot round to rate %lu\n",
 361                         clk_name, target_rate);
 362                return ~0;
 363        }
 364
 365        dd->last_rounded_m = min_delta_m;
 366        dd->last_rounded_n = min_delta_n;
 367        dd->last_rounded_rate = target_rate - prev_min_delta;
 368
 369        return dd->last_rounded_rate;
 370}
 371