linux/drivers/gpu/drm/i915/i915_active.c
<<
>>
Prefs
   1/*
   2 * SPDX-License-Identifier: MIT
   3 *
   4 * Copyright © 2019 Intel Corporation
   5 */
   6
   7#include <linux/debugobjects.h>
   8
   9#include "gt/intel_context.h"
  10#include "gt/intel_engine_heartbeat.h"
  11#include "gt/intel_engine_pm.h"
  12#include "gt/intel_ring.h"
  13
  14#include "i915_drv.h"
  15#include "i915_active.h"
  16#include "i915_globals.h"
  17
  18/*
  19 * Active refs memory management
  20 *
  21 * To be more economical with memory, we reap all the i915_active trees as
  22 * they idle (when we know the active requests are inactive) and allocate the
  23 * nodes from a local slab cache to hopefully reduce the fragmentation.
  24 */
  25static struct i915_global_active {
  26        struct i915_global base;
  27        struct kmem_cache *slab_cache;
  28} global;
  29
  30struct active_node {
  31        struct rb_node node;
  32        struct i915_active_fence base;
  33        struct i915_active *ref;
  34        u64 timeline;
  35};
  36
  37#define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
  38
  39static inline struct active_node *
  40node_from_active(struct i915_active_fence *active)
  41{
  42        return container_of(active, struct active_node, base);
  43}
  44
  45#define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
  46
  47static inline bool is_barrier(const struct i915_active_fence *active)
  48{
  49        return IS_ERR(rcu_access_pointer(active->fence));
  50}
  51
  52static inline struct llist_node *barrier_to_ll(struct active_node *node)
  53{
  54        GEM_BUG_ON(!is_barrier(&node->base));
  55        return (struct llist_node *)&node->base.cb.node;
  56}
  57
  58static inline struct intel_engine_cs *
  59__barrier_to_engine(struct active_node *node)
  60{
  61        return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
  62}
  63
  64static inline struct intel_engine_cs *
  65barrier_to_engine(struct active_node *node)
  66{
  67        GEM_BUG_ON(!is_barrier(&node->base));
  68        return __barrier_to_engine(node);
  69}
  70
  71static inline struct active_node *barrier_from_ll(struct llist_node *x)
  72{
  73        return container_of((struct list_head *)x,
  74                            struct active_node, base.cb.node);
  75}
  76
  77#if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
  78
  79static void *active_debug_hint(void *addr)
  80{
  81        struct i915_active *ref = addr;
  82
  83        return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
  84}
  85
  86static const struct debug_obj_descr active_debug_desc = {
  87        .name = "i915_active",
  88        .debug_hint = active_debug_hint,
  89};
  90
  91static void debug_active_init(struct i915_active *ref)
  92{
  93        debug_object_init(ref, &active_debug_desc);
  94}
  95
  96static void debug_active_activate(struct i915_active *ref)
  97{
  98        lockdep_assert_held(&ref->tree_lock);
  99        if (!atomic_read(&ref->count)) /* before the first inc */
 100                debug_object_activate(ref, &active_debug_desc);
 101}
 102
 103static void debug_active_deactivate(struct i915_active *ref)
 104{
 105        lockdep_assert_held(&ref->tree_lock);
 106        if (!atomic_read(&ref->count)) /* after the last dec */
 107                debug_object_deactivate(ref, &active_debug_desc);
 108}
 109
 110static void debug_active_fini(struct i915_active *ref)
 111{
 112        debug_object_free(ref, &active_debug_desc);
 113}
 114
 115static void debug_active_assert(struct i915_active *ref)
 116{
 117        debug_object_assert_init(ref, &active_debug_desc);
 118}
 119
 120#else
 121
 122static inline void debug_active_init(struct i915_active *ref) { }
 123static inline void debug_active_activate(struct i915_active *ref) { }
 124static inline void debug_active_deactivate(struct i915_active *ref) { }
 125static inline void debug_active_fini(struct i915_active *ref) { }
 126static inline void debug_active_assert(struct i915_active *ref) { }
 127
 128#endif
 129
 130static void
 131__active_retire(struct i915_active *ref)
 132{
 133        struct rb_root root = RB_ROOT;
 134        struct active_node *it, *n;
 135        unsigned long flags;
 136
 137        GEM_BUG_ON(i915_active_is_idle(ref));
 138
 139        /* return the unused nodes to our slabcache -- flushing the allocator */
 140        if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
 141                return;
 142
 143        GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
 144        debug_active_deactivate(ref);
 145
 146        /* Even if we have not used the cache, we may still have a barrier */
 147        if (!ref->cache)
 148                ref->cache = fetch_node(ref->tree.rb_node);
 149
 150        /* Keep the MRU cached node for reuse */
 151        if (ref->cache) {
 152                /* Discard all other nodes in the tree */
 153                rb_erase(&ref->cache->node, &ref->tree);
 154                root = ref->tree;
 155
 156                /* Rebuild the tree with only the cached node */
 157                rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
 158                rb_insert_color(&ref->cache->node, &ref->tree);
 159                GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
 160
 161                /* Make the cached node available for reuse with any timeline */
 162                if (IS_ENABLED(CONFIG_64BIT))
 163                        ref->cache->timeline = 0; /* needs cmpxchg(u64) */
 164        }
 165
 166        spin_unlock_irqrestore(&ref->tree_lock, flags);
 167
 168        /* After the final retire, the entire struct may be freed */
 169        if (ref->retire)
 170                ref->retire(ref);
 171
 172        /* ... except if you wait on it, you must manage your own references! */
 173        wake_up_var(ref);
 174
 175        /* Finally free the discarded timeline tree  */
 176        rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
 177                GEM_BUG_ON(i915_active_fence_isset(&it->base));
 178                kmem_cache_free(global.slab_cache, it);
 179        }
 180}
 181
 182static void
 183active_work(struct work_struct *wrk)
 184{
 185        struct i915_active *ref = container_of(wrk, typeof(*ref), work);
 186
 187        GEM_BUG_ON(!atomic_read(&ref->count));
 188        if (atomic_add_unless(&ref->count, -1, 1))
 189                return;
 190
 191        __active_retire(ref);
 192}
 193
 194static void
 195active_retire(struct i915_active *ref)
 196{
 197        GEM_BUG_ON(!atomic_read(&ref->count));
 198        if (atomic_add_unless(&ref->count, -1, 1))
 199                return;
 200
 201        if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
 202                queue_work(system_unbound_wq, &ref->work);
 203                return;
 204        }
 205
 206        __active_retire(ref);
 207}
 208
 209static inline struct dma_fence **
 210__active_fence_slot(struct i915_active_fence *active)
 211{
 212        return (struct dma_fence ** __force)&active->fence;
 213}
 214
 215static inline bool
 216active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
 217{
 218        struct i915_active_fence *active =
 219                container_of(cb, typeof(*active), cb);
 220
 221        return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
 222}
 223
 224static void
 225node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 226{
 227        if (active_fence_cb(fence, cb))
 228                active_retire(container_of(cb, struct active_node, base.cb)->ref);
 229}
 230
 231static void
 232excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
 233{
 234        if (active_fence_cb(fence, cb))
 235                active_retire(container_of(cb, struct i915_active, excl.cb));
 236}
 237
 238static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
 239{
 240        struct active_node *it;
 241
 242        GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
 243
 244        /*
 245         * We track the most recently used timeline to skip a rbtree search
 246         * for the common case, under typical loads we never need the rbtree
 247         * at all. We can reuse the last slot if it is empty, that is
 248         * after the previous activity has been retired, or if it matches the
 249         * current timeline.
 250         */
 251        it = READ_ONCE(ref->cache);
 252        if (it) {
 253                u64 cached = READ_ONCE(it->timeline);
 254
 255                /* Once claimed, this slot will only belong to this idx */
 256                if (cached == idx)
 257                        return it;
 258
 259#ifdef CONFIG_64BIT /* for cmpxchg(u64) */
 260                /*
 261                 * An unclaimed cache [.timeline=0] can only be claimed once.
 262                 *
 263                 * If the value is already non-zero, some other thread has
 264                 * claimed the cache and we know that is does not match our
 265                 * idx. If, and only if, the timeline is currently zero is it
 266                 * worth competing to claim it atomically for ourselves (for
 267                 * only the winner of that race will cmpxchg return the old
 268                 * value of 0).
 269                 */
 270                if (!cached && !cmpxchg(&it->timeline, 0, idx))
 271                        return it;
 272#endif
 273        }
 274
 275        BUILD_BUG_ON(offsetof(typeof(*it), node));
 276
 277        /* While active, the tree can only be built; not destroyed */
 278        GEM_BUG_ON(i915_active_is_idle(ref));
 279
 280        it = fetch_node(ref->tree.rb_node);
 281        while (it) {
 282                if (it->timeline < idx) {
 283                        it = fetch_node(it->node.rb_right);
 284                } else if (it->timeline > idx) {
 285                        it = fetch_node(it->node.rb_left);
 286                } else {
 287                        WRITE_ONCE(ref->cache, it);
 288                        break;
 289                }
 290        }
 291
 292        /* NB: If the tree rotated beneath us, we may miss our target. */
 293        return it;
 294}
 295
 296static struct i915_active_fence *
 297active_instance(struct i915_active *ref, u64 idx)
 298{
 299        struct active_node *node, *prealloc;
 300        struct rb_node **p, *parent;
 301
 302        node = __active_lookup(ref, idx);
 303        if (likely(node))
 304                return &node->base;
 305
 306        /* Preallocate a replacement, just in case */
 307        prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
 308        if (!prealloc)
 309                return NULL;
 310
 311        spin_lock_irq(&ref->tree_lock);
 312        GEM_BUG_ON(i915_active_is_idle(ref));
 313
 314        parent = NULL;
 315        p = &ref->tree.rb_node;
 316        while (*p) {
 317                parent = *p;
 318
 319                node = rb_entry(parent, struct active_node, node);
 320                if (node->timeline == idx) {
 321                        kmem_cache_free(global.slab_cache, prealloc);
 322                        goto out;
 323                }
 324
 325                if (node->timeline < idx)
 326                        p = &parent->rb_right;
 327                else
 328                        p = &parent->rb_left;
 329        }
 330
 331        node = prealloc;
 332        __i915_active_fence_init(&node->base, NULL, node_retire);
 333        node->ref = ref;
 334        node->timeline = idx;
 335
 336        rb_link_node(&node->node, parent, p);
 337        rb_insert_color(&node->node, &ref->tree);
 338
 339out:
 340        WRITE_ONCE(ref->cache, node);
 341        spin_unlock_irq(&ref->tree_lock);
 342
 343        return &node->base;
 344}
 345
 346void __i915_active_init(struct i915_active *ref,
 347                        int (*active)(struct i915_active *ref),
 348                        void (*retire)(struct i915_active *ref),
 349                        struct lock_class_key *mkey,
 350                        struct lock_class_key *wkey)
 351{
 352        unsigned long bits;
 353
 354        debug_active_init(ref);
 355
 356        ref->flags = 0;
 357        ref->active = active;
 358        ref->retire = ptr_unpack_bits(retire, &bits, 2);
 359        if (bits & I915_ACTIVE_MAY_SLEEP)
 360                ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
 361
 362        spin_lock_init(&ref->tree_lock);
 363        ref->tree = RB_ROOT;
 364        ref->cache = NULL;
 365
 366        init_llist_head(&ref->preallocated_barriers);
 367        atomic_set(&ref->count, 0);
 368        __mutex_init(&ref->mutex, "i915_active", mkey);
 369        __i915_active_fence_init(&ref->excl, NULL, excl_retire);
 370        INIT_WORK(&ref->work, active_work);
 371#if IS_ENABLED(CONFIG_LOCKDEP)
 372        lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
 373#endif
 374}
 375
 376static bool ____active_del_barrier(struct i915_active *ref,
 377                                   struct active_node *node,
 378                                   struct intel_engine_cs *engine)
 379
 380{
 381        struct llist_node *head = NULL, *tail = NULL;
 382        struct llist_node *pos, *next;
 383
 384        GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
 385
 386        /*
 387         * Rebuild the llist excluding our node. We may perform this
 388         * outside of the kernel_context timeline mutex and so someone
 389         * else may be manipulating the engine->barrier_tasks, in
 390         * which case either we or they will be upset :)
 391         *
 392         * A second __active_del_barrier() will report failure to claim
 393         * the active_node and the caller will just shrug and know not to
 394         * claim ownership of its node.
 395         *
 396         * A concurrent i915_request_add_active_barriers() will miss adding
 397         * any of the tasks, but we will try again on the next -- and since
 398         * we are actively using the barrier, we know that there will be
 399         * at least another opportunity when we idle.
 400         */
 401        llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
 402                if (node == barrier_from_ll(pos)) {
 403                        node = NULL;
 404                        continue;
 405                }
 406
 407                pos->next = head;
 408                head = pos;
 409                if (!tail)
 410                        tail = pos;
 411        }
 412        if (head)
 413                llist_add_batch(head, tail, &engine->barrier_tasks);
 414
 415        return !node;
 416}
 417
 418static bool
 419__active_del_barrier(struct i915_active *ref, struct active_node *node)
 420{
 421        return ____active_del_barrier(ref, node, barrier_to_engine(node));
 422}
 423
 424static bool
 425replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
 426{
 427        if (!is_barrier(active)) /* proto-node used by our idle barrier? */
 428                return false;
 429
 430        /*
 431         * This request is on the kernel_context timeline, and so
 432         * we can use it to substitute for the pending idle-barrer
 433         * request that we want to emit on the kernel_context.
 434         */
 435        __active_del_barrier(ref, node_from_active(active));
 436        return true;
 437}
 438
 439int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 440{
 441        struct i915_active_fence *active;
 442        int err;
 443
 444        /* Prevent reaping in case we malloc/wait while building the tree */
 445        err = i915_active_acquire(ref);
 446        if (err)
 447                return err;
 448
 449        active = active_instance(ref, idx);
 450        if (!active) {
 451                err = -ENOMEM;
 452                goto out;
 453        }
 454
 455        if (replace_barrier(ref, active)) {
 456                RCU_INIT_POINTER(active->fence, NULL);
 457                atomic_dec(&ref->count);
 458        }
 459        if (!__i915_active_fence_set(active, fence))
 460                __i915_active_acquire(ref);
 461
 462out:
 463        i915_active_release(ref);
 464        return err;
 465}
 466
 467static struct dma_fence *
 468__i915_active_set_fence(struct i915_active *ref,
 469                        struct i915_active_fence *active,
 470                        struct dma_fence *fence)
 471{
 472        struct dma_fence *prev;
 473
 474        if (replace_barrier(ref, active)) {
 475                RCU_INIT_POINTER(active->fence, fence);
 476                return NULL;
 477        }
 478
 479        rcu_read_lock();
 480        prev = __i915_active_fence_set(active, fence);
 481        if (prev)
 482                prev = dma_fence_get_rcu(prev);
 483        else
 484                __i915_active_acquire(ref);
 485        rcu_read_unlock();
 486
 487        return prev;
 488}
 489
 490static struct i915_active_fence *
 491__active_fence(struct i915_active *ref, u64 idx)
 492{
 493        struct active_node *it;
 494
 495        it = __active_lookup(ref, idx);
 496        if (unlikely(!it)) { /* Contention with parallel tree builders! */
 497                spin_lock_irq(&ref->tree_lock);
 498                it = __active_lookup(ref, idx);
 499                spin_unlock_irq(&ref->tree_lock);
 500        }
 501        GEM_BUG_ON(!it); /* slot must be preallocated */
 502
 503        return &it->base;
 504}
 505
 506struct dma_fence *
 507__i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
 508{
 509        /* Only valid while active, see i915_active_acquire_for_context() */
 510        return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
 511}
 512
 513struct dma_fence *
 514i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
 515{
 516        /* We expect the caller to manage the exclusive timeline ordering */
 517        return __i915_active_set_fence(ref, &ref->excl, f);
 518}
 519
 520bool i915_active_acquire_if_busy(struct i915_active *ref)
 521{
 522        debug_active_assert(ref);
 523        return atomic_add_unless(&ref->count, 1, 0);
 524}
 525
 526static void __i915_active_activate(struct i915_active *ref)
 527{
 528        spin_lock_irq(&ref->tree_lock); /* __active_retire() */
 529        if (!atomic_fetch_inc(&ref->count))
 530                debug_active_activate(ref);
 531        spin_unlock_irq(&ref->tree_lock);
 532}
 533
 534int i915_active_acquire(struct i915_active *ref)
 535{
 536        int err;
 537
 538        if (i915_active_acquire_if_busy(ref))
 539                return 0;
 540
 541        if (!ref->active) {
 542                __i915_active_activate(ref);
 543                return 0;
 544        }
 545
 546        err = mutex_lock_interruptible(&ref->mutex);
 547        if (err)
 548                return err;
 549
 550        if (likely(!i915_active_acquire_if_busy(ref))) {
 551                err = ref->active(ref);
 552                if (!err)
 553                        __i915_active_activate(ref);
 554        }
 555
 556        mutex_unlock(&ref->mutex);
 557
 558        return err;
 559}
 560
 561int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
 562{
 563        struct i915_active_fence *active;
 564        int err;
 565
 566        err = i915_active_acquire(ref);
 567        if (err)
 568                return err;
 569
 570        active = active_instance(ref, idx);
 571        if (!active) {
 572                i915_active_release(ref);
 573                return -ENOMEM;
 574        }
 575
 576        return 0; /* return with active ref */
 577}
 578
 579void i915_active_release(struct i915_active *ref)
 580{
 581        debug_active_assert(ref);
 582        active_retire(ref);
 583}
 584
 585static void enable_signaling(struct i915_active_fence *active)
 586{
 587        struct dma_fence *fence;
 588
 589        if (unlikely(is_barrier(active)))
 590                return;
 591
 592        fence = i915_active_fence_get(active);
 593        if (!fence)
 594                return;
 595
 596        dma_fence_enable_sw_signaling(fence);
 597        dma_fence_put(fence);
 598}
 599
 600static int flush_barrier(struct active_node *it)
 601{
 602        struct intel_engine_cs *engine;
 603
 604        if (likely(!is_barrier(&it->base)))
 605                return 0;
 606
 607        engine = __barrier_to_engine(it);
 608        smp_rmb(); /* serialise with add_active_barriers */
 609        if (!is_barrier(&it->base))
 610                return 0;
 611
 612        return intel_engine_flush_barriers(engine);
 613}
 614
 615static int flush_lazy_signals(struct i915_active *ref)
 616{
 617        struct active_node *it, *n;
 618        int err = 0;
 619
 620        enable_signaling(&ref->excl);
 621        rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 622                err = flush_barrier(it); /* unconnected idle barrier? */
 623                if (err)
 624                        break;
 625
 626                enable_signaling(&it->base);
 627        }
 628
 629        return err;
 630}
 631
 632int __i915_active_wait(struct i915_active *ref, int state)
 633{
 634        might_sleep();
 635
 636        /* Any fence added after the wait begins will not be auto-signaled */
 637        if (i915_active_acquire_if_busy(ref)) {
 638                int err;
 639
 640                err = flush_lazy_signals(ref);
 641                i915_active_release(ref);
 642                if (err)
 643                        return err;
 644
 645                if (___wait_var_event(ref, i915_active_is_idle(ref),
 646                                      state, 0, 0, schedule()))
 647                        return -EINTR;
 648        }
 649
 650        /*
 651         * After the wait is complete, the caller may free the active.
 652         * We have to flush any concurrent retirement before returning.
 653         */
 654        flush_work(&ref->work);
 655        return 0;
 656}
 657
 658static int __await_active(struct i915_active_fence *active,
 659                          int (*fn)(void *arg, struct dma_fence *fence),
 660                          void *arg)
 661{
 662        struct dma_fence *fence;
 663
 664        if (is_barrier(active)) /* XXX flush the barrier? */
 665                return 0;
 666
 667        fence = i915_active_fence_get(active);
 668        if (fence) {
 669                int err;
 670
 671                err = fn(arg, fence);
 672                dma_fence_put(fence);
 673                if (err < 0)
 674                        return err;
 675        }
 676
 677        return 0;
 678}
 679
 680struct wait_barrier {
 681        struct wait_queue_entry base;
 682        struct i915_active *ref;
 683};
 684
 685static int
 686barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
 687{
 688        struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
 689
 690        if (i915_active_is_idle(wb->ref)) {
 691                list_del(&wq->entry);
 692                i915_sw_fence_complete(wq->private);
 693                kfree(wq);
 694        }
 695
 696        return 0;
 697}
 698
 699static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
 700{
 701        struct wait_barrier *wb;
 702
 703        wb = kmalloc(sizeof(*wb), GFP_KERNEL);
 704        if (unlikely(!wb))
 705                return -ENOMEM;
 706
 707        GEM_BUG_ON(i915_active_is_idle(ref));
 708        if (!i915_sw_fence_await(fence)) {
 709                kfree(wb);
 710                return -EINVAL;
 711        }
 712
 713        wb->base.flags = 0;
 714        wb->base.func = barrier_wake;
 715        wb->base.private = fence;
 716        wb->ref = ref;
 717
 718        add_wait_queue(__var_waitqueue(ref), &wb->base);
 719        return 0;
 720}
 721
 722static int await_active(struct i915_active *ref,
 723                        unsigned int flags,
 724                        int (*fn)(void *arg, struct dma_fence *fence),
 725                        void *arg, struct i915_sw_fence *barrier)
 726{
 727        int err = 0;
 728
 729        if (!i915_active_acquire_if_busy(ref))
 730                return 0;
 731
 732        if (flags & I915_ACTIVE_AWAIT_EXCL &&
 733            rcu_access_pointer(ref->excl.fence)) {
 734                err = __await_active(&ref->excl, fn, arg);
 735                if (err)
 736                        goto out;
 737        }
 738
 739        if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
 740                struct active_node *it, *n;
 741
 742                rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
 743                        err = __await_active(&it->base, fn, arg);
 744                        if (err)
 745                                goto out;
 746                }
 747        }
 748
 749        if (flags & I915_ACTIVE_AWAIT_BARRIER) {
 750                err = flush_lazy_signals(ref);
 751                if (err)
 752                        goto out;
 753
 754                err = __await_barrier(ref, barrier);
 755                if (err)
 756                        goto out;
 757        }
 758
 759out:
 760        i915_active_release(ref);
 761        return err;
 762}
 763
 764static int rq_await_fence(void *arg, struct dma_fence *fence)
 765{
 766        return i915_request_await_dma_fence(arg, fence);
 767}
 768
 769int i915_request_await_active(struct i915_request *rq,
 770                              struct i915_active *ref,
 771                              unsigned int flags)
 772{
 773        return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
 774}
 775
 776static int sw_await_fence(void *arg, struct dma_fence *fence)
 777{
 778        return i915_sw_fence_await_dma_fence(arg, fence, 0,
 779                                             GFP_NOWAIT | __GFP_NOWARN);
 780}
 781
 782int i915_sw_fence_await_active(struct i915_sw_fence *fence,
 783                               struct i915_active *ref,
 784                               unsigned int flags)
 785{
 786        return await_active(ref, flags, sw_await_fence, fence, fence);
 787}
 788
 789void i915_active_fini(struct i915_active *ref)
 790{
 791        debug_active_fini(ref);
 792        GEM_BUG_ON(atomic_read(&ref->count));
 793        GEM_BUG_ON(work_pending(&ref->work));
 794        mutex_destroy(&ref->mutex);
 795
 796        if (ref->cache)
 797                kmem_cache_free(global.slab_cache, ref->cache);
 798}
 799
 800static inline bool is_idle_barrier(struct active_node *node, u64 idx)
 801{
 802        return node->timeline == idx && !i915_active_fence_isset(&node->base);
 803}
 804
 805static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
 806{
 807        struct rb_node *prev, *p;
 808
 809        if (RB_EMPTY_ROOT(&ref->tree))
 810                return NULL;
 811
 812        GEM_BUG_ON(i915_active_is_idle(ref));
 813
 814        /*
 815         * Try to reuse any existing barrier nodes already allocated for this
 816         * i915_active, due to overlapping active phases there is likely a
 817         * node kept alive (as we reuse before parking). We prefer to reuse
 818         * completely idle barriers (less hassle in manipulating the llists),
 819         * but otherwise any will do.
 820         */
 821        if (ref->cache && is_idle_barrier(ref->cache, idx)) {
 822                p = &ref->cache->node;
 823                goto match;
 824        }
 825
 826        prev = NULL;
 827        p = ref->tree.rb_node;
 828        while (p) {
 829                struct active_node *node =
 830                        rb_entry(p, struct active_node, node);
 831
 832                if (is_idle_barrier(node, idx))
 833                        goto match;
 834
 835                prev = p;
 836                if (node->timeline < idx)
 837                        p = READ_ONCE(p->rb_right);
 838                else
 839                        p = READ_ONCE(p->rb_left);
 840        }
 841
 842        /*
 843         * No quick match, but we did find the leftmost rb_node for the
 844         * kernel_context. Walk the rb_tree in-order to see if there were
 845         * any idle-barriers on this timeline that we missed, or just use
 846         * the first pending barrier.
 847         */
 848        for (p = prev; p; p = rb_next(p)) {
 849                struct active_node *node =
 850                        rb_entry(p, struct active_node, node);
 851                struct intel_engine_cs *engine;
 852
 853                if (node->timeline > idx)
 854                        break;
 855
 856                if (node->timeline < idx)
 857                        continue;
 858
 859                if (is_idle_barrier(node, idx))
 860                        goto match;
 861
 862                /*
 863                 * The list of pending barriers is protected by the
 864                 * kernel_context timeline, which notably we do not hold
 865                 * here. i915_request_add_active_barriers() may consume
 866                 * the barrier before we claim it, so we have to check
 867                 * for success.
 868                 */
 869                engine = __barrier_to_engine(node);
 870                smp_rmb(); /* serialise with add_active_barriers */
 871                if (is_barrier(&node->base) &&
 872                    ____active_del_barrier(ref, node, engine))
 873                        goto match;
 874        }
 875
 876        return NULL;
 877
 878match:
 879        spin_lock_irq(&ref->tree_lock);
 880        rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
 881        if (p == &ref->cache->node)
 882                WRITE_ONCE(ref->cache, NULL);
 883        spin_unlock_irq(&ref->tree_lock);
 884
 885        return rb_entry(p, struct active_node, node);
 886}
 887
 888int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
 889                                            struct intel_engine_cs *engine)
 890{
 891        intel_engine_mask_t tmp, mask = engine->mask;
 892        struct llist_node *first = NULL, *last = NULL;
 893        struct intel_gt *gt = engine->gt;
 894
 895        GEM_BUG_ON(i915_active_is_idle(ref));
 896
 897        /* Wait until the previous preallocation is completed */
 898        while (!llist_empty(&ref->preallocated_barriers))
 899                cond_resched();
 900
 901        /*
 902         * Preallocate a node for each physical engine supporting the target
 903         * engine (remember virtual engines have more than one sibling).
 904         * We can then use the preallocated nodes in
 905         * i915_active_acquire_barrier()
 906         */
 907        GEM_BUG_ON(!mask);
 908        for_each_engine_masked(engine, gt, mask, tmp) {
 909                u64 idx = engine->kernel_context->timeline->fence_context;
 910                struct llist_node *prev = first;
 911                struct active_node *node;
 912
 913                rcu_read_lock();
 914                node = reuse_idle_barrier(ref, idx);
 915                rcu_read_unlock();
 916                if (!node) {
 917                        node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
 918                        if (!node)
 919                                goto unwind;
 920
 921                        RCU_INIT_POINTER(node->base.fence, NULL);
 922                        node->base.cb.func = node_retire;
 923                        node->timeline = idx;
 924                        node->ref = ref;
 925                }
 926
 927                if (!i915_active_fence_isset(&node->base)) {
 928                        /*
 929                         * Mark this as being *our* unconnected proto-node.
 930                         *
 931                         * Since this node is not in any list, and we have
 932                         * decoupled it from the rbtree, we can reuse the
 933                         * request to indicate this is an idle-barrier node
 934                         * and then we can use the rb_node and list pointers
 935                         * for our tracking of the pending barrier.
 936                         */
 937                        RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
 938                        node->base.cb.node.prev = (void *)engine;
 939                        __i915_active_acquire(ref);
 940                }
 941                GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
 942
 943                GEM_BUG_ON(barrier_to_engine(node) != engine);
 944                first = barrier_to_ll(node);
 945                first->next = prev;
 946                if (!last)
 947                        last = first;
 948                intel_engine_pm_get(engine);
 949        }
 950
 951        GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
 952        llist_add_batch(first, last, &ref->preallocated_barriers);
 953
 954        return 0;
 955
 956unwind:
 957        while (first) {
 958                struct active_node *node = barrier_from_ll(first);
 959
 960                first = first->next;
 961
 962                atomic_dec(&ref->count);
 963                intel_engine_pm_put(barrier_to_engine(node));
 964
 965                kmem_cache_free(global.slab_cache, node);
 966        }
 967        return -ENOMEM;
 968}
 969
 970void i915_active_acquire_barrier(struct i915_active *ref)
 971{
 972        struct llist_node *pos, *next;
 973        unsigned long flags;
 974
 975        GEM_BUG_ON(i915_active_is_idle(ref));
 976
 977        /*
 978         * Transfer the list of preallocated barriers into the
 979         * i915_active rbtree, but only as proto-nodes. They will be
 980         * populated by i915_request_add_active_barriers() to point to the
 981         * request that will eventually release them.
 982         */
 983        llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
 984                struct active_node *node = barrier_from_ll(pos);
 985                struct intel_engine_cs *engine = barrier_to_engine(node);
 986                struct rb_node **p, *parent;
 987
 988                spin_lock_irqsave_nested(&ref->tree_lock, flags,
 989                                         SINGLE_DEPTH_NESTING);
 990                parent = NULL;
 991                p = &ref->tree.rb_node;
 992                while (*p) {
 993                        struct active_node *it;
 994
 995                        parent = *p;
 996
 997                        it = rb_entry(parent, struct active_node, node);
 998                        if (it->timeline < node->timeline)
 999                                p = &parent->rb_right;
1000                        else
1001                                p = &parent->rb_left;
1002                }
1003                rb_link_node(&node->node, parent, p);
1004                rb_insert_color(&node->node, &ref->tree);
1005                spin_unlock_irqrestore(&ref->tree_lock, flags);
1006
1007                GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1008                llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1009                intel_engine_pm_put_delay(engine, 1);
1010        }
1011}
1012
1013static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1014{
1015        return __active_fence_slot(&barrier_from_ll(node)->base);
1016}
1017
1018void i915_request_add_active_barriers(struct i915_request *rq)
1019{
1020        struct intel_engine_cs *engine = rq->engine;
1021        struct llist_node *node, *next;
1022        unsigned long flags;
1023
1024        GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1025        GEM_BUG_ON(intel_engine_is_virtual(engine));
1026        GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1027
1028        node = llist_del_all(&engine->barrier_tasks);
1029        if (!node)
1030                return;
1031        /*
1032         * Attach the list of proto-fences to the in-flight request such
1033         * that the parent i915_active will be released when this request
1034         * is retired.
1035         */
1036        spin_lock_irqsave(&rq->lock, flags);
1037        llist_for_each_safe(node, next, node) {
1038                /* serialise with reuse_idle_barrier */
1039                smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1040                list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1041        }
1042        spin_unlock_irqrestore(&rq->lock, flags);
1043}
1044
1045/*
1046 * __i915_active_fence_set: Update the last active fence along its timeline
1047 * @active: the active tracker
1048 * @fence: the new fence (under construction)
1049 *
1050 * Records the new @fence as the last active fence along its timeline in
1051 * this active tracker, moving the tracking callbacks from the previous
1052 * fence onto this one. Returns the previous fence (if not already completed),
1053 * which the caller must ensure is executed before the new fence. To ensure
1054 * that the order of fences within the timeline of the i915_active_fence is
1055 * understood, it should be locked by the caller.
1056 */
1057struct dma_fence *
1058__i915_active_fence_set(struct i915_active_fence *active,
1059                        struct dma_fence *fence)
1060{
1061        struct dma_fence *prev;
1062        unsigned long flags;
1063
1064        if (fence == rcu_access_pointer(active->fence))
1065                return fence;
1066
1067        GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1068
1069        /*
1070         * Consider that we have two threads arriving (A and B), with
1071         * C already resident as the active->fence.
1072         *
1073         * A does the xchg first, and so it sees C or NULL depending
1074         * on the timing of the interrupt handler. If it is NULL, the
1075         * previous fence must have been signaled and we know that
1076         * we are first on the timeline. If it is still present,
1077         * we acquire the lock on that fence and serialise with the interrupt
1078         * handler, in the process removing it from any future interrupt
1079         * callback. A will then wait on C before executing (if present).
1080         *
1081         * As B is second, it sees A as the previous fence and so waits for
1082         * it to complete its transition and takes over the occupancy for
1083         * itself -- remembering that it needs to wait on A before executing.
1084         *
1085         * Note the strong ordering of the timeline also provides consistent
1086         * nesting rules for the fence->lock; the inner lock is always the
1087         * older lock.
1088         */
1089        spin_lock_irqsave(fence->lock, flags);
1090        prev = xchg(__active_fence_slot(active), fence);
1091        if (prev) {
1092                GEM_BUG_ON(prev == fence);
1093                spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1094                __list_del_entry(&active->cb.node);
1095                spin_unlock(prev->lock); /* serialise with prev->cb_list */
1096        }
1097        list_add_tail(&active->cb.node, &fence->cb_list);
1098        spin_unlock_irqrestore(fence->lock, flags);
1099
1100        return prev;
1101}
1102
1103int i915_active_fence_set(struct i915_active_fence *active,
1104                          struct i915_request *rq)
1105{
1106        struct dma_fence *fence;
1107        int err = 0;
1108
1109        /* Must maintain timeline ordering wrt previous active requests */
1110        rcu_read_lock();
1111        fence = __i915_active_fence_set(active, &rq->fence);
1112        if (fence) /* but the previous fence may not belong to that timeline! */
1113                fence = dma_fence_get_rcu(fence);
1114        rcu_read_unlock();
1115        if (fence) {
1116                err = i915_request_await_dma_fence(rq, fence);
1117                dma_fence_put(fence);
1118        }
1119
1120        return err;
1121}
1122
1123void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1124{
1125        active_fence_cb(fence, cb);
1126}
1127
1128struct auto_active {
1129        struct i915_active base;
1130        struct kref ref;
1131};
1132
1133struct i915_active *i915_active_get(struct i915_active *ref)
1134{
1135        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1136
1137        kref_get(&aa->ref);
1138        return &aa->base;
1139}
1140
1141static void auto_release(struct kref *ref)
1142{
1143        struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1144
1145        i915_active_fini(&aa->base);
1146        kfree(aa);
1147}
1148
1149void i915_active_put(struct i915_active *ref)
1150{
1151        struct auto_active *aa = container_of(ref, typeof(*aa), base);
1152
1153        kref_put(&aa->ref, auto_release);
1154}
1155
1156static int auto_active(struct i915_active *ref)
1157{
1158        i915_active_get(ref);
1159        return 0;
1160}
1161
1162static void auto_retire(struct i915_active *ref)
1163{
1164        i915_active_put(ref);
1165}
1166
1167struct i915_active *i915_active_create(void)
1168{
1169        struct auto_active *aa;
1170
1171        aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1172        if (!aa)
1173                return NULL;
1174
1175        kref_init(&aa->ref);
1176        i915_active_init(&aa->base, auto_active, auto_retire);
1177
1178        return &aa->base;
1179}
1180
1181#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1182#include "selftests/i915_active.c"
1183#endif
1184
1185static void i915_global_active_shrink(void)
1186{
1187        kmem_cache_shrink(global.slab_cache);
1188}
1189
1190static void i915_global_active_exit(void)
1191{
1192        kmem_cache_destroy(global.slab_cache);
1193}
1194
1195static struct i915_global_active global = { {
1196        .shrink = i915_global_active_shrink,
1197        .exit = i915_global_active_exit,
1198} };
1199
1200int __init i915_global_active_init(void)
1201{
1202        global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1203        if (!global.slab_cache)
1204                return -ENOMEM;
1205
1206        i915_global_register(&global.base);
1207        return 0;
1208}
1209