linux/drivers/gpu/drm/amd/pm/powerplay/smumgr/tonga_smumgr.c
<<
>>
Prefs
   1/*
   2 * Copyright 2015 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 */
  23#include "pp_debug.h"
  24#include <linux/types.h>
  25#include <linux/kernel.h>
  26#include <linux/pci.h>
  27#include <linux/slab.h>
  28#include <linux/gfp.h>
  29
  30#include "smumgr.h"
  31#include "tonga_smumgr.h"
  32#include "smu_ucode_xfer_vi.h"
  33#include "tonga_ppsmc.h"
  34#include "smu/smu_7_1_2_d.h"
  35#include "smu/smu_7_1_2_sh_mask.h"
  36#include "cgs_common.h"
  37#include "smu7_smumgr.h"
  38
  39#include "smu7_dyn_defaults.h"
  40
  41#include "smu7_hwmgr.h"
  42#include "hardwaremanager.h"
  43#include "ppatomctrl.h"
  44
  45#include "atombios.h"
  46
  47#include "pppcielanes.h"
  48#include "pp_endian.h"
  49
  50#include "gmc/gmc_8_1_d.h"
  51#include "gmc/gmc_8_1_sh_mask.h"
  52
  53#include "bif/bif_5_0_d.h"
  54#include "bif/bif_5_0_sh_mask.h"
  55
  56#include "dce/dce_10_0_d.h"
  57#include "dce/dce_10_0_sh_mask.h"
  58
  59#define POWERTUNE_DEFAULT_SET_MAX    1
  60#define MC_CG_ARB_FREQ_F1           0x0b
  61#define VDDC_VDDCI_DELTA            200
  62
  63
  64static const struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
  65/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,  TDC_MAWt,
  66 * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,        BAPM_TEMP_GRADIENT
  67 */
  68        {1,               0xF,             0xFD,                0x19,
  69         5,               45,                 0,              0xB0000,
  70         {0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8,
  71                0xC9, 0xC9, 0x2F, 0x4D, 0x61},
  72         {0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203,
  73                0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4}
  74        },
  75};
  76
  77/* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
  78static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
  79        {600, 1050, 3, 0},
  80        {600, 1050, 6, 1}
  81};
  82
  83/* [FF, SS] type, [] 4 voltage ranges,
  84 * and [Floor Freq, Boundary Freq, VID min , VID max]
  85 */
  86static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
  87        { {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
  88        { {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} }
  89};
  90
  91/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */
  92static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
  93        {0, 1, 3, 2, 4, 5},
  94        {0, 2, 4, 5, 6, 5}
  95};
  96
  97static int tonga_start_in_protection_mode(struct pp_hwmgr *hwmgr)
  98{
  99        int result;
 100
 101        /* Assert reset */
 102        PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 103                SMC_SYSCON_RESET_CNTL, rst_reg, 1);
 104
 105        result = smu7_upload_smu_firmware_image(hwmgr);
 106        if (result)
 107                return result;
 108
 109        /* Clear status */
 110        cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 111                ixSMU_STATUS, 0);
 112
 113        /* Enable clock */
 114        PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 115                SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
 116
 117        /* De-assert reset */
 118        PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 119                SMC_SYSCON_RESET_CNTL, rst_reg, 0);
 120
 121        /* Set SMU Auto Start */
 122        PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 123                SMU_INPUT_DATA, AUTO_START, 1);
 124
 125        /* Clear firmware interrupt enable flag */
 126        cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 127                ixFIRMWARE_FLAGS, 0);
 128
 129        PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
 130                RCU_UC_EVENTS, INTERRUPTS_ENABLED, 1);
 131
 132        /**
 133         * Call Test SMU message with 0x20000 offset to trigger SMU start
 134         */
 135        smu7_send_msg_to_smc_offset(hwmgr);
 136
 137        /* Wait for done bit to be set */
 138        PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
 139                SMU_STATUS, SMU_DONE, 0);
 140
 141        /* Check pass/failed indicator */
 142        if (1 != PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
 143                                CGS_IND_REG__SMC, SMU_STATUS, SMU_PASS)) {
 144                pr_err("SMU Firmware start failed\n");
 145                return -EINVAL;
 146        }
 147
 148        /* Wait for firmware to initialize */
 149        PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
 150                FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
 151
 152        return 0;
 153}
 154
 155static int tonga_start_in_non_protection_mode(struct pp_hwmgr *hwmgr)
 156{
 157        int result = 0;
 158
 159        /* wait for smc boot up */
 160        PHM_WAIT_VFPF_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
 161                RCU_UC_EVENTS, boot_seq_done, 0);
 162
 163        /*Clear firmware interrupt enable flag*/
 164        cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
 165                ixFIRMWARE_FLAGS, 0);
 166
 167
 168        PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 169                SMC_SYSCON_RESET_CNTL, rst_reg, 1);
 170
 171        result = smu7_upload_smu_firmware_image(hwmgr);
 172
 173        if (result != 0)
 174                return result;
 175
 176        /* Set smc instruct start point at 0x0 */
 177        smu7_program_jump_on_start(hwmgr);
 178
 179
 180        PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 181                SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
 182
 183        /*De-assert reset*/
 184        PHM_WRITE_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 185                SMC_SYSCON_RESET_CNTL, rst_reg, 0);
 186
 187        /* Wait for firmware to initialize */
 188        PHM_WAIT_VFPF_INDIRECT_FIELD(hwmgr, SMC_IND,
 189                FIRMWARE_FLAGS, INTERRUPTS_ENABLED, 1);
 190
 191        return result;
 192}
 193
 194static int tonga_start_smu(struct pp_hwmgr *hwmgr)
 195{
 196        struct tonga_smumgr *priv = hwmgr->smu_backend;
 197        int result;
 198
 199        /* Only start SMC if SMC RAM is not running */
 200        if (!smu7_is_smc_ram_running(hwmgr) && hwmgr->not_vf) {
 201                /*Check if SMU is running in protected mode*/
 202                if (0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
 203                                        SMU_FIRMWARE, SMU_MODE)) {
 204                        result = tonga_start_in_non_protection_mode(hwmgr);
 205                        if (result)
 206                                return result;
 207                } else {
 208                        result = tonga_start_in_protection_mode(hwmgr);
 209                        if (result)
 210                                return result;
 211                }
 212        }
 213
 214        /* Setup SoftRegsStart here to visit the register UcodeLoadStatus
 215         * to check fw loading state
 216         */
 217        smu7_read_smc_sram_dword(hwmgr,
 218                        SMU72_FIRMWARE_HEADER_LOCATION +
 219                        offsetof(SMU72_Firmware_Header, SoftRegisters),
 220                        &(priv->smu7_data.soft_regs_start), 0x40000);
 221
 222        result = smu7_request_smu_load_fw(hwmgr);
 223
 224        return result;
 225}
 226
 227static int tonga_smu_init(struct pp_hwmgr *hwmgr)
 228{
 229        struct tonga_smumgr *tonga_priv = NULL;
 230
 231        tonga_priv = kzalloc(sizeof(struct tonga_smumgr), GFP_KERNEL);
 232        if (tonga_priv == NULL)
 233                return -ENOMEM;
 234
 235        hwmgr->smu_backend = tonga_priv;
 236
 237        if (smu7_init(hwmgr)) {
 238                kfree(tonga_priv);
 239                return -EINVAL;
 240        }
 241
 242        return 0;
 243}
 244
 245
 246static int tonga_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
 247        phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
 248        uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
 249{
 250        uint32_t i = 0;
 251        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 252        struct phm_ppt_v1_information *pptable_info =
 253                           (struct phm_ppt_v1_information *)(hwmgr->pptable);
 254
 255        /* clock - voltage dependency table is empty table */
 256        if (allowed_clock_voltage_table->count == 0)
 257                return -EINVAL;
 258
 259        for (i = 0; i < allowed_clock_voltage_table->count; i++) {
 260                /* find first sclk bigger than request */
 261                if (allowed_clock_voltage_table->entries[i].clk >= clock) {
 262                        voltage->VddGfx = phm_get_voltage_index(
 263                                        pptable_info->vddgfx_lookup_table,
 264                                allowed_clock_voltage_table->entries[i].vddgfx);
 265                        voltage->Vddc = phm_get_voltage_index(
 266                                                pptable_info->vddc_lookup_table,
 267                                  allowed_clock_voltage_table->entries[i].vddc);
 268
 269                        if (allowed_clock_voltage_table->entries[i].vddci)
 270                                voltage->Vddci =
 271                                        phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci);
 272                        else
 273                                voltage->Vddci =
 274                                        phm_get_voltage_id(&data->vddci_voltage_table,
 275                                                allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);
 276
 277
 278                        if (allowed_clock_voltage_table->entries[i].mvdd)
 279                                *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
 280
 281                        voltage->Phases = 1;
 282                        return 0;
 283                }
 284        }
 285
 286        /* sclk is bigger than max sclk in the dependence table */
 287        voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
 288                allowed_clock_voltage_table->entries[i-1].vddgfx);
 289        voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
 290                allowed_clock_voltage_table->entries[i-1].vddc);
 291
 292        if (allowed_clock_voltage_table->entries[i-1].vddci)
 293                voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
 294                        allowed_clock_voltage_table->entries[i-1].vddci);
 295
 296        if (allowed_clock_voltage_table->entries[i-1].mvdd)
 297                *mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
 298
 299        return 0;
 300}
 301
 302static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
 303                        SMU72_Discrete_DpmTable *table)
 304{
 305        unsigned int count;
 306        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 307
 308        if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
 309                table->VddcLevelCount = data->vddc_voltage_table.count;
 310                for (count = 0; count < table->VddcLevelCount; count++) {
 311                        table->VddcTable[count] =
 312                                PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
 313                }
 314                CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
 315        }
 316        return 0;
 317}
 318
 319static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
 320                        SMU72_Discrete_DpmTable *table)
 321{
 322        unsigned int count;
 323        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 324
 325        if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
 326                table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
 327                for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
 328                        table->VddGfxTable[count] =
 329                                PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
 330                }
 331                CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
 332        }
 333        return 0;
 334}
 335
 336static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
 337                        SMU72_Discrete_DpmTable *table)
 338{
 339        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 340        uint32_t count;
 341
 342        table->VddciLevelCount = data->vddci_voltage_table.count;
 343        for (count = 0; count < table->VddciLevelCount; count++) {
 344                if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
 345                        table->VddciTable[count] =
 346                                PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
 347                } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
 348                        table->SmioTable1.Pattern[count].Voltage =
 349                                PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
 350                        /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
 351                        table->SmioTable1.Pattern[count].Smio =
 352                                (uint8_t) count;
 353                        table->Smio[count] |=
 354                                data->vddci_voltage_table.entries[count].smio_low;
 355                        table->VddciTable[count] =
 356                                PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
 357                }
 358        }
 359
 360        table->SmioMask1 = data->vddci_voltage_table.mask_low;
 361        CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
 362
 363        return 0;
 364}
 365
 366static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
 367                        SMU72_Discrete_DpmTable *table)
 368{
 369        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 370        uint32_t count;
 371
 372        if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
 373                table->MvddLevelCount = data->mvdd_voltage_table.count;
 374                for (count = 0; count < table->MvddLevelCount; count++) {
 375                        table->SmioTable2.Pattern[count].Voltage =
 376                                PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
 377                        /* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
 378                        table->SmioTable2.Pattern[count].Smio =
 379                                (uint8_t) count;
 380                        table->Smio[count] |=
 381                                data->mvdd_voltage_table.entries[count].smio_low;
 382                }
 383                table->SmioMask2 = data->mvdd_voltage_table.mask_low;
 384
 385                CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
 386        }
 387
 388        return 0;
 389}
 390
 391static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
 392                        SMU72_Discrete_DpmTable *table)
 393{
 394        uint32_t count;
 395        uint8_t index = 0;
 396        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 397        struct phm_ppt_v1_information *pptable_info =
 398                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 399        struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table =
 400                                           pptable_info->vddgfx_lookup_table;
 401        struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table =
 402                                                pptable_info->vddc_lookup_table;
 403
 404        /* table is already swapped, so in order to use the value from it
 405         * we need to swap it back.
 406         */
 407        uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
 408        uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
 409
 410        for (count = 0; count < vddc_level_count; count++) {
 411                /* We are populating vddc CAC data to BapmVddc table in split and merged mode */
 412                index = phm_get_voltage_index(vddc_lookup_table,
 413                        data->vddc_voltage_table.entries[count].value);
 414                table->BapmVddcVidLoSidd[count] =
 415                        convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
 416                table->BapmVddcVidHiSidd[count] =
 417                        convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
 418                table->BapmVddcVidHiSidd2[count] =
 419                        convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
 420        }
 421
 422        if (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) {
 423                /* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
 424                for (count = 0; count < vddgfx_level_count; count++) {
 425                        index = phm_get_voltage_index(vddgfx_lookup_table,
 426                                convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
 427                        table->BapmVddGfxVidHiSidd2[count] =
 428                                convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
 429                }
 430        } else {
 431                for (count = 0; count < vddc_level_count; count++) {
 432                        index = phm_get_voltage_index(vddc_lookup_table,
 433                                data->vddc_voltage_table.entries[count].value);
 434                        table->BapmVddGfxVidLoSidd[count] =
 435                                convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
 436                        table->BapmVddGfxVidHiSidd[count] =
 437                                convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
 438                        table->BapmVddGfxVidHiSidd2[count] =
 439                                convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
 440                }
 441        }
 442
 443        return 0;
 444}
 445
 446static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
 447        SMU72_Discrete_DpmTable *table)
 448{
 449        int result;
 450
 451        result = tonga_populate_smc_vddc_table(hwmgr, table);
 452        PP_ASSERT_WITH_CODE(!result,
 453                        "can not populate VDDC voltage table to SMC",
 454                        return -EINVAL);
 455
 456        result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
 457        PP_ASSERT_WITH_CODE(!result,
 458                        "can not populate VDDCI voltage table to SMC",
 459                        return -EINVAL);
 460
 461        result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
 462        PP_ASSERT_WITH_CODE(!result,
 463                        "can not populate VDDGFX voltage table to SMC",
 464                        return -EINVAL);
 465
 466        result = tonga_populate_smc_mvdd_table(hwmgr, table);
 467        PP_ASSERT_WITH_CODE(!result,
 468                        "can not populate MVDD voltage table to SMC",
 469                        return -EINVAL);
 470
 471        result = tonga_populate_cac_tables(hwmgr, table);
 472        PP_ASSERT_WITH_CODE(!result,
 473                        "can not populate CAC voltage tables to SMC",
 474                        return -EINVAL);
 475
 476        return 0;
 477}
 478
 479static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
 480                struct SMU72_Discrete_Ulv *state)
 481{
 482        struct phm_ppt_v1_information *table_info =
 483                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
 484
 485        state->CcPwrDynRm = 0;
 486        state->CcPwrDynRm1 = 0;
 487
 488        state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
 489        state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
 490                        VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
 491
 492        state->VddcPhase = 1;
 493
 494        CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
 495        CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
 496        CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
 497
 498        return 0;
 499}
 500
 501static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
 502                struct SMU72_Discrete_DpmTable *table)
 503{
 504        return tonga_populate_ulv_level(hwmgr, &table->Ulv);
 505}
 506
 507static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
 508{
 509        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 510        struct smu7_dpm_table *dpm_table = &data->dpm_table;
 511        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
 512        uint32_t i;
 513
 514        /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
 515        for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
 516                table->LinkLevel[i].PcieGenSpeed  =
 517                        (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
 518                table->LinkLevel[i].PcieLaneCount =
 519                        (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
 520                table->LinkLevel[i].EnabledForActivity =
 521                        1;
 522                table->LinkLevel[i].SPC =
 523                        (uint8_t)(data->pcie_spc_cap & 0xff);
 524                table->LinkLevel[i].DownThreshold =
 525                        PP_HOST_TO_SMC_UL(5);
 526                table->LinkLevel[i].UpThreshold =
 527                        PP_HOST_TO_SMC_UL(30);
 528        }
 529
 530        smu_data->smc_state_table.LinkLevelCount =
 531                (uint8_t)dpm_table->pcie_speed_table.count;
 532        data->dpm_level_enable_mask.pcie_dpm_enable_mask =
 533                phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
 534
 535        return 0;
 536}
 537
 538static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
 539                uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
 540{
 541        const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 542        pp_atomctrl_clock_dividers_vi dividers;
 543        uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
 544        uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
 545        uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
 546        uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
 547        uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
 548        uint32_t    reference_clock;
 549        uint32_t reference_divider;
 550        uint32_t fbdiv;
 551        int result;
 552
 553        /* get the engine clock dividers for this clock value*/
 554        result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
 555
 556        PP_ASSERT_WITH_CODE(result == 0,
 557                "Error retrieving Engine Clock dividers from VBIOS.", return result);
 558
 559        /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
 560        reference_clock = atomctrl_get_reference_clock(hwmgr);
 561
 562        reference_divider = 1 + dividers.uc_pll_ref_div;
 563
 564        /* low 14 bits is fraction and high 12 bits is divider*/
 565        fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
 566
 567        /* SPLL_FUNC_CNTL setup*/
 568        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
 569                CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
 570        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
 571                CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
 572
 573        /* SPLL_FUNC_CNTL_3 setup*/
 574        spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
 575                CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
 576
 577        /* set to use fractional accumulation*/
 578        spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
 579                CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
 580
 581        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 582                        PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
 583                pp_atomctrl_internal_ss_info ss_info;
 584
 585                uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
 586                if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
 587                        /*
 588                        * ss_info.speed_spectrum_percentage -- in unit of 0.01%
 589                        * ss_info.speed_spectrum_rate -- in unit of khz
 590                        */
 591                        /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
 592                        uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
 593
 594                        /* clkv = 2 * D * fbdiv / NS */
 595                        uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
 596
 597                        cg_spll_spread_spectrum =
 598                                PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
 599                        cg_spll_spread_spectrum =
 600                                PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
 601                        cg_spll_spread_spectrum_2 =
 602                                PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
 603                }
 604        }
 605
 606        sclk->SclkFrequency        = engine_clock;
 607        sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
 608        sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
 609        sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
 610        sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
 611        sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
 612
 613        return 0;
 614}
 615
 616static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
 617                                                uint32_t engine_clock,
 618                                SMU72_Discrete_GraphicsLevel *graphic_level)
 619{
 620        int result;
 621        uint32_t mvdd;
 622        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 623        struct phm_ppt_v1_information *pptable_info =
 624                            (struct phm_ppt_v1_information *)(hwmgr->pptable);
 625        phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
 626
 627        result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
 628
 629        if (hwmgr->od_enabled)
 630                vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_sclk;
 631        else
 632                vdd_dep_table = pptable_info->vdd_dep_on_sclk;
 633
 634        /* populate graphics levels*/
 635        result = tonga_get_dependency_volt_by_clk(hwmgr,
 636                vdd_dep_table, engine_clock,
 637                &graphic_level->MinVoltage, &mvdd);
 638        PP_ASSERT_WITH_CODE((!result),
 639                "can not find VDDC voltage value for VDDC "
 640                "engine clock dependency table", return result);
 641
 642        /* SCLK frequency in units of 10KHz*/
 643        graphic_level->SclkFrequency = engine_clock;
 644        /* Indicates maximum activity level for this performance level. 50% for now*/
 645        graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
 646
 647        graphic_level->CcPwrDynRm = 0;
 648        graphic_level->CcPwrDynRm1 = 0;
 649        /* this level can be used if activity is high enough.*/
 650        graphic_level->EnabledForActivity = 0;
 651        /* this level can be used for throttling.*/
 652        graphic_level->EnabledForThrottle = 1;
 653        graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
 654        graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
 655        graphic_level->VoltageDownHyst = 0;
 656        graphic_level->PowerThrottle = 0;
 657
 658        data->display_timing.min_clock_in_sr =
 659                        hwmgr->display_config->min_core_set_clock_in_sr;
 660
 661        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 662                        PHM_PlatformCaps_SclkDeepSleep))
 663                graphic_level->DeepSleepDivId =
 664                                smu7_get_sleep_divider_id_from_clock(engine_clock,
 665                                                data->display_timing.min_clock_in_sr);
 666
 667        /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
 668        graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
 669
 670        if (!result) {
 671                /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
 672                /* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
 673                CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
 674                CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
 675                CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
 676                CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
 677                CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
 678                CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
 679                CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
 680                CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
 681        }
 682
 683        return result;
 684}
 685
 686static int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
 687{
 688        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 689        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
 690        struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
 691        struct smu7_dpm_table *dpm_table = &data->dpm_table;
 692        struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
 693        uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
 694        uint32_t level_array_address = smu_data->smu7_data.dpm_table_start +
 695                                offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
 696
 697        uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
 698                                                SMU72_MAX_LEVELS_GRAPHICS;
 699
 700        SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
 701
 702        uint32_t i, max_entry;
 703        uint8_t highest_pcie_level_enabled = 0;
 704        uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
 705        uint8_t count = 0;
 706        int result = 0;
 707
 708        memset(levels, 0x00, level_array_size);
 709
 710        for (i = 0; i < dpm_table->sclk_table.count; i++) {
 711                result = tonga_populate_single_graphic_level(hwmgr,
 712                                        dpm_table->sclk_table.dpm_levels[i].value,
 713                                        &(smu_data->smc_state_table.GraphicsLevel[i]));
 714                if (result != 0)
 715                        return result;
 716
 717                /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
 718                if (i > 1)
 719                        smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
 720        }
 721
 722        /* Only enable level 0 for now. */
 723        smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
 724
 725        /* set highest level watermark to high */
 726        if (dpm_table->sclk_table.count > 1)
 727                smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
 728                        PPSMC_DISPLAY_WATERMARK_HIGH;
 729
 730        smu_data->smc_state_table.GraphicsDpmLevelCount =
 731                (uint8_t)dpm_table->sclk_table.count;
 732        data->dpm_level_enable_mask.sclk_dpm_enable_mask =
 733                phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
 734
 735        if (pcie_table != NULL) {
 736                PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
 737                        "There must be 1 or more PCIE levels defined in PPTable.",
 738                        return -EINVAL);
 739                max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
 740                for (i = 0; i < dpm_table->sclk_table.count; i++) {
 741                        smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
 742                                (uint8_t) ((i < max_entry) ? i : max_entry);
 743                }
 744        } else {
 745                if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
 746                        pr_err("Pcie Dpm Enablemask is 0 !");
 747
 748                while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
 749                                ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
 750                                        (1<<(highest_pcie_level_enabled+1))) != 0)) {
 751                        highest_pcie_level_enabled++;
 752                }
 753
 754                while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
 755                                ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
 756                                        (1<<lowest_pcie_level_enabled)) == 0)) {
 757                        lowest_pcie_level_enabled++;
 758                }
 759
 760                while ((count < highest_pcie_level_enabled) &&
 761                                ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
 762                                        (1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
 763                        count++;
 764                }
 765                mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
 766                        (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
 767
 768
 769                /* set pcieDpmLevel to highest_pcie_level_enabled*/
 770                for (i = 2; i < dpm_table->sclk_table.count; i++)
 771                        smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
 772
 773                /* set pcieDpmLevel to lowest_pcie_level_enabled*/
 774                smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
 775
 776                /* set pcieDpmLevel to mid_pcie_level_enabled*/
 777                smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
 778        }
 779        /* level count will send to smc once at init smc table and never change*/
 780        result = smu7_copy_bytes_to_smc(hwmgr, level_array_address,
 781                                (uint8_t *)levels, (uint32_t)level_array_size,
 782                                                                SMC_RAM_END);
 783
 784        return result;
 785}
 786
 787static int tonga_calculate_mclk_params(
 788                struct pp_hwmgr *hwmgr,
 789                uint32_t memory_clock,
 790                SMU72_Discrete_MemoryLevel *mclk,
 791                bool strobe_mode,
 792                bool dllStateOn
 793                )
 794{
 795        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 796
 797        uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
 798        uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
 799        uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
 800        uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
 801        uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
 802        uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
 803        uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
 804        uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
 805        uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
 806
 807        pp_atomctrl_memory_clock_param mpll_param;
 808        int result;
 809
 810        result = atomctrl_get_memory_pll_dividers_si(hwmgr,
 811                                memory_clock, &mpll_param, strobe_mode);
 812        PP_ASSERT_WITH_CODE(
 813                        !result,
 814                        "Error retrieving Memory Clock Parameters from VBIOS.",
 815                        return result);
 816
 817        /* MPLL_FUNC_CNTL setup*/
 818        mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,
 819                                        mpll_param.bw_ctrl);
 820
 821        /* MPLL_FUNC_CNTL_1 setup*/
 822        mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
 823                                        MPLL_FUNC_CNTL_1, CLKF,
 824                                        mpll_param.mpll_fb_divider.cl_kf);
 825        mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
 826                                        MPLL_FUNC_CNTL_1, CLKFRAC,
 827                                        mpll_param.mpll_fb_divider.clk_frac);
 828        mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
 829                                                MPLL_FUNC_CNTL_1, VCO_MODE,
 830                                                mpll_param.vco_mode);
 831
 832        /* MPLL_AD_FUNC_CNTL setup*/
 833        mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
 834                                        MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,
 835                                        mpll_param.mpll_post_divider);
 836
 837        if (data->is_memory_gddr5) {
 838                /* MPLL_DQ_FUNC_CNTL setup*/
 839                mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
 840                                                MPLL_DQ_FUNC_CNTL, YCLK_SEL,
 841                                                mpll_param.yclk_sel);
 842                mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
 843                                                MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,
 844                                                mpll_param.mpll_post_divider);
 845        }
 846
 847        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
 848                        PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
 849                /*
 850                 ************************************
 851                 Fref = Reference Frequency
 852                 NF = Feedback divider ratio
 853                 NR = Reference divider ratio
 854                 Fnom = Nominal VCO output frequency = Fref * NF / NR
 855                 Fs = Spreading Rate
 856                 D = Percentage down-spread / 2
 857                 Fint = Reference input frequency to PFD = Fref / NR
 858                 NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
 859                 CLKS = NS - 1 = ISS_STEP_NUM[11:0]
 860                 NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
 861                 CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
 862                 *************************************
 863                 */
 864                pp_atomctrl_internal_ss_info ss_info;
 865                uint32_t freq_nom;
 866                uint32_t tmp;
 867                uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
 868
 869                /* for GDDR5 for all modes and DDR3 */
 870                if (1 == mpll_param.qdr)
 871                        freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
 872                else
 873                        freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
 874
 875                /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
 876                tmp = (freq_nom / reference_clock);
 877                tmp = tmp * tmp;
 878
 879                if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
 880                        /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
 881                        /* ss.Info.speed_spectrum_rate -- in unit of khz */
 882                        /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
 883                        /*     = reference_clock * 5 / speed_spectrum_rate */
 884                        uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
 885
 886                        /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
 887                        /*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
 888                        uint32_t clkv =
 889                                (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
 890                                                        ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
 891
 892                        mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
 893                        mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
 894                }
 895        }
 896
 897        /* MCLK_PWRMGT_CNTL setup */
 898        mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
 899                MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
 900        mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
 901                MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
 902        mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
 903                MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
 904
 905        /* Save the result data to outpupt memory level structure */
 906        mclk->MclkFrequency   = memory_clock;
 907        mclk->MpllFuncCntl    = mpll_func_cntl;
 908        mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
 909        mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
 910        mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
 911        mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
 912        mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
 913        mclk->DllCntl         = dll_cntl;
 914        mclk->MpllSs1         = mpll_ss1;
 915        mclk->MpllSs2         = mpll_ss2;
 916
 917        return 0;
 918}
 919
 920static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
 921                bool strobe_mode)
 922{
 923        uint8_t mc_para_index;
 924
 925        if (strobe_mode) {
 926                if (memory_clock < 12500)
 927                        mc_para_index = 0x00;
 928                else if (memory_clock > 47500)
 929                        mc_para_index = 0x0f;
 930                else
 931                        mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
 932        } else {
 933                if (memory_clock < 65000)
 934                        mc_para_index = 0x00;
 935                else if (memory_clock > 135000)
 936                        mc_para_index = 0x0f;
 937                else
 938                        mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
 939        }
 940
 941        return mc_para_index;
 942}
 943
 944static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
 945{
 946        uint8_t mc_para_index;
 947
 948        if (memory_clock < 10000)
 949                mc_para_index = 0;
 950        else if (memory_clock >= 80000)
 951                mc_para_index = 0x0f;
 952        else
 953                mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
 954
 955        return mc_para_index;
 956}
 957
 958
 959static int tonga_populate_single_memory_level(
 960                struct pp_hwmgr *hwmgr,
 961                uint32_t memory_clock,
 962                SMU72_Discrete_MemoryLevel *memory_level
 963                )
 964{
 965        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
 966        struct phm_ppt_v1_information *pptable_info =
 967                          (struct phm_ppt_v1_information *)(hwmgr->pptable);
 968        uint32_t mclk_edc_wr_enable_threshold = 40000;
 969        uint32_t mclk_stutter_mode_threshold = 30000;
 970        uint32_t mclk_edc_enable_threshold = 40000;
 971        uint32_t mclk_strobe_mode_threshold = 40000;
 972        phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table = NULL;
 973        int result = 0;
 974        bool dll_state_on;
 975        uint32_t mvdd = 0;
 976
 977        if (hwmgr->od_enabled)
 978                vdd_dep_table = (phm_ppt_v1_clock_voltage_dependency_table *)&data->odn_dpm_table.vdd_dependency_on_mclk;
 979        else
 980                vdd_dep_table = pptable_info->vdd_dep_on_mclk;
 981
 982        if (NULL != vdd_dep_table) {
 983                result = tonga_get_dependency_volt_by_clk(hwmgr,
 984                                vdd_dep_table,
 985                                memory_clock,
 986                                &memory_level->MinVoltage, &mvdd);
 987                PP_ASSERT_WITH_CODE(
 988                        !result,
 989                        "can not find MinVddc voltage value from memory VDDC "
 990                        "voltage dependency table",
 991                        return result);
 992        }
 993
 994        if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
 995                memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
 996        else
 997                memory_level->MinMvdd = mvdd;
 998
 999        memory_level->EnabledForThrottle = 1;
1000        memory_level->EnabledForActivity = 0;
1001        memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1002        memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1003        memory_level->VoltageDownHyst = 0;
1004
1005        /* Indicates maximum activity level for this performance level.*/
1006        memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1007        memory_level->StutterEnable = 0;
1008        memory_level->StrobeEnable = 0;
1009        memory_level->EdcReadEnable = 0;
1010        memory_level->EdcWriteEnable = 0;
1011        memory_level->RttEnable = 0;
1012
1013        /* default set to low watermark. Highest level will be set to high later.*/
1014        memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1015
1016        data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1017        data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1018
1019        if ((mclk_stutter_mode_threshold != 0) &&
1020            (memory_clock <= mclk_stutter_mode_threshold) &&
1021            (!data->is_uvd_enabled)
1022            && (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
1023            && (data->display_timing.num_existing_displays <= 2)
1024            && (data->display_timing.num_existing_displays != 0))
1025                memory_level->StutterEnable = 1;
1026
1027        /* decide strobe mode*/
1028        memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1029                (memory_clock <= mclk_strobe_mode_threshold);
1030
1031        /* decide EDC mode and memory clock ratio*/
1032        if (data->is_memory_gddr5) {
1033                memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
1034                                        memory_level->StrobeEnable);
1035
1036                if ((mclk_edc_enable_threshold != 0) &&
1037                                (memory_clock > mclk_edc_enable_threshold)) {
1038                        memory_level->EdcReadEnable = 1;
1039                }
1040
1041                if ((mclk_edc_wr_enable_threshold != 0) &&
1042                                (memory_clock > mclk_edc_wr_enable_threshold)) {
1043                        memory_level->EdcWriteEnable = 1;
1044                }
1045
1046                if (memory_level->StrobeEnable) {
1047                        if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
1048                                        ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
1049                                dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1050                        } else {
1051                                dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1052                        }
1053
1054                } else {
1055                        dll_state_on = data->dll_default_on;
1056                }
1057        } else {
1058                memory_level->StrobeRatio =
1059                        tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
1060                dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1061        }
1062
1063        result = tonga_calculate_mclk_params(hwmgr,
1064                memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1065
1066        if (!result) {
1067                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
1068                /* MCLK frequency in units of 10KHz*/
1069                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1070                /* Indicates maximum activity level for this performance level.*/
1071                CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1072                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1073                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1074                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1075                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1076                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1077                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1078                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1079                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1080                CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1081        }
1082
1083        return result;
1084}
1085
1086static int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1087{
1088        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1089        struct tonga_smumgr *smu_data =
1090                        (struct tonga_smumgr *)(hwmgr->smu_backend);
1091        struct smu7_dpm_table *dpm_table = &data->dpm_table;
1092        int result;
1093
1094        /* populate MCLK dpm table to SMU7 */
1095        uint32_t level_array_address =
1096                                smu_data->smu7_data.dpm_table_start +
1097                                offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
1098        uint32_t level_array_size =
1099                                sizeof(SMU72_Discrete_MemoryLevel) *
1100                                SMU72_MAX_LEVELS_MEMORY;
1101        SMU72_Discrete_MemoryLevel *levels =
1102                                smu_data->smc_state_table.MemoryLevel;
1103        uint32_t i;
1104
1105        memset(levels, 0x00, level_array_size);
1106
1107        for (i = 0; i < dpm_table->mclk_table.count; i++) {
1108                PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1109                        "can not populate memory level as memory clock is zero",
1110                        return -EINVAL);
1111                result = tonga_populate_single_memory_level(
1112                                hwmgr,
1113                                dpm_table->mclk_table.dpm_levels[i].value,
1114                                &(smu_data->smc_state_table.MemoryLevel[i]));
1115                if (result)
1116                        return result;
1117        }
1118
1119        /* Only enable level 0 for now.*/
1120        smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1121
1122        /*
1123        * in order to prevent MC activity from stutter mode to push DPM up.
1124        * the UVD change complements this by putting the MCLK in a higher state
1125        * by default such that we are not effected by up threshold or and MCLK DPM latency.
1126        */
1127        smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1128        CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1129
1130        smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1131        data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1132        /* set highest level watermark to high*/
1133        smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1134
1135        /* level count will send to smc once at init smc table and never change*/
1136        result = smu7_copy_bytes_to_smc(hwmgr,
1137                level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1138                SMC_RAM_END);
1139
1140        return result;
1141}
1142
1143static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr,
1144                                uint32_t mclk, SMIO_Pattern *smio_pattern)
1145{
1146        const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1147        struct phm_ppt_v1_information *table_info =
1148                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1149        uint32_t i = 0;
1150
1151        if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1152                /* find mvdd value which clock is more than request */
1153                for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
1154                        if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
1155                                /* Always round to higher voltage. */
1156                                smio_pattern->Voltage =
1157                                      data->mvdd_voltage_table.entries[i].value;
1158                                break;
1159                        }
1160                }
1161
1162                PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
1163                        "MVDD Voltage is outside the supported range.",
1164                        return -EINVAL);
1165        } else {
1166                return -EINVAL;
1167        }
1168
1169        return 0;
1170}
1171
1172
1173static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1174        SMU72_Discrete_DpmTable *table)
1175{
1176        int result = 0;
1177        struct tonga_smumgr *smu_data =
1178                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1179        const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1180        struct pp_atomctrl_clock_dividers_vi dividers;
1181
1182        SMIO_Pattern voltage_level;
1183        uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1184        uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1185        uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1186        uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1187
1188        /* The ACPI state should not do DPM on DC (or ever).*/
1189        table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1190
1191        table->ACPILevel.MinVoltage =
1192                        smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;
1193
1194        /* assign zero for now*/
1195        table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1196
1197        /* get the engine clock dividers for this clock value*/
1198        result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1199                table->ACPILevel.SclkFrequency,  &dividers);
1200
1201        PP_ASSERT_WITH_CODE(result == 0,
1202                "Error retrieving Engine Clock dividers from VBIOS.",
1203                return result);
1204
1205        /* divider ID for required SCLK*/
1206        table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1207        table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1208        table->ACPILevel.DeepSleepDivId = 0;
1209
1210        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1211                                        SPLL_PWRON, 0);
1212        spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
1213                                                SPLL_RESET, 1);
1214        spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
1215                                                SCLK_MUX_SEL, 4);
1216
1217        table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1218        table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1219        table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1220        table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1221        table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1222        table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1223        table->ACPILevel.CcPwrDynRm = 0;
1224        table->ACPILevel.CcPwrDynRm1 = 0;
1225
1226
1227        /* For various features to be enabled/disabled while this level is active.*/
1228        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1229        /* SCLK frequency in units of 10KHz*/
1230        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1231        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1232        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1233        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1234        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1235        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1236        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1237        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1238        CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1239
1240        /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1241        table->MemoryACPILevel.MinVoltage =
1242                            smu_data->smc_state_table.MemoryLevel[0].MinVoltage;
1243
1244        /*  CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
1245
1246        if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
1247                table->MemoryACPILevel.MinMvdd =
1248                        PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1249        else
1250                table->MemoryACPILevel.MinMvdd = 0;
1251
1252        /* Force reset on DLL*/
1253        mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1254                MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1255        mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1256                MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1257
1258        /* Disable DLL in ACPIState*/
1259        mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1260                MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1261        mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1262                MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1263
1264        /* Enable DLL bypass signal*/
1265        dll_cntl            = PHM_SET_FIELD(dll_cntl,
1266                DLL_CNTL, MRDCK0_BYPASS, 0);
1267        dll_cntl            = PHM_SET_FIELD(dll_cntl,
1268                DLL_CNTL, MRDCK1_BYPASS, 0);
1269
1270        table->MemoryACPILevel.DllCntl            =
1271                PP_HOST_TO_SMC_UL(dll_cntl);
1272        table->MemoryACPILevel.MclkPwrmgtCntl     =
1273                PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1274        table->MemoryACPILevel.MpllAdFuncCntl     =
1275                PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1276        table->MemoryACPILevel.MpllDqFuncCntl     =
1277                PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1278        table->MemoryACPILevel.MpllFuncCntl       =
1279                PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1280        table->MemoryACPILevel.MpllFuncCntl_1     =
1281                PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1282        table->MemoryACPILevel.MpllFuncCntl_2     =
1283                PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1284        table->MemoryACPILevel.MpllSs1            =
1285                PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1286        table->MemoryACPILevel.MpllSs2            =
1287                PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1288
1289        table->MemoryACPILevel.EnabledForThrottle = 0;
1290        table->MemoryACPILevel.EnabledForActivity = 0;
1291        table->MemoryACPILevel.UpHyst = 0;
1292        table->MemoryACPILevel.DownHyst = 100;
1293        table->MemoryACPILevel.VoltageDownHyst = 0;
1294        /* Indicates maximum activity level for this performance level.*/
1295        table->MemoryACPILevel.ActivityLevel =
1296                        PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1297
1298        table->MemoryACPILevel.StutterEnable = 0;
1299        table->MemoryACPILevel.StrobeEnable = 0;
1300        table->MemoryACPILevel.EdcReadEnable = 0;
1301        table->MemoryACPILevel.EdcWriteEnable = 0;
1302        table->MemoryACPILevel.RttEnable = 0;
1303
1304        return result;
1305}
1306
1307static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1308                                        SMU72_Discrete_DpmTable *table)
1309{
1310        int result = 0;
1311
1312        uint8_t count;
1313        pp_atomctrl_clock_dividers_vi dividers;
1314        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1315        struct phm_ppt_v1_information *pptable_info =
1316                                (struct phm_ppt_v1_information *)(hwmgr->pptable);
1317        phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1318                                                pptable_info->mm_dep_table;
1319
1320        table->UvdLevelCount = (uint8_t) (mm_table->count);
1321        table->UvdBootLevel = 0;
1322
1323        for (count = 0; count < table->UvdLevelCount; count++) {
1324                table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
1325                table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
1326                table->UvdLevel[count].MinVoltage.Vddc =
1327                        phm_get_voltage_index(pptable_info->vddc_lookup_table,
1328                                                mm_table->entries[count].vddc);
1329                table->UvdLevel[count].MinVoltage.VddGfx =
1330                        (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1331                        phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1332                                                mm_table->entries[count].vddgfx) : 0;
1333                table->UvdLevel[count].MinVoltage.Vddci =
1334                        phm_get_voltage_id(&data->vddci_voltage_table,
1335                                             mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1336                table->UvdLevel[count].MinVoltage.Phases = 1;
1337
1338                /* retrieve divider value for VBIOS */
1339                result = atomctrl_get_dfs_pll_dividers_vi(
1340                                        hwmgr,
1341                                        table->UvdLevel[count].VclkFrequency,
1342                                        &dividers);
1343
1344                PP_ASSERT_WITH_CODE((!result),
1345                                    "can not find divide id for Vclk clock",
1346                                        return result);
1347
1348                table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1349
1350                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1351                                                          table->UvdLevel[count].DclkFrequency, &dividers);
1352                PP_ASSERT_WITH_CODE((!result),
1353                                    "can not find divide id for Dclk clock",
1354                                        return result);
1355
1356                table->UvdLevel[count].DclkDivider =
1357                                        (uint8_t)dividers.pll_post_divider;
1358
1359                CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1360                CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1361        }
1362
1363        return result;
1364
1365}
1366
1367static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1368                SMU72_Discrete_DpmTable *table)
1369{
1370        int result = 0;
1371
1372        uint8_t count;
1373        pp_atomctrl_clock_dividers_vi dividers;
1374        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1375        struct phm_ppt_v1_information *pptable_info =
1376                              (struct phm_ppt_v1_information *)(hwmgr->pptable);
1377        phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1378                                                     pptable_info->mm_dep_table;
1379
1380        table->VceLevelCount = (uint8_t) (mm_table->count);
1381        table->VceBootLevel = 0;
1382
1383        for (count = 0; count < table->VceLevelCount; count++) {
1384                table->VceLevel[count].Frequency =
1385                        mm_table->entries[count].eclk;
1386                table->VceLevel[count].MinVoltage.Vddc =
1387                        phm_get_voltage_index(pptable_info->vddc_lookup_table,
1388                                mm_table->entries[count].vddc);
1389                table->VceLevel[count].MinVoltage.VddGfx =
1390                        (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1391                        phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1392                                mm_table->entries[count].vddgfx) : 0;
1393                table->VceLevel[count].MinVoltage.Vddci =
1394                        phm_get_voltage_id(&data->vddci_voltage_table,
1395                                mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1396                table->VceLevel[count].MinVoltage.Phases = 1;
1397
1398                /* retrieve divider value for VBIOS */
1399                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1400                                        table->VceLevel[count].Frequency, &dividers);
1401                PP_ASSERT_WITH_CODE((!result),
1402                                "can not find divide id for VCE engine clock",
1403                                return result);
1404
1405                table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1406
1407                CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1408        }
1409
1410        return result;
1411}
1412
1413static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1414                SMU72_Discrete_DpmTable *table)
1415{
1416        int result = 0;
1417        uint8_t count;
1418        pp_atomctrl_clock_dividers_vi dividers;
1419        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1420        struct phm_ppt_v1_information *pptable_info =
1421                             (struct phm_ppt_v1_information *)(hwmgr->pptable);
1422        phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
1423                                                    pptable_info->mm_dep_table;
1424
1425        table->AcpLevelCount = (uint8_t) (mm_table->count);
1426        table->AcpBootLevel = 0;
1427
1428        for (count = 0; count < table->AcpLevelCount; count++) {
1429                table->AcpLevel[count].Frequency =
1430                        pptable_info->mm_dep_table->entries[count].aclk;
1431                table->AcpLevel[count].MinVoltage.Vddc =
1432                        phm_get_voltage_index(pptable_info->vddc_lookup_table,
1433                        mm_table->entries[count].vddc);
1434                table->AcpLevel[count].MinVoltage.VddGfx =
1435                        (data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
1436                        phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
1437                                mm_table->entries[count].vddgfx) : 0;
1438                table->AcpLevel[count].MinVoltage.Vddci =
1439                        phm_get_voltage_id(&data->vddci_voltage_table,
1440                                mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
1441                table->AcpLevel[count].MinVoltage.Phases = 1;
1442
1443                /* retrieve divider value for VBIOS */
1444                result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1445                        table->AcpLevel[count].Frequency, &dividers);
1446                PP_ASSERT_WITH_CODE((!result),
1447                        "can not find divide id for engine clock", return result);
1448
1449                table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1450
1451                CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1452        }
1453
1454        return result;
1455}
1456
1457static int tonga_populate_memory_timing_parameters(
1458                struct pp_hwmgr *hwmgr,
1459                uint32_t engine_clock,
1460                uint32_t memory_clock,
1461                struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
1462                )
1463{
1464        uint32_t dramTiming;
1465        uint32_t dramTiming2;
1466        uint32_t burstTime;
1467        int result;
1468
1469        result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1470                                engine_clock, memory_clock);
1471
1472        PP_ASSERT_WITH_CODE(result == 0,
1473                "Error calling VBIOS to set DRAM_TIMING.", return result);
1474
1475        dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1476        dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1477        burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1478
1479        arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1480        arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1481        arb_regs->McArbBurstTime = (uint8_t)burstTime;
1482
1483        return 0;
1484}
1485
1486static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1487{
1488        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1489        struct tonga_smumgr *smu_data =
1490                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1491        int result = 0;
1492        SMU72_Discrete_MCArbDramTimingTable  arb_regs;
1493        uint32_t i, j;
1494
1495        memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
1496
1497        for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1498                for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1499                        result = tonga_populate_memory_timing_parameters
1500                                (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1501                                 data->dpm_table.mclk_table.dpm_levels[j].value,
1502                                 &arb_regs.entries[i][j]);
1503
1504                        if (result)
1505                                break;
1506                }
1507        }
1508
1509        if (!result) {
1510                result = smu7_copy_bytes_to_smc(
1511                                hwmgr,
1512                                smu_data->smu7_data.arb_table_start,
1513                                (uint8_t *)&arb_regs,
1514                                sizeof(SMU72_Discrete_MCArbDramTimingTable),
1515                                SMC_RAM_END
1516                                );
1517        }
1518
1519        return result;
1520}
1521
1522static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1523                        SMU72_Discrete_DpmTable *table)
1524{
1525        int result = 0;
1526        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1527        struct tonga_smumgr *smu_data =
1528                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1529        table->GraphicsBootLevel = 0;
1530        table->MemoryBootLevel = 0;
1531
1532        /* find boot level from dpm table*/
1533        result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1534        data->vbios_boot_state.sclk_bootup_value,
1535        (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1536
1537        if (result != 0) {
1538                smu_data->smc_state_table.GraphicsBootLevel = 0;
1539                pr_err("[powerplay] VBIOS did not find boot engine "
1540                                "clock value in dependency table. "
1541                                "Using Graphics DPM level 0 !");
1542                result = 0;
1543        }
1544
1545        result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1546                data->vbios_boot_state.mclk_bootup_value,
1547                (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1548
1549        if (result != 0) {
1550                smu_data->smc_state_table.MemoryBootLevel = 0;
1551                pr_err("[powerplay] VBIOS did not find boot "
1552                                "engine clock value in dependency table."
1553                                "Using Memory DPM level 0 !");
1554                result = 0;
1555        }
1556
1557        table->BootVoltage.Vddc =
1558                phm_get_voltage_id(&(data->vddc_voltage_table),
1559                        data->vbios_boot_state.vddc_bootup_value);
1560        table->BootVoltage.VddGfx =
1561                phm_get_voltage_id(&(data->vddgfx_voltage_table),
1562                        data->vbios_boot_state.vddgfx_bootup_value);
1563        table->BootVoltage.Vddci =
1564                phm_get_voltage_id(&(data->vddci_voltage_table),
1565                        data->vbios_boot_state.vddci_bootup_value);
1566        table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1567
1568        CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
1569
1570        return result;
1571}
1572
1573static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
1574{
1575        uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
1576                        volt_with_cks, value;
1577        uint16_t clock_freq_u16;
1578        struct tonga_smumgr *smu_data =
1579                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1580        uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
1581                        volt_offset = 0;
1582        struct phm_ppt_v1_information *table_info =
1583                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1584        struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
1585                        table_info->vdd_dep_on_sclk;
1586        uint32_t hw_revision, dev_id;
1587        struct amdgpu_device *adev = hwmgr->adev;
1588
1589        stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
1590
1591        hw_revision = adev->pdev->revision;
1592        dev_id = adev->pdev->device;
1593
1594        /* Read SMU_Eefuse to read and calculate RO and determine
1595         * if the part is SS or FF. if RO >= 1660MHz, part is FF.
1596         */
1597        efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1598                        ixSMU_EFUSE_0 + (146 * 4));
1599        efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1600                        ixSMU_EFUSE_0 + (148 * 4));
1601        efuse &= 0xFF000000;
1602        efuse = efuse >> 24;
1603        efuse2 &= 0xF;
1604
1605        if (efuse2 == 1)
1606                ro = (2300 - 1350) * efuse / 255 + 1350;
1607        else
1608                ro = (2500 - 1000) * efuse / 255 + 1000;
1609
1610        if (ro >= 1660)
1611                type = 0;
1612        else
1613                type = 1;
1614
1615        /* Populate Stretch amount */
1616        smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
1617
1618
1619        /* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
1620        for (i = 0; i < sclk_table->count; i++) {
1621                smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
1622                                sclk_table->entries[i].cks_enable << i;
1623                if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
1624                        volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
1625                                (sclk_table->entries[i].clk/100) / 10000) * 1000 /
1626                                (8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
1627                        volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
1628                                (sclk_table->entries[i].clk/100) / 100000) * 1000 /
1629                                (6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
1630                } else {
1631                        volt_without_cks = (uint32_t)((14041 *
1632                                (sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
1633                                (4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
1634                        volt_with_cks = (uint32_t)((13946 *
1635                                (sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
1636                                (3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
1637                }
1638                if (volt_without_cks >= volt_with_cks)
1639                        volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
1640                                        sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
1641                smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
1642        }
1643
1644        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1645                        STRETCH_ENABLE, 0x0);
1646        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1647                        masterReset, 0x1);
1648        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1649                        staticEnable, 0x1);
1650        PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
1651                        masterReset, 0x0);
1652
1653        /* Populate CKS Lookup Table */
1654        if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
1655                stretch_amount2 = 0;
1656        else if (stretch_amount == 3 || stretch_amount == 4)
1657                stretch_amount2 = 1;
1658        else {
1659                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
1660                                PHM_PlatformCaps_ClockStretcher);
1661                PP_ASSERT_WITH_CODE(false,
1662                                "Stretch Amount in PPTable not supported",
1663                                return -EINVAL);
1664        }
1665
1666        value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1667                        ixPWR_CKS_CNTL);
1668        value &= 0xFFC2FF87;
1669        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
1670                        tonga_clock_stretcher_lookup_table[stretch_amount2][0];
1671        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
1672                        tonga_clock_stretcher_lookup_table[stretch_amount2][1];
1673        clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
1674                        GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
1675                        SclkFrequency) / 100);
1676        if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
1677                        clock_freq_u16 &&
1678            tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
1679                        clock_freq_u16) {
1680                /* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
1681                value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
1682                /* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
1683                value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
1684                /* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
1685                value |= (tonga_clock_stretch_amount_conversion
1686                                [tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
1687                                 [stretch_amount]) << 3;
1688        }
1689        CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1690                        CKS_LOOKUPTableEntry[0].minFreq);
1691        CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
1692                        CKS_LOOKUPTableEntry[0].maxFreq);
1693        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
1694                        tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
1695        smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
1696                        (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
1697
1698        cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1699                        ixPWR_CKS_CNTL, value);
1700
1701        /* Populate DDT Lookup Table */
1702        for (i = 0; i < 4; i++) {
1703                /* Assign the minimum and maximum VID stored
1704                 * in the last row of Clock Stretcher Voltage Table.
1705                 */
1706                smu_data->smc_state_table.ClockStretcherDataTable.
1707                ClockStretcherDataTableEntry[i].minVID =
1708                                (uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
1709                smu_data->smc_state_table.ClockStretcherDataTable.
1710                ClockStretcherDataTableEntry[i].maxVID =
1711                                (uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
1712                /* Loop through each SCLK and check the frequency
1713                 * to see if it lies within the frequency for clock stretcher.
1714                 */
1715                for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
1716                        cks_setting = 0;
1717                        clock_freq = PP_SMC_TO_HOST_UL(
1718                                        smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
1719                        /* Check the allowed frequency against the sclk level[j].
1720                         *  Sclk's endianness has already been converted,
1721                         *  and it's in 10Khz unit,
1722                         *  as opposed to Data table, which is in Mhz unit.
1723                         */
1724                        if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) {
1725                                cks_setting |= 0x2;
1726                                if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100)
1727                                        cks_setting |= 0x1;
1728                        }
1729                        smu_data->smc_state_table.ClockStretcherDataTable.
1730                        ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
1731                }
1732                CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
1733                                ClockStretcherDataTable.
1734                                ClockStretcherDataTableEntry[i].setting);
1735        }
1736
1737        value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1738                                        ixPWR_CKS_CNTL);
1739        value &= 0xFFFFFFFE;
1740        cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1741                                        ixPWR_CKS_CNTL, value);
1742
1743        return 0;
1744}
1745
1746static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
1747                        SMU72_Discrete_DpmTable *table)
1748{
1749        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1750        uint16_t config;
1751
1752        if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
1753                /*  Splitted mode */
1754                config = VR_SVI2_PLANE_1;
1755                table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1756
1757                if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1758                        config = VR_SVI2_PLANE_2;
1759                        table->VRConfig |= config;
1760                } else {
1761                        pr_err("VDDC and VDDGFX should "
1762                                "be both on SVI2 control in splitted mode !\n");
1763                }
1764        } else {
1765                /* Merged mode  */
1766                config = VR_MERGED_WITH_VDDC;
1767                table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1768
1769                /* Set Vddc Voltage Controller  */
1770                if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1771                        config = VR_SVI2_PLANE_1;
1772                        table->VRConfig |= config;
1773                } else {
1774                        pr_err("VDDC should be on "
1775                                        "SVI2 control in merged mode !\n");
1776                }
1777        }
1778
1779        /* Set Vddci Voltage Controller  */
1780        if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1781                config = VR_SVI2_PLANE_2;  /* only in merged mode */
1782                table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1783        } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1784                config = VR_SMIO_PATTERN_1;
1785                table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1786        }
1787
1788        /* Set Mvdd Voltage Controller */
1789        if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1790                config = VR_SMIO_PATTERN_2;
1791                table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1792        }
1793
1794        return 0;
1795}
1796
1797static int tonga_init_arb_table_index(struct pp_hwmgr *hwmgr)
1798{
1799        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1800        uint32_t tmp;
1801        int result;
1802
1803        /*
1804        * This is a read-modify-write on the first byte of the ARB table.
1805        * The first byte in the SMU72_Discrete_MCArbDramTimingTable structure
1806        * is the field 'current'.
1807        * This solution is ugly, but we never write the whole table only
1808        * individual fields in it.
1809        * In reality this field should not be in that structure
1810        * but in a soft register.
1811        */
1812        result = smu7_read_smc_sram_dword(hwmgr,
1813                                smu_data->smu7_data.arb_table_start, &tmp, SMC_RAM_END);
1814
1815        if (result != 0)
1816                return result;
1817
1818        tmp &= 0x00FFFFFF;
1819        tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
1820
1821        return smu7_write_smc_sram_dword(hwmgr,
1822                        smu_data->smu7_data.arb_table_start, tmp, SMC_RAM_END);
1823}
1824
1825
1826static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1827{
1828        struct tonga_smumgr *smu_data =
1829                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1830        const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1831        SMU72_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
1832        struct phm_ppt_v1_information *table_info =
1833                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1834        struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
1835        int  i, j, k;
1836        const uint16_t *pdef1, *pdef2;
1837
1838        dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
1839                        (uint16_t)(cac_dtp_table->usTDP * 256));
1840        dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
1841                        (uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1842
1843        PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
1844                        "Target Operating Temp is out of Range !",
1845                        );
1846
1847        dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
1848        dpm_table->GpuTjHyst = 8;
1849
1850        dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1851
1852        dpm_table->BAPM_TEMP_GRADIENT =
1853                                PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1854        pdef1 = defaults->bapmti_r;
1855        pdef2 = defaults->bapmti_rc;
1856
1857        for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
1858                for (j = 0; j < SMU72_DTE_SOURCES; j++) {
1859                        for (k = 0; k < SMU72_DTE_SINKS; k++) {
1860                                dpm_table->BAPMTI_R[i][j][k] =
1861                                                PP_HOST_TO_SMC_US(*pdef1);
1862                                dpm_table->BAPMTI_RC[i][j][k] =
1863                                                PP_HOST_TO_SMC_US(*pdef2);
1864                                pdef1++;
1865                                pdef2++;
1866                        }
1867                }
1868        }
1869
1870        return 0;
1871}
1872
1873static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
1874{
1875        struct tonga_smumgr *smu_data =
1876                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1877        const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1878
1879        smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
1880        smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
1881        smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
1882        smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
1883
1884        return 0;
1885}
1886
1887static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
1888{
1889        uint16_t tdc_limit;
1890        struct tonga_smumgr *smu_data =
1891                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1892        const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1893        struct phm_ppt_v1_information *table_info =
1894                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1895
1896        /* TDC number of fraction bits are changed from 8 to 7
1897         * for Fiji as requested by SMC team
1898         */
1899        tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
1900        smu_data->power_tune_table.TDC_VDDC_PkgLimit =
1901                        CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
1902        smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
1903                        defaults->tdc_vddc_throttle_release_limit_perc;
1904        smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
1905
1906        return 0;
1907}
1908
1909static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
1910{
1911        struct tonga_smumgr *smu_data =
1912                        (struct tonga_smumgr *)(hwmgr->smu_backend);
1913        const struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
1914        uint32_t temp;
1915
1916        if (smu7_read_smc_sram_dword(hwmgr,
1917                        fuse_table_offset +
1918                        offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
1919                        (uint32_t *)&temp, SMC_RAM_END))
1920                PP_ASSERT_WITH_CODE(false,
1921                                "Attempt to read PmFuses.DW6 "
1922                                "(SviLoadLineEn) from SMC Failed !",
1923                                return -EINVAL);
1924        else
1925                smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
1926
1927        return 0;
1928}
1929
1930static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
1931{
1932        int i;
1933        struct tonga_smumgr *smu_data =
1934                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1935
1936        /* Currently not used. Set all to zero. */
1937        for (i = 0; i < 16; i++)
1938                smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
1939
1940        return 0;
1941}
1942
1943static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
1944{
1945        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
1946
1947        if ((hwmgr->thermal_controller.advanceFanControlParameters.
1948                        usFanOutputSensitivity & (1 << 15)) ||
1949                (hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
1950                hwmgr->thermal_controller.advanceFanControlParameters.
1951                usFanOutputSensitivity = hwmgr->thermal_controller.
1952                        advanceFanControlParameters.usDefaultFanOutputSensitivity;
1953
1954        smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
1955                        PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
1956                                        advanceFanControlParameters.usFanOutputSensitivity);
1957        return 0;
1958}
1959
1960static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
1961{
1962        int i;
1963        struct tonga_smumgr *smu_data =
1964                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1965
1966        /* Currently not used. Set all to zero. */
1967        for (i = 0; i < 16; i++)
1968                smu_data->power_tune_table.GnbLPML[i] = 0;
1969
1970        return 0;
1971}
1972
1973static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
1974{
1975        struct tonga_smumgr *smu_data =
1976                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1977        struct phm_ppt_v1_information *table_info =
1978                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
1979        uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
1980        uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
1981        struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
1982
1983        hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
1984        lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
1985
1986        smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
1987                        CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
1988        smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
1989                        CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
1990
1991        return 0;
1992}
1993
1994static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
1995{
1996        struct tonga_smumgr *smu_data =
1997                                (struct tonga_smumgr *)(hwmgr->smu_backend);
1998        uint32_t pm_fuse_table_offset;
1999
2000        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2001                        PHM_PlatformCaps_PowerContainment)) {
2002                if (smu7_read_smc_sram_dword(hwmgr,
2003                                SMU72_FIRMWARE_HEADER_LOCATION +
2004                                offsetof(SMU72_Firmware_Header, PmFuseTable),
2005                                &pm_fuse_table_offset, SMC_RAM_END))
2006                        PP_ASSERT_WITH_CODE(false,
2007                                "Attempt to get pm_fuse_table_offset Failed !",
2008                                return -EINVAL);
2009
2010                /* DW6 */
2011                if (tonga_populate_svi_load_line(hwmgr))
2012                        PP_ASSERT_WITH_CODE(false,
2013                                "Attempt to populate SviLoadLine Failed !",
2014                                return -EINVAL);
2015                /* DW7 */
2016                if (tonga_populate_tdc_limit(hwmgr))
2017                        PP_ASSERT_WITH_CODE(false,
2018                                        "Attempt to populate TDCLimit Failed !",
2019                                        return -EINVAL);
2020                /* DW8 */
2021                if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
2022                        PP_ASSERT_WITH_CODE(false,
2023                                "Attempt to populate TdcWaterfallCtl Failed !",
2024                                return -EINVAL);
2025
2026                /* DW9-DW12 */
2027                if (tonga_populate_temperature_scaler(hwmgr) != 0)
2028                        PP_ASSERT_WITH_CODE(false,
2029                                "Attempt to populate LPMLTemperatureScaler Failed !",
2030                                return -EINVAL);
2031
2032                /* DW13-DW14 */
2033                if (tonga_populate_fuzzy_fan(hwmgr))
2034                        PP_ASSERT_WITH_CODE(false,
2035                                "Attempt to populate Fuzzy Fan "
2036                                "Control parameters Failed !",
2037                                return -EINVAL);
2038
2039                /* DW15-DW18 */
2040                if (tonga_populate_gnb_lpml(hwmgr))
2041                        PP_ASSERT_WITH_CODE(false,
2042                                "Attempt to populate GnbLPML Failed !",
2043                                return -EINVAL);
2044
2045                /* DW20 */
2046                if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
2047                        PP_ASSERT_WITH_CODE(
2048                                false,
2049                                "Attempt to populate BapmVddCBaseLeakage "
2050                                "Hi and Lo Sidd Failed !",
2051                                return -EINVAL);
2052
2053                if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
2054                                (uint8_t *)&smu_data->power_tune_table,
2055                                sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
2056                        PP_ASSERT_WITH_CODE(false,
2057                                        "Attempt to download PmFuseTable Failed !",
2058                                        return -EINVAL);
2059        }
2060        return 0;
2061}
2062
2063static int tonga_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
2064                                 SMU72_Discrete_MCRegisters *mc_reg_table)
2065{
2066        const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)hwmgr->smu_backend;
2067
2068        uint32_t i, j;
2069
2070        for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
2071                if (smu_data->mc_reg_table.validflag & 1<<j) {
2072                        PP_ASSERT_WITH_CODE(
2073                                i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
2074                                "Index of mc_reg_table->address[] array "
2075                                "out of boundary",
2076                                return -EINVAL);
2077                        mc_reg_table->address[i].s0 =
2078                                PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
2079                        mc_reg_table->address[i].s1 =
2080                                PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
2081                        i++;
2082                }
2083        }
2084
2085        mc_reg_table->last = (uint8_t)i;
2086
2087        return 0;
2088}
2089
2090/*convert register values from driver to SMC format */
2091static void tonga_convert_mc_registers(
2092        const struct tonga_mc_reg_entry *entry,
2093        SMU72_Discrete_MCRegisterSet *data,
2094        uint32_t num_entries, uint32_t valid_flag)
2095{
2096        uint32_t i, j;
2097
2098        for (i = 0, j = 0; j < num_entries; j++) {
2099                if (valid_flag & 1<<j) {
2100                        data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
2101                        i++;
2102                }
2103        }
2104}
2105
2106static int tonga_convert_mc_reg_table_entry_to_smc(
2107                struct pp_hwmgr *hwmgr,
2108                const uint32_t memory_clock,
2109                SMU72_Discrete_MCRegisterSet *mc_reg_table_data
2110                )
2111{
2112        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2113        uint32_t i = 0;
2114
2115        for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
2116                if (memory_clock <=
2117                        smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
2118                        break;
2119                }
2120        }
2121
2122        if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
2123                --i;
2124
2125        tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
2126                                mc_reg_table_data, smu_data->mc_reg_table.last,
2127                                smu_data->mc_reg_table.validflag);
2128
2129        return 0;
2130}
2131
2132static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
2133                SMU72_Discrete_MCRegisters *mc_regs)
2134{
2135        int result = 0;
2136        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2137        int res;
2138        uint32_t i;
2139
2140        for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
2141                res = tonga_convert_mc_reg_table_entry_to_smc(
2142                                hwmgr,
2143                                data->dpm_table.mclk_table.dpm_levels[i].value,
2144                                &mc_regs->data[i]
2145                                );
2146
2147                if (0 != res)
2148                        result = res;
2149        }
2150
2151        return result;
2152}
2153
2154static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
2155{
2156        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2157        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2158        uint32_t address;
2159        int32_t result;
2160
2161        if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
2162                return 0;
2163
2164
2165        memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));
2166
2167        result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
2168
2169        if (result != 0)
2170                return result;
2171
2172
2173        address = smu_data->smu7_data.mc_reg_table_start +
2174                        (uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
2175
2176        return  smu7_copy_bytes_to_smc(
2177                        hwmgr, address,
2178                        (uint8_t *)&smu_data->mc_regs.data[0],
2179                        sizeof(SMU72_Discrete_MCRegisterSet) *
2180                        data->dpm_table.mclk_table.count,
2181                        SMC_RAM_END);
2182}
2183
2184static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
2185{
2186        int result;
2187        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2188
2189        memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
2190        result = tonga_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
2191        PP_ASSERT_WITH_CODE(!result,
2192                "Failed to initialize MCRegTable for the MC register addresses !",
2193                return result;);
2194
2195        result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
2196        PP_ASSERT_WITH_CODE(!result,
2197                "Failed to initialize MCRegTable for driver state !",
2198                return result;);
2199
2200        return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
2201                        (uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
2202}
2203
2204static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
2205{
2206        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2207        struct  phm_ppt_v1_information *table_info =
2208                        (struct  phm_ppt_v1_information *)(hwmgr->pptable);
2209
2210        if (table_info &&
2211                        table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
2212                        table_info->cac_dtp_table->usPowerTuneDataSetID)
2213                smu_data->power_tune_defaults =
2214                                &tonga_power_tune_data_set_array
2215                                [table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
2216        else
2217                smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
2218}
2219
2220static int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
2221{
2222        int result;
2223        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2224        struct tonga_smumgr *smu_data =
2225                        (struct tonga_smumgr *)(hwmgr->smu_backend);
2226        SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table);
2227        struct phm_ppt_v1_information *table_info =
2228                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
2229
2230        uint8_t i;
2231        pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
2232
2233
2234        memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
2235
2236        tonga_initialize_power_tune_defaults(hwmgr);
2237
2238        if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
2239                tonga_populate_smc_voltage_tables(hwmgr, table);
2240
2241        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2242                        PHM_PlatformCaps_AutomaticDCTransition))
2243                table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
2244
2245
2246        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2247                        PHM_PlatformCaps_StepVddc))
2248                table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
2249
2250        if (data->is_memory_gddr5)
2251                table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
2252
2253        i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
2254
2255        if (i == 1 || i == 0)
2256                table->SystemFlags |= 0x40;
2257
2258        if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
2259                result = tonga_populate_ulv_state(hwmgr, table);
2260                PP_ASSERT_WITH_CODE(!result,
2261                        "Failed to initialize ULV state !",
2262                        return result;);
2263
2264                cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
2265                        ixCG_ULV_PARAMETER, 0x40035);
2266        }
2267
2268        result = tonga_populate_smc_link_level(hwmgr, table);
2269        PP_ASSERT_WITH_CODE(!result,
2270                "Failed to initialize Link Level !", return result);
2271
2272        result = tonga_populate_all_graphic_levels(hwmgr);
2273        PP_ASSERT_WITH_CODE(!result,
2274                "Failed to initialize Graphics Level !", return result);
2275
2276        result = tonga_populate_all_memory_levels(hwmgr);
2277        PP_ASSERT_WITH_CODE(!result,
2278                "Failed to initialize Memory Level !", return result);
2279
2280        result = tonga_populate_smc_acpi_level(hwmgr, table);
2281        PP_ASSERT_WITH_CODE(!result,
2282                "Failed to initialize ACPI Level !", return result);
2283
2284        result = tonga_populate_smc_vce_level(hwmgr, table);
2285        PP_ASSERT_WITH_CODE(!result,
2286                "Failed to initialize VCE Level !", return result);
2287
2288        result = tonga_populate_smc_acp_level(hwmgr, table);
2289        PP_ASSERT_WITH_CODE(!result,
2290                "Failed to initialize ACP Level !", return result);
2291
2292        /* Since only the initial state is completely set up at this
2293        * point (the other states are just copies of the boot state) we only
2294        * need to populate the  ARB settings for the initial state.
2295        */
2296        result = tonga_program_memory_timing_parameters(hwmgr);
2297        PP_ASSERT_WITH_CODE(!result,
2298                "Failed to Write ARB settings for the initial state.",
2299                return result;);
2300
2301        result = tonga_populate_smc_uvd_level(hwmgr, table);
2302        PP_ASSERT_WITH_CODE(!result,
2303                "Failed to initialize UVD Level !", return result);
2304
2305        result = tonga_populate_smc_boot_level(hwmgr, table);
2306        PP_ASSERT_WITH_CODE(!result,
2307                "Failed to initialize Boot Level !", return result);
2308
2309        tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
2310        PP_ASSERT_WITH_CODE(!result,
2311                "Failed to populate BAPM Parameters !", return result);
2312
2313        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2314                        PHM_PlatformCaps_ClockStretcher)) {
2315                result = tonga_populate_clock_stretcher_data_table(hwmgr);
2316                PP_ASSERT_WITH_CODE(!result,
2317                        "Failed to populate Clock Stretcher Data Table !",
2318                        return result;);
2319        }
2320        table->GraphicsVoltageChangeEnable  = 1;
2321        table->GraphicsThermThrottleEnable  = 1;
2322        table->GraphicsInterval = 1;
2323        table->VoltageInterval  = 1;
2324        table->ThermalInterval  = 1;
2325        table->TemperatureLimitHigh =
2326                table_info->cac_dtp_table->usTargetOperatingTemp *
2327                SMU7_Q88_FORMAT_CONVERSION_UNIT;
2328        table->TemperatureLimitLow =
2329                (table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
2330                SMU7_Q88_FORMAT_CONVERSION_UNIT;
2331        table->MemoryVoltageChangeEnable  = 1;
2332        table->MemoryInterval  = 1;
2333        table->VoltageResponseTime  = 0;
2334        table->PhaseResponseTime  = 0;
2335        table->MemoryThermThrottleEnable  = 1;
2336
2337        /*
2338        * Cail reads current link status and reports it as cap (we cannot
2339        * change this due to some previous issues we had)
2340        * SMC drops the link status to lowest level after enabling
2341        * DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
2342        * but this time Cail reads current link status which was set to low by
2343        * SMC and reports it as cap to powerplay
2344        * To avoid it, we set PCIeBootLinkLevel to highest dpm level
2345        */
2346        PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2347                        "There must be 1 or more PCIE levels defined in PPTable.",
2348                        return -EINVAL);
2349
2350        table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
2351
2352        table->PCIeGenInterval  = 1;
2353
2354        result = tonga_populate_vr_config(hwmgr, table);
2355        PP_ASSERT_WITH_CODE(!result,
2356                "Failed to populate VRConfig setting !", return result);
2357        data->vr_config = table->VRConfig;
2358        table->ThermGpio  = 17;
2359        table->SclkStepSize = 0x4000;
2360
2361        if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
2362                                                &gpio_pin_assignment)) {
2363                table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2364                phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2365                        PHM_PlatformCaps_RegulatorHot);
2366        } else {
2367                table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2368                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2369                        PHM_PlatformCaps_RegulatorHot);
2370        }
2371
2372        if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
2373                                                &gpio_pin_assignment)) {
2374                table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2375                phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2376                        PHM_PlatformCaps_AutomaticDCTransition);
2377        } else {
2378                table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2379                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2380                        PHM_PlatformCaps_AutomaticDCTransition);
2381        }
2382
2383        phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2384                PHM_PlatformCaps_Falcon_QuickTransition);
2385
2386        if (0) {
2387                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2388                        PHM_PlatformCaps_AutomaticDCTransition);
2389                phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2390                        PHM_PlatformCaps_Falcon_QuickTransition);
2391        }
2392
2393        if (atomctrl_get_pp_assign_pin(hwmgr,
2394                        THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
2395                phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2396                        PHM_PlatformCaps_ThermalOutGPIO);
2397
2398                table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
2399
2400                table->ThermOutPolarity =
2401                        (0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
2402                        (1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0;
2403
2404                table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
2405
2406                /* if required, combine VRHot/PCC with thermal out GPIO*/
2407                if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2408                        PHM_PlatformCaps_RegulatorHot) &&
2409                        phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2410                        PHM_PlatformCaps_CombinePCCWithThermalSignal)){
2411                        table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
2412                }
2413        } else {
2414                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2415                        PHM_PlatformCaps_ThermalOutGPIO);
2416
2417                table->ThermOutGpio = 17;
2418                table->ThermOutPolarity = 1;
2419                table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
2420        }
2421
2422        for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++)
2423                table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
2424        CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2425        CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2426        CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
2427        CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
2428        CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2429        CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2430        CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2431        CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2432        CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2433
2434        /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2435        result = smu7_copy_bytes_to_smc(
2436                        hwmgr,
2437                        smu_data->smu7_data.dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
2438                        (uint8_t *)&(table->SystemFlags),
2439                        sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
2440                        SMC_RAM_END);
2441
2442        PP_ASSERT_WITH_CODE(!result,
2443                "Failed to upload dpm data to SMC memory !", return result;);
2444
2445        result = tonga_init_arb_table_index(hwmgr);
2446        PP_ASSERT_WITH_CODE(!result,
2447                        "Failed to upload arb data to SMC memory !", return result);
2448
2449        tonga_populate_pm_fuses(hwmgr);
2450        PP_ASSERT_WITH_CODE((!result),
2451                "Failed to populate initialize pm fuses !", return result);
2452
2453        result = tonga_populate_initial_mc_reg_table(hwmgr);
2454        PP_ASSERT_WITH_CODE((!result),
2455                "Failed to populate initialize MC Reg table !", return result);
2456
2457        return 0;
2458}
2459
2460static int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2461{
2462        struct tonga_smumgr *smu_data =
2463                        (struct tonga_smumgr *)(hwmgr->smu_backend);
2464        SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2465        uint32_t duty100;
2466        uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2467        uint16_t fdo_min, slope1, slope2;
2468        uint32_t reference_clock;
2469        int res;
2470        uint64_t tmp64;
2471
2472        if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2473                                        PHM_PlatformCaps_MicrocodeFanControl))
2474                return 0;
2475
2476        if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2477                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2478                        PHM_PlatformCaps_MicrocodeFanControl);
2479                return 0;
2480        }
2481
2482        if (0 == smu_data->smu7_data.fan_table_start) {
2483                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2484                                        PHM_PlatformCaps_MicrocodeFanControl);
2485                return 0;
2486        }
2487
2488        duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
2489                                                CGS_IND_REG__SMC,
2490                                                CG_FDO_CTRL1, FMAX_DUTY100);
2491
2492        if (0 == duty100) {
2493                phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2494                                PHM_PlatformCaps_MicrocodeFanControl);
2495                return 0;
2496        }
2497
2498        tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2499        do_div(tmp64, 10000);
2500        fdo_min = (uint16_t)tmp64;
2501
2502        t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
2503                   hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2504        t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
2505                  hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2506
2507        pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
2508                    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2509        pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
2510                    hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2511
2512        slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2513        slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2514
2515        fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2516        fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2517        fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2518
2519        fan_table.Slope1 = cpu_to_be16(slope1);
2520        fan_table.Slope2 = cpu_to_be16(slope2);
2521
2522        fan_table.FdoMin = cpu_to_be16(fdo_min);
2523
2524        fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2525
2526        fan_table.HystUp = cpu_to_be16(1);
2527
2528        fan_table.HystSlope = cpu_to_be16(1);
2529
2530        fan_table.TempRespLim = cpu_to_be16(5);
2531
2532        reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2533
2534        fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2535
2536        fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2537
2538        fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2539
2540        fan_table.FanControl_GL_Flag = 1;
2541
2542        res = smu7_copy_bytes_to_smc(hwmgr,
2543                                        smu_data->smu7_data.fan_table_start,
2544                                        (uint8_t *)&fan_table,
2545                                        (uint32_t)sizeof(fan_table),
2546                                        SMC_RAM_END);
2547
2548        return res;
2549}
2550
2551
2552static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2553{
2554        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2555
2556        if (data->need_update_smu7_dpm_table &
2557                (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2558                return tonga_program_memory_timing_parameters(hwmgr);
2559
2560        return 0;
2561}
2562
2563static int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2564{
2565        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2566        struct tonga_smumgr *smu_data =
2567                        (struct tonga_smumgr *)(hwmgr->smu_backend);
2568
2569        int result = 0;
2570        uint32_t low_sclk_interrupt_threshold = 0;
2571
2572        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2573                        PHM_PlatformCaps_SclkThrottleLowNotification)
2574                && (data->low_sclk_interrupt_threshold != 0)) {
2575                low_sclk_interrupt_threshold =
2576                                data->low_sclk_interrupt_threshold;
2577
2578                CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2579
2580                result = smu7_copy_bytes_to_smc(
2581                                hwmgr,
2582                                smu_data->smu7_data.dpm_table_start +
2583                                offsetof(SMU72_Discrete_DpmTable,
2584                                        LowSclkInterruptThreshold),
2585                                (uint8_t *)&low_sclk_interrupt_threshold,
2586                                sizeof(uint32_t),
2587                                SMC_RAM_END);
2588        }
2589
2590        result = tonga_update_and_upload_mc_reg_table(hwmgr);
2591
2592        PP_ASSERT_WITH_CODE((!result),
2593                                "Failed to upload MC reg table !",
2594                                return result);
2595
2596        result = tonga_program_mem_timing_parameters(hwmgr);
2597        PP_ASSERT_WITH_CODE((result == 0),
2598                        "Failed to program memory timing parameters !",
2599                        );
2600
2601        return result;
2602}
2603
2604static uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
2605{
2606        switch (type) {
2607        case SMU_SoftRegisters:
2608                switch (member) {
2609                case HandshakeDisables:
2610                        return offsetof(SMU72_SoftRegisters, HandshakeDisables);
2611                case VoltageChangeTimeout:
2612                        return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
2613                case AverageGraphicsActivity:
2614                        return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
2615                case AverageMemoryActivity:
2616                        return offsetof(SMU72_SoftRegisters, AverageMemoryActivity);
2617                case PreVBlankGap:
2618                        return offsetof(SMU72_SoftRegisters, PreVBlankGap);
2619                case VBlankTimeout:
2620                        return offsetof(SMU72_SoftRegisters, VBlankTimeout);
2621                case UcodeLoadStatus:
2622                        return offsetof(SMU72_SoftRegisters, UcodeLoadStatus);
2623                case DRAM_LOG_ADDR_H:
2624                        return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_H);
2625                case DRAM_LOG_ADDR_L:
2626                        return offsetof(SMU72_SoftRegisters, DRAM_LOG_ADDR_L);
2627                case DRAM_LOG_PHY_ADDR_H:
2628                        return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2629                case DRAM_LOG_PHY_ADDR_L:
2630                        return offsetof(SMU72_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2631                case DRAM_LOG_BUFF_SIZE:
2632                        return offsetof(SMU72_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2633                }
2634                break;
2635        case SMU_Discrete_DpmTable:
2636                switch (member) {
2637                case UvdBootLevel:
2638                        return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2639                case VceBootLevel:
2640                        return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2641                case LowSclkInterruptThreshold:
2642                        return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
2643                }
2644                break;
2645        }
2646        pr_warn("can't get the offset of type %x member %x\n", type, member);
2647        return 0;
2648}
2649
2650static uint32_t tonga_get_mac_definition(uint32_t value)
2651{
2652        switch (value) {
2653        case SMU_MAX_LEVELS_GRAPHICS:
2654                return SMU72_MAX_LEVELS_GRAPHICS;
2655        case SMU_MAX_LEVELS_MEMORY:
2656                return SMU72_MAX_LEVELS_MEMORY;
2657        case SMU_MAX_LEVELS_LINK:
2658                return SMU72_MAX_LEVELS_LINK;
2659        case SMU_MAX_ENTRIES_SMIO:
2660                return SMU72_MAX_ENTRIES_SMIO;
2661        case SMU_MAX_LEVELS_VDDC:
2662                return SMU72_MAX_LEVELS_VDDC;
2663        case SMU_MAX_LEVELS_VDDGFX:
2664                return SMU72_MAX_LEVELS_VDDGFX;
2665        case SMU_MAX_LEVELS_VDDCI:
2666                return SMU72_MAX_LEVELS_VDDCI;
2667        case SMU_MAX_LEVELS_MVDD:
2668                return SMU72_MAX_LEVELS_MVDD;
2669        }
2670        pr_warn("can't get the mac value %x\n", value);
2671
2672        return 0;
2673}
2674
2675static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2676{
2677        struct tonga_smumgr *smu_data =
2678                                (struct tonga_smumgr *)(hwmgr->smu_backend);
2679        uint32_t mm_boot_level_offset, mm_boot_level_value;
2680        struct phm_ppt_v1_information *table_info =
2681                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
2682
2683        smu_data->smc_state_table.UvdBootLevel = 0;
2684        if (table_info->mm_dep_table->count > 0)
2685                smu_data->smc_state_table.UvdBootLevel =
2686                                (uint8_t) (table_info->mm_dep_table->count - 1);
2687        mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2688                                offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
2689        mm_boot_level_offset /= 4;
2690        mm_boot_level_offset *= 4;
2691        mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2692                        CGS_IND_REG__SMC, mm_boot_level_offset);
2693        mm_boot_level_value &= 0x00FFFFFF;
2694        mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
2695        cgs_write_ind_register(hwmgr->device,
2696                                CGS_IND_REG__SMC,
2697                                mm_boot_level_offset, mm_boot_level_value);
2698
2699        if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2700                        PHM_PlatformCaps_UVDDPM) ||
2701                phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2702                        PHM_PlatformCaps_StablePState))
2703                smum_send_msg_to_smc_with_parameter(hwmgr,
2704                                PPSMC_MSG_UVDDPM_SetEnabledMask,
2705                                (uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel),
2706                                NULL);
2707        return 0;
2708}
2709
2710static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2711{
2712        struct tonga_smumgr *smu_data =
2713                                (struct tonga_smumgr *)(hwmgr->smu_backend);
2714        uint32_t mm_boot_level_offset, mm_boot_level_value;
2715        struct phm_ppt_v1_information *table_info =
2716                        (struct phm_ppt_v1_information *)(hwmgr->pptable);
2717
2718
2719        smu_data->smc_state_table.VceBootLevel =
2720                (uint8_t) (table_info->mm_dep_table->count - 1);
2721
2722        mm_boot_level_offset = smu_data->smu7_data.dpm_table_start +
2723                                        offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
2724        mm_boot_level_offset /= 4;
2725        mm_boot_level_offset *= 4;
2726        mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
2727                        CGS_IND_REG__SMC, mm_boot_level_offset);
2728        mm_boot_level_value &= 0xFF00FFFF;
2729        mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
2730        cgs_write_ind_register(hwmgr->device,
2731                        CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
2732
2733        if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2734                                        PHM_PlatformCaps_StablePState))
2735                smum_send_msg_to_smc_with_parameter(hwmgr,
2736                                PPSMC_MSG_VCEDPM_SetEnabledMask,
2737                                (uint32_t)1 << smu_data->smc_state_table.VceBootLevel,
2738                                NULL);
2739        return 0;
2740}
2741
2742static int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2743{
2744        switch (type) {
2745        case SMU_UVD_TABLE:
2746                tonga_update_uvd_smc_table(hwmgr);
2747                break;
2748        case SMU_VCE_TABLE:
2749                tonga_update_vce_smc_table(hwmgr);
2750                break;
2751        default:
2752                break;
2753        }
2754        return 0;
2755}
2756
2757static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
2758{
2759        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2760        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
2761
2762        uint32_t tmp;
2763        int result;
2764        bool error = false;
2765
2766        result = smu7_read_smc_sram_dword(hwmgr,
2767                                SMU72_FIRMWARE_HEADER_LOCATION +
2768                                offsetof(SMU72_Firmware_Header, DpmTable),
2769                                &tmp, SMC_RAM_END);
2770
2771        if (!result)
2772                smu_data->smu7_data.dpm_table_start = tmp;
2773
2774        error |= (result != 0);
2775
2776        result = smu7_read_smc_sram_dword(hwmgr,
2777                                SMU72_FIRMWARE_HEADER_LOCATION +
2778                                offsetof(SMU72_Firmware_Header, SoftRegisters),
2779                                &tmp, SMC_RAM_END);
2780
2781        if (!result) {
2782                data->soft_regs_start = tmp;
2783                smu_data->smu7_data.soft_regs_start = tmp;
2784        }
2785
2786        error |= (result != 0);
2787
2788
2789        result = smu7_read_smc_sram_dword(hwmgr,
2790                                SMU72_FIRMWARE_HEADER_LOCATION +
2791                                offsetof(SMU72_Firmware_Header, mcRegisterTable),
2792                                &tmp, SMC_RAM_END);
2793
2794        if (!result)
2795                smu_data->smu7_data.mc_reg_table_start = tmp;
2796
2797        result = smu7_read_smc_sram_dword(hwmgr,
2798                                SMU72_FIRMWARE_HEADER_LOCATION +
2799                                offsetof(SMU72_Firmware_Header, FanTable),
2800                                &tmp, SMC_RAM_END);
2801
2802        if (!result)
2803                smu_data->smu7_data.fan_table_start = tmp;
2804
2805        error |= (result != 0);
2806
2807        result = smu7_read_smc_sram_dword(hwmgr,
2808                                SMU72_FIRMWARE_HEADER_LOCATION +
2809                                offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
2810                                &tmp, SMC_RAM_END);
2811
2812        if (!result)
2813                smu_data->smu7_data.arb_table_start = tmp;
2814
2815        error |= (result != 0);
2816
2817        result = smu7_read_smc_sram_dword(hwmgr,
2818                                SMU72_FIRMWARE_HEADER_LOCATION +
2819                                offsetof(SMU72_Firmware_Header, Version),
2820                                &tmp, SMC_RAM_END);
2821
2822        if (!result)
2823                hwmgr->microcode_version_info.SMC = tmp;
2824
2825        error |= (result != 0);
2826
2827        return error ? 1 : 0;
2828}
2829
2830/*---------------------------MC----------------------------*/
2831
2832static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2833{
2834        return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2835}
2836
2837static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2838{
2839        bool result = true;
2840
2841        switch (in_reg) {
2842        case  mmMC_SEQ_RAS_TIMING:
2843                *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2844                break;
2845
2846        case  mmMC_SEQ_DLL_STBY:
2847                *out_reg = mmMC_SEQ_DLL_STBY_LP;
2848                break;
2849
2850        case  mmMC_SEQ_G5PDX_CMD0:
2851                *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2852                break;
2853
2854        case  mmMC_SEQ_G5PDX_CMD1:
2855                *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2856                break;
2857
2858        case  mmMC_SEQ_G5PDX_CTRL:
2859                *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2860                break;
2861
2862        case mmMC_SEQ_CAS_TIMING:
2863                *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2864                break;
2865
2866        case mmMC_SEQ_MISC_TIMING:
2867                *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2868                break;
2869
2870        case mmMC_SEQ_MISC_TIMING2:
2871                *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2872                break;
2873
2874        case mmMC_SEQ_PMG_DVS_CMD:
2875                *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2876                break;
2877
2878        case mmMC_SEQ_PMG_DVS_CTL:
2879                *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2880                break;
2881
2882        case mmMC_SEQ_RD_CTL_D0:
2883                *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2884                break;
2885
2886        case mmMC_SEQ_RD_CTL_D1:
2887                *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2888                break;
2889
2890        case mmMC_SEQ_WR_CTL_D0:
2891                *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2892                break;
2893
2894        case mmMC_SEQ_WR_CTL_D1:
2895                *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2896                break;
2897
2898        case mmMC_PMG_CMD_EMRS:
2899                *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2900                break;
2901
2902        case mmMC_PMG_CMD_MRS:
2903                *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2904                break;
2905
2906        case mmMC_PMG_CMD_MRS1:
2907                *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2908                break;
2909
2910        case mmMC_SEQ_PMG_TIMING:
2911                *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2912                break;
2913
2914        case mmMC_PMG_CMD_MRS2:
2915                *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2916                break;
2917
2918        case mmMC_SEQ_WR_CTL_2:
2919                *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2920                break;
2921
2922        default:
2923                result = false;
2924                break;
2925        }
2926
2927        return result;
2928}
2929
2930static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
2931{
2932        uint32_t i;
2933        uint16_t address;
2934
2935        for (i = 0; i < table->last; i++) {
2936                table->mc_reg_address[i].s0 =
2937                        tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1,
2938                                                        &address) ?
2939                                                        address :
2940                                                 table->mc_reg_address[i].s1;
2941        }
2942        return 0;
2943}
2944
2945static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2946                                        struct tonga_mc_reg_table *ni_table)
2947{
2948        uint8_t i, j;
2949
2950        PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2951                "Invalid VramInfo table.", return -EINVAL);
2952        PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2953                "Invalid VramInfo table.", return -EINVAL);
2954
2955        for (i = 0; i < table->last; i++)
2956                ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2957
2958        ni_table->last = table->last;
2959
2960        for (i = 0; i < table->num_entries; i++) {
2961                ni_table->mc_reg_table_entry[i].mclk_max =
2962                        table->mc_reg_table_entry[i].mclk_max;
2963                for (j = 0; j < table->last; j++) {
2964                        ni_table->mc_reg_table_entry[i].mc_data[j] =
2965                                table->mc_reg_table_entry[i].mc_data[j];
2966                }
2967        }
2968
2969        ni_table->num_entries = table->num_entries;
2970
2971        return 0;
2972}
2973
2974static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2975                                        struct tonga_mc_reg_table *table)
2976{
2977        uint8_t i, j, k;
2978        uint32_t temp_reg;
2979        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2980
2981        for (i = 0, j = table->last; i < table->last; i++) {
2982                PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2983                        "Invalid VramInfo table.", return -EINVAL);
2984
2985                switch (table->mc_reg_address[i].s1) {
2986
2987                case mmMC_SEQ_MISC1:
2988                        temp_reg = cgs_read_register(hwmgr->device,
2989                                                        mmMC_PMG_CMD_EMRS);
2990                        table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2991                        table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2992                        for (k = 0; k < table->num_entries; k++) {
2993                                table->mc_reg_table_entry[k].mc_data[j] =
2994                                        ((temp_reg & 0xffff0000)) |
2995                                        ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2996                        }
2997                        j++;
2998
2999                        PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3000                                "Invalid VramInfo table.", return -EINVAL);
3001                        temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
3002                        table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
3003                        table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
3004                        for (k = 0; k < table->num_entries; k++) {
3005                                table->mc_reg_table_entry[k].mc_data[j] =
3006                                        (temp_reg & 0xffff0000) |
3007                                        (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3008
3009                                if (!data->is_memory_gddr5)
3010                                        table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
3011                        }
3012                        j++;
3013
3014                        if (!data->is_memory_gddr5) {
3015                                PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
3016                                        "Invalid VramInfo table.", return -EINVAL);
3017                                table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
3018                                table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
3019                                for (k = 0; k < table->num_entries; k++)
3020                                        table->mc_reg_table_entry[k].mc_data[j] =
3021                                                (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
3022                                j++;
3023                        }
3024
3025                        break;
3026
3027                case mmMC_SEQ_RESERVE_M:
3028                        temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
3029                        table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
3030                        table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
3031                        for (k = 0; k < table->num_entries; k++) {
3032                                table->mc_reg_table_entry[k].mc_data[j] =
3033                                        (temp_reg & 0xffff0000) |
3034                                        (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
3035                        }
3036                        j++;
3037                        break;
3038
3039                default:
3040                        break;
3041                }
3042
3043        }
3044
3045        table->last = j;
3046
3047        return 0;
3048}
3049
3050static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
3051{
3052        uint8_t i, j;
3053
3054        for (i = 0; i < table->last; i++) {
3055                for (j = 1; j < table->num_entries; j++) {
3056                        if (table->mc_reg_table_entry[j-1].mc_data[i] !=
3057                                table->mc_reg_table_entry[j].mc_data[i]) {
3058                                table->validflag |= (1<<i);
3059                                break;
3060                        }
3061                }
3062        }
3063
3064        return 0;
3065}
3066
3067static int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
3068{
3069        int result;
3070        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smu_backend);
3071        pp_atomctrl_mc_reg_table *table;
3072        struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
3073        uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
3074
3075        table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
3076
3077        if (table == NULL)
3078                return -ENOMEM;
3079
3080        /* Program additional LP registers that are no longer programmed by VBIOS */
3081        cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
3082                        cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
3083        cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
3084                        cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
3085        cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,
3086                        cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
3087        cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,
3088                        cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
3089        cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,
3090                        cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
3091        cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,
3092                        cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
3093        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,
3094                        cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
3095        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,
3096                        cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
3097        cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,
3098                        cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
3099        cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
3100                        cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
3101        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,
3102                        cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
3103        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,
3104                        cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
3105        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,
3106                        cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
3107        cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,
3108                        cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
3109        cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
3110                        cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
3111        cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
3112                        cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
3113        cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
3114                        cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
3115        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
3116                        cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
3117        cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,
3118                        cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
3119        cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,
3120                        cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
3121
3122        result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
3123
3124        if (!result)
3125                result = tonga_copy_vbios_smc_reg_table(table, ni_table);
3126
3127        if (!result) {
3128                tonga_set_s0_mc_reg_index(ni_table);
3129                result = tonga_set_mc_special_registers(hwmgr, ni_table);
3130        }
3131
3132        if (!result)
3133                tonga_set_valid_flag(ni_table);
3134
3135        kfree(table);
3136
3137        return result;
3138}
3139
3140static bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
3141{
3142        return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
3143                        CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
3144                        ? true : false;
3145}
3146
3147static int tonga_update_dpm_settings(struct pp_hwmgr *hwmgr,
3148                                void *profile_setting)
3149{
3150        struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
3151        struct tonga_smumgr *smu_data = (struct tonga_smumgr *)
3152                        (hwmgr->smu_backend);
3153        struct profile_mode_setting *setting;
3154        struct SMU72_Discrete_GraphicsLevel *levels =
3155                        smu_data->smc_state_table.GraphicsLevel;
3156        uint32_t array = smu_data->smu7_data.dpm_table_start +
3157                        offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
3158
3159        uint32_t mclk_array = smu_data->smu7_data.dpm_table_start +
3160                        offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
3161        struct SMU72_Discrete_MemoryLevel *mclk_levels =
3162                        smu_data->smc_state_table.MemoryLevel;
3163        uint32_t i;
3164        uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
3165
3166        if (profile_setting == NULL)
3167                return -EINVAL;
3168
3169        setting = (struct profile_mode_setting *)profile_setting;
3170
3171        if (setting->bupdate_sclk) {
3172                if (!data->sclk_dpm_key_disabled)
3173                        smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel, NULL);
3174                for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
3175                        if (levels[i].ActivityLevel !=
3176                                cpu_to_be16(setting->sclk_activity)) {
3177                                levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
3178
3179                                clk_activity_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3180                                                + offsetof(SMU72_Discrete_GraphicsLevel, ActivityLevel);
3181                                offset = clk_activity_offset & ~0x3;
3182                                tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3183                                tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
3184                                cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3185
3186                        }
3187                        if (levels[i].UpHyst != setting->sclk_up_hyst ||
3188                                levels[i].DownHyst != setting->sclk_down_hyst) {
3189                                levels[i].UpHyst = setting->sclk_up_hyst;
3190                                levels[i].DownHyst = setting->sclk_down_hyst;
3191                                up_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3192                                                + offsetof(SMU72_Discrete_GraphicsLevel, UpHyst);
3193                                down_hyst_offset = array + (sizeof(SMU72_Discrete_GraphicsLevel) * i)
3194                                                + offsetof(SMU72_Discrete_GraphicsLevel, DownHyst);
3195                                offset = up_hyst_offset & ~0x3;
3196                                tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3197                                tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpHyst, sizeof(uint8_t));
3198                                tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownHyst, sizeof(uint8_t));
3199                                cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3200                        }
3201                }
3202                if (!data->sclk_dpm_key_disabled)
3203                        smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel, NULL);
3204        }
3205
3206        if (setting->bupdate_mclk) {
3207                if (!data->mclk_dpm_key_disabled)
3208                        smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel, NULL);
3209                for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
3210                        if (mclk_levels[i].ActivityLevel !=
3211                                cpu_to_be16(setting->mclk_activity)) {
3212                                mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
3213
3214                                clk_activity_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3215                                                + offsetof(SMU72_Discrete_MemoryLevel, ActivityLevel);
3216                                offset = clk_activity_offset & ~0x3;
3217                                tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3218                                tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
3219                                cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3220
3221                        }
3222                        if (mclk_levels[i].UpHyst != setting->mclk_up_hyst ||
3223                                mclk_levels[i].DownHyst != setting->mclk_down_hyst) {
3224                                mclk_levels[i].UpHyst = setting->mclk_up_hyst;
3225                                mclk_levels[i].DownHyst = setting->mclk_down_hyst;
3226                                up_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3227                                                + offsetof(SMU72_Discrete_MemoryLevel, UpHyst);
3228                                down_hyst_offset = mclk_array + (sizeof(SMU72_Discrete_MemoryLevel) * i)
3229                                                + offsetof(SMU72_Discrete_MemoryLevel, DownHyst);
3230                                offset = up_hyst_offset & ~0x3;
3231                                tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
3232                                tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpHyst, sizeof(uint8_t));
3233                                tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownHyst, sizeof(uint8_t));
3234                                cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
3235                        }
3236                }
3237                if (!data->mclk_dpm_key_disabled)
3238                        smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel, NULL);
3239        }
3240        return 0;
3241}
3242
3243const struct pp_smumgr_func tonga_smu_funcs = {
3244        .name = "tonga_smu",
3245        .smu_init = &tonga_smu_init,
3246        .smu_fini = &smu7_smu_fini,
3247        .start_smu = &tonga_start_smu,
3248        .check_fw_load_finish = &smu7_check_fw_load_finish,
3249        .request_smu_load_fw = &smu7_request_smu_load_fw,
3250        .request_smu_load_specific_fw = NULL,
3251        .send_msg_to_smc = &smu7_send_msg_to_smc,
3252        .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
3253        .get_argument = smu7_get_argument,
3254        .download_pptable_settings = NULL,
3255        .upload_pptable_settings = NULL,
3256        .update_smc_table = tonga_update_smc_table,
3257        .get_offsetof = tonga_get_offsetof,
3258        .process_firmware_header = tonga_process_firmware_header,
3259        .init_smc_table = tonga_init_smc_table,
3260        .update_sclk_threshold = tonga_update_sclk_threshold,
3261        .thermal_setup_fan_table = tonga_thermal_setup_fan_table,
3262        .populate_all_graphic_levels = tonga_populate_all_graphic_levels,
3263        .populate_all_memory_levels = tonga_populate_all_memory_levels,
3264        .get_mac_definition = tonga_get_mac_definition,
3265        .initialize_mc_reg_table = tonga_initialize_mc_reg_table,
3266        .is_dpm_running = tonga_is_dpm_running,
3267        .update_dpm_settings = tonga_update_dpm_settings,
3268};
3269