linux/drivers/clocksource/arm_arch_timer.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/clocksource/arm_arch_timer.c
   4 *
   5 *  Copyright (C) 2011 ARM Ltd.
   6 *  All Rights Reserved
   7 */
   8
   9#define pr_fmt(fmt)     "arch_timer: " fmt
  10
  11#include <linux/init.h>
  12#include <linux/kernel.h>
  13#include <linux/device.h>
  14#include <linux/smp.h>
  15#include <linux/cpu.h>
  16#include <linux/cpu_pm.h>
  17#include <linux/clockchips.h>
  18#include <linux/clocksource.h>
  19#include <linux/interrupt.h>
  20#include <linux/of_irq.h>
  21#include <linux/of_address.h>
  22#include <linux/io.h>
  23#include <linux/slab.h>
  24#include <linux/sched/clock.h>
  25#include <linux/sched_clock.h>
  26#include <linux/acpi.h>
  27
  28#include <asm/arch_timer.h>
  29#include <asm/virt.h>
  30
  31#include <clocksource/arm_arch_timer.h>
  32
  33#define CNTTIDR         0x08
  34#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
  35
  36#define CNTACR(n)       (0x40 + ((n) * 4))
  37#define CNTACR_RPCT     BIT(0)
  38#define CNTACR_RVCT     BIT(1)
  39#define CNTACR_RFRQ     BIT(2)
  40#define CNTACR_RVOFF    BIT(3)
  41#define CNTACR_RWVT     BIT(4)
  42#define CNTACR_RWPT     BIT(5)
  43
  44#define CNTVCT_LO       0x08
  45#define CNTVCT_HI       0x0c
  46#define CNTFRQ          0x10
  47#define CNTP_TVAL       0x28
  48#define CNTP_CTL        0x2c
  49#define CNTV_TVAL       0x38
  50#define CNTV_CTL        0x3c
  51
  52static unsigned arch_timers_present __initdata;
  53
  54static void __iomem *arch_counter_base;
  55
  56struct arch_timer {
  57        void __iomem *base;
  58        struct clock_event_device evt;
  59};
  60
  61#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
  62
  63static u32 arch_timer_rate;
  64static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
  65
  66static struct clock_event_device __percpu *arch_timer_evt;
  67
  68static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
  69static bool arch_timer_c3stop;
  70static bool arch_timer_mem_use_virtual;
  71static bool arch_counter_suspend_stop;
  72#ifdef CONFIG_GENERIC_GETTIMEOFDAY
  73static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
  74#else
  75static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
  76#endif /* CONFIG_GENERIC_GETTIMEOFDAY */
  77
  78static cpumask_t evtstrm_available = CPU_MASK_NONE;
  79static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
  80
  81static int __init early_evtstrm_cfg(char *buf)
  82{
  83        return strtobool(buf, &evtstrm_enable);
  84}
  85early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
  86
  87/*
  88 * Architected system timer support.
  89 */
  90
  91static __always_inline
  92void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
  93                          struct clock_event_device *clk)
  94{
  95        if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
  96                struct arch_timer *timer = to_arch_timer(clk);
  97                switch (reg) {
  98                case ARCH_TIMER_REG_CTRL:
  99                        writel_relaxed(val, timer->base + CNTP_CTL);
 100                        break;
 101                case ARCH_TIMER_REG_TVAL:
 102                        writel_relaxed(val, timer->base + CNTP_TVAL);
 103                        break;
 104                }
 105        } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 106                struct arch_timer *timer = to_arch_timer(clk);
 107                switch (reg) {
 108                case ARCH_TIMER_REG_CTRL:
 109                        writel_relaxed(val, timer->base + CNTV_CTL);
 110                        break;
 111                case ARCH_TIMER_REG_TVAL:
 112                        writel_relaxed(val, timer->base + CNTV_TVAL);
 113                        break;
 114                }
 115        } else {
 116                arch_timer_reg_write_cp15(access, reg, val);
 117        }
 118}
 119
 120static __always_inline
 121u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
 122                        struct clock_event_device *clk)
 123{
 124        u32 val;
 125
 126        if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
 127                struct arch_timer *timer = to_arch_timer(clk);
 128                switch (reg) {
 129                case ARCH_TIMER_REG_CTRL:
 130                        val = readl_relaxed(timer->base + CNTP_CTL);
 131                        break;
 132                case ARCH_TIMER_REG_TVAL:
 133                        val = readl_relaxed(timer->base + CNTP_TVAL);
 134                        break;
 135                }
 136        } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
 137                struct arch_timer *timer = to_arch_timer(clk);
 138                switch (reg) {
 139                case ARCH_TIMER_REG_CTRL:
 140                        val = readl_relaxed(timer->base + CNTV_CTL);
 141                        break;
 142                case ARCH_TIMER_REG_TVAL:
 143                        val = readl_relaxed(timer->base + CNTV_TVAL);
 144                        break;
 145                }
 146        } else {
 147                val = arch_timer_reg_read_cp15(access, reg);
 148        }
 149
 150        return val;
 151}
 152
 153static notrace u64 arch_counter_get_cntpct_stable(void)
 154{
 155        return __arch_counter_get_cntpct_stable();
 156}
 157
 158static notrace u64 arch_counter_get_cntpct(void)
 159{
 160        return __arch_counter_get_cntpct();
 161}
 162
 163static notrace u64 arch_counter_get_cntvct_stable(void)
 164{
 165        return __arch_counter_get_cntvct_stable();
 166}
 167
 168static notrace u64 arch_counter_get_cntvct(void)
 169{
 170        return __arch_counter_get_cntvct();
 171}
 172
 173/*
 174 * Default to cp15 based access because arm64 uses this function for
 175 * sched_clock() before DT is probed and the cp15 method is guaranteed
 176 * to exist on arm64. arm doesn't use this before DT is probed so even
 177 * if we don't have the cp15 accessors we won't have a problem.
 178 */
 179u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
 180EXPORT_SYMBOL_GPL(arch_timer_read_counter);
 181
 182static u64 arch_counter_read(struct clocksource *cs)
 183{
 184        return arch_timer_read_counter();
 185}
 186
 187static u64 arch_counter_read_cc(const struct cyclecounter *cc)
 188{
 189        return arch_timer_read_counter();
 190}
 191
 192static struct clocksource clocksource_counter = {
 193        .name   = "arch_sys_counter",
 194        .rating = 400,
 195        .read   = arch_counter_read,
 196        .mask   = CLOCKSOURCE_MASK(56),
 197        .flags  = CLOCK_SOURCE_IS_CONTINUOUS,
 198};
 199
 200static struct cyclecounter cyclecounter __ro_after_init = {
 201        .read   = arch_counter_read_cc,
 202        .mask   = CLOCKSOURCE_MASK(56),
 203};
 204
 205struct ate_acpi_oem_info {
 206        char oem_id[ACPI_OEM_ID_SIZE + 1];
 207        char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
 208        u32 oem_revision;
 209};
 210
 211#ifdef CONFIG_FSL_ERRATUM_A008585
 212/*
 213 * The number of retries is an arbitrary value well beyond the highest number
 214 * of iterations the loop has been observed to take.
 215 */
 216#define __fsl_a008585_read_reg(reg) ({                  \
 217        u64 _old, _new;                                 \
 218        int _retries = 200;                             \
 219                                                        \
 220        do {                                            \
 221                _old = read_sysreg(reg);                \
 222                _new = read_sysreg(reg);                \
 223                _retries--;                             \
 224        } while (unlikely(_old != _new) && _retries);   \
 225                                                        \
 226        WARN_ON_ONCE(!_retries);                        \
 227        _new;                                           \
 228})
 229
 230static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
 231{
 232        return __fsl_a008585_read_reg(cntp_tval_el0);
 233}
 234
 235static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
 236{
 237        return __fsl_a008585_read_reg(cntv_tval_el0);
 238}
 239
 240static u64 notrace fsl_a008585_read_cntpct_el0(void)
 241{
 242        return __fsl_a008585_read_reg(cntpct_el0);
 243}
 244
 245static u64 notrace fsl_a008585_read_cntvct_el0(void)
 246{
 247        return __fsl_a008585_read_reg(cntvct_el0);
 248}
 249#endif
 250
 251#ifdef CONFIG_HISILICON_ERRATUM_161010101
 252/*
 253 * Verify whether the value of the second read is larger than the first by
 254 * less than 32 is the only way to confirm the value is correct, so clear the
 255 * lower 5 bits to check whether the difference is greater than 32 or not.
 256 * Theoretically the erratum should not occur more than twice in succession
 257 * when reading the system counter, but it is possible that some interrupts
 258 * may lead to more than twice read errors, triggering the warning, so setting
 259 * the number of retries far beyond the number of iterations the loop has been
 260 * observed to take.
 261 */
 262#define __hisi_161010101_read_reg(reg) ({                               \
 263        u64 _old, _new;                                         \
 264        int _retries = 50;                                      \
 265                                                                \
 266        do {                                                    \
 267                _old = read_sysreg(reg);                        \
 268                _new = read_sysreg(reg);                        \
 269                _retries--;                                     \
 270        } while (unlikely((_new - _old) >> 5) && _retries);     \
 271                                                                \
 272        WARN_ON_ONCE(!_retries);                                \
 273        _new;                                                   \
 274})
 275
 276static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
 277{
 278        return __hisi_161010101_read_reg(cntp_tval_el0);
 279}
 280
 281static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
 282{
 283        return __hisi_161010101_read_reg(cntv_tval_el0);
 284}
 285
 286static u64 notrace hisi_161010101_read_cntpct_el0(void)
 287{
 288        return __hisi_161010101_read_reg(cntpct_el0);
 289}
 290
 291static u64 notrace hisi_161010101_read_cntvct_el0(void)
 292{
 293        return __hisi_161010101_read_reg(cntvct_el0);
 294}
 295
 296static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
 297        /*
 298         * Note that trailing spaces are required to properly match
 299         * the OEM table information.
 300         */
 301        {
 302                .oem_id         = "HISI  ",
 303                .oem_table_id   = "HIP05   ",
 304                .oem_revision   = 0,
 305        },
 306        {
 307                .oem_id         = "HISI  ",
 308                .oem_table_id   = "HIP06   ",
 309                .oem_revision   = 0,
 310        },
 311        {
 312                .oem_id         = "HISI  ",
 313                .oem_table_id   = "HIP07   ",
 314                .oem_revision   = 0,
 315        },
 316        { /* Sentinel indicating the end of the OEM array */ },
 317};
 318#endif
 319
 320#ifdef CONFIG_ARM64_ERRATUM_858921
 321static u64 notrace arm64_858921_read_cntpct_el0(void)
 322{
 323        u64 old, new;
 324
 325        old = read_sysreg(cntpct_el0);
 326        new = read_sysreg(cntpct_el0);
 327        return (((old ^ new) >> 32) & 1) ? old : new;
 328}
 329
 330static u64 notrace arm64_858921_read_cntvct_el0(void)
 331{
 332        u64 old, new;
 333
 334        old = read_sysreg(cntvct_el0);
 335        new = read_sysreg(cntvct_el0);
 336        return (((old ^ new) >> 32) & 1) ? old : new;
 337}
 338#endif
 339
 340#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 341/*
 342 * The low bits of the counter registers are indeterminate while bit 10 or
 343 * greater is rolling over. Since the counter value can jump both backward
 344 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
 345 * with all ones or all zeros in the low bits. Bound the loop by the maximum
 346 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
 347 */
 348#define __sun50i_a64_read_reg(reg) ({                                   \
 349        u64 _val;                                                       \
 350        int _retries = 150;                                             \
 351                                                                        \
 352        do {                                                            \
 353                _val = read_sysreg(reg);                                \
 354                _retries--;                                             \
 355        } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);        \
 356                                                                        \
 357        WARN_ON_ONCE(!_retries);                                        \
 358        _val;                                                           \
 359})
 360
 361static u64 notrace sun50i_a64_read_cntpct_el0(void)
 362{
 363        return __sun50i_a64_read_reg(cntpct_el0);
 364}
 365
 366static u64 notrace sun50i_a64_read_cntvct_el0(void)
 367{
 368        return __sun50i_a64_read_reg(cntvct_el0);
 369}
 370
 371static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
 372{
 373        return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
 374}
 375
 376static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
 377{
 378        return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
 379}
 380#endif
 381
 382#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
 383DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
 384EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
 385
 386static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
 387
 388static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
 389                                                struct clock_event_device *clk)
 390{
 391        unsigned long ctrl;
 392        u64 cval;
 393
 394        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 395        ctrl |= ARCH_TIMER_CTRL_ENABLE;
 396        ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 397
 398        if (access == ARCH_TIMER_PHYS_ACCESS) {
 399                cval = evt + arch_counter_get_cntpct_stable();
 400                write_sysreg(cval, cntp_cval_el0);
 401        } else {
 402                cval = evt + arch_counter_get_cntvct_stable();
 403                write_sysreg(cval, cntv_cval_el0);
 404        }
 405
 406        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 407}
 408
 409static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
 410                                            struct clock_event_device *clk)
 411{
 412        erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 413        return 0;
 414}
 415
 416static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
 417                                            struct clock_event_device *clk)
 418{
 419        erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 420        return 0;
 421}
 422
 423static const struct arch_timer_erratum_workaround ool_workarounds[] = {
 424#ifdef CONFIG_FSL_ERRATUM_A008585
 425        {
 426                .match_type = ate_match_dt,
 427                .id = "fsl,erratum-a008585",
 428                .desc = "Freescale erratum a005858",
 429                .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
 430                .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
 431                .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
 432                .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
 433                .set_next_event_phys = erratum_set_next_event_tval_phys,
 434                .set_next_event_virt = erratum_set_next_event_tval_virt,
 435        },
 436#endif
 437#ifdef CONFIG_HISILICON_ERRATUM_161010101
 438        {
 439                .match_type = ate_match_dt,
 440                .id = "hisilicon,erratum-161010101",
 441                .desc = "HiSilicon erratum 161010101",
 442                .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 443                .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 444                .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 445                .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 446                .set_next_event_phys = erratum_set_next_event_tval_phys,
 447                .set_next_event_virt = erratum_set_next_event_tval_virt,
 448        },
 449        {
 450                .match_type = ate_match_acpi_oem_info,
 451                .id = hisi_161010101_oem_info,
 452                .desc = "HiSilicon erratum 161010101",
 453                .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
 454                .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
 455                .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
 456                .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
 457                .set_next_event_phys = erratum_set_next_event_tval_phys,
 458                .set_next_event_virt = erratum_set_next_event_tval_virt,
 459        },
 460#endif
 461#ifdef CONFIG_ARM64_ERRATUM_858921
 462        {
 463                .match_type = ate_match_local_cap_id,
 464                .id = (void *)ARM64_WORKAROUND_858921,
 465                .desc = "ARM erratum 858921",
 466                .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
 467                .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
 468        },
 469#endif
 470#ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
 471        {
 472                .match_type = ate_match_dt,
 473                .id = "allwinner,erratum-unknown1",
 474                .desc = "Allwinner erratum UNKNOWN1",
 475                .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
 476                .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
 477                .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
 478                .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
 479                .set_next_event_phys = erratum_set_next_event_tval_phys,
 480                .set_next_event_virt = erratum_set_next_event_tval_virt,
 481        },
 482#endif
 483#ifdef CONFIG_ARM64_ERRATUM_1418040
 484        {
 485                .match_type = ate_match_local_cap_id,
 486                .id = (void *)ARM64_WORKAROUND_1418040,
 487                .desc = "ARM erratum 1418040",
 488                .disable_compat_vdso = true,
 489        },
 490#endif
 491};
 492
 493typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
 494                               const void *);
 495
 496static
 497bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
 498                                 const void *arg)
 499{
 500        const struct device_node *np = arg;
 501
 502        return of_property_read_bool(np, wa->id);
 503}
 504
 505static
 506bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
 507                                        const void *arg)
 508{
 509        return this_cpu_has_cap((uintptr_t)wa->id);
 510}
 511
 512
 513static
 514bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
 515                                       const void *arg)
 516{
 517        static const struct ate_acpi_oem_info empty_oem_info = {};
 518        const struct ate_acpi_oem_info *info = wa->id;
 519        const struct acpi_table_header *table = arg;
 520
 521        /* Iterate over the ACPI OEM info array, looking for a match */
 522        while (memcmp(info, &empty_oem_info, sizeof(*info))) {
 523                if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
 524                    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
 525                    info->oem_revision == table->oem_revision)
 526                        return true;
 527
 528                info++;
 529        }
 530
 531        return false;
 532}
 533
 534static const struct arch_timer_erratum_workaround *
 535arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
 536                          ate_match_fn_t match_fn,
 537                          void *arg)
 538{
 539        int i;
 540
 541        for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
 542                if (ool_workarounds[i].match_type != type)
 543                        continue;
 544
 545                if (match_fn(&ool_workarounds[i], arg))
 546                        return &ool_workarounds[i];
 547        }
 548
 549        return NULL;
 550}
 551
 552static
 553void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
 554                                  bool local)
 555{
 556        int i;
 557
 558        if (local) {
 559                __this_cpu_write(timer_unstable_counter_workaround, wa);
 560        } else {
 561                for_each_possible_cpu(i)
 562                        per_cpu(timer_unstable_counter_workaround, i) = wa;
 563        }
 564
 565        if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
 566                atomic_set(&timer_unstable_counter_workaround_in_use, 1);
 567
 568        /*
 569         * Don't use the vdso fastpath if errata require using the
 570         * out-of-line counter accessor. We may change our mind pretty
 571         * late in the game (with a per-CPU erratum, for example), so
 572         * change both the default value and the vdso itself.
 573         */
 574        if (wa->read_cntvct_el0) {
 575                clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
 576                vdso_default = VDSO_CLOCKMODE_NONE;
 577        } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
 578                vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
 579                clocksource_counter.vdso_clock_mode = vdso_default;
 580        }
 581}
 582
 583static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
 584                                            void *arg)
 585{
 586        const struct arch_timer_erratum_workaround *wa, *__wa;
 587        ate_match_fn_t match_fn = NULL;
 588        bool local = false;
 589
 590        switch (type) {
 591        case ate_match_dt:
 592                match_fn = arch_timer_check_dt_erratum;
 593                break;
 594        case ate_match_local_cap_id:
 595                match_fn = arch_timer_check_local_cap_erratum;
 596                local = true;
 597                break;
 598        case ate_match_acpi_oem_info:
 599                match_fn = arch_timer_check_acpi_oem_erratum;
 600                break;
 601        default:
 602                WARN_ON(1);
 603                return;
 604        }
 605
 606        wa = arch_timer_iterate_errata(type, match_fn, arg);
 607        if (!wa)
 608                return;
 609
 610        __wa = __this_cpu_read(timer_unstable_counter_workaround);
 611        if (__wa && wa != __wa)
 612                pr_warn("Can't enable workaround for %s (clashes with %s\n)",
 613                        wa->desc, __wa->desc);
 614
 615        if (__wa)
 616                return;
 617
 618        arch_timer_enable_workaround(wa, local);
 619        pr_info("Enabling %s workaround for %s\n",
 620                local ? "local" : "global", wa->desc);
 621}
 622
 623static bool arch_timer_this_cpu_has_cntvct_wa(void)
 624{
 625        return has_erratum_handler(read_cntvct_el0);
 626}
 627
 628static bool arch_timer_counter_has_wa(void)
 629{
 630        return atomic_read(&timer_unstable_counter_workaround_in_use);
 631}
 632#else
 633#define arch_timer_check_ool_workaround(t,a)            do { } while(0)
 634#define arch_timer_this_cpu_has_cntvct_wa()             ({false;})
 635#define arch_timer_counter_has_wa()                     ({false;})
 636#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
 637
 638static __always_inline irqreturn_t timer_handler(const int access,
 639                                        struct clock_event_device *evt)
 640{
 641        unsigned long ctrl;
 642
 643        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
 644        if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
 645                ctrl |= ARCH_TIMER_CTRL_IT_MASK;
 646                arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
 647                evt->event_handler(evt);
 648                return IRQ_HANDLED;
 649        }
 650
 651        return IRQ_NONE;
 652}
 653
 654static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
 655{
 656        struct clock_event_device *evt = dev_id;
 657
 658        return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
 659}
 660
 661static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
 662{
 663        struct clock_event_device *evt = dev_id;
 664
 665        return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
 666}
 667
 668static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
 669{
 670        struct clock_event_device *evt = dev_id;
 671
 672        return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
 673}
 674
 675static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
 676{
 677        struct clock_event_device *evt = dev_id;
 678
 679        return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
 680}
 681
 682static __always_inline int timer_shutdown(const int access,
 683                                          struct clock_event_device *clk)
 684{
 685        unsigned long ctrl;
 686
 687        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 688        ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
 689        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 690
 691        return 0;
 692}
 693
 694static int arch_timer_shutdown_virt(struct clock_event_device *clk)
 695{
 696        return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
 697}
 698
 699static int arch_timer_shutdown_phys(struct clock_event_device *clk)
 700{
 701        return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
 702}
 703
 704static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
 705{
 706        return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
 707}
 708
 709static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
 710{
 711        return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
 712}
 713
 714static __always_inline void set_next_event(const int access, unsigned long evt,
 715                                           struct clock_event_device *clk)
 716{
 717        unsigned long ctrl;
 718        ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
 719        ctrl |= ARCH_TIMER_CTRL_ENABLE;
 720        ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
 721        arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
 722        arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
 723}
 724
 725static int arch_timer_set_next_event_virt(unsigned long evt,
 726                                          struct clock_event_device *clk)
 727{
 728        set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
 729        return 0;
 730}
 731
 732static int arch_timer_set_next_event_phys(unsigned long evt,
 733                                          struct clock_event_device *clk)
 734{
 735        set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
 736        return 0;
 737}
 738
 739static int arch_timer_set_next_event_virt_mem(unsigned long evt,
 740                                              struct clock_event_device *clk)
 741{
 742        set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
 743        return 0;
 744}
 745
 746static int arch_timer_set_next_event_phys_mem(unsigned long evt,
 747                                              struct clock_event_device *clk)
 748{
 749        set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
 750        return 0;
 751}
 752
 753static void __arch_timer_setup(unsigned type,
 754                               struct clock_event_device *clk)
 755{
 756        clk->features = CLOCK_EVT_FEAT_ONESHOT;
 757
 758        if (type == ARCH_TIMER_TYPE_CP15) {
 759                typeof(clk->set_next_event) sne;
 760
 761                arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
 762
 763                if (arch_timer_c3stop)
 764                        clk->features |= CLOCK_EVT_FEAT_C3STOP;
 765                clk->name = "arch_sys_timer";
 766                clk->rating = 450;
 767                clk->cpumask = cpumask_of(smp_processor_id());
 768                clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
 769                switch (arch_timer_uses_ppi) {
 770                case ARCH_TIMER_VIRT_PPI:
 771                        clk->set_state_shutdown = arch_timer_shutdown_virt;
 772                        clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
 773                        sne = erratum_handler(set_next_event_virt);
 774                        break;
 775                case ARCH_TIMER_PHYS_SECURE_PPI:
 776                case ARCH_TIMER_PHYS_NONSECURE_PPI:
 777                case ARCH_TIMER_HYP_PPI:
 778                        clk->set_state_shutdown = arch_timer_shutdown_phys;
 779                        clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
 780                        sne = erratum_handler(set_next_event_phys);
 781                        break;
 782                default:
 783                        BUG();
 784                }
 785
 786                clk->set_next_event = sne;
 787        } else {
 788                clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
 789                clk->name = "arch_mem_timer";
 790                clk->rating = 400;
 791                clk->cpumask = cpu_possible_mask;
 792                if (arch_timer_mem_use_virtual) {
 793                        clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
 794                        clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
 795                        clk->set_next_event =
 796                                arch_timer_set_next_event_virt_mem;
 797                } else {
 798                        clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
 799                        clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
 800                        clk->set_next_event =
 801                                arch_timer_set_next_event_phys_mem;
 802                }
 803        }
 804
 805        clk->set_state_shutdown(clk);
 806
 807        clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
 808}
 809
 810static void arch_timer_evtstrm_enable(int divider)
 811{
 812        u32 cntkctl = arch_timer_get_cntkctl();
 813
 814        cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
 815        /* Set the divider and enable virtual event stream */
 816        cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
 817                        | ARCH_TIMER_VIRT_EVT_EN;
 818        arch_timer_set_cntkctl(cntkctl);
 819        arch_timer_set_evtstrm_feature();
 820        cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
 821}
 822
 823static void arch_timer_configure_evtstream(void)
 824{
 825        int evt_stream_div, lsb;
 826
 827        /*
 828         * As the event stream can at most be generated at half the frequency
 829         * of the counter, use half the frequency when computing the divider.
 830         */
 831        evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
 832
 833        /*
 834         * Find the closest power of two to the divisor. If the adjacent bit
 835         * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
 836         */
 837        lsb = fls(evt_stream_div) - 1;
 838        if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
 839                lsb++;
 840
 841        /* enable event stream */
 842        arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
 843}
 844
 845static void arch_counter_set_user_access(void)
 846{
 847        u32 cntkctl = arch_timer_get_cntkctl();
 848
 849        /* Disable user access to the timers and both counters */
 850        /* Also disable virtual event stream */
 851        cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
 852                        | ARCH_TIMER_USR_VT_ACCESS_EN
 853                        | ARCH_TIMER_USR_VCT_ACCESS_EN
 854                        | ARCH_TIMER_VIRT_EVT_EN
 855                        | ARCH_TIMER_USR_PCT_ACCESS_EN);
 856
 857        /*
 858         * Enable user access to the virtual counter if it doesn't
 859         * need to be workaround. The vdso may have been already
 860         * disabled though.
 861         */
 862        if (arch_timer_this_cpu_has_cntvct_wa())
 863                pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
 864        else
 865                cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
 866
 867        arch_timer_set_cntkctl(cntkctl);
 868}
 869
 870static bool arch_timer_has_nonsecure_ppi(void)
 871{
 872        return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
 873                arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 874}
 875
 876static u32 check_ppi_trigger(int irq)
 877{
 878        u32 flags = irq_get_trigger_type(irq);
 879
 880        if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
 881                pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
 882                pr_warn("WARNING: Please fix your firmware\n");
 883                flags = IRQF_TRIGGER_LOW;
 884        }
 885
 886        return flags;
 887}
 888
 889static int arch_timer_starting_cpu(unsigned int cpu)
 890{
 891        struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
 892        u32 flags;
 893
 894        __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
 895
 896        flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
 897        enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
 898
 899        if (arch_timer_has_nonsecure_ppi()) {
 900                flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
 901                enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
 902                                  flags);
 903        }
 904
 905        arch_counter_set_user_access();
 906        if (evtstrm_enable)
 907                arch_timer_configure_evtstream();
 908
 909        return 0;
 910}
 911
 912static int validate_timer_rate(void)
 913{
 914        if (!arch_timer_rate)
 915                return -EINVAL;
 916
 917        /* Arch timer frequency < 1MHz can cause trouble */
 918        WARN_ON(arch_timer_rate < 1000000);
 919
 920        return 0;
 921}
 922
 923/*
 924 * For historical reasons, when probing with DT we use whichever (non-zero)
 925 * rate was probed first, and don't verify that others match. If the first node
 926 * probed has a clock-frequency property, this overrides the HW register.
 927 */
 928static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
 929{
 930        /* Who has more than one independent system counter? */
 931        if (arch_timer_rate)
 932                return;
 933
 934        if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
 935                arch_timer_rate = rate;
 936
 937        /* Check the timer frequency. */
 938        if (validate_timer_rate())
 939                pr_warn("frequency not available\n");
 940}
 941
 942static void arch_timer_banner(unsigned type)
 943{
 944        pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
 945                type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
 946                type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
 947                        " and " : "",
 948                type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
 949                (unsigned long)arch_timer_rate / 1000000,
 950                (unsigned long)(arch_timer_rate / 10000) % 100,
 951                type & ARCH_TIMER_TYPE_CP15 ?
 952                        (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
 953                        "",
 954                type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
 955                type & ARCH_TIMER_TYPE_MEM ?
 956                        arch_timer_mem_use_virtual ? "virt" : "phys" :
 957                        "");
 958}
 959
 960u32 arch_timer_get_rate(void)
 961{
 962        return arch_timer_rate;
 963}
 964
 965bool arch_timer_evtstrm_available(void)
 966{
 967        /*
 968         * We might get called from a preemptible context. This is fine
 969         * because availability of the event stream should be always the same
 970         * for a preemptible context and context where we might resume a task.
 971         */
 972        return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
 973}
 974
 975static u64 arch_counter_get_cntvct_mem(void)
 976{
 977        u32 vct_lo, vct_hi, tmp_hi;
 978
 979        do {
 980                vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 981                vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
 982                tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
 983        } while (vct_hi != tmp_hi);
 984
 985        return ((u64) vct_hi << 32) | vct_lo;
 986}
 987
 988static struct arch_timer_kvm_info arch_timer_kvm_info;
 989
 990struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
 991{
 992        return &arch_timer_kvm_info;
 993}
 994
 995static void __init arch_counter_register(unsigned type)
 996{
 997        u64 start_count;
 998
 999        /* Register the CP15 based counter if we have one */
1000        if (type & ARCH_TIMER_TYPE_CP15) {
1001                u64 (*rd)(void);
1002
1003                if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1004                    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1005                        if (arch_timer_counter_has_wa())
1006                                rd = arch_counter_get_cntvct_stable;
1007                        else
1008                                rd = arch_counter_get_cntvct;
1009                } else {
1010                        if (arch_timer_counter_has_wa())
1011                                rd = arch_counter_get_cntpct_stable;
1012                        else
1013                                rd = arch_counter_get_cntpct;
1014                }
1015
1016                arch_timer_read_counter = rd;
1017                clocksource_counter.vdso_clock_mode = vdso_default;
1018        } else {
1019                arch_timer_read_counter = arch_counter_get_cntvct_mem;
1020        }
1021
1022        if (!arch_counter_suspend_stop)
1023                clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1024        start_count = arch_timer_read_counter();
1025        clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1026        cyclecounter.mult = clocksource_counter.mult;
1027        cyclecounter.shift = clocksource_counter.shift;
1028        timecounter_init(&arch_timer_kvm_info.timecounter,
1029                         &cyclecounter, start_count);
1030
1031        /* 56 bits minimum, so we assume worst case rollover */
1032        sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1033}
1034
1035static void arch_timer_stop(struct clock_event_device *clk)
1036{
1037        pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1038
1039        disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1040        if (arch_timer_has_nonsecure_ppi())
1041                disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1042
1043        clk->set_state_shutdown(clk);
1044}
1045
1046static int arch_timer_dying_cpu(unsigned int cpu)
1047{
1048        struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1049
1050        cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1051
1052        arch_timer_stop(clk);
1053        return 0;
1054}
1055
1056#ifdef CONFIG_CPU_PM
1057static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
1058static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1059                                    unsigned long action, void *hcpu)
1060{
1061        if (action == CPU_PM_ENTER) {
1062                __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1063
1064                cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1065        } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1066                arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1067
1068                if (arch_timer_have_evtstrm_feature())
1069                        cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1070        }
1071        return NOTIFY_OK;
1072}
1073
1074static struct notifier_block arch_timer_cpu_pm_notifier = {
1075        .notifier_call = arch_timer_cpu_pm_notify,
1076};
1077
1078static int __init arch_timer_cpu_pm_init(void)
1079{
1080        return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1081}
1082
1083static void __init arch_timer_cpu_pm_deinit(void)
1084{
1085        WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1086}
1087
1088#else
1089static int __init arch_timer_cpu_pm_init(void)
1090{
1091        return 0;
1092}
1093
1094static void __init arch_timer_cpu_pm_deinit(void)
1095{
1096}
1097#endif
1098
1099static int __init arch_timer_register(void)
1100{
1101        int err;
1102        int ppi;
1103
1104        arch_timer_evt = alloc_percpu(struct clock_event_device);
1105        if (!arch_timer_evt) {
1106                err = -ENOMEM;
1107                goto out;
1108        }
1109
1110        ppi = arch_timer_ppi[arch_timer_uses_ppi];
1111        switch (arch_timer_uses_ppi) {
1112        case ARCH_TIMER_VIRT_PPI:
1113                err = request_percpu_irq(ppi, arch_timer_handler_virt,
1114                                         "arch_timer", arch_timer_evt);
1115                break;
1116        case ARCH_TIMER_PHYS_SECURE_PPI:
1117        case ARCH_TIMER_PHYS_NONSECURE_PPI:
1118                err = request_percpu_irq(ppi, arch_timer_handler_phys,
1119                                         "arch_timer", arch_timer_evt);
1120                if (!err && arch_timer_has_nonsecure_ppi()) {
1121                        ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1122                        err = request_percpu_irq(ppi, arch_timer_handler_phys,
1123                                                 "arch_timer", arch_timer_evt);
1124                        if (err)
1125                                free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1126                                                arch_timer_evt);
1127                }
1128                break;
1129        case ARCH_TIMER_HYP_PPI:
1130                err = request_percpu_irq(ppi, arch_timer_handler_phys,
1131                                         "arch_timer", arch_timer_evt);
1132                break;
1133        default:
1134                BUG();
1135        }
1136
1137        if (err) {
1138                pr_err("can't register interrupt %d (%d)\n", ppi, err);
1139                goto out_free;
1140        }
1141
1142        err = arch_timer_cpu_pm_init();
1143        if (err)
1144                goto out_unreg_notify;
1145
1146        /* Register and immediately configure the timer on the boot CPU */
1147        err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1148                                "clockevents/arm/arch_timer:starting",
1149                                arch_timer_starting_cpu, arch_timer_dying_cpu);
1150        if (err)
1151                goto out_unreg_cpupm;
1152        return 0;
1153
1154out_unreg_cpupm:
1155        arch_timer_cpu_pm_deinit();
1156
1157out_unreg_notify:
1158        free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1159        if (arch_timer_has_nonsecure_ppi())
1160                free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1161                                arch_timer_evt);
1162
1163out_free:
1164        free_percpu(arch_timer_evt);
1165out:
1166        return err;
1167}
1168
1169static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1170{
1171        int ret;
1172        irq_handler_t func;
1173        struct arch_timer *t;
1174
1175        t = kzalloc(sizeof(*t), GFP_KERNEL);
1176        if (!t)
1177                return -ENOMEM;
1178
1179        t->base = base;
1180        t->evt.irq = irq;
1181        __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1182
1183        if (arch_timer_mem_use_virtual)
1184                func = arch_timer_handler_virt_mem;
1185        else
1186                func = arch_timer_handler_phys_mem;
1187
1188        ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1189        if (ret) {
1190                pr_err("Failed to request mem timer irq\n");
1191                kfree(t);
1192        }
1193
1194        return ret;
1195}
1196
1197static const struct of_device_id arch_timer_of_match[] __initconst = {
1198        { .compatible   = "arm,armv7-timer",    },
1199        { .compatible   = "arm,armv8-timer",    },
1200        {},
1201};
1202
1203static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1204        { .compatible   = "arm,armv7-timer-mem", },
1205        {},
1206};
1207
1208static bool __init arch_timer_needs_of_probing(void)
1209{
1210        struct device_node *dn;
1211        bool needs_probing = false;
1212        unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1213
1214        /* We have two timers, and both device-tree nodes are probed. */
1215        if ((arch_timers_present & mask) == mask)
1216                return false;
1217
1218        /*
1219         * Only one type of timer is probed,
1220         * check if we have another type of timer node in device-tree.
1221         */
1222        if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1223                dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1224        else
1225                dn = of_find_matching_node(NULL, arch_timer_of_match);
1226
1227        if (dn && of_device_is_available(dn))
1228                needs_probing = true;
1229
1230        of_node_put(dn);
1231
1232        return needs_probing;
1233}
1234
1235static int __init arch_timer_common_init(void)
1236{
1237        arch_timer_banner(arch_timers_present);
1238        arch_counter_register(arch_timers_present);
1239        return arch_timer_arch_init();
1240}
1241
1242/**
1243 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1244 *
1245 * If HYP mode is available, we know that the physical timer
1246 * has been configured to be accessible from PL1. Use it, so
1247 * that a guest can use the virtual timer instead.
1248 *
1249 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1250 * accesses to CNTP_*_EL1 registers are silently redirected to
1251 * their CNTHP_*_EL2 counterparts, and use a different PPI
1252 * number.
1253 *
1254 * If no interrupt provided for virtual timer, we'll have to
1255 * stick to the physical timer. It'd better be accessible...
1256 * For arm64 we never use the secure interrupt.
1257 *
1258 * Return: a suitable PPI type for the current system.
1259 */
1260static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1261{
1262        if (is_kernel_in_hyp_mode())
1263                return ARCH_TIMER_HYP_PPI;
1264
1265        if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1266                return ARCH_TIMER_VIRT_PPI;
1267
1268        if (IS_ENABLED(CONFIG_ARM64))
1269                return ARCH_TIMER_PHYS_NONSECURE_PPI;
1270
1271        return ARCH_TIMER_PHYS_SECURE_PPI;
1272}
1273
1274static void __init arch_timer_populate_kvm_info(void)
1275{
1276        arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1277        if (is_kernel_in_hyp_mode())
1278                arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1279}
1280
1281static int __init arch_timer_of_init(struct device_node *np)
1282{
1283        int i, ret;
1284        u32 rate;
1285
1286        if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1287                pr_warn("multiple nodes in dt, skipping\n");
1288                return 0;
1289        }
1290
1291        arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1292        for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1293                arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1294
1295        arch_timer_populate_kvm_info();
1296
1297        rate = arch_timer_get_cntfrq();
1298        arch_timer_of_configure_rate(rate, np);
1299
1300        arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1301
1302        /* Check for globally applicable workarounds */
1303        arch_timer_check_ool_workaround(ate_match_dt, np);
1304
1305        /*
1306         * If we cannot rely on firmware initializing the timer registers then
1307         * we should use the physical timers instead.
1308         */
1309        if (IS_ENABLED(CONFIG_ARM) &&
1310            of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1311                arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1312        else
1313                arch_timer_uses_ppi = arch_timer_select_ppi();
1314
1315        if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1316                pr_err("No interrupt available, giving up\n");
1317                return -EINVAL;
1318        }
1319
1320        /* On some systems, the counter stops ticking when in suspend. */
1321        arch_counter_suspend_stop = of_property_read_bool(np,
1322                                                         "arm,no-tick-in-suspend");
1323
1324        ret = arch_timer_register();
1325        if (ret)
1326                return ret;
1327
1328        if (arch_timer_needs_of_probing())
1329                return 0;
1330
1331        return arch_timer_common_init();
1332}
1333TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1334TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1335
1336static u32 __init
1337arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1338{
1339        void __iomem *base;
1340        u32 rate;
1341
1342        base = ioremap(frame->cntbase, frame->size);
1343        if (!base) {
1344                pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1345                return 0;
1346        }
1347
1348        rate = readl_relaxed(base + CNTFRQ);
1349
1350        iounmap(base);
1351
1352        return rate;
1353}
1354
1355static struct arch_timer_mem_frame * __init
1356arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1357{
1358        struct arch_timer_mem_frame *frame, *best_frame = NULL;
1359        void __iomem *cntctlbase;
1360        u32 cnttidr;
1361        int i;
1362
1363        cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1364        if (!cntctlbase) {
1365                pr_err("Can't map CNTCTLBase @ %pa\n",
1366                        &timer_mem->cntctlbase);
1367                return NULL;
1368        }
1369
1370        cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1371
1372        /*
1373         * Try to find a virtual capable frame. Otherwise fall back to a
1374         * physical capable frame.
1375         */
1376        for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1377                u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1378                             CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1379
1380                frame = &timer_mem->frame[i];
1381                if (!frame->valid)
1382                        continue;
1383
1384                /* Try enabling everything, and see what sticks */
1385                writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1386                cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1387
1388                if ((cnttidr & CNTTIDR_VIRT(i)) &&
1389                    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1390                        best_frame = frame;
1391                        arch_timer_mem_use_virtual = true;
1392                        break;
1393                }
1394
1395                if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1396                        continue;
1397
1398                best_frame = frame;
1399        }
1400
1401        iounmap(cntctlbase);
1402
1403        return best_frame;
1404}
1405
1406static int __init
1407arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1408{
1409        void __iomem *base;
1410        int ret, irq = 0;
1411
1412        if (arch_timer_mem_use_virtual)
1413                irq = frame->virt_irq;
1414        else
1415                irq = frame->phys_irq;
1416
1417        if (!irq) {
1418                pr_err("Frame missing %s irq.\n",
1419                       arch_timer_mem_use_virtual ? "virt" : "phys");
1420                return -EINVAL;
1421        }
1422
1423        if (!request_mem_region(frame->cntbase, frame->size,
1424                                "arch_mem_timer"))
1425                return -EBUSY;
1426
1427        base = ioremap(frame->cntbase, frame->size);
1428        if (!base) {
1429                pr_err("Can't map frame's registers\n");
1430                return -ENXIO;
1431        }
1432
1433        ret = arch_timer_mem_register(base, irq);
1434        if (ret) {
1435                iounmap(base);
1436                return ret;
1437        }
1438
1439        arch_counter_base = base;
1440        arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1441
1442        return 0;
1443}
1444
1445static int __init arch_timer_mem_of_init(struct device_node *np)
1446{
1447        struct arch_timer_mem *timer_mem;
1448        struct arch_timer_mem_frame *frame;
1449        struct device_node *frame_node;
1450        struct resource res;
1451        int ret = -EINVAL;
1452        u32 rate;
1453
1454        timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1455        if (!timer_mem)
1456                return -ENOMEM;
1457
1458        if (of_address_to_resource(np, 0, &res))
1459                goto out;
1460        timer_mem->cntctlbase = res.start;
1461        timer_mem->size = resource_size(&res);
1462
1463        for_each_available_child_of_node(np, frame_node) {
1464                u32 n;
1465                struct arch_timer_mem_frame *frame;
1466
1467                if (of_property_read_u32(frame_node, "frame-number", &n)) {
1468                        pr_err(FW_BUG "Missing frame-number.\n");
1469                        of_node_put(frame_node);
1470                        goto out;
1471                }
1472                if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1473                        pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1474                               ARCH_TIMER_MEM_MAX_FRAMES - 1);
1475                        of_node_put(frame_node);
1476                        goto out;
1477                }
1478                frame = &timer_mem->frame[n];
1479
1480                if (frame->valid) {
1481                        pr_err(FW_BUG "Duplicated frame-number.\n");
1482                        of_node_put(frame_node);
1483                        goto out;
1484                }
1485
1486                if (of_address_to_resource(frame_node, 0, &res)) {
1487                        of_node_put(frame_node);
1488                        goto out;
1489                }
1490                frame->cntbase = res.start;
1491                frame->size = resource_size(&res);
1492
1493                frame->virt_irq = irq_of_parse_and_map(frame_node,
1494                                                       ARCH_TIMER_VIRT_SPI);
1495                frame->phys_irq = irq_of_parse_and_map(frame_node,
1496                                                       ARCH_TIMER_PHYS_SPI);
1497
1498                frame->valid = true;
1499        }
1500
1501        frame = arch_timer_mem_find_best_frame(timer_mem);
1502        if (!frame) {
1503                pr_err("Unable to find a suitable frame in timer @ %pa\n",
1504                        &timer_mem->cntctlbase);
1505                ret = -EINVAL;
1506                goto out;
1507        }
1508
1509        rate = arch_timer_mem_frame_get_cntfrq(frame);
1510        arch_timer_of_configure_rate(rate, np);
1511
1512        ret = arch_timer_mem_frame_register(frame);
1513        if (!ret && !arch_timer_needs_of_probing())
1514                ret = arch_timer_common_init();
1515out:
1516        kfree(timer_mem);
1517        return ret;
1518}
1519TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1520                       arch_timer_mem_of_init);
1521
1522#ifdef CONFIG_ACPI_GTDT
1523static int __init
1524arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1525{
1526        struct arch_timer_mem_frame *frame;
1527        u32 rate;
1528        int i;
1529
1530        for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1531                frame = &timer_mem->frame[i];
1532
1533                if (!frame->valid)
1534                        continue;
1535
1536                rate = arch_timer_mem_frame_get_cntfrq(frame);
1537                if (rate == arch_timer_rate)
1538                        continue;
1539
1540                pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1541                        &frame->cntbase,
1542                        (unsigned long)rate, (unsigned long)arch_timer_rate);
1543
1544                return -EINVAL;
1545        }
1546
1547        return 0;
1548}
1549
1550static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1551{
1552        struct arch_timer_mem *timers, *timer;
1553        struct arch_timer_mem_frame *frame, *best_frame = NULL;
1554        int timer_count, i, ret = 0;
1555
1556        timers = kcalloc(platform_timer_count, sizeof(*timers),
1557                            GFP_KERNEL);
1558        if (!timers)
1559                return -ENOMEM;
1560
1561        ret = acpi_arch_timer_mem_init(timers, &timer_count);
1562        if (ret || !timer_count)
1563                goto out;
1564
1565        /*
1566         * While unlikely, it's theoretically possible that none of the frames
1567         * in a timer expose the combination of feature we want.
1568         */
1569        for (i = 0; i < timer_count; i++) {
1570                timer = &timers[i];
1571
1572                frame = arch_timer_mem_find_best_frame(timer);
1573                if (!best_frame)
1574                        best_frame = frame;
1575
1576                ret = arch_timer_mem_verify_cntfrq(timer);
1577                if (ret) {
1578                        pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1579                        goto out;
1580                }
1581
1582                if (!best_frame) /* implies !frame */
1583                        /*
1584                         * Only complain about missing suitable frames if we
1585                         * haven't already found one in a previous iteration.
1586                         */
1587                        pr_err("Unable to find a suitable frame in timer @ %pa\n",
1588                                &timer->cntctlbase);
1589        }
1590
1591        if (best_frame)
1592                ret = arch_timer_mem_frame_register(best_frame);
1593out:
1594        kfree(timers);
1595        return ret;
1596}
1597
1598/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1599static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1600{
1601        int ret, platform_timer_count;
1602
1603        if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1604                pr_warn("already initialized, skipping\n");
1605                return -EINVAL;
1606        }
1607
1608        arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1609
1610        ret = acpi_gtdt_init(table, &platform_timer_count);
1611        if (ret)
1612                return ret;
1613
1614        arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1615                acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1616
1617        arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1618                acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1619
1620        arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1621                acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1622
1623        arch_timer_populate_kvm_info();
1624
1625        /*
1626         * When probing via ACPI, we have no mechanism to override the sysreg
1627         * CNTFRQ value. This *must* be correct.
1628         */
1629        arch_timer_rate = arch_timer_get_cntfrq();
1630        ret = validate_timer_rate();
1631        if (ret) {
1632                pr_err(FW_BUG "frequency not available.\n");
1633                return ret;
1634        }
1635
1636        arch_timer_uses_ppi = arch_timer_select_ppi();
1637        if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1638                pr_err("No interrupt available, giving up\n");
1639                return -EINVAL;
1640        }
1641
1642        /* Always-on capability */
1643        arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1644
1645        /* Check for globally applicable workarounds */
1646        arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1647
1648        ret = arch_timer_register();
1649        if (ret)
1650                return ret;
1651
1652        if (platform_timer_count &&
1653            arch_timer_mem_acpi_init(platform_timer_count))
1654                pr_err("Failed to initialize memory-mapped timer.\n");
1655
1656        return arch_timer_common_init();
1657}
1658TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1659#endif
1660