linux/drivers/dma/at_hdmac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
   4 *
   5 * Copyright (C) 2008 Atmel Corporation
   6 *
   7 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
   8 * The only Atmel DMA Controller that is not covered by this driver is the one
   9 * found on AT91SAM9263.
  10 */
  11
  12#include <dt-bindings/dma/at91.h>
  13#include <linux/clk.h>
  14#include <linux/dmaengine.h>
  15#include <linux/dma-mapping.h>
  16#include <linux/dmapool.h>
  17#include <linux/interrupt.h>
  18#include <linux/module.h>
  19#include <linux/platform_device.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/of_device.h>
  23#include <linux/of_dma.h>
  24
  25#include "at_hdmac_regs.h"
  26#include "dmaengine.h"
  27
  28/*
  29 * Glossary
  30 * --------
  31 *
  32 * at_hdmac             : Name of the ATmel AHB DMA Controller
  33 * at_dma_ / atdma      : ATmel DMA controller entity related
  34 * atc_ / atchan        : ATmel DMA Channel entity related
  35 */
  36
  37#define ATC_DEFAULT_CFG         (ATC_FIFOCFG_HALFFIFO)
  38#define ATC_DEFAULT_CTRLB       (ATC_SIF(AT_DMA_MEM_IF) \
  39                                |ATC_DIF(AT_DMA_MEM_IF))
  40#define ATC_DMA_BUSWIDTHS\
  41        (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
  42        BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
  43        BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
  44        BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
  45
  46#define ATC_MAX_DSCR_TRIALS     10
  47
  48/*
  49 * Initial number of descriptors to allocate for each channel. This could
  50 * be increased during dma usage.
  51 */
  52static unsigned int init_nr_desc_per_channel = 64;
  53module_param(init_nr_desc_per_channel, uint, 0644);
  54MODULE_PARM_DESC(init_nr_desc_per_channel,
  55                 "initial descriptors per channel (default: 64)");
  56
  57
  58/* prototypes */
  59static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
  60static void atc_issue_pending(struct dma_chan *chan);
  61
  62
  63/*----------------------------------------------------------------------*/
  64
  65static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
  66                                                size_t len)
  67{
  68        unsigned int width;
  69
  70        if (!((src | dst  | len) & 3))
  71                width = 2;
  72        else if (!((src | dst | len) & 1))
  73                width = 1;
  74        else
  75                width = 0;
  76
  77        return width;
  78}
  79
  80static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
  81{
  82        return list_first_entry(&atchan->active_list,
  83                                struct at_desc, desc_node);
  84}
  85
  86static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
  87{
  88        return list_first_entry(&atchan->queue,
  89                                struct at_desc, desc_node);
  90}
  91
  92/**
  93 * atc_alloc_descriptor - allocate and return an initialized descriptor
  94 * @chan: the channel to allocate descriptors for
  95 * @gfp_flags: GFP allocation flags
  96 *
  97 * Note: The ack-bit is positioned in the descriptor flag at creation time
  98 *       to make initial allocation more convenient. This bit will be cleared
  99 *       and control will be given to client at usage time (during
 100 *       preparation functions).
 101 */
 102static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
 103                                            gfp_t gfp_flags)
 104{
 105        struct at_desc  *desc = NULL;
 106        struct at_dma   *atdma = to_at_dma(chan->device);
 107        dma_addr_t phys;
 108
 109        desc = dma_pool_zalloc(atdma->dma_desc_pool, gfp_flags, &phys);
 110        if (desc) {
 111                INIT_LIST_HEAD(&desc->tx_list);
 112                dma_async_tx_descriptor_init(&desc->txd, chan);
 113                /* txd.flags will be overwritten in prep functions */
 114                desc->txd.flags = DMA_CTRL_ACK;
 115                desc->txd.tx_submit = atc_tx_submit;
 116                desc->txd.phys = phys;
 117        }
 118
 119        return desc;
 120}
 121
 122/**
 123 * atc_desc_get - get an unused descriptor from free_list
 124 * @atchan: channel we want a new descriptor for
 125 */
 126static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
 127{
 128        struct at_desc *desc, *_desc;
 129        struct at_desc *ret = NULL;
 130        unsigned long flags;
 131        unsigned int i = 0;
 132
 133        spin_lock_irqsave(&atchan->lock, flags);
 134        list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
 135                i++;
 136                if (async_tx_test_ack(&desc->txd)) {
 137                        list_del(&desc->desc_node);
 138                        ret = desc;
 139                        break;
 140                }
 141                dev_dbg(chan2dev(&atchan->chan_common),
 142                                "desc %p not ACKed\n", desc);
 143        }
 144        spin_unlock_irqrestore(&atchan->lock, flags);
 145        dev_vdbg(chan2dev(&atchan->chan_common),
 146                "scanned %u descriptors on freelist\n", i);
 147
 148        /* no more descriptor available in initial pool: create one more */
 149        if (!ret)
 150                ret = atc_alloc_descriptor(&atchan->chan_common, GFP_NOWAIT);
 151
 152        return ret;
 153}
 154
 155/**
 156 * atc_desc_put - move a descriptor, including any children, to the free list
 157 * @atchan: channel we work on
 158 * @desc: descriptor, at the head of a chain, to move to free list
 159 */
 160static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
 161{
 162        if (desc) {
 163                struct at_desc *child;
 164                unsigned long flags;
 165
 166                spin_lock_irqsave(&atchan->lock, flags);
 167                list_for_each_entry(child, &desc->tx_list, desc_node)
 168                        dev_vdbg(chan2dev(&atchan->chan_common),
 169                                        "moving child desc %p to freelist\n",
 170                                        child);
 171                list_splice_init(&desc->tx_list, &atchan->free_list);
 172                dev_vdbg(chan2dev(&atchan->chan_common),
 173                         "moving desc %p to freelist\n", desc);
 174                list_add(&desc->desc_node, &atchan->free_list);
 175                spin_unlock_irqrestore(&atchan->lock, flags);
 176        }
 177}
 178
 179/**
 180 * atc_desc_chain - build chain adding a descriptor
 181 * @first: address of first descriptor of the chain
 182 * @prev: address of previous descriptor of the chain
 183 * @desc: descriptor to queue
 184 *
 185 * Called from prep_* functions
 186 */
 187static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
 188                           struct at_desc *desc)
 189{
 190        if (!(*first)) {
 191                *first = desc;
 192        } else {
 193                /* inform the HW lli about chaining */
 194                (*prev)->lli.dscr = desc->txd.phys;
 195                /* insert the link descriptor to the LD ring */
 196                list_add_tail(&desc->desc_node,
 197                                &(*first)->tx_list);
 198        }
 199        *prev = desc;
 200}
 201
 202/**
 203 * atc_dostart - starts the DMA engine for real
 204 * @atchan: the channel we want to start
 205 * @first: first descriptor in the list we want to begin with
 206 *
 207 * Called with atchan->lock held and bh disabled
 208 */
 209static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
 210{
 211        struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
 212
 213        /* ASSERT:  channel is idle */
 214        if (atc_chan_is_enabled(atchan)) {
 215                dev_err(chan2dev(&atchan->chan_common),
 216                        "BUG: Attempted to start non-idle channel\n");
 217                dev_err(chan2dev(&atchan->chan_common),
 218                        "  channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
 219                        channel_readl(atchan, SADDR),
 220                        channel_readl(atchan, DADDR),
 221                        channel_readl(atchan, CTRLA),
 222                        channel_readl(atchan, CTRLB),
 223                        channel_readl(atchan, DSCR));
 224
 225                /* The tasklet will hopefully advance the queue... */
 226                return;
 227        }
 228
 229        vdbg_dump_regs(atchan);
 230
 231        channel_writel(atchan, SADDR, 0);
 232        channel_writel(atchan, DADDR, 0);
 233        channel_writel(atchan, CTRLA, 0);
 234        channel_writel(atchan, CTRLB, 0);
 235        channel_writel(atchan, DSCR, first->txd.phys);
 236        channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
 237                       ATC_SPIP_BOUNDARY(first->boundary));
 238        channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
 239                       ATC_DPIP_BOUNDARY(first->boundary));
 240        dma_writel(atdma, CHER, atchan->mask);
 241
 242        vdbg_dump_regs(atchan);
 243}
 244
 245/*
 246 * atc_get_desc_by_cookie - get the descriptor of a cookie
 247 * @atchan: the DMA channel
 248 * @cookie: the cookie to get the descriptor for
 249 */
 250static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
 251                                                dma_cookie_t cookie)
 252{
 253        struct at_desc *desc, *_desc;
 254
 255        list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
 256                if (desc->txd.cookie == cookie)
 257                        return desc;
 258        }
 259
 260        list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
 261                if (desc->txd.cookie == cookie)
 262                        return desc;
 263        }
 264
 265        return NULL;
 266}
 267
 268/**
 269 * atc_calc_bytes_left - calculates the number of bytes left according to the
 270 * value read from CTRLA.
 271 *
 272 * @current_len: the number of bytes left before reading CTRLA
 273 * @ctrla: the value of CTRLA
 274 */
 275static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
 276{
 277        u32 btsize = (ctrla & ATC_BTSIZE_MAX);
 278        u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
 279
 280        /*
 281         * According to the datasheet, when reading the Control A Register
 282         * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
 283         * number of transfers completed on the Source Interface.
 284         * So btsize is always a number of source width transfers.
 285         */
 286        return current_len - (btsize << src_width);
 287}
 288
 289/**
 290 * atc_get_bytes_left - get the number of bytes residue for a cookie
 291 * @chan: DMA channel
 292 * @cookie: transaction identifier to check status of
 293 */
 294static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
 295{
 296        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 297        struct at_desc *desc_first = atc_first_active(atchan);
 298        struct at_desc *desc;
 299        int ret;
 300        u32 ctrla, dscr, trials;
 301
 302        /*
 303         * If the cookie doesn't match to the currently running transfer then
 304         * we can return the total length of the associated DMA transfer,
 305         * because it is still queued.
 306         */
 307        desc = atc_get_desc_by_cookie(atchan, cookie);
 308        if (desc == NULL)
 309                return -EINVAL;
 310        else if (desc != desc_first)
 311                return desc->total_len;
 312
 313        /* cookie matches to the currently running transfer */
 314        ret = desc_first->total_len;
 315
 316        if (desc_first->lli.dscr) {
 317                /* hardware linked list transfer */
 318
 319                /*
 320                 * Calculate the residue by removing the length of the child
 321                 * descriptors already transferred from the total length.
 322                 * To get the current child descriptor we can use the value of
 323                 * the channel's DSCR register and compare it against the value
 324                 * of the hardware linked list structure of each child
 325                 * descriptor.
 326                 *
 327                 * The CTRLA register provides us with the amount of data
 328                 * already read from the source for the current child
 329                 * descriptor. So we can compute a more accurate residue by also
 330                 * removing the number of bytes corresponding to this amount of
 331                 * data.
 332                 *
 333                 * However, the DSCR and CTRLA registers cannot be read both
 334                 * atomically. Hence a race condition may occur: the first read
 335                 * register may refer to one child descriptor whereas the second
 336                 * read may refer to a later child descriptor in the list
 337                 * because of the DMA transfer progression inbetween the two
 338                 * reads.
 339                 *
 340                 * One solution could have been to pause the DMA transfer, read
 341                 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
 342                 * this approach presents some drawbacks:
 343                 * - If the DMA transfer is paused, RX overruns or TX underruns
 344                 *   are more likey to occur depending on the system latency.
 345                 *   Taking the USART driver as an example, it uses a cyclic DMA
 346                 *   transfer to read data from the Receive Holding Register
 347                 *   (RHR) to avoid RX overruns since the RHR is not protected
 348                 *   by any FIFO on most Atmel SoCs. So pausing the DMA transfer
 349                 *   to compute the residue would break the USART driver design.
 350                 * - The atc_pause() function masks interrupts but we'd rather
 351                 *   avoid to do so for system latency purpose.
 352                 *
 353                 * Then we'd rather use another solution: the DSCR is read a
 354                 * first time, the CTRLA is read in turn, next the DSCR is read
 355                 * a second time. If the two consecutive read values of the DSCR
 356                 * are the same then we assume both refers to the very same
 357                 * child descriptor as well as the CTRLA value read inbetween
 358                 * does. For cyclic tranfers, the assumption is that a full loop
 359                 * is "not so fast".
 360                 * If the two DSCR values are different, we read again the CTRLA
 361                 * then the DSCR till two consecutive read values from DSCR are
 362                 * equal or till the maxium trials is reach.
 363                 * This algorithm is very unlikely not to find a stable value for
 364                 * DSCR.
 365                 */
 366
 367                dscr = channel_readl(atchan, DSCR);
 368                rmb(); /* ensure DSCR is read before CTRLA */
 369                ctrla = channel_readl(atchan, CTRLA);
 370                for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
 371                        u32 new_dscr;
 372
 373                        rmb(); /* ensure DSCR is read after CTRLA */
 374                        new_dscr = channel_readl(atchan, DSCR);
 375
 376                        /*
 377                         * If the DSCR register value has not changed inside the
 378                         * DMA controller since the previous read, we assume
 379                         * that both the dscr and ctrla values refers to the
 380                         * very same descriptor.
 381                         */
 382                        if (likely(new_dscr == dscr))
 383                                break;
 384
 385                        /*
 386                         * DSCR has changed inside the DMA controller, so the
 387                         * previouly read value of CTRLA may refer to an already
 388                         * processed descriptor hence could be outdated.
 389                         * We need to update ctrla to match the current
 390                         * descriptor.
 391                         */
 392                        dscr = new_dscr;
 393                        rmb(); /* ensure DSCR is read before CTRLA */
 394                        ctrla = channel_readl(atchan, CTRLA);
 395                }
 396                if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
 397                        return -ETIMEDOUT;
 398
 399                /* for the first descriptor we can be more accurate */
 400                if (desc_first->lli.dscr == dscr)
 401                        return atc_calc_bytes_left(ret, ctrla);
 402
 403                ret -= desc_first->len;
 404                list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
 405                        if (desc->lli.dscr == dscr)
 406                                break;
 407
 408                        ret -= desc->len;
 409                }
 410
 411                /*
 412                 * For the current descriptor in the chain we can calculate
 413                 * the remaining bytes using the channel's register.
 414                 */
 415                ret = atc_calc_bytes_left(ret, ctrla);
 416        } else {
 417                /* single transfer */
 418                ctrla = channel_readl(atchan, CTRLA);
 419                ret = atc_calc_bytes_left(ret, ctrla);
 420        }
 421
 422        return ret;
 423}
 424
 425/**
 426 * atc_chain_complete - finish work for one transaction chain
 427 * @atchan: channel we work on
 428 * @desc: descriptor at the head of the chain we want do complete
 429 */
 430static void
 431atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
 432{
 433        struct dma_async_tx_descriptor  *txd = &desc->txd;
 434        struct at_dma                   *atdma = to_at_dma(atchan->chan_common.device);
 435        unsigned long flags;
 436
 437        dev_vdbg(chan2dev(&atchan->chan_common),
 438                "descriptor %u complete\n", txd->cookie);
 439
 440        spin_lock_irqsave(&atchan->lock, flags);
 441
 442        /* mark the descriptor as complete for non cyclic cases only */
 443        if (!atc_chan_is_cyclic(atchan))
 444                dma_cookie_complete(txd);
 445
 446        /* If the transfer was a memset, free our temporary buffer */
 447        if (desc->memset_buffer) {
 448                dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
 449                              desc->memset_paddr);
 450                desc->memset_buffer = false;
 451        }
 452
 453        /* move children to free_list */
 454        list_splice_init(&desc->tx_list, &atchan->free_list);
 455        /* move myself to free_list */
 456        list_move(&desc->desc_node, &atchan->free_list);
 457
 458        spin_unlock_irqrestore(&atchan->lock, flags);
 459
 460        dma_descriptor_unmap(txd);
 461        /* for cyclic transfers,
 462         * no need to replay callback function while stopping */
 463        if (!atc_chan_is_cyclic(atchan))
 464                dmaengine_desc_get_callback_invoke(txd, NULL);
 465
 466        dma_run_dependencies(txd);
 467}
 468
 469/**
 470 * atc_complete_all - finish work for all transactions
 471 * @atchan: channel to complete transactions for
 472 *
 473 * Eventually submit queued descriptors if any
 474 *
 475 * Assume channel is idle while calling this function
 476 * Called with atchan->lock held and bh disabled
 477 */
 478static void atc_complete_all(struct at_dma_chan *atchan)
 479{
 480        struct at_desc *desc, *_desc;
 481        LIST_HEAD(list);
 482        unsigned long flags;
 483
 484        dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
 485
 486        spin_lock_irqsave(&atchan->lock, flags);
 487
 488        /*
 489         * Submit queued descriptors ASAP, i.e. before we go through
 490         * the completed ones.
 491         */
 492        if (!list_empty(&atchan->queue))
 493                atc_dostart(atchan, atc_first_queued(atchan));
 494        /* empty active_list now it is completed */
 495        list_splice_init(&atchan->active_list, &list);
 496        /* empty queue list by moving descriptors (if any) to active_list */
 497        list_splice_init(&atchan->queue, &atchan->active_list);
 498
 499        spin_unlock_irqrestore(&atchan->lock, flags);
 500
 501        list_for_each_entry_safe(desc, _desc, &list, desc_node)
 502                atc_chain_complete(atchan, desc);
 503}
 504
 505/**
 506 * atc_advance_work - at the end of a transaction, move forward
 507 * @atchan: channel where the transaction ended
 508 */
 509static void atc_advance_work(struct at_dma_chan *atchan)
 510{
 511        unsigned long flags;
 512        int ret;
 513
 514        dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
 515
 516        spin_lock_irqsave(&atchan->lock, flags);
 517        ret = atc_chan_is_enabled(atchan);
 518        spin_unlock_irqrestore(&atchan->lock, flags);
 519        if (ret)
 520                return;
 521
 522        if (list_empty(&atchan->active_list) ||
 523            list_is_singular(&atchan->active_list))
 524                return atc_complete_all(atchan);
 525
 526        atc_chain_complete(atchan, atc_first_active(atchan));
 527
 528        /* advance work */
 529        spin_lock_irqsave(&atchan->lock, flags);
 530        atc_dostart(atchan, atc_first_active(atchan));
 531        spin_unlock_irqrestore(&atchan->lock, flags);
 532}
 533
 534
 535/**
 536 * atc_handle_error - handle errors reported by DMA controller
 537 * @atchan: channel where error occurs
 538 */
 539static void atc_handle_error(struct at_dma_chan *atchan)
 540{
 541        struct at_desc *bad_desc;
 542        struct at_desc *child;
 543        unsigned long flags;
 544
 545        spin_lock_irqsave(&atchan->lock, flags);
 546        /*
 547         * The descriptor currently at the head of the active list is
 548         * broked. Since we don't have any way to report errors, we'll
 549         * just have to scream loudly and try to carry on.
 550         */
 551        bad_desc = atc_first_active(atchan);
 552        list_del_init(&bad_desc->desc_node);
 553
 554        /* As we are stopped, take advantage to push queued descriptors
 555         * in active_list */
 556        list_splice_init(&atchan->queue, atchan->active_list.prev);
 557
 558        /* Try to restart the controller */
 559        if (!list_empty(&atchan->active_list))
 560                atc_dostart(atchan, atc_first_active(atchan));
 561
 562        /*
 563         * KERN_CRITICAL may seem harsh, but since this only happens
 564         * when someone submits a bad physical address in a
 565         * descriptor, we should consider ourselves lucky that the
 566         * controller flagged an error instead of scribbling over
 567         * random memory locations.
 568         */
 569        dev_crit(chan2dev(&atchan->chan_common),
 570                        "Bad descriptor submitted for DMA!\n");
 571        dev_crit(chan2dev(&atchan->chan_common),
 572                        "  cookie: %d\n", bad_desc->txd.cookie);
 573        atc_dump_lli(atchan, &bad_desc->lli);
 574        list_for_each_entry(child, &bad_desc->tx_list, desc_node)
 575                atc_dump_lli(atchan, &child->lli);
 576
 577        spin_unlock_irqrestore(&atchan->lock, flags);
 578
 579        /* Pretend the descriptor completed successfully */
 580        atc_chain_complete(atchan, bad_desc);
 581}
 582
 583/**
 584 * atc_handle_cyclic - at the end of a period, run callback function
 585 * @atchan: channel used for cyclic operations
 586 */
 587static void atc_handle_cyclic(struct at_dma_chan *atchan)
 588{
 589        struct at_desc                  *first = atc_first_active(atchan);
 590        struct dma_async_tx_descriptor  *txd = &first->txd;
 591
 592        dev_vdbg(chan2dev(&atchan->chan_common),
 593                        "new cyclic period llp 0x%08x\n",
 594                        channel_readl(atchan, DSCR));
 595
 596        dmaengine_desc_get_callback_invoke(txd, NULL);
 597}
 598
 599/*--  IRQ & Tasklet  ---------------------------------------------------*/
 600
 601static void atc_tasklet(struct tasklet_struct *t)
 602{
 603        struct at_dma_chan *atchan = from_tasklet(atchan, t, tasklet);
 604
 605        if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
 606                return atc_handle_error(atchan);
 607
 608        if (atc_chan_is_cyclic(atchan))
 609                return atc_handle_cyclic(atchan);
 610
 611        atc_advance_work(atchan);
 612}
 613
 614static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
 615{
 616        struct at_dma           *atdma = (struct at_dma *)dev_id;
 617        struct at_dma_chan      *atchan;
 618        int                     i;
 619        u32                     status, pending, imr;
 620        int                     ret = IRQ_NONE;
 621
 622        do {
 623                imr = dma_readl(atdma, EBCIMR);
 624                status = dma_readl(atdma, EBCISR);
 625                pending = status & imr;
 626
 627                if (!pending)
 628                        break;
 629
 630                dev_vdbg(atdma->dma_common.dev,
 631                        "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
 632                         status, imr, pending);
 633
 634                for (i = 0; i < atdma->dma_common.chancnt; i++) {
 635                        atchan = &atdma->chan[i];
 636                        if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
 637                                if (pending & AT_DMA_ERR(i)) {
 638                                        /* Disable channel on AHB error */
 639                                        dma_writel(atdma, CHDR,
 640                                                AT_DMA_RES(i) | atchan->mask);
 641                                        /* Give information to tasklet */
 642                                        set_bit(ATC_IS_ERROR, &atchan->status);
 643                                }
 644                                tasklet_schedule(&atchan->tasklet);
 645                                ret = IRQ_HANDLED;
 646                        }
 647                }
 648
 649        } while (pending);
 650
 651        return ret;
 652}
 653
 654
 655/*--  DMA Engine API  --------------------------------------------------*/
 656
 657/**
 658 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
 659 * @tx: descriptor at the head of the transaction chain
 660 *
 661 * Queue chain if DMA engine is working already
 662 *
 663 * Cookie increment and adding to active_list or queue must be atomic
 664 */
 665static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
 666{
 667        struct at_desc          *desc = txd_to_at_desc(tx);
 668        struct at_dma_chan      *atchan = to_at_dma_chan(tx->chan);
 669        dma_cookie_t            cookie;
 670        unsigned long           flags;
 671
 672        spin_lock_irqsave(&atchan->lock, flags);
 673        cookie = dma_cookie_assign(tx);
 674
 675        if (list_empty(&atchan->active_list)) {
 676                dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
 677                                desc->txd.cookie);
 678                atc_dostart(atchan, desc);
 679                list_add_tail(&desc->desc_node, &atchan->active_list);
 680        } else {
 681                dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
 682                                desc->txd.cookie);
 683                list_add_tail(&desc->desc_node, &atchan->queue);
 684        }
 685
 686        spin_unlock_irqrestore(&atchan->lock, flags);
 687
 688        return cookie;
 689}
 690
 691/**
 692 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
 693 * @chan: the channel to prepare operation on
 694 * @xt: Interleaved transfer template
 695 * @flags: tx descriptor status flags
 696 */
 697static struct dma_async_tx_descriptor *
 698atc_prep_dma_interleaved(struct dma_chan *chan,
 699                         struct dma_interleaved_template *xt,
 700                         unsigned long flags)
 701{
 702        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 703        struct data_chunk       *first;
 704        struct at_desc          *desc = NULL;
 705        size_t                  xfer_count;
 706        unsigned int            dwidth;
 707        u32                     ctrla;
 708        u32                     ctrlb;
 709        size_t                  len = 0;
 710        int                     i;
 711
 712        if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
 713                return NULL;
 714
 715        first = xt->sgl;
 716
 717        dev_info(chan2dev(chan),
 718                 "%s: src=%pad, dest=%pad, numf=%d, frame_size=%d, flags=0x%lx\n",
 719                __func__, &xt->src_start, &xt->dst_start, xt->numf,
 720                xt->frame_size, flags);
 721
 722        /*
 723         * The controller can only "skip" X bytes every Y bytes, so we
 724         * need to make sure we are given a template that fit that
 725         * description, ie a template with chunks that always have the
 726         * same size, with the same ICGs.
 727         */
 728        for (i = 0; i < xt->frame_size; i++) {
 729                struct data_chunk *chunk = xt->sgl + i;
 730
 731                if ((chunk->size != xt->sgl->size) ||
 732                    (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
 733                    (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
 734                        dev_err(chan2dev(chan),
 735                                "%s: the controller can transfer only identical chunks\n",
 736                                __func__);
 737                        return NULL;
 738                }
 739
 740                len += chunk->size;
 741        }
 742
 743        dwidth = atc_get_xfer_width(xt->src_start,
 744                                    xt->dst_start, len);
 745
 746        xfer_count = len >> dwidth;
 747        if (xfer_count > ATC_BTSIZE_MAX) {
 748                dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
 749                return NULL;
 750        }
 751
 752        ctrla = ATC_SRC_WIDTH(dwidth) |
 753                ATC_DST_WIDTH(dwidth);
 754
 755        ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 756                | ATC_SRC_ADDR_MODE_INCR
 757                | ATC_DST_ADDR_MODE_INCR
 758                | ATC_SRC_PIP
 759                | ATC_DST_PIP
 760                | ATC_FC_MEM2MEM;
 761
 762        /* create the transfer */
 763        desc = atc_desc_get(atchan);
 764        if (!desc) {
 765                dev_err(chan2dev(chan),
 766                        "%s: couldn't allocate our descriptor\n", __func__);
 767                return NULL;
 768        }
 769
 770        desc->lli.saddr = xt->src_start;
 771        desc->lli.daddr = xt->dst_start;
 772        desc->lli.ctrla = ctrla | xfer_count;
 773        desc->lli.ctrlb = ctrlb;
 774
 775        desc->boundary = first->size >> dwidth;
 776        desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
 777        desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
 778
 779        desc->txd.cookie = -EBUSY;
 780        desc->total_len = desc->len = len;
 781
 782        /* set end-of-link to the last link descriptor of list*/
 783        set_desc_eol(desc);
 784
 785        desc->txd.flags = flags; /* client is in control of this ack */
 786
 787        return &desc->txd;
 788}
 789
 790/**
 791 * atc_prep_dma_memcpy - prepare a memcpy operation
 792 * @chan: the channel to prepare operation on
 793 * @dest: operation virtual destination address
 794 * @src: operation virtual source address
 795 * @len: operation length
 796 * @flags: tx descriptor status flags
 797 */
 798static struct dma_async_tx_descriptor *
 799atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
 800                size_t len, unsigned long flags)
 801{
 802        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 803        struct at_desc          *desc = NULL;
 804        struct at_desc          *first = NULL;
 805        struct at_desc          *prev = NULL;
 806        size_t                  xfer_count;
 807        size_t                  offset;
 808        unsigned int            src_width;
 809        unsigned int            dst_width;
 810        u32                     ctrla;
 811        u32                     ctrlb;
 812
 813        dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d%pad s%pad l0x%zx f0x%lx\n",
 814                        &dest, &src, len, flags);
 815
 816        if (unlikely(!len)) {
 817                dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
 818                return NULL;
 819        }
 820
 821        ctrlb =   ATC_DEFAULT_CTRLB | ATC_IEN
 822                | ATC_SRC_ADDR_MODE_INCR
 823                | ATC_DST_ADDR_MODE_INCR
 824                | ATC_FC_MEM2MEM;
 825
 826        /*
 827         * We can be a lot more clever here, but this should take care
 828         * of the most common optimization.
 829         */
 830        src_width = dst_width = atc_get_xfer_width(src, dest, len);
 831
 832        ctrla = ATC_SRC_WIDTH(src_width) |
 833                ATC_DST_WIDTH(dst_width);
 834
 835        for (offset = 0; offset < len; offset += xfer_count << src_width) {
 836                xfer_count = min_t(size_t, (len - offset) >> src_width,
 837                                ATC_BTSIZE_MAX);
 838
 839                desc = atc_desc_get(atchan);
 840                if (!desc)
 841                        goto err_desc_get;
 842
 843                desc->lli.saddr = src + offset;
 844                desc->lli.daddr = dest + offset;
 845                desc->lli.ctrla = ctrla | xfer_count;
 846                desc->lli.ctrlb = ctrlb;
 847
 848                desc->txd.cookie = 0;
 849                desc->len = xfer_count << src_width;
 850
 851                atc_desc_chain(&first, &prev, desc);
 852        }
 853
 854        /* First descriptor of the chain embedds additional information */
 855        first->txd.cookie = -EBUSY;
 856        first->total_len = len;
 857
 858        /* set end-of-link to the last link descriptor of list*/
 859        set_desc_eol(desc);
 860
 861        first->txd.flags = flags; /* client is in control of this ack */
 862
 863        return &first->txd;
 864
 865err_desc_get:
 866        atc_desc_put(atchan, first);
 867        return NULL;
 868}
 869
 870static struct at_desc *atc_create_memset_desc(struct dma_chan *chan,
 871                                              dma_addr_t psrc,
 872                                              dma_addr_t pdst,
 873                                              size_t len)
 874{
 875        struct at_dma_chan *atchan = to_at_dma_chan(chan);
 876        struct at_desc *desc;
 877        size_t xfer_count;
 878
 879        u32 ctrla = ATC_SRC_WIDTH(2) | ATC_DST_WIDTH(2);
 880        u32 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN |
 881                ATC_SRC_ADDR_MODE_FIXED |
 882                ATC_DST_ADDR_MODE_INCR |
 883                ATC_FC_MEM2MEM;
 884
 885        xfer_count = len >> 2;
 886        if (xfer_count > ATC_BTSIZE_MAX) {
 887                dev_err(chan2dev(chan), "%s: buffer is too big\n",
 888                        __func__);
 889                return NULL;
 890        }
 891
 892        desc = atc_desc_get(atchan);
 893        if (!desc) {
 894                dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
 895                        __func__);
 896                return NULL;
 897        }
 898
 899        desc->lli.saddr = psrc;
 900        desc->lli.daddr = pdst;
 901        desc->lli.ctrla = ctrla | xfer_count;
 902        desc->lli.ctrlb = ctrlb;
 903
 904        desc->txd.cookie = 0;
 905        desc->len = len;
 906
 907        return desc;
 908}
 909
 910/**
 911 * atc_prep_dma_memset - prepare a memcpy operation
 912 * @chan: the channel to prepare operation on
 913 * @dest: operation virtual destination address
 914 * @value: value to set memory buffer to
 915 * @len: operation length
 916 * @flags: tx descriptor status flags
 917 */
 918static struct dma_async_tx_descriptor *
 919atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
 920                    size_t len, unsigned long flags)
 921{
 922        struct at_dma           *atdma = to_at_dma(chan->device);
 923        struct at_desc          *desc;
 924        void __iomem            *vaddr;
 925        dma_addr_t              paddr;
 926
 927        dev_vdbg(chan2dev(chan), "%s: d%pad v0x%x l0x%zx f0x%lx\n", __func__,
 928                &dest, value, len, flags);
 929
 930        if (unlikely(!len)) {
 931                dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
 932                return NULL;
 933        }
 934
 935        if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
 936                dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
 937                        __func__);
 938                return NULL;
 939        }
 940
 941        vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
 942        if (!vaddr) {
 943                dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
 944                        __func__);
 945                return NULL;
 946        }
 947        *(u32*)vaddr = value;
 948
 949        desc = atc_create_memset_desc(chan, paddr, dest, len);
 950        if (!desc) {
 951                dev_err(chan2dev(chan), "%s: couldn't get a descriptor\n",
 952                        __func__);
 953                goto err_free_buffer;
 954        }
 955
 956        desc->memset_paddr = paddr;
 957        desc->memset_vaddr = vaddr;
 958        desc->memset_buffer = true;
 959
 960        desc->txd.cookie = -EBUSY;
 961        desc->total_len = len;
 962
 963        /* set end-of-link on the descriptor */
 964        set_desc_eol(desc);
 965
 966        desc->txd.flags = flags;
 967
 968        return &desc->txd;
 969
 970err_free_buffer:
 971        dma_pool_free(atdma->memset_pool, vaddr, paddr);
 972        return NULL;
 973}
 974
 975static struct dma_async_tx_descriptor *
 976atc_prep_dma_memset_sg(struct dma_chan *chan,
 977                       struct scatterlist *sgl,
 978                       unsigned int sg_len, int value,
 979                       unsigned long flags)
 980{
 981        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
 982        struct at_dma           *atdma = to_at_dma(chan->device);
 983        struct at_desc          *desc = NULL, *first = NULL, *prev = NULL;
 984        struct scatterlist      *sg;
 985        void __iomem            *vaddr;
 986        dma_addr_t              paddr;
 987        size_t                  total_len = 0;
 988        int                     i;
 989
 990        dev_vdbg(chan2dev(chan), "%s: v0x%x l0x%zx f0x%lx\n", __func__,
 991                 value, sg_len, flags);
 992
 993        if (unlikely(!sgl || !sg_len)) {
 994                dev_dbg(chan2dev(chan), "%s: scatterlist is empty!\n",
 995                        __func__);
 996                return NULL;
 997        }
 998
 999        vaddr = dma_pool_alloc(atdma->memset_pool, GFP_NOWAIT, &paddr);
1000        if (!vaddr) {
1001                dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
1002                        __func__);
1003                return NULL;
1004        }
1005        *(u32*)vaddr = value;
1006
1007        for_each_sg(sgl, sg, sg_len, i) {
1008                dma_addr_t dest = sg_dma_address(sg);
1009                size_t len = sg_dma_len(sg);
1010
1011                dev_vdbg(chan2dev(chan), "%s: d%pad, l0x%zx\n",
1012                         __func__, &dest, len);
1013
1014                if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
1015                        dev_err(chan2dev(chan), "%s: buffer is not aligned\n",
1016                                __func__);
1017                        goto err_put_desc;
1018                }
1019
1020                desc = atc_create_memset_desc(chan, paddr, dest, len);
1021                if (!desc)
1022                        goto err_put_desc;
1023
1024                atc_desc_chain(&first, &prev, desc);
1025
1026                total_len += len;
1027        }
1028
1029        /*
1030         * Only set the buffer pointers on the last descriptor to
1031         * avoid free'ing while we have our transfer still going
1032         */
1033        desc->memset_paddr = paddr;
1034        desc->memset_vaddr = vaddr;
1035        desc->memset_buffer = true;
1036
1037        first->txd.cookie = -EBUSY;
1038        first->total_len = total_len;
1039
1040        /* set end-of-link on the descriptor */
1041        set_desc_eol(desc);
1042
1043        first->txd.flags = flags;
1044
1045        return &first->txd;
1046
1047err_put_desc:
1048        atc_desc_put(atchan, first);
1049        return NULL;
1050}
1051
1052/**
1053 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
1054 * @chan: DMA channel
1055 * @sgl: scatterlist to transfer to/from
1056 * @sg_len: number of entries in @scatterlist
1057 * @direction: DMA direction
1058 * @flags: tx descriptor status flags
1059 * @context: transaction context (ignored)
1060 */
1061static struct dma_async_tx_descriptor *
1062atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1063                unsigned int sg_len, enum dma_transfer_direction direction,
1064                unsigned long flags, void *context)
1065{
1066        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1067        struct at_dma_slave     *atslave = chan->private;
1068        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1069        struct at_desc          *first = NULL;
1070        struct at_desc          *prev = NULL;
1071        u32                     ctrla;
1072        u32                     ctrlb;
1073        dma_addr_t              reg;
1074        unsigned int            reg_width;
1075        unsigned int            mem_width;
1076        unsigned int            i;
1077        struct scatterlist      *sg;
1078        size_t                  total_len = 0;
1079
1080        dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1081                        sg_len,
1082                        direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1083                        flags);
1084
1085        if (unlikely(!atslave || !sg_len)) {
1086                dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1087                return NULL;
1088        }
1089
1090        ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1091                | ATC_DCSIZE(sconfig->dst_maxburst);
1092        ctrlb = ATC_IEN;
1093
1094        switch (direction) {
1095        case DMA_MEM_TO_DEV:
1096                reg_width = convert_buswidth(sconfig->dst_addr_width);
1097                ctrla |=  ATC_DST_WIDTH(reg_width);
1098                ctrlb |=  ATC_DST_ADDR_MODE_FIXED
1099                        | ATC_SRC_ADDR_MODE_INCR
1100                        | ATC_FC_MEM2PER
1101                        | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1102                reg = sconfig->dst_addr;
1103                for_each_sg(sgl, sg, sg_len, i) {
1104                        struct at_desc  *desc;
1105                        u32             len;
1106                        u32             mem;
1107
1108                        desc = atc_desc_get(atchan);
1109                        if (!desc)
1110                                goto err_desc_get;
1111
1112                        mem = sg_dma_address(sg);
1113                        len = sg_dma_len(sg);
1114                        if (unlikely(!len)) {
1115                                dev_dbg(chan2dev(chan),
1116                                        "prep_slave_sg: sg(%d) data length is zero\n", i);
1117                                goto err;
1118                        }
1119                        mem_width = 2;
1120                        if (unlikely(mem & 3 || len & 3))
1121                                mem_width = 0;
1122
1123                        desc->lli.saddr = mem;
1124                        desc->lli.daddr = reg;
1125                        desc->lli.ctrla = ctrla
1126                                        | ATC_SRC_WIDTH(mem_width)
1127                                        | len >> mem_width;
1128                        desc->lli.ctrlb = ctrlb;
1129                        desc->len = len;
1130
1131                        atc_desc_chain(&first, &prev, desc);
1132                        total_len += len;
1133                }
1134                break;
1135        case DMA_DEV_TO_MEM:
1136                reg_width = convert_buswidth(sconfig->src_addr_width);
1137                ctrla |=  ATC_SRC_WIDTH(reg_width);
1138                ctrlb |=  ATC_DST_ADDR_MODE_INCR
1139                        | ATC_SRC_ADDR_MODE_FIXED
1140                        | ATC_FC_PER2MEM
1141                        | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1142
1143                reg = sconfig->src_addr;
1144                for_each_sg(sgl, sg, sg_len, i) {
1145                        struct at_desc  *desc;
1146                        u32             len;
1147                        u32             mem;
1148
1149                        desc = atc_desc_get(atchan);
1150                        if (!desc)
1151                                goto err_desc_get;
1152
1153                        mem = sg_dma_address(sg);
1154                        len = sg_dma_len(sg);
1155                        if (unlikely(!len)) {
1156                                dev_dbg(chan2dev(chan),
1157                                        "prep_slave_sg: sg(%d) data length is zero\n", i);
1158                                goto err;
1159                        }
1160                        mem_width = 2;
1161                        if (unlikely(mem & 3 || len & 3))
1162                                mem_width = 0;
1163
1164                        desc->lli.saddr = reg;
1165                        desc->lli.daddr = mem;
1166                        desc->lli.ctrla = ctrla
1167                                        | ATC_DST_WIDTH(mem_width)
1168                                        | len >> reg_width;
1169                        desc->lli.ctrlb = ctrlb;
1170                        desc->len = len;
1171
1172                        atc_desc_chain(&first, &prev, desc);
1173                        total_len += len;
1174                }
1175                break;
1176        default:
1177                return NULL;
1178        }
1179
1180        /* set end-of-link to the last link descriptor of list*/
1181        set_desc_eol(prev);
1182
1183        /* First descriptor of the chain embedds additional information */
1184        first->txd.cookie = -EBUSY;
1185        first->total_len = total_len;
1186
1187        /* first link descriptor of list is responsible of flags */
1188        first->txd.flags = flags; /* client is in control of this ack */
1189
1190        return &first->txd;
1191
1192err_desc_get:
1193        dev_err(chan2dev(chan), "not enough descriptors available\n");
1194err:
1195        atc_desc_put(atchan, first);
1196        return NULL;
1197}
1198
1199/*
1200 * atc_dma_cyclic_check_values
1201 * Check for too big/unaligned periods and unaligned DMA buffer
1202 */
1203static int
1204atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1205                size_t period_len)
1206{
1207        if (period_len > (ATC_BTSIZE_MAX << reg_width))
1208                goto err_out;
1209        if (unlikely(period_len & ((1 << reg_width) - 1)))
1210                goto err_out;
1211        if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1212                goto err_out;
1213
1214        return 0;
1215
1216err_out:
1217        return -EINVAL;
1218}
1219
1220/*
1221 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1222 */
1223static int
1224atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1225                unsigned int period_index, dma_addr_t buf_addr,
1226                unsigned int reg_width, size_t period_len,
1227                enum dma_transfer_direction direction)
1228{
1229        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1230        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1231        u32                     ctrla;
1232
1233        /* prepare common CRTLA value */
1234        ctrla =   ATC_SCSIZE(sconfig->src_maxburst)
1235                | ATC_DCSIZE(sconfig->dst_maxburst)
1236                | ATC_DST_WIDTH(reg_width)
1237                | ATC_SRC_WIDTH(reg_width)
1238                | period_len >> reg_width;
1239
1240        switch (direction) {
1241        case DMA_MEM_TO_DEV:
1242                desc->lli.saddr = buf_addr + (period_len * period_index);
1243                desc->lli.daddr = sconfig->dst_addr;
1244                desc->lli.ctrla = ctrla;
1245                desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1246                                | ATC_SRC_ADDR_MODE_INCR
1247                                | ATC_FC_MEM2PER
1248                                | ATC_SIF(atchan->mem_if)
1249                                | ATC_DIF(atchan->per_if);
1250                desc->len = period_len;
1251                break;
1252
1253        case DMA_DEV_TO_MEM:
1254                desc->lli.saddr = sconfig->src_addr;
1255                desc->lli.daddr = buf_addr + (period_len * period_index);
1256                desc->lli.ctrla = ctrla;
1257                desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1258                                | ATC_SRC_ADDR_MODE_FIXED
1259                                | ATC_FC_PER2MEM
1260                                | ATC_SIF(atchan->per_if)
1261                                | ATC_DIF(atchan->mem_if);
1262                desc->len = period_len;
1263                break;
1264
1265        default:
1266                return -EINVAL;
1267        }
1268
1269        return 0;
1270}
1271
1272/**
1273 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1274 * @chan: the DMA channel to prepare
1275 * @buf_addr: physical DMA address where the buffer starts
1276 * @buf_len: total number of bytes for the entire buffer
1277 * @period_len: number of bytes for each period
1278 * @direction: transfer direction, to or from device
1279 * @flags: tx descriptor status flags
1280 */
1281static struct dma_async_tx_descriptor *
1282atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1283                size_t period_len, enum dma_transfer_direction direction,
1284                unsigned long flags)
1285{
1286        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1287        struct at_dma_slave     *atslave = chan->private;
1288        struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1289        struct at_desc          *first = NULL;
1290        struct at_desc          *prev = NULL;
1291        unsigned long           was_cyclic;
1292        unsigned int            reg_width;
1293        unsigned int            periods = buf_len / period_len;
1294        unsigned int            i;
1295
1296        dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@%pad - %d (%d/%d)\n",
1297                        direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1298                        &buf_addr,
1299                        periods, buf_len, period_len);
1300
1301        if (unlikely(!atslave || !buf_len || !period_len)) {
1302                dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1303                return NULL;
1304        }
1305
1306        was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1307        if (was_cyclic) {
1308                dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1309                return NULL;
1310        }
1311
1312        if (unlikely(!is_slave_direction(direction)))
1313                goto err_out;
1314
1315        if (direction == DMA_MEM_TO_DEV)
1316                reg_width = convert_buswidth(sconfig->dst_addr_width);
1317        else
1318                reg_width = convert_buswidth(sconfig->src_addr_width);
1319
1320        /* Check for too big/unaligned periods and unaligned DMA buffer */
1321        if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1322                goto err_out;
1323
1324        /* build cyclic linked list */
1325        for (i = 0; i < periods; i++) {
1326                struct at_desc  *desc;
1327
1328                desc = atc_desc_get(atchan);
1329                if (!desc)
1330                        goto err_desc_get;
1331
1332                if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1333                                             reg_width, period_len, direction))
1334                        goto err_desc_get;
1335
1336                atc_desc_chain(&first, &prev, desc);
1337        }
1338
1339        /* lets make a cyclic list */
1340        prev->lli.dscr = first->txd.phys;
1341
1342        /* First descriptor of the chain embedds additional information */
1343        first->txd.cookie = -EBUSY;
1344        first->total_len = buf_len;
1345
1346        return &first->txd;
1347
1348err_desc_get:
1349        dev_err(chan2dev(chan), "not enough descriptors available\n");
1350        atc_desc_put(atchan, first);
1351err_out:
1352        clear_bit(ATC_IS_CYCLIC, &atchan->status);
1353        return NULL;
1354}
1355
1356static int atc_config(struct dma_chan *chan,
1357                      struct dma_slave_config *sconfig)
1358{
1359        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1360
1361        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1362
1363        /* Check if it is chan is configured for slave transfers */
1364        if (!chan->private)
1365                return -EINVAL;
1366
1367        memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1368
1369        convert_burst(&atchan->dma_sconfig.src_maxburst);
1370        convert_burst(&atchan->dma_sconfig.dst_maxburst);
1371
1372        return 0;
1373}
1374
1375static int atc_pause(struct dma_chan *chan)
1376{
1377        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1378        struct at_dma           *atdma = to_at_dma(chan->device);
1379        int                     chan_id = atchan->chan_common.chan_id;
1380        unsigned long           flags;
1381
1382        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1383
1384        spin_lock_irqsave(&atchan->lock, flags);
1385
1386        dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1387        set_bit(ATC_IS_PAUSED, &atchan->status);
1388
1389        spin_unlock_irqrestore(&atchan->lock, flags);
1390
1391        return 0;
1392}
1393
1394static int atc_resume(struct dma_chan *chan)
1395{
1396        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1397        struct at_dma           *atdma = to_at_dma(chan->device);
1398        int                     chan_id = atchan->chan_common.chan_id;
1399        unsigned long           flags;
1400
1401        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1402
1403        if (!atc_chan_is_paused(atchan))
1404                return 0;
1405
1406        spin_lock_irqsave(&atchan->lock, flags);
1407
1408        dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1409        clear_bit(ATC_IS_PAUSED, &atchan->status);
1410
1411        spin_unlock_irqrestore(&atchan->lock, flags);
1412
1413        return 0;
1414}
1415
1416static int atc_terminate_all(struct dma_chan *chan)
1417{
1418        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1419        struct at_dma           *atdma = to_at_dma(chan->device);
1420        int                     chan_id = atchan->chan_common.chan_id;
1421        struct at_desc          *desc, *_desc;
1422        unsigned long           flags;
1423
1424        LIST_HEAD(list);
1425
1426        dev_vdbg(chan2dev(chan), "%s\n", __func__);
1427
1428        /*
1429         * This is only called when something went wrong elsewhere, so
1430         * we don't really care about the data. Just disable the
1431         * channel. We still have to poll the channel enable bit due
1432         * to AHB/HSB limitations.
1433         */
1434        spin_lock_irqsave(&atchan->lock, flags);
1435
1436        /* disabling channel: must also remove suspend state */
1437        dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1438
1439        /* confirm that this channel is disabled */
1440        while (dma_readl(atdma, CHSR) & atchan->mask)
1441                cpu_relax();
1442
1443        /* active_list entries will end up before queued entries */
1444        list_splice_init(&atchan->queue, &list);
1445        list_splice_init(&atchan->active_list, &list);
1446
1447        spin_unlock_irqrestore(&atchan->lock, flags);
1448
1449        /* Flush all pending and queued descriptors */
1450        list_for_each_entry_safe(desc, _desc, &list, desc_node)
1451                atc_chain_complete(atchan, desc);
1452
1453        clear_bit(ATC_IS_PAUSED, &atchan->status);
1454        /* if channel dedicated to cyclic operations, free it */
1455        clear_bit(ATC_IS_CYCLIC, &atchan->status);
1456
1457        return 0;
1458}
1459
1460/**
1461 * atc_tx_status - poll for transaction completion
1462 * @chan: DMA channel
1463 * @cookie: transaction identifier to check status of
1464 * @txstate: if not %NULL updated with transaction state
1465 *
1466 * If @txstate is passed in, upon return it reflect the driver
1467 * internal state and can be used with dma_async_is_complete() to check
1468 * the status of multiple cookies without re-checking hardware state.
1469 */
1470static enum dma_status
1471atc_tx_status(struct dma_chan *chan,
1472                dma_cookie_t cookie,
1473                struct dma_tx_state *txstate)
1474{
1475        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1476        unsigned long           flags;
1477        enum dma_status         ret;
1478        int bytes = 0;
1479
1480        ret = dma_cookie_status(chan, cookie, txstate);
1481        if (ret == DMA_COMPLETE)
1482                return ret;
1483        /*
1484         * There's no point calculating the residue if there's
1485         * no txstate to store the value.
1486         */
1487        if (!txstate)
1488                return DMA_ERROR;
1489
1490        spin_lock_irqsave(&atchan->lock, flags);
1491
1492        /*  Get number of bytes left in the active transactions */
1493        bytes = atc_get_bytes_left(chan, cookie);
1494
1495        spin_unlock_irqrestore(&atchan->lock, flags);
1496
1497        if (unlikely(bytes < 0)) {
1498                dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1499                return DMA_ERROR;
1500        } else {
1501                dma_set_residue(txstate, bytes);
1502        }
1503
1504        dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1505                 ret, cookie, bytes);
1506
1507        return ret;
1508}
1509
1510/**
1511 * atc_issue_pending - try to finish work
1512 * @chan: target DMA channel
1513 */
1514static void atc_issue_pending(struct dma_chan *chan)
1515{
1516        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1517
1518        dev_vdbg(chan2dev(chan), "issue_pending\n");
1519
1520        /* Not needed for cyclic transfers */
1521        if (atc_chan_is_cyclic(atchan))
1522                return;
1523
1524        atc_advance_work(atchan);
1525}
1526
1527/**
1528 * atc_alloc_chan_resources - allocate resources for DMA channel
1529 * @chan: allocate descriptor resources for this channel
1530 *
1531 * return - the number of allocated descriptors
1532 */
1533static int atc_alloc_chan_resources(struct dma_chan *chan)
1534{
1535        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1536        struct at_dma           *atdma = to_at_dma(chan->device);
1537        struct at_desc          *desc;
1538        struct at_dma_slave     *atslave;
1539        int                     i;
1540        u32                     cfg;
1541
1542        dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1543
1544        /* ASSERT:  channel is idle */
1545        if (atc_chan_is_enabled(atchan)) {
1546                dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1547                return -EIO;
1548        }
1549
1550        if (!list_empty(&atchan->free_list)) {
1551                dev_dbg(chan2dev(chan), "can't allocate channel resources (channel not freed from a previous use)\n");
1552                return -EIO;
1553        }
1554
1555        cfg = ATC_DEFAULT_CFG;
1556
1557        atslave = chan->private;
1558        if (atslave) {
1559                /*
1560                 * We need controller-specific data to set up slave
1561                 * transfers.
1562                 */
1563                BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1564
1565                /* if cfg configuration specified take it instead of default */
1566                if (atslave->cfg)
1567                        cfg = atslave->cfg;
1568        }
1569
1570        /* Allocate initial pool of descriptors */
1571        for (i = 0; i < init_nr_desc_per_channel; i++) {
1572                desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1573                if (!desc) {
1574                        dev_err(atdma->dma_common.dev,
1575                                "Only %d initial descriptors\n", i);
1576                        break;
1577                }
1578                list_add_tail(&desc->desc_node, &atchan->free_list);
1579        }
1580
1581        dma_cookie_init(chan);
1582
1583        /* channel parameters */
1584        channel_writel(atchan, CFG, cfg);
1585
1586        dev_dbg(chan2dev(chan),
1587                "alloc_chan_resources: allocated %d descriptors\n", i);
1588
1589        return i;
1590}
1591
1592/**
1593 * atc_free_chan_resources - free all channel resources
1594 * @chan: DMA channel
1595 */
1596static void atc_free_chan_resources(struct dma_chan *chan)
1597{
1598        struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1599        struct at_dma           *atdma = to_at_dma(chan->device);
1600        struct at_desc          *desc, *_desc;
1601        LIST_HEAD(list);
1602
1603        /* ASSERT:  channel is idle */
1604        BUG_ON(!list_empty(&atchan->active_list));
1605        BUG_ON(!list_empty(&atchan->queue));
1606        BUG_ON(atc_chan_is_enabled(atchan));
1607
1608        list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1609                dev_vdbg(chan2dev(chan), "  freeing descriptor %p\n", desc);
1610                list_del(&desc->desc_node);
1611                /* free link descriptor */
1612                dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1613        }
1614        list_splice_init(&atchan->free_list, &list);
1615        atchan->status = 0;
1616
1617        /*
1618         * Free atslave allocated in at_dma_xlate()
1619         */
1620        kfree(chan->private);
1621        chan->private = NULL;
1622
1623        dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1624}
1625
1626#ifdef CONFIG_OF
1627static bool at_dma_filter(struct dma_chan *chan, void *slave)
1628{
1629        struct at_dma_slave *atslave = slave;
1630
1631        if (atslave->dma_dev == chan->device->dev) {
1632                chan->private = atslave;
1633                return true;
1634        } else {
1635                return false;
1636        }
1637}
1638
1639static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1640                                     struct of_dma *of_dma)
1641{
1642        struct dma_chan *chan;
1643        struct at_dma_chan *atchan;
1644        struct at_dma_slave *atslave;
1645        dma_cap_mask_t mask;
1646        unsigned int per_id;
1647        struct platform_device *dmac_pdev;
1648
1649        if (dma_spec->args_count != 2)
1650                return NULL;
1651
1652        dmac_pdev = of_find_device_by_node(dma_spec->np);
1653        if (!dmac_pdev)
1654                return NULL;
1655
1656        dma_cap_zero(mask);
1657        dma_cap_set(DMA_SLAVE, mask);
1658
1659        atslave = kmalloc(sizeof(*atslave), GFP_KERNEL);
1660        if (!atslave) {
1661                put_device(&dmac_pdev->dev);
1662                return NULL;
1663        }
1664
1665        atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1666        /*
1667         * We can fill both SRC_PER and DST_PER, one of these fields will be
1668         * ignored depending on DMA transfer direction.
1669         */
1670        per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1671        atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1672                     | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1673        /*
1674         * We have to translate the value we get from the device tree since
1675         * the half FIFO configuration value had to be 0 to keep backward
1676         * compatibility.
1677         */
1678        switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1679        case AT91_DMA_CFG_FIFOCFG_ALAP:
1680                atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1681                break;
1682        case AT91_DMA_CFG_FIFOCFG_ASAP:
1683                atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1684                break;
1685        case AT91_DMA_CFG_FIFOCFG_HALF:
1686        default:
1687                atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1688        }
1689        atslave->dma_dev = &dmac_pdev->dev;
1690
1691        chan = dma_request_channel(mask, at_dma_filter, atslave);
1692        if (!chan) {
1693                put_device(&dmac_pdev->dev);
1694                kfree(atslave);
1695                return NULL;
1696        }
1697
1698        atchan = to_at_dma_chan(chan);
1699        atchan->per_if = dma_spec->args[0] & 0xff;
1700        atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1701
1702        return chan;
1703}
1704#else
1705static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1706                                     struct of_dma *of_dma)
1707{
1708        return NULL;
1709}
1710#endif
1711
1712/*--  Module Management  -----------------------------------------------*/
1713
1714/* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1715static struct at_dma_platform_data at91sam9rl_config = {
1716        .nr_channels = 2,
1717};
1718static struct at_dma_platform_data at91sam9g45_config = {
1719        .nr_channels = 8,
1720};
1721
1722#if defined(CONFIG_OF)
1723static const struct of_device_id atmel_dma_dt_ids[] = {
1724        {
1725                .compatible = "atmel,at91sam9rl-dma",
1726                .data = &at91sam9rl_config,
1727        }, {
1728                .compatible = "atmel,at91sam9g45-dma",
1729                .data = &at91sam9g45_config,
1730        }, {
1731                /* sentinel */
1732        }
1733};
1734
1735MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1736#endif
1737
1738static const struct platform_device_id atdma_devtypes[] = {
1739        {
1740                .name = "at91sam9rl_dma",
1741                .driver_data = (unsigned long) &at91sam9rl_config,
1742        }, {
1743                .name = "at91sam9g45_dma",
1744                .driver_data = (unsigned long) &at91sam9g45_config,
1745        }, {
1746                /* sentinel */
1747        }
1748};
1749
1750static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1751                                                struct platform_device *pdev)
1752{
1753        if (pdev->dev.of_node) {
1754                const struct of_device_id *match;
1755                match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1756                if (match == NULL)
1757                        return NULL;
1758                return match->data;
1759        }
1760        return (struct at_dma_platform_data *)
1761                        platform_get_device_id(pdev)->driver_data;
1762}
1763
1764/**
1765 * at_dma_off - disable DMA controller
1766 * @atdma: the Atmel HDAMC device
1767 */
1768static void at_dma_off(struct at_dma *atdma)
1769{
1770        dma_writel(atdma, EN, 0);
1771
1772        /* disable all interrupts */
1773        dma_writel(atdma, EBCIDR, -1L);
1774
1775        /* confirm that all channels are disabled */
1776        while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1777                cpu_relax();
1778}
1779
1780static int __init at_dma_probe(struct platform_device *pdev)
1781{
1782        struct resource         *io;
1783        struct at_dma           *atdma;
1784        size_t                  size;
1785        int                     irq;
1786        int                     err;
1787        int                     i;
1788        const struct at_dma_platform_data *plat_dat;
1789
1790        /* setup platform data for each SoC */
1791        dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1792        dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1793        dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1794        dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1795        dma_cap_set(DMA_MEMSET_SG, at91sam9g45_config.cap_mask);
1796        dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1797        dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1798
1799        /* get DMA parameters from controller type */
1800        plat_dat = at_dma_get_driver_data(pdev);
1801        if (!plat_dat)
1802                return -ENODEV;
1803
1804        io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1805        if (!io)
1806                return -EINVAL;
1807
1808        irq = platform_get_irq(pdev, 0);
1809        if (irq < 0)
1810                return irq;
1811
1812        size = sizeof(struct at_dma);
1813        size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1814        atdma = kzalloc(size, GFP_KERNEL);
1815        if (!atdma)
1816                return -ENOMEM;
1817
1818        /* discover transaction capabilities */
1819        atdma->dma_common.cap_mask = plat_dat->cap_mask;
1820        atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1821
1822        size = resource_size(io);
1823        if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1824                err = -EBUSY;
1825                goto err_kfree;
1826        }
1827
1828        atdma->regs = ioremap(io->start, size);
1829        if (!atdma->regs) {
1830                err = -ENOMEM;
1831                goto err_release_r;
1832        }
1833
1834        atdma->clk = clk_get(&pdev->dev, "dma_clk");
1835        if (IS_ERR(atdma->clk)) {
1836                err = PTR_ERR(atdma->clk);
1837                goto err_clk;
1838        }
1839        err = clk_prepare_enable(atdma->clk);
1840        if (err)
1841                goto err_clk_prepare;
1842
1843        /* force dma off, just in case */
1844        at_dma_off(atdma);
1845
1846        err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1847        if (err)
1848                goto err_irq;
1849
1850        platform_set_drvdata(pdev, atdma);
1851
1852        /* create a pool of consistent memory blocks for hardware descriptors */
1853        atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1854                        &pdev->dev, sizeof(struct at_desc),
1855                        4 /* word alignment */, 0);
1856        if (!atdma->dma_desc_pool) {
1857                dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1858                err = -ENOMEM;
1859                goto err_desc_pool_create;
1860        }
1861
1862        /* create a pool of consistent memory blocks for memset blocks */
1863        atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1864                                             &pdev->dev, sizeof(int), 4, 0);
1865        if (!atdma->memset_pool) {
1866                dev_err(&pdev->dev, "No memory for memset dma pool\n");
1867                err = -ENOMEM;
1868                goto err_memset_pool_create;
1869        }
1870
1871        /* clear any pending interrupt */
1872        while (dma_readl(atdma, EBCISR))
1873                cpu_relax();
1874
1875        /* initialize channels related values */
1876        INIT_LIST_HEAD(&atdma->dma_common.channels);
1877        for (i = 0; i < plat_dat->nr_channels; i++) {
1878                struct at_dma_chan      *atchan = &atdma->chan[i];
1879
1880                atchan->mem_if = AT_DMA_MEM_IF;
1881                atchan->per_if = AT_DMA_PER_IF;
1882                atchan->chan_common.device = &atdma->dma_common;
1883                dma_cookie_init(&atchan->chan_common);
1884                list_add_tail(&atchan->chan_common.device_node,
1885                                &atdma->dma_common.channels);
1886
1887                atchan->ch_regs = atdma->regs + ch_regs(i);
1888                spin_lock_init(&atchan->lock);
1889                atchan->mask = 1 << i;
1890
1891                INIT_LIST_HEAD(&atchan->active_list);
1892                INIT_LIST_HEAD(&atchan->queue);
1893                INIT_LIST_HEAD(&atchan->free_list);
1894
1895                tasklet_setup(&atchan->tasklet, atc_tasklet);
1896                atc_enable_chan_irq(atdma, i);
1897        }
1898
1899        /* set base routines */
1900        atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1901        atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1902        atdma->dma_common.device_tx_status = atc_tx_status;
1903        atdma->dma_common.device_issue_pending = atc_issue_pending;
1904        atdma->dma_common.dev = &pdev->dev;
1905
1906        /* set prep routines based on capability */
1907        if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1908                atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1909
1910        if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1911                atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1912
1913        if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1914                atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1915                atdma->dma_common.device_prep_dma_memset_sg = atc_prep_dma_memset_sg;
1916                atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1917        }
1918
1919        if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1920                atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1921                /* controller can do slave DMA: can trigger cyclic transfers */
1922                dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1923                atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1924                atdma->dma_common.device_config = atc_config;
1925                atdma->dma_common.device_pause = atc_pause;
1926                atdma->dma_common.device_resume = atc_resume;
1927                atdma->dma_common.device_terminate_all = atc_terminate_all;
1928                atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1929                atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1930                atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1931                atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1932        }
1933
1934        dma_writel(atdma, EN, AT_DMA_ENABLE);
1935
1936        dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s), %d channels\n",
1937          dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
1938          dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
1939          dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)  ? "slave " : "",
1940          plat_dat->nr_channels);
1941
1942        dma_async_device_register(&atdma->dma_common);
1943
1944        /*
1945         * Do not return an error if the dmac node is not present in order to
1946         * not break the existing way of requesting channel with
1947         * dma_request_channel().
1948         */
1949        if (pdev->dev.of_node) {
1950                err = of_dma_controller_register(pdev->dev.of_node,
1951                                                 at_dma_xlate, atdma);
1952                if (err) {
1953                        dev_err(&pdev->dev, "could not register of_dma_controller\n");
1954                        goto err_of_dma_controller_register;
1955                }
1956        }
1957
1958        return 0;
1959
1960err_of_dma_controller_register:
1961        dma_async_device_unregister(&atdma->dma_common);
1962        dma_pool_destroy(atdma->memset_pool);
1963err_memset_pool_create:
1964        dma_pool_destroy(atdma->dma_desc_pool);
1965err_desc_pool_create:
1966        free_irq(platform_get_irq(pdev, 0), atdma);
1967err_irq:
1968        clk_disable_unprepare(atdma->clk);
1969err_clk_prepare:
1970        clk_put(atdma->clk);
1971err_clk:
1972        iounmap(atdma->regs);
1973        atdma->regs = NULL;
1974err_release_r:
1975        release_mem_region(io->start, size);
1976err_kfree:
1977        kfree(atdma);
1978        return err;
1979}
1980
1981static int at_dma_remove(struct platform_device *pdev)
1982{
1983        struct at_dma           *atdma = platform_get_drvdata(pdev);
1984        struct dma_chan         *chan, *_chan;
1985        struct resource         *io;
1986
1987        at_dma_off(atdma);
1988        if (pdev->dev.of_node)
1989                of_dma_controller_free(pdev->dev.of_node);
1990        dma_async_device_unregister(&atdma->dma_common);
1991
1992        dma_pool_destroy(atdma->memset_pool);
1993        dma_pool_destroy(atdma->dma_desc_pool);
1994        free_irq(platform_get_irq(pdev, 0), atdma);
1995
1996        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
1997                        device_node) {
1998                struct at_dma_chan      *atchan = to_at_dma_chan(chan);
1999
2000                /* Disable interrupts */
2001                atc_disable_chan_irq(atdma, chan->chan_id);
2002
2003                tasklet_kill(&atchan->tasklet);
2004                list_del(&chan->device_node);
2005        }
2006
2007        clk_disable_unprepare(atdma->clk);
2008        clk_put(atdma->clk);
2009
2010        iounmap(atdma->regs);
2011        atdma->regs = NULL;
2012
2013        io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2014        release_mem_region(io->start, resource_size(io));
2015
2016        kfree(atdma);
2017
2018        return 0;
2019}
2020
2021static void at_dma_shutdown(struct platform_device *pdev)
2022{
2023        struct at_dma   *atdma = platform_get_drvdata(pdev);
2024
2025        at_dma_off(platform_get_drvdata(pdev));
2026        clk_disable_unprepare(atdma->clk);
2027}
2028
2029static int at_dma_prepare(struct device *dev)
2030{
2031        struct at_dma *atdma = dev_get_drvdata(dev);
2032        struct dma_chan *chan, *_chan;
2033
2034        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2035                        device_node) {
2036                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2037                /* wait for transaction completion (except in cyclic case) */
2038                if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2039                        return -EAGAIN;
2040        }
2041        return 0;
2042}
2043
2044static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2045{
2046        struct dma_chan *chan = &atchan->chan_common;
2047
2048        /* Channel should be paused by user
2049         * do it anyway even if it is not done already */
2050        if (!atc_chan_is_paused(atchan)) {
2051                dev_warn(chan2dev(chan),
2052                "cyclic channel not paused, should be done by channel user\n");
2053                atc_pause(chan);
2054        }
2055
2056        /* now preserve additional data for cyclic operations */
2057        /* next descriptor address in the cyclic list */
2058        atchan->save_dscr = channel_readl(atchan, DSCR);
2059
2060        vdbg_dump_regs(atchan);
2061}
2062
2063static int at_dma_suspend_noirq(struct device *dev)
2064{
2065        struct at_dma *atdma = dev_get_drvdata(dev);
2066        struct dma_chan *chan, *_chan;
2067
2068        /* preserve data */
2069        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2070                        device_node) {
2071                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2072
2073                if (atc_chan_is_cyclic(atchan))
2074                        atc_suspend_cyclic(atchan);
2075                atchan->save_cfg = channel_readl(atchan, CFG);
2076        }
2077        atdma->save_imr = dma_readl(atdma, EBCIMR);
2078
2079        /* disable DMA controller */
2080        at_dma_off(atdma);
2081        clk_disable_unprepare(atdma->clk);
2082        return 0;
2083}
2084
2085static void atc_resume_cyclic(struct at_dma_chan *atchan)
2086{
2087        struct at_dma   *atdma = to_at_dma(atchan->chan_common.device);
2088
2089        /* restore channel status for cyclic descriptors list:
2090         * next descriptor in the cyclic list at the time of suspend */
2091        channel_writel(atchan, SADDR, 0);
2092        channel_writel(atchan, DADDR, 0);
2093        channel_writel(atchan, CTRLA, 0);
2094        channel_writel(atchan, CTRLB, 0);
2095        channel_writel(atchan, DSCR, atchan->save_dscr);
2096        dma_writel(atdma, CHER, atchan->mask);
2097
2098        /* channel pause status should be removed by channel user
2099         * We cannot take the initiative to do it here */
2100
2101        vdbg_dump_regs(atchan);
2102}
2103
2104static int at_dma_resume_noirq(struct device *dev)
2105{
2106        struct at_dma *atdma = dev_get_drvdata(dev);
2107        struct dma_chan *chan, *_chan;
2108
2109        /* bring back DMA controller */
2110        clk_prepare_enable(atdma->clk);
2111        dma_writel(atdma, EN, AT_DMA_ENABLE);
2112
2113        /* clear any pending interrupt */
2114        while (dma_readl(atdma, EBCISR))
2115                cpu_relax();
2116
2117        /* restore saved data */
2118        dma_writel(atdma, EBCIER, atdma->save_imr);
2119        list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2120                        device_node) {
2121                struct at_dma_chan *atchan = to_at_dma_chan(chan);
2122
2123                channel_writel(atchan, CFG, atchan->save_cfg);
2124                if (atc_chan_is_cyclic(atchan))
2125                        atc_resume_cyclic(atchan);
2126        }
2127        return 0;
2128}
2129
2130static const struct dev_pm_ops at_dma_dev_pm_ops = {
2131        .prepare = at_dma_prepare,
2132        .suspend_noirq = at_dma_suspend_noirq,
2133        .resume_noirq = at_dma_resume_noirq,
2134};
2135
2136static struct platform_driver at_dma_driver = {
2137        .remove         = at_dma_remove,
2138        .shutdown       = at_dma_shutdown,
2139        .id_table       = atdma_devtypes,
2140        .driver = {
2141                .name   = "at_hdmac",
2142                .pm     = &at_dma_dev_pm_ops,
2143                .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2144        },
2145};
2146
2147static int __init at_dma_init(void)
2148{
2149        return platform_driver_probe(&at_dma_driver, at_dma_probe);
2150}
2151subsys_initcall(at_dma_init);
2152
2153static void __exit at_dma_exit(void)
2154{
2155        platform_driver_unregister(&at_dma_driver);
2156}
2157module_exit(at_dma_exit);
2158
2159MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2160MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2161MODULE_LICENSE("GPL");
2162MODULE_ALIAS("platform:at_hdmac");
2163