linux/drivers/gpu/drm/i915/i915_perf.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2015-2016 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *   Robert Bragg <robert@sixbynine.org>
  25 */
  26
  27
  28/**
  29 * DOC: i915 Perf Overview
  30 *
  31 * Gen graphics supports a large number of performance counters that can help
  32 * driver and application developers understand and optimize their use of the
  33 * GPU.
  34 *
  35 * This i915 perf interface enables userspace to configure and open a file
  36 * descriptor representing a stream of GPU metrics which can then be read() as
  37 * a stream of sample records.
  38 *
  39 * The interface is particularly suited to exposing buffered metrics that are
  40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
  41 *
  42 * Streams representing a single context are accessible to applications with a
  43 * corresponding drm file descriptor, such that OpenGL can use the interface
  44 * without special privileges. Access to system-wide metrics requires root
  45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
  46 * sysctl option.
  47 *
  48 */
  49
  50/**
  51 * DOC: i915 Perf History and Comparison with Core Perf
  52 *
  53 * The interface was initially inspired by the core Perf infrastructure but
  54 * some notable differences are:
  55 *
  56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
  57 * a perf event primarily corresponds to a single 64bit value, while a stream
  58 * might sample sets of tightly-coupled counters, depending on the
  59 * configuration.  For example the Gen OA unit isn't designed to support
  60 * orthogonal configurations of individual counters; it's configured for a set
  61 * of related counters. Samples for an i915 perf stream capturing OA metrics
  62 * will include a set of counter values packed in a compact HW specific format.
  63 * The OA unit supports a number of different packing formats which can be
  64 * selected by the user opening the stream. Perf has support for grouping
  65 * events, but each event in the group is configured, validated and
  66 * authenticated individually with separate system calls.
  67 *
  68 * i915 perf stream configurations are provided as an array of u64 (key,value)
  69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
  70 * interleaved with event-type specific members.
  71 *
  72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
  73 * The supported metrics are being written to memory by the GPU unsynchronized
  74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
  75 * the constraints on HW configuration require reports to be filtered before it
  76 * would be acceptable to expose them to unprivileged applications - to hide
  77 * the metrics of other processes/contexts. For these use cases a read() based
  78 * interface is a good fit, and provides an opportunity to filter data as it
  79 * gets copied from the GPU mapped buffers to userspace buffers.
  80 *
  81 *
  82 * Issues hit with first prototype based on Core Perf
  83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  84 *
  85 * The first prototype of this driver was based on the core perf
  86 * infrastructure, and while we did make that mostly work, with some changes to
  87 * perf, we found we were breaking or working around too many assumptions baked
  88 * into perf's currently cpu centric design.
  89 *
  90 * In the end we didn't see a clear benefit to making perf's implementation and
  91 * interface more complex by changing design assumptions while we knew we still
  92 * wouldn't be able to use any existing perf based userspace tools.
  93 *
  94 * Also considering the Gen specific nature of the Observability hardware and
  95 * how userspace will sometimes need to combine i915 perf OA metrics with
  96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
  97 * expecting the interface to be used by a platform specific userspace such as
  98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
  99 * a standard vendor/architecture agnostic interface by not using perf.
 100 *
 101 *
 102 * For posterity, in case we might re-visit trying to adapt core perf to be
 103 * better suited to exposing i915 metrics these were the main pain points we
 104 * hit:
 105 *
 106 * - The perf based OA PMU driver broke some significant design assumptions:
 107 *
 108 *   Existing perf pmus are used for profiling work on a cpu and we were
 109 *   introducing the idea of _IS_DEVICE pmus with different security
 110 *   implications, the need to fake cpu-related data (such as user/kernel
 111 *   registers) to fit with perf's current design, and adding _DEVICE records
 112 *   as a way to forward device-specific status records.
 113 *
 114 *   The OA unit writes reports of counters into a circular buffer, without
 115 *   involvement from the CPU, making our PMU driver the first of a kind.
 116 *
 117 *   Given the way we were periodically forward data from the GPU-mapped, OA
 118 *   buffer to perf's buffer, those bursts of sample writes looked to perf like
 119 *   we were sampling too fast and so we had to subvert its throttling checks.
 120 *
 121 *   Perf supports groups of counters and allows those to be read via
 122 *   transactions internally but transactions currently seem designed to be
 123 *   explicitly initiated from the cpu (say in response to a userspace read())
 124 *   and while we could pull a report out of the OA buffer we can't
 125 *   trigger a report from the cpu on demand.
 126 *
 127 *   Related to being report based; the OA counters are configured in HW as a
 128 *   set while perf generally expects counter configurations to be orthogonal.
 129 *   Although counters can be associated with a group leader as they are
 130 *   opened, there's no clear precedent for being able to provide group-wide
 131 *   configuration attributes (for example we want to let userspace choose the
 132 *   OA unit report format used to capture all counters in a set, or specify a
 133 *   GPU context to filter metrics on). We avoided using perf's grouping
 134 *   feature and forwarded OA reports to userspace via perf's 'raw' sample
 135 *   field. This suited our userspace well considering how coupled the counters
 136 *   are when dealing with normalizing. It would be inconvenient to split
 137 *   counters up into separate events, only to require userspace to recombine
 138 *   them. For Mesa it's also convenient to be forwarded raw, periodic reports
 139 *   for combining with the side-band raw reports it captures using
 140 *   MI_REPORT_PERF_COUNT commands.
 141 *
 142 *   - As a side note on perf's grouping feature; there was also some concern
 143 *     that using PERF_FORMAT_GROUP as a way to pack together counter values
 144 *     would quite drastically inflate our sample sizes, which would likely
 145 *     lower the effective sampling resolutions we could use when the available
 146 *     memory bandwidth is limited.
 147 *
 148 *     With the OA unit's report formats, counters are packed together as 32
 149 *     or 40bit values, with the largest report size being 256 bytes.
 150 *
 151 *     PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
 152 *     documented ordering to the values, implying PERF_FORMAT_ID must also be
 153 *     used to add a 64bit ID before each value; giving 16 bytes per counter.
 154 *
 155 *   Related to counter orthogonality; we can't time share the OA unit, while
 156 *   event scheduling is a central design idea within perf for allowing
 157 *   userspace to open + enable more events than can be configured in HW at any
 158 *   one time.  The OA unit is not designed to allow re-configuration while in
 159 *   use. We can't reconfigure the OA unit without losing internal OA unit
 160 *   state which we can't access explicitly to save and restore. Reconfiguring
 161 *   the OA unit is also relatively slow, involving ~100 register writes. From
 162 *   userspace Mesa also depends on a stable OA configuration when emitting
 163 *   MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
 164 *   disabled while there are outstanding MI_RPC commands lest we hang the
 165 *   command streamer.
 166 *
 167 *   The contents of sample records aren't extensible by device drivers (i.e.
 168 *   the sample_type bits). As an example; Sourab Gupta had been looking to
 169 *   attach GPU timestamps to our OA samples. We were shoehorning OA reports
 170 *   into sample records by using the 'raw' field, but it's tricky to pack more
 171 *   than one thing into this field because events/core.c currently only lets a
 172 *   pmu give a single raw data pointer plus len which will be copied into the
 173 *   ring buffer. To include more than the OA report we'd have to copy the
 174 *   report into an intermediate larger buffer. I'd been considering allowing a
 175 *   vector of data+len values to be specified for copying the raw data, but
 176 *   it felt like a kludge to being using the raw field for this purpose.
 177 *
 178 * - It felt like our perf based PMU was making some technical compromises
 179 *   just for the sake of using perf:
 180 *
 181 *   perf_event_open() requires events to either relate to a pid or a specific
 182 *   cpu core, while our device pmu related to neither.  Events opened with a
 183 *   pid will be automatically enabled/disabled according to the scheduling of
 184 *   that process - so not appropriate for us. When an event is related to a
 185 *   cpu id, perf ensures pmu methods will be invoked via an inter process
 186 *   interrupt on that core. To avoid invasive changes our userspace opened OA
 187 *   perf events for a specific cpu. This was workable but it meant the
 188 *   majority of the OA driver ran in atomic context, including all OA report
 189 *   forwarding, which wasn't really necessary in our case and seems to make
 190 *   our locking requirements somewhat complex as we handled the interaction
 191 *   with the rest of the i915 driver.
 192 */
 193
 194#include <linux/anon_inodes.h>
 195#include <linux/sizes.h>
 196#include <linux/uuid.h>
 197
 198#include "gem/i915_gem_context.h"
 199#include "gt/intel_engine_pm.h"
 200#include "gt/intel_engine_user.h"
 201#include "gt/intel_gt.h"
 202#include "gt/intel_lrc_reg.h"
 203#include "gt/intel_ring.h"
 204
 205#include "i915_drv.h"
 206#include "i915_perf.h"
 207
 208/* HW requires this to be a power of two, between 128k and 16M, though driver
 209 * is currently generally designed assuming the largest 16M size is used such
 210 * that the overflow cases are unlikely in normal operation.
 211 */
 212#define OA_BUFFER_SIZE          SZ_16M
 213
 214#define OA_TAKEN(tail, head)    ((tail - head) & (OA_BUFFER_SIZE - 1))
 215
 216/**
 217 * DOC: OA Tail Pointer Race
 218 *
 219 * There's a HW race condition between OA unit tail pointer register updates and
 220 * writes to memory whereby the tail pointer can sometimes get ahead of what's
 221 * been written out to the OA buffer so far (in terms of what's visible to the
 222 * CPU).
 223 *
 224 * Although this can be observed explicitly while copying reports to userspace
 225 * by checking for a zeroed report-id field in tail reports, we want to account
 226 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
 227 * redundant read() attempts.
 228 *
 229 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
 230 * in the OA buffer, starting from the tail reported by the HW until we find a
 231 * report with its first 2 dwords not 0 meaning its previous report is
 232 * completely in memory and ready to be read. Those dwords are also set to 0
 233 * once read and the whole buffer is cleared upon OA buffer initialization. The
 234 * first dword is the reason for this report while the second is the timestamp,
 235 * making the chances of having those 2 fields at 0 fairly unlikely. A more
 236 * detailed explanation is available in oa_buffer_check_unlocked().
 237 *
 238 * Most of the implementation details for this workaround are in
 239 * oa_buffer_check_unlocked() and _append_oa_reports()
 240 *
 241 * Note for posterity: previously the driver used to define an effective tail
 242 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
 243 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
 244 * This was flawed considering that the OA unit may also automatically generate
 245 * non-periodic reports (such as on context switch) or the OA unit may be
 246 * enabled without any periodic sampling.
 247 */
 248#define OA_TAIL_MARGIN_NSEC     100000ULL
 249#define INVALID_TAIL_PTR        0xffffffff
 250
 251/* The default frequency for checking whether the OA unit has written new
 252 * reports to the circular OA buffer...
 253 */
 254#define DEFAULT_POLL_FREQUENCY_HZ 200
 255#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
 256
 257/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
 258static u32 i915_perf_stream_paranoid = true;
 259
 260/* The maximum exponent the hardware accepts is 63 (essentially it selects one
 261 * of the 64bit timestamp bits to trigger reports from) but there's currently
 262 * no known use case for sampling as infrequently as once per 47 thousand years.
 263 *
 264 * Since the timestamps included in OA reports are only 32bits it seems
 265 * reasonable to limit the OA exponent where it's still possible to account for
 266 * overflow in OA report timestamps.
 267 */
 268#define OA_EXPONENT_MAX 31
 269
 270#define INVALID_CTX_ID 0xffffffff
 271
 272/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
 273#define OAREPORT_REASON_MASK           0x3f
 274#define OAREPORT_REASON_MASK_EXTENDED  0x7f
 275#define OAREPORT_REASON_SHIFT          19
 276#define OAREPORT_REASON_TIMER          (1<<0)
 277#define OAREPORT_REASON_CTX_SWITCH     (1<<3)
 278#define OAREPORT_REASON_CLK_RATIO      (1<<5)
 279
 280
 281/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
 282 *
 283 * The highest sampling frequency we can theoretically program the OA unit
 284 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
 285 *
 286 * Initialized just before we register the sysctl parameter.
 287 */
 288static int oa_sample_rate_hard_limit;
 289
 290/* Theoretically we can program the OA unit to sample every 160ns but don't
 291 * allow that by default unless root...
 292 *
 293 * The default threshold of 100000Hz is based on perf's similar
 294 * kernel.perf_event_max_sample_rate sysctl parameter.
 295 */
 296static u32 i915_oa_max_sample_rate = 100000;
 297
 298/* XXX: beware if future OA HW adds new report formats that the current
 299 * code assumes all reports have a power-of-two size and ~(size - 1) can
 300 * be used as a mask to align the OA tail pointer.
 301 */
 302static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
 303        [I915_OA_FORMAT_A13]        = { 0, 64 },
 304        [I915_OA_FORMAT_A29]        = { 1, 128 },
 305        [I915_OA_FORMAT_A13_B8_C8]  = { 2, 128 },
 306        /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
 307        [I915_OA_FORMAT_B4_C8]      = { 4, 64 },
 308        [I915_OA_FORMAT_A45_B8_C8]  = { 5, 256 },
 309        [I915_OA_FORMAT_B4_C8_A16]  = { 6, 128 },
 310        [I915_OA_FORMAT_C4_B8]      = { 7, 64 },
 311};
 312
 313static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
 314        [I915_OA_FORMAT_A12]                = { 0, 64 },
 315        [I915_OA_FORMAT_A12_B8_C8]          = { 2, 128 },
 316        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 317        [I915_OA_FORMAT_C4_B8]              = { 7, 64 },
 318};
 319
 320static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
 321        [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
 322};
 323
 324#define SAMPLE_OA_REPORT      (1<<0)
 325
 326/**
 327 * struct perf_open_properties - for validated properties given to open a stream
 328 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
 329 * @single_context: Whether a single or all gpu contexts should be monitored
 330 * @hold_preemption: Whether the preemption is disabled for the filtered
 331 *                   context
 332 * @ctx_handle: A gem ctx handle for use with @single_context
 333 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
 334 * @oa_format: An OA unit HW report format
 335 * @oa_periodic: Whether to enable periodic OA unit sampling
 336 * @oa_period_exponent: The OA unit sampling period is derived from this
 337 * @engine: The engine (typically rcs0) being monitored by the OA unit
 338 * @has_sseu: Whether @sseu was specified by userspace
 339 * @sseu: internal SSEU configuration computed either from the userspace
 340 *        specified configuration in the opening parameters or a default value
 341 *        (see get_default_sseu_config())
 342 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
 343 * data availability
 344 *
 345 * As read_properties_unlocked() enumerates and validates the properties given
 346 * to open a stream of metrics the configuration is built up in the structure
 347 * which starts out zero initialized.
 348 */
 349struct perf_open_properties {
 350        u32 sample_flags;
 351
 352        u64 single_context:1;
 353        u64 hold_preemption:1;
 354        u64 ctx_handle;
 355
 356        /* OA sampling state */
 357        int metrics_set;
 358        int oa_format;
 359        bool oa_periodic;
 360        int oa_period_exponent;
 361
 362        struct intel_engine_cs *engine;
 363
 364        bool has_sseu;
 365        struct intel_sseu sseu;
 366
 367        u64 poll_oa_period;
 368};
 369
 370struct i915_oa_config_bo {
 371        struct llist_node node;
 372
 373        struct i915_oa_config *oa_config;
 374        struct i915_vma *vma;
 375};
 376
 377static struct ctl_table_header *sysctl_header;
 378
 379static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
 380
 381void i915_oa_config_release(struct kref *ref)
 382{
 383        struct i915_oa_config *oa_config =
 384                container_of(ref, typeof(*oa_config), ref);
 385
 386        kfree(oa_config->flex_regs);
 387        kfree(oa_config->b_counter_regs);
 388        kfree(oa_config->mux_regs);
 389
 390        kfree_rcu(oa_config, rcu);
 391}
 392
 393struct i915_oa_config *
 394i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
 395{
 396        struct i915_oa_config *oa_config;
 397
 398        rcu_read_lock();
 399        oa_config = idr_find(&perf->metrics_idr, metrics_set);
 400        if (oa_config)
 401                oa_config = i915_oa_config_get(oa_config);
 402        rcu_read_unlock();
 403
 404        return oa_config;
 405}
 406
 407static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
 408{
 409        i915_oa_config_put(oa_bo->oa_config);
 410        i915_vma_put(oa_bo->vma);
 411        kfree(oa_bo);
 412}
 413
 414static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
 415{
 416        struct intel_uncore *uncore = stream->uncore;
 417
 418        return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
 419               GEN12_OAG_OATAILPTR_MASK;
 420}
 421
 422static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
 423{
 424        struct intel_uncore *uncore = stream->uncore;
 425
 426        return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
 427}
 428
 429static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
 430{
 431        struct intel_uncore *uncore = stream->uncore;
 432        u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
 433
 434        return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
 435}
 436
 437/**
 438 * oa_buffer_check_unlocked - check for data and update tail ptr state
 439 * @stream: i915 stream instance
 440 *
 441 * This is either called via fops (for blocking reads in user ctx) or the poll
 442 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
 443 * if there is data available for userspace to read.
 444 *
 445 * This function is central to providing a workaround for the OA unit tail
 446 * pointer having a race with respect to what data is visible to the CPU.
 447 * It is responsible for reading tail pointers from the hardware and giving
 448 * the pointers time to 'age' before they are made available for reading.
 449 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
 450 *
 451 * Besides returning true when there is data available to read() this function
 452 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
 453 * object.
 454 *
 455 * Note: It's safe to read OA config state here unlocked, assuming that this is
 456 * only called while the stream is enabled, while the global OA configuration
 457 * can't be modified.
 458 *
 459 * Returns: %true if the OA buffer contains data, else %false
 460 */
 461static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
 462{
 463        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 464        int report_size = stream->oa_buffer.format_size;
 465        unsigned long flags;
 466        bool pollin;
 467        u32 hw_tail;
 468        u64 now;
 469
 470        /* We have to consider the (unlikely) possibility that read() errors
 471         * could result in an OA buffer reset which might reset the head and
 472         * tail state.
 473         */
 474        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 475
 476        hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
 477
 478        /* The tail pointer increases in 64 byte increments,
 479         * not in report_size steps...
 480         */
 481        hw_tail &= ~(report_size - 1);
 482
 483        now = ktime_get_mono_fast_ns();
 484
 485        if (hw_tail == stream->oa_buffer.aging_tail &&
 486            (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
 487                /* If the HW tail hasn't move since the last check and the HW
 488                 * tail has been aging for long enough, declare it the new
 489                 * tail.
 490                 */
 491                stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
 492        } else {
 493                u32 head, tail, aged_tail;
 494
 495                /* NB: The head we observe here might effectively be a little
 496                 * out of date. If a read() is in progress, the head could be
 497                 * anywhere between this head and stream->oa_buffer.tail.
 498                 */
 499                head = stream->oa_buffer.head - gtt_offset;
 500                aged_tail = stream->oa_buffer.tail - gtt_offset;
 501
 502                hw_tail -= gtt_offset;
 503                tail = hw_tail;
 504
 505                /* Walk the stream backward until we find a report with dword 0
 506                 * & 1 not at 0. Since the circular buffer pointers progress by
 507                 * increments of 64 bytes and that reports can be up to 256
 508                 * bytes long, we can't tell whether a report has fully landed
 509                 * in memory before the first 2 dwords of the following report
 510                 * have effectively landed.
 511                 *
 512                 * This is assuming that the writes of the OA unit land in
 513                 * memory in the order they were written to.
 514                 * If not : (╯°□°)╯︵ ┻━┻
 515                 */
 516                while (OA_TAKEN(tail, aged_tail) >= report_size) {
 517                        u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
 518
 519                        if (report32[0] != 0 || report32[1] != 0)
 520                                break;
 521
 522                        tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
 523                }
 524
 525                if (OA_TAKEN(hw_tail, tail) > report_size &&
 526                    __ratelimit(&stream->perf->tail_pointer_race))
 527                        DRM_NOTE("unlanded report(s) head=0x%x "
 528                                 "tail=0x%x hw_tail=0x%x\n",
 529                                 head, tail, hw_tail);
 530
 531                stream->oa_buffer.tail = gtt_offset + tail;
 532                stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
 533                stream->oa_buffer.aging_timestamp = now;
 534        }
 535
 536        pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
 537                          stream->oa_buffer.head - gtt_offset) >= report_size;
 538
 539        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 540
 541        return pollin;
 542}
 543
 544/**
 545 * append_oa_status - Appends a status record to a userspace read() buffer.
 546 * @stream: An i915-perf stream opened for OA metrics
 547 * @buf: destination buffer given by userspace
 548 * @count: the number of bytes userspace wants to read
 549 * @offset: (inout): the current position for writing into @buf
 550 * @type: The kind of status to report to userspace
 551 *
 552 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
 553 * into the userspace read() buffer.
 554 *
 555 * The @buf @offset will only be updated on success.
 556 *
 557 * Returns: 0 on success, negative error code on failure.
 558 */
 559static int append_oa_status(struct i915_perf_stream *stream,
 560                            char __user *buf,
 561                            size_t count,
 562                            size_t *offset,
 563                            enum drm_i915_perf_record_type type)
 564{
 565        struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
 566
 567        if ((count - *offset) < header.size)
 568                return -ENOSPC;
 569
 570        if (copy_to_user(buf + *offset, &header, sizeof(header)))
 571                return -EFAULT;
 572
 573        (*offset) += header.size;
 574
 575        return 0;
 576}
 577
 578/**
 579 * append_oa_sample - Copies single OA report into userspace read() buffer.
 580 * @stream: An i915-perf stream opened for OA metrics
 581 * @buf: destination buffer given by userspace
 582 * @count: the number of bytes userspace wants to read
 583 * @offset: (inout): the current position for writing into @buf
 584 * @report: A single OA report to (optionally) include as part of the sample
 585 *
 586 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
 587 * properties when opening a stream, tracked as `stream->sample_flags`. This
 588 * function copies the requested components of a single sample to the given
 589 * read() @buf.
 590 *
 591 * The @buf @offset will only be updated on success.
 592 *
 593 * Returns: 0 on success, negative error code on failure.
 594 */
 595static int append_oa_sample(struct i915_perf_stream *stream,
 596                            char __user *buf,
 597                            size_t count,
 598                            size_t *offset,
 599                            const u8 *report)
 600{
 601        int report_size = stream->oa_buffer.format_size;
 602        struct drm_i915_perf_record_header header;
 603        u32 sample_flags = stream->sample_flags;
 604
 605        header.type = DRM_I915_PERF_RECORD_SAMPLE;
 606        header.pad = 0;
 607        header.size = stream->sample_size;
 608
 609        if ((count - *offset) < header.size)
 610                return -ENOSPC;
 611
 612        buf += *offset;
 613        if (copy_to_user(buf, &header, sizeof(header)))
 614                return -EFAULT;
 615        buf += sizeof(header);
 616
 617        if (sample_flags & SAMPLE_OA_REPORT) {
 618                if (copy_to_user(buf, report, report_size))
 619                        return -EFAULT;
 620        }
 621
 622        (*offset) += header.size;
 623
 624        return 0;
 625}
 626
 627/**
 628 * gen8_append_oa_reports - Copies all buffered OA reports into
 629 *                          userspace read() buffer.
 630 * @stream: An i915-perf stream opened for OA metrics
 631 * @buf: destination buffer given by userspace
 632 * @count: the number of bytes userspace wants to read
 633 * @offset: (inout): the current position for writing into @buf
 634 *
 635 * Notably any error condition resulting in a short read (-%ENOSPC or
 636 * -%EFAULT) will be returned even though one or more records may
 637 * have been successfully copied. In this case it's up to the caller
 638 * to decide if the error should be squashed before returning to
 639 * userspace.
 640 *
 641 * Note: reports are consumed from the head, and appended to the
 642 * tail, so the tail chases the head?... If you think that's mad
 643 * and back-to-front you're not alone, but this follows the
 644 * Gen PRM naming convention.
 645 *
 646 * Returns: 0 on success, negative error code on failure.
 647 */
 648static int gen8_append_oa_reports(struct i915_perf_stream *stream,
 649                                  char __user *buf,
 650                                  size_t count,
 651                                  size_t *offset)
 652{
 653        struct intel_uncore *uncore = stream->uncore;
 654        int report_size = stream->oa_buffer.format_size;
 655        u8 *oa_buf_base = stream->oa_buffer.vaddr;
 656        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 657        u32 mask = (OA_BUFFER_SIZE - 1);
 658        size_t start_offset = *offset;
 659        unsigned long flags;
 660        u32 head, tail;
 661        u32 taken;
 662        int ret = 0;
 663
 664        if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
 665                return -EIO;
 666
 667        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 668
 669        head = stream->oa_buffer.head;
 670        tail = stream->oa_buffer.tail;
 671
 672        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 673
 674        /*
 675         * NB: oa_buffer.head/tail include the gtt_offset which we don't want
 676         * while indexing relative to oa_buf_base.
 677         */
 678        head -= gtt_offset;
 679        tail -= gtt_offset;
 680
 681        /*
 682         * An out of bounds or misaligned head or tail pointer implies a driver
 683         * bug since we validate + align the tail pointers we read from the
 684         * hardware and we are in full control of the head pointer which should
 685         * only be incremented by multiples of the report size (notably also
 686         * all a power of two).
 687         */
 688        if (drm_WARN_ONCE(&uncore->i915->drm,
 689                          head > OA_BUFFER_SIZE || head % report_size ||
 690                          tail > OA_BUFFER_SIZE || tail % report_size,
 691                          "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 692                          head, tail))
 693                return -EIO;
 694
 695
 696        for (/* none */;
 697             (taken = OA_TAKEN(tail, head));
 698             head = (head + report_size) & mask) {
 699                u8 *report = oa_buf_base + head;
 700                u32 *report32 = (void *)report;
 701                u32 ctx_id;
 702                u32 reason;
 703
 704                /*
 705                 * All the report sizes factor neatly into the buffer
 706                 * size so we never expect to see a report split
 707                 * between the beginning and end of the buffer.
 708                 *
 709                 * Given the initial alignment check a misalignment
 710                 * here would imply a driver bug that would result
 711                 * in an overrun.
 712                 */
 713                if (drm_WARN_ON(&uncore->i915->drm,
 714                                (OA_BUFFER_SIZE - head) < report_size)) {
 715                        drm_err(&uncore->i915->drm,
 716                                "Spurious OA head ptr: non-integral report offset\n");
 717                        break;
 718                }
 719
 720                /*
 721                 * The reason field includes flags identifying what
 722                 * triggered this specific report (mostly timer
 723                 * triggered or e.g. due to a context switch).
 724                 *
 725                 * This field is never expected to be zero so we can
 726                 * check that the report isn't invalid before copying
 727                 * it to userspace...
 728                 */
 729                reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
 730                          (IS_GEN(stream->perf->i915, 12) ?
 731                           OAREPORT_REASON_MASK_EXTENDED :
 732                           OAREPORT_REASON_MASK));
 733                if (reason == 0) {
 734                        if (__ratelimit(&stream->perf->spurious_report_rs))
 735                                DRM_NOTE("Skipping spurious, invalid OA report\n");
 736                        continue;
 737                }
 738
 739                ctx_id = report32[2] & stream->specific_ctx_id_mask;
 740
 741                /*
 742                 * Squash whatever is in the CTX_ID field if it's marked as
 743                 * invalid to be sure we avoid false-positive, single-context
 744                 * filtering below...
 745                 *
 746                 * Note: that we don't clear the valid_ctx_bit so userspace can
 747                 * understand that the ID has been squashed by the kernel.
 748                 */
 749                if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
 750                    INTEL_GEN(stream->perf->i915) <= 11)
 751                        ctx_id = report32[2] = INVALID_CTX_ID;
 752
 753                /*
 754                 * NB: For Gen 8 the OA unit no longer supports clock gating
 755                 * off for a specific context and the kernel can't securely
 756                 * stop the counters from updating as system-wide / global
 757                 * values.
 758                 *
 759                 * Automatic reports now include a context ID so reports can be
 760                 * filtered on the cpu but it's not worth trying to
 761                 * automatically subtract/hide counter progress for other
 762                 * contexts while filtering since we can't stop userspace
 763                 * issuing MI_REPORT_PERF_COUNT commands which would still
 764                 * provide a side-band view of the real values.
 765                 *
 766                 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
 767                 * to normalize counters for a single filtered context then it
 768                 * needs be forwarded bookend context-switch reports so that it
 769                 * can track switches in between MI_REPORT_PERF_COUNT commands
 770                 * and can itself subtract/ignore the progress of counters
 771                 * associated with other contexts. Note that the hardware
 772                 * automatically triggers reports when switching to a new
 773                 * context which are tagged with the ID of the newly active
 774                 * context. To avoid the complexity (and likely fragility) of
 775                 * reading ahead while parsing reports to try and minimize
 776                 * forwarding redundant context switch reports (i.e. between
 777                 * other, unrelated contexts) we simply elect to forward them
 778                 * all.
 779                 *
 780                 * We don't rely solely on the reason field to identify context
 781                 * switches since it's not-uncommon for periodic samples to
 782                 * identify a switch before any 'context switch' report.
 783                 */
 784                if (!stream->perf->exclusive_stream->ctx ||
 785                    stream->specific_ctx_id == ctx_id ||
 786                    stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
 787                    reason & OAREPORT_REASON_CTX_SWITCH) {
 788
 789                        /*
 790                         * While filtering for a single context we avoid
 791                         * leaking the IDs of other contexts.
 792                         */
 793                        if (stream->perf->exclusive_stream->ctx &&
 794                            stream->specific_ctx_id != ctx_id) {
 795                                report32[2] = INVALID_CTX_ID;
 796                        }
 797
 798                        ret = append_oa_sample(stream, buf, count, offset,
 799                                               report);
 800                        if (ret)
 801                                break;
 802
 803                        stream->oa_buffer.last_ctx_id = ctx_id;
 804                }
 805
 806                /*
 807                 * Clear out the first 2 dword as a mean to detect unlanded
 808                 * reports.
 809                 */
 810                report32[0] = 0;
 811                report32[1] = 0;
 812        }
 813
 814        if (start_offset != *offset) {
 815                i915_reg_t oaheadptr;
 816
 817                oaheadptr = IS_GEN(stream->perf->i915, 12) ?
 818                            GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
 819
 820                spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 821
 822                /*
 823                 * We removed the gtt_offset for the copy loop above, indexing
 824                 * relative to oa_buf_base so put back here...
 825                 */
 826                head += gtt_offset;
 827                intel_uncore_write(uncore, oaheadptr,
 828                                   head & GEN12_OAG_OAHEADPTR_MASK);
 829                stream->oa_buffer.head = head;
 830
 831                spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 832        }
 833
 834        return ret;
 835}
 836
 837/**
 838 * gen8_oa_read - copy status records then buffered OA reports
 839 * @stream: An i915-perf stream opened for OA metrics
 840 * @buf: destination buffer given by userspace
 841 * @count: the number of bytes userspace wants to read
 842 * @offset: (inout): the current position for writing into @buf
 843 *
 844 * Checks OA unit status registers and if necessary appends corresponding
 845 * status records for userspace (such as for a buffer full condition) and then
 846 * initiate appending any buffered OA reports.
 847 *
 848 * Updates @offset according to the number of bytes successfully copied into
 849 * the userspace buffer.
 850 *
 851 * NB: some data may be successfully copied to the userspace buffer
 852 * even if an error is returned, and this is reflected in the
 853 * updated @offset.
 854 *
 855 * Returns: zero on success or a negative error code
 856 */
 857static int gen8_oa_read(struct i915_perf_stream *stream,
 858                        char __user *buf,
 859                        size_t count,
 860                        size_t *offset)
 861{
 862        struct intel_uncore *uncore = stream->uncore;
 863        u32 oastatus;
 864        i915_reg_t oastatus_reg;
 865        int ret;
 866
 867        if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
 868                return -EIO;
 869
 870        oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
 871                       GEN12_OAG_OASTATUS : GEN8_OASTATUS;
 872
 873        oastatus = intel_uncore_read(uncore, oastatus_reg);
 874
 875        /*
 876         * We treat OABUFFER_OVERFLOW as a significant error:
 877         *
 878         * Although theoretically we could handle this more gracefully
 879         * sometimes, some Gens don't correctly suppress certain
 880         * automatically triggered reports in this condition and so we
 881         * have to assume that old reports are now being trampled
 882         * over.
 883         *
 884         * Considering how we don't currently give userspace control
 885         * over the OA buffer size and always configure a large 16MB
 886         * buffer, then a buffer overflow does anyway likely indicate
 887         * that something has gone quite badly wrong.
 888         */
 889        if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
 890                ret = append_oa_status(stream, buf, count, offset,
 891                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
 892                if (ret)
 893                        return ret;
 894
 895                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
 896                          stream->period_exponent);
 897
 898                stream->perf->ops.oa_disable(stream);
 899                stream->perf->ops.oa_enable(stream);
 900
 901                /*
 902                 * Note: .oa_enable() is expected to re-init the oabuffer and
 903                 * reset GEN8_OASTATUS for us
 904                 */
 905                oastatus = intel_uncore_read(uncore, oastatus_reg);
 906        }
 907
 908        if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
 909                ret = append_oa_status(stream, buf, count, offset,
 910                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
 911                if (ret)
 912                        return ret;
 913
 914                intel_uncore_rmw(uncore, oastatus_reg,
 915                                 GEN8_OASTATUS_COUNTER_OVERFLOW |
 916                                 GEN8_OASTATUS_REPORT_LOST,
 917                                 IS_GEN_RANGE(uncore->i915, 8, 11) ?
 918                                 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
 919                                  GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
 920        }
 921
 922        return gen8_append_oa_reports(stream, buf, count, offset);
 923}
 924
 925/**
 926 * gen7_append_oa_reports - Copies all buffered OA reports into
 927 *                          userspace read() buffer.
 928 * @stream: An i915-perf stream opened for OA metrics
 929 * @buf: destination buffer given by userspace
 930 * @count: the number of bytes userspace wants to read
 931 * @offset: (inout): the current position for writing into @buf
 932 *
 933 * Notably any error condition resulting in a short read (-%ENOSPC or
 934 * -%EFAULT) will be returned even though one or more records may
 935 * have been successfully copied. In this case it's up to the caller
 936 * to decide if the error should be squashed before returning to
 937 * userspace.
 938 *
 939 * Note: reports are consumed from the head, and appended to the
 940 * tail, so the tail chases the head?... If you think that's mad
 941 * and back-to-front you're not alone, but this follows the
 942 * Gen PRM naming convention.
 943 *
 944 * Returns: 0 on success, negative error code on failure.
 945 */
 946static int gen7_append_oa_reports(struct i915_perf_stream *stream,
 947                                  char __user *buf,
 948                                  size_t count,
 949                                  size_t *offset)
 950{
 951        struct intel_uncore *uncore = stream->uncore;
 952        int report_size = stream->oa_buffer.format_size;
 953        u8 *oa_buf_base = stream->oa_buffer.vaddr;
 954        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
 955        u32 mask = (OA_BUFFER_SIZE - 1);
 956        size_t start_offset = *offset;
 957        unsigned long flags;
 958        u32 head, tail;
 959        u32 taken;
 960        int ret = 0;
 961
 962        if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
 963                return -EIO;
 964
 965        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
 966
 967        head = stream->oa_buffer.head;
 968        tail = stream->oa_buffer.tail;
 969
 970        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
 971
 972        /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
 973         * while indexing relative to oa_buf_base.
 974         */
 975        head -= gtt_offset;
 976        tail -= gtt_offset;
 977
 978        /* An out of bounds or misaligned head or tail pointer implies a driver
 979         * bug since we validate + align the tail pointers we read from the
 980         * hardware and we are in full control of the head pointer which should
 981         * only be incremented by multiples of the report size (notably also
 982         * all a power of two).
 983         */
 984        if (drm_WARN_ONCE(&uncore->i915->drm,
 985                          head > OA_BUFFER_SIZE || head % report_size ||
 986                          tail > OA_BUFFER_SIZE || tail % report_size,
 987                          "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
 988                          head, tail))
 989                return -EIO;
 990
 991
 992        for (/* none */;
 993             (taken = OA_TAKEN(tail, head));
 994             head = (head + report_size) & mask) {
 995                u8 *report = oa_buf_base + head;
 996                u32 *report32 = (void *)report;
 997
 998                /* All the report sizes factor neatly into the buffer
 999                 * size so we never expect to see a report split
1000                 * between the beginning and end of the buffer.
1001                 *
1002                 * Given the initial alignment check a misalignment
1003                 * here would imply a driver bug that would result
1004                 * in an overrun.
1005                 */
1006                if (drm_WARN_ON(&uncore->i915->drm,
1007                                (OA_BUFFER_SIZE - head) < report_size)) {
1008                        drm_err(&uncore->i915->drm,
1009                                "Spurious OA head ptr: non-integral report offset\n");
1010                        break;
1011                }
1012
1013                /* The report-ID field for periodic samples includes
1014                 * some undocumented flags related to what triggered
1015                 * the report and is never expected to be zero so we
1016                 * can check that the report isn't invalid before
1017                 * copying it to userspace...
1018                 */
1019                if (report32[0] == 0) {
1020                        if (__ratelimit(&stream->perf->spurious_report_rs))
1021                                DRM_NOTE("Skipping spurious, invalid OA report\n");
1022                        continue;
1023                }
1024
1025                ret = append_oa_sample(stream, buf, count, offset, report);
1026                if (ret)
1027                        break;
1028
1029                /* Clear out the first 2 dwords as a mean to detect unlanded
1030                 * reports.
1031                 */
1032                report32[0] = 0;
1033                report32[1] = 0;
1034        }
1035
1036        if (start_offset != *offset) {
1037                spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1038
1039                /* We removed the gtt_offset for the copy loop above, indexing
1040                 * relative to oa_buf_base so put back here...
1041                 */
1042                head += gtt_offset;
1043
1044                intel_uncore_write(uncore, GEN7_OASTATUS2,
1045                                   (head & GEN7_OASTATUS2_HEAD_MASK) |
1046                                   GEN7_OASTATUS2_MEM_SELECT_GGTT);
1047                stream->oa_buffer.head = head;
1048
1049                spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1050        }
1051
1052        return ret;
1053}
1054
1055/**
1056 * gen7_oa_read - copy status records then buffered OA reports
1057 * @stream: An i915-perf stream opened for OA metrics
1058 * @buf: destination buffer given by userspace
1059 * @count: the number of bytes userspace wants to read
1060 * @offset: (inout): the current position for writing into @buf
1061 *
1062 * Checks Gen 7 specific OA unit status registers and if necessary appends
1063 * corresponding status records for userspace (such as for a buffer full
1064 * condition) and then initiate appending any buffered OA reports.
1065 *
1066 * Updates @offset according to the number of bytes successfully copied into
1067 * the userspace buffer.
1068 *
1069 * Returns: zero on success or a negative error code
1070 */
1071static int gen7_oa_read(struct i915_perf_stream *stream,
1072                        char __user *buf,
1073                        size_t count,
1074                        size_t *offset)
1075{
1076        struct intel_uncore *uncore = stream->uncore;
1077        u32 oastatus1;
1078        int ret;
1079
1080        if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1081                return -EIO;
1082
1083        oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1084
1085        /* XXX: On Haswell we don't have a safe way to clear oastatus1
1086         * bits while the OA unit is enabled (while the tail pointer
1087         * may be updated asynchronously) so we ignore status bits
1088         * that have already been reported to userspace.
1089         */
1090        oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1091
1092        /* We treat OABUFFER_OVERFLOW as a significant error:
1093         *
1094         * - The status can be interpreted to mean that the buffer is
1095         *   currently full (with a higher precedence than OA_TAKEN()
1096         *   which will start to report a near-empty buffer after an
1097         *   overflow) but it's awkward that we can't clear the status
1098         *   on Haswell, so without a reset we won't be able to catch
1099         *   the state again.
1100         *
1101         * - Since it also implies the HW has started overwriting old
1102         *   reports it may also affect our sanity checks for invalid
1103         *   reports when copying to userspace that assume new reports
1104         *   are being written to cleared memory.
1105         *
1106         * - In the future we may want to introduce a flight recorder
1107         *   mode where the driver will automatically maintain a safe
1108         *   guard band between head/tail, avoiding this overflow
1109         *   condition, but we avoid the added driver complexity for
1110         *   now.
1111         */
1112        if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1113                ret = append_oa_status(stream, buf, count, offset,
1114                                       DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1115                if (ret)
1116                        return ret;
1117
1118                DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
1119                          stream->period_exponent);
1120
1121                stream->perf->ops.oa_disable(stream);
1122                stream->perf->ops.oa_enable(stream);
1123
1124                oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1125        }
1126
1127        if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1128                ret = append_oa_status(stream, buf, count, offset,
1129                                       DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1130                if (ret)
1131                        return ret;
1132                stream->perf->gen7_latched_oastatus1 |=
1133                        GEN7_OASTATUS1_REPORT_LOST;
1134        }
1135
1136        return gen7_append_oa_reports(stream, buf, count, offset);
1137}
1138
1139/**
1140 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1141 * @stream: An i915-perf stream opened for OA metrics
1142 *
1143 * Called when userspace tries to read() from a blocking stream FD opened
1144 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1145 * OA buffer and wakes us.
1146 *
1147 * Note: it's acceptable to have this return with some false positives
1148 * since any subsequent read handling will return -EAGAIN if there isn't
1149 * really data ready for userspace yet.
1150 *
1151 * Returns: zero on success or a negative error code
1152 */
1153static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1154{
1155        /* We would wait indefinitely if periodic sampling is not enabled */
1156        if (!stream->periodic)
1157                return -EIO;
1158
1159        return wait_event_interruptible(stream->poll_wq,
1160                                        oa_buffer_check_unlocked(stream));
1161}
1162
1163/**
1164 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1165 * @stream: An i915-perf stream opened for OA metrics
1166 * @file: An i915 perf stream file
1167 * @wait: poll() state table
1168 *
1169 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1170 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1171 * when it sees data ready to read in the circular OA buffer.
1172 */
1173static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1174                              struct file *file,
1175                              poll_table *wait)
1176{
1177        poll_wait(file, &stream->poll_wq, wait);
1178}
1179
1180/**
1181 * i915_oa_read - just calls through to &i915_oa_ops->read
1182 * @stream: An i915-perf stream opened for OA metrics
1183 * @buf: destination buffer given by userspace
1184 * @count: the number of bytes userspace wants to read
1185 * @offset: (inout): the current position for writing into @buf
1186 *
1187 * Updates @offset according to the number of bytes successfully copied into
1188 * the userspace buffer.
1189 *
1190 * Returns: zero on success or a negative error code
1191 */
1192static int i915_oa_read(struct i915_perf_stream *stream,
1193                        char __user *buf,
1194                        size_t count,
1195                        size_t *offset)
1196{
1197        return stream->perf->ops.read(stream, buf, count, offset);
1198}
1199
1200static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1201{
1202        struct i915_gem_engines_iter it;
1203        struct i915_gem_context *ctx = stream->ctx;
1204        struct intel_context *ce;
1205        struct i915_gem_ww_ctx ww;
1206        int err = -ENODEV;
1207
1208        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1209                if (ce->engine != stream->engine) /* first match! */
1210                        continue;
1211
1212                err = 0;
1213                break;
1214        }
1215        i915_gem_context_unlock_engines(ctx);
1216
1217        if (err)
1218                return ERR_PTR(err);
1219
1220        i915_gem_ww_ctx_init(&ww, true);
1221retry:
1222        /*
1223         * As the ID is the gtt offset of the context's vma we
1224         * pin the vma to ensure the ID remains fixed.
1225         */
1226        err = intel_context_pin_ww(ce, &ww);
1227        if (err == -EDEADLK) {
1228                err = i915_gem_ww_ctx_backoff(&ww);
1229                if (!err)
1230                        goto retry;
1231        }
1232        i915_gem_ww_ctx_fini(&ww);
1233
1234        if (err)
1235                return ERR_PTR(err);
1236
1237        stream->pinned_ctx = ce;
1238        return stream->pinned_ctx;
1239}
1240
1241/**
1242 * oa_get_render_ctx_id - determine and hold ctx hw id
1243 * @stream: An i915-perf stream opened for OA metrics
1244 *
1245 * Determine the render context hw id, and ensure it remains fixed for the
1246 * lifetime of the stream. This ensures that we don't have to worry about
1247 * updating the context ID in OACONTROL on the fly.
1248 *
1249 * Returns: zero on success or a negative error code
1250 */
1251static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1252{
1253        struct intel_context *ce;
1254
1255        ce = oa_pin_context(stream);
1256        if (IS_ERR(ce))
1257                return PTR_ERR(ce);
1258
1259        switch (INTEL_GEN(ce->engine->i915)) {
1260        case 7: {
1261                /*
1262                 * On Haswell we don't do any post processing of the reports
1263                 * and don't need to use the mask.
1264                 */
1265                stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1266                stream->specific_ctx_id_mask = 0;
1267                break;
1268        }
1269
1270        case 8:
1271        case 9:
1272        case 10:
1273                if (intel_engine_in_execlists_submission_mode(ce->engine)) {
1274                        stream->specific_ctx_id_mask =
1275                                (1U << GEN8_CTX_ID_WIDTH) - 1;
1276                        stream->specific_ctx_id = stream->specific_ctx_id_mask;
1277                } else {
1278                        /*
1279                         * When using GuC, the context descriptor we write in
1280                         * i915 is read by GuC and rewritten before it's
1281                         * actually written into the hardware. The LRCA is
1282                         * what is put into the context id field of the
1283                         * context descriptor by GuC. Because it's aligned to
1284                         * a page, the lower 12bits are always at 0 and
1285                         * dropped by GuC. They won't be part of the context
1286                         * ID in the OA reports, so squash those lower bits.
1287                         */
1288                        stream->specific_ctx_id = ce->lrc.lrca >> 12;
1289
1290                        /*
1291                         * GuC uses the top bit to signal proxy submission, so
1292                         * ignore that bit.
1293                         */
1294                        stream->specific_ctx_id_mask =
1295                                (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1296                }
1297                break;
1298
1299        case 11:
1300        case 12: {
1301                stream->specific_ctx_id_mask =
1302                        ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1303                /*
1304                 * Pick an unused context id
1305                 * 0 - BITS_PER_LONG are used by other contexts
1306                 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1307                 */
1308                stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1309                break;
1310        }
1311
1312        default:
1313                MISSING_CASE(INTEL_GEN(ce->engine->i915));
1314        }
1315
1316        ce->tag = stream->specific_ctx_id;
1317
1318        drm_dbg(&stream->perf->i915->drm,
1319                "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1320                stream->specific_ctx_id,
1321                stream->specific_ctx_id_mask);
1322
1323        return 0;
1324}
1325
1326/**
1327 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1328 * @stream: An i915-perf stream opened for OA metrics
1329 *
1330 * In case anything needed doing to ensure the context HW ID would remain valid
1331 * for the lifetime of the stream, then that can be undone here.
1332 */
1333static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1334{
1335        struct intel_context *ce;
1336
1337        ce = fetch_and_zero(&stream->pinned_ctx);
1338        if (ce) {
1339                ce->tag = 0; /* recomputed on next submission after parking */
1340                intel_context_unpin(ce);
1341        }
1342
1343        stream->specific_ctx_id = INVALID_CTX_ID;
1344        stream->specific_ctx_id_mask = 0;
1345}
1346
1347static void
1348free_oa_buffer(struct i915_perf_stream *stream)
1349{
1350        i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1351                                   I915_VMA_RELEASE_MAP);
1352
1353        stream->oa_buffer.vaddr = NULL;
1354}
1355
1356static void
1357free_oa_configs(struct i915_perf_stream *stream)
1358{
1359        struct i915_oa_config_bo *oa_bo, *tmp;
1360
1361        i915_oa_config_put(stream->oa_config);
1362        llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1363                free_oa_config_bo(oa_bo);
1364}
1365
1366static void
1367free_noa_wait(struct i915_perf_stream *stream)
1368{
1369        i915_vma_unpin_and_release(&stream->noa_wait, 0);
1370}
1371
1372static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1373{
1374        struct i915_perf *perf = stream->perf;
1375
1376        BUG_ON(stream != perf->exclusive_stream);
1377
1378        /*
1379         * Unset exclusive_stream first, it will be checked while disabling
1380         * the metric set on gen8+.
1381         *
1382         * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1383         */
1384        WRITE_ONCE(perf->exclusive_stream, NULL);
1385        perf->ops.disable_metric_set(stream);
1386
1387        free_oa_buffer(stream);
1388
1389        intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1390        intel_engine_pm_put(stream->engine);
1391
1392        if (stream->ctx)
1393                oa_put_render_ctx_id(stream);
1394
1395        free_oa_configs(stream);
1396        free_noa_wait(stream);
1397
1398        if (perf->spurious_report_rs.missed) {
1399                DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1400                         perf->spurious_report_rs.missed);
1401        }
1402}
1403
1404static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1405{
1406        struct intel_uncore *uncore = stream->uncore;
1407        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1408        unsigned long flags;
1409
1410        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1411
1412        /* Pre-DevBDW: OABUFFER must be set with counters off,
1413         * before OASTATUS1, but after OASTATUS2
1414         */
1415        intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1416                           gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1417        stream->oa_buffer.head = gtt_offset;
1418
1419        intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1420
1421        intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1422                           gtt_offset | OABUFFER_SIZE_16M);
1423
1424        /* Mark that we need updated tail pointers to read from... */
1425        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1426        stream->oa_buffer.tail = gtt_offset;
1427
1428        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1429
1430        /* On Haswell we have to track which OASTATUS1 flags we've
1431         * already seen since they can't be cleared while periodic
1432         * sampling is enabled.
1433         */
1434        stream->perf->gen7_latched_oastatus1 = 0;
1435
1436        /* NB: although the OA buffer will initially be allocated
1437         * zeroed via shmfs (and so this memset is redundant when
1438         * first allocating), we may re-init the OA buffer, either
1439         * when re-enabling a stream or in error/reset paths.
1440         *
1441         * The reason we clear the buffer for each re-init is for the
1442         * sanity check in gen7_append_oa_reports() that looks at the
1443         * report-id field to make sure it's non-zero which relies on
1444         * the assumption that new reports are being written to zeroed
1445         * memory...
1446         */
1447        memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1448}
1449
1450static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1451{
1452        struct intel_uncore *uncore = stream->uncore;
1453        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1454        unsigned long flags;
1455
1456        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1457
1458        intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1459        intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1460        stream->oa_buffer.head = gtt_offset;
1461
1462        intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1463
1464        /*
1465         * PRM says:
1466         *
1467         *  "This MMIO must be set before the OATAILPTR
1468         *  register and after the OAHEADPTR register. This is
1469         *  to enable proper functionality of the overflow
1470         *  bit."
1471         */
1472        intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1473                   OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1474        intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1475
1476        /* Mark that we need updated tail pointers to read from... */
1477        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1478        stream->oa_buffer.tail = gtt_offset;
1479
1480        /*
1481         * Reset state used to recognise context switches, affecting which
1482         * reports we will forward to userspace while filtering for a single
1483         * context.
1484         */
1485        stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1486
1487        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1488
1489        /*
1490         * NB: although the OA buffer will initially be allocated
1491         * zeroed via shmfs (and so this memset is redundant when
1492         * first allocating), we may re-init the OA buffer, either
1493         * when re-enabling a stream or in error/reset paths.
1494         *
1495         * The reason we clear the buffer for each re-init is for the
1496         * sanity check in gen8_append_oa_reports() that looks at the
1497         * reason field to make sure it's non-zero which relies on
1498         * the assumption that new reports are being written to zeroed
1499         * memory...
1500         */
1501        memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1502}
1503
1504static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1505{
1506        struct intel_uncore *uncore = stream->uncore;
1507        u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1508        unsigned long flags;
1509
1510        spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1511
1512        intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1513        intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1514                           gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1515        stream->oa_buffer.head = gtt_offset;
1516
1517        /*
1518         * PRM says:
1519         *
1520         *  "This MMIO must be set before the OATAILPTR
1521         *  register and after the OAHEADPTR register. This is
1522         *  to enable proper functionality of the overflow
1523         *  bit."
1524         */
1525        intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1526                           OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1527        intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1528                           gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1529
1530        /* Mark that we need updated tail pointers to read from... */
1531        stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1532        stream->oa_buffer.tail = gtt_offset;
1533
1534        /*
1535         * Reset state used to recognise context switches, affecting which
1536         * reports we will forward to userspace while filtering for a single
1537         * context.
1538         */
1539        stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1540
1541        spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1542
1543        /*
1544         * NB: although the OA buffer will initially be allocated
1545         * zeroed via shmfs (and so this memset is redundant when
1546         * first allocating), we may re-init the OA buffer, either
1547         * when re-enabling a stream or in error/reset paths.
1548         *
1549         * The reason we clear the buffer for each re-init is for the
1550         * sanity check in gen8_append_oa_reports() that looks at the
1551         * reason field to make sure it's non-zero which relies on
1552         * the assumption that new reports are being written to zeroed
1553         * memory...
1554         */
1555        memset(stream->oa_buffer.vaddr, 0,
1556               stream->oa_buffer.vma->size);
1557}
1558
1559static int alloc_oa_buffer(struct i915_perf_stream *stream)
1560{
1561        struct drm_i915_private *i915 = stream->perf->i915;
1562        struct drm_i915_gem_object *bo;
1563        struct i915_vma *vma;
1564        int ret;
1565
1566        if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1567                return -ENODEV;
1568
1569        BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1570        BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1571
1572        bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1573        if (IS_ERR(bo)) {
1574                drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1575                return PTR_ERR(bo);
1576        }
1577
1578        i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1579
1580        /* PreHSW required 512K alignment, HSW requires 16M */
1581        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1582        if (IS_ERR(vma)) {
1583                ret = PTR_ERR(vma);
1584                goto err_unref;
1585        }
1586        stream->oa_buffer.vma = vma;
1587
1588        stream->oa_buffer.vaddr =
1589                i915_gem_object_pin_map(bo, I915_MAP_WB);
1590        if (IS_ERR(stream->oa_buffer.vaddr)) {
1591                ret = PTR_ERR(stream->oa_buffer.vaddr);
1592                goto err_unpin;
1593        }
1594
1595        return 0;
1596
1597err_unpin:
1598        __i915_vma_unpin(vma);
1599
1600err_unref:
1601        i915_gem_object_put(bo);
1602
1603        stream->oa_buffer.vaddr = NULL;
1604        stream->oa_buffer.vma = NULL;
1605
1606        return ret;
1607}
1608
1609static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1610                                  bool save, i915_reg_t reg, u32 offset,
1611                                  u32 dword_count)
1612{
1613        u32 cmd;
1614        u32 d;
1615
1616        cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1617        cmd |= MI_SRM_LRM_GLOBAL_GTT;
1618        if (INTEL_GEN(stream->perf->i915) >= 8)
1619                cmd++;
1620
1621        for (d = 0; d < dword_count; d++) {
1622                *cs++ = cmd;
1623                *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1624                *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1625                                                offset) + 4 * d;
1626                *cs++ = 0;
1627        }
1628
1629        return cs;
1630}
1631
1632static int alloc_noa_wait(struct i915_perf_stream *stream)
1633{
1634        struct drm_i915_private *i915 = stream->perf->i915;
1635        struct drm_i915_gem_object *bo;
1636        struct i915_vma *vma;
1637        const u64 delay_ticks = 0xffffffffffffffff -
1638                i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
1639        const u32 base = stream->engine->mmio_base;
1640#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1641        u32 *batch, *ts0, *cs, *jump;
1642        int ret, i;
1643        enum {
1644                START_TS,
1645                NOW_TS,
1646                DELTA_TS,
1647                JUMP_PREDICATE,
1648                DELTA_TARGET,
1649                N_CS_GPR
1650        };
1651
1652        bo = i915_gem_object_create_internal(i915, 4096);
1653        if (IS_ERR(bo)) {
1654                drm_err(&i915->drm,
1655                        "Failed to allocate NOA wait batchbuffer\n");
1656                return PTR_ERR(bo);
1657        }
1658
1659        /*
1660         * We pin in GGTT because we jump into this buffer now because
1661         * multiple OA config BOs will have a jump to this address and it
1662         * needs to be fixed during the lifetime of the i915/perf stream.
1663         */
1664        vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
1665        if (IS_ERR(vma)) {
1666                ret = PTR_ERR(vma);
1667                goto err_unref;
1668        }
1669
1670        batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1671        if (IS_ERR(batch)) {
1672                ret = PTR_ERR(batch);
1673                goto err_unpin;
1674        }
1675
1676        /* Save registers. */
1677        for (i = 0; i < N_CS_GPR; i++)
1678                cs = save_restore_register(
1679                        stream, cs, true /* save */, CS_GPR(i),
1680                        INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1681        cs = save_restore_register(
1682                stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
1683                INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1684
1685        /* First timestamp snapshot location. */
1686        ts0 = cs;
1687
1688        /*
1689         * Initial snapshot of the timestamp register to implement the wait.
1690         * We work with 32b values, so clear out the top 32b bits of the
1691         * register because the ALU works 64bits.
1692         */
1693        *cs++ = MI_LOAD_REGISTER_IMM(1);
1694        *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1695        *cs++ = 0;
1696        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1697        *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1698        *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1699
1700        /*
1701         * This is the location we're going to jump back into until the
1702         * required amount of time has passed.
1703         */
1704        jump = cs;
1705
1706        /*
1707         * Take another snapshot of the timestamp register. Take care to clear
1708         * up the top 32bits of CS_GPR(1) as we're using it for other
1709         * operations below.
1710         */
1711        *cs++ = MI_LOAD_REGISTER_IMM(1);
1712        *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1713        *cs++ = 0;
1714        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1715        *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1716        *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1717
1718        /*
1719         * Do a diff between the 2 timestamps and store the result back into
1720         * CS_GPR(1).
1721         */
1722        *cs++ = MI_MATH(5);
1723        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1724        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1725        *cs++ = MI_MATH_SUB;
1726        *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1727        *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1728
1729        /*
1730         * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1731         * timestamp have rolled over the 32bits) into the predicate register
1732         * to be used for the predicated jump.
1733         */
1734        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1735        *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1736        *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1737
1738        /* Restart from the beginning if we had timestamps roll over. */
1739        *cs++ = (INTEL_GEN(i915) < 8 ?
1740                 MI_BATCH_BUFFER_START :
1741                 MI_BATCH_BUFFER_START_GEN8) |
1742                MI_BATCH_PREDICATE;
1743        *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1744        *cs++ = 0;
1745
1746        /*
1747         * Now add the diff between to previous timestamps and add it to :
1748         *      (((1 * << 64) - 1) - delay_ns)
1749         *
1750         * When the Carry Flag contains 1 this means the elapsed time is
1751         * longer than the expected delay, and we can exit the wait loop.
1752         */
1753        *cs++ = MI_LOAD_REGISTER_IMM(2);
1754        *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1755        *cs++ = lower_32_bits(delay_ticks);
1756        *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1757        *cs++ = upper_32_bits(delay_ticks);
1758
1759        *cs++ = MI_MATH(4);
1760        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1761        *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1762        *cs++ = MI_MATH_ADD;
1763        *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1764
1765        *cs++ = MI_ARB_CHECK;
1766
1767        /*
1768         * Transfer the result into the predicate register to be used for the
1769         * predicated jump.
1770         */
1771        *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1772        *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1773        *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
1774
1775        /* Predicate the jump.  */
1776        *cs++ = (INTEL_GEN(i915) < 8 ?
1777                 MI_BATCH_BUFFER_START :
1778                 MI_BATCH_BUFFER_START_GEN8) |
1779                MI_BATCH_PREDICATE;
1780        *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1781        *cs++ = 0;
1782
1783        /* Restore registers. */
1784        for (i = 0; i < N_CS_GPR; i++)
1785                cs = save_restore_register(
1786                        stream, cs, false /* restore */, CS_GPR(i),
1787                        INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1788        cs = save_restore_register(
1789                stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
1790                INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1791
1792        /* And return to the ring. */
1793        *cs++ = MI_BATCH_BUFFER_END;
1794
1795        GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1796
1797        i915_gem_object_flush_map(bo);
1798        __i915_gem_object_release_map(bo);
1799
1800        stream->noa_wait = vma;
1801        return 0;
1802
1803err_unpin:
1804        i915_vma_unpin_and_release(&vma, 0);
1805err_unref:
1806        i915_gem_object_put(bo);
1807        return ret;
1808}
1809
1810static u32 *write_cs_mi_lri(u32 *cs,
1811                            const struct i915_oa_reg *reg_data,
1812                            u32 n_regs)
1813{
1814        u32 i;
1815
1816        for (i = 0; i < n_regs; i++) {
1817                if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1818                        u32 n_lri = min_t(u32,
1819                                          n_regs - i,
1820                                          MI_LOAD_REGISTER_IMM_MAX_REGS);
1821
1822                        *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1823                }
1824                *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1825                *cs++ = reg_data[i].value;
1826        }
1827
1828        return cs;
1829}
1830
1831static int num_lri_dwords(int num_regs)
1832{
1833        int count = 0;
1834
1835        if (num_regs > 0) {
1836                count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1837                count += num_regs * 2;
1838        }
1839
1840        return count;
1841}
1842
1843static struct i915_oa_config_bo *
1844alloc_oa_config_buffer(struct i915_perf_stream *stream,
1845                       struct i915_oa_config *oa_config)
1846{
1847        struct drm_i915_gem_object *obj;
1848        struct i915_oa_config_bo *oa_bo;
1849        size_t config_length = 0;
1850        u32 *cs;
1851        int err;
1852
1853        oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1854        if (!oa_bo)
1855                return ERR_PTR(-ENOMEM);
1856
1857        config_length += num_lri_dwords(oa_config->mux_regs_len);
1858        config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1859        config_length += num_lri_dwords(oa_config->flex_regs_len);
1860        config_length += 3; /* MI_BATCH_BUFFER_START */
1861        config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1862
1863        obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1864        if (IS_ERR(obj)) {
1865                err = PTR_ERR(obj);
1866                goto err_free;
1867        }
1868
1869        cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1870        if (IS_ERR(cs)) {
1871                err = PTR_ERR(cs);
1872                goto err_oa_bo;
1873        }
1874
1875        cs = write_cs_mi_lri(cs,
1876                             oa_config->mux_regs,
1877                             oa_config->mux_regs_len);
1878        cs = write_cs_mi_lri(cs,
1879                             oa_config->b_counter_regs,
1880                             oa_config->b_counter_regs_len);
1881        cs = write_cs_mi_lri(cs,
1882                             oa_config->flex_regs,
1883                             oa_config->flex_regs_len);
1884
1885        /* Jump into the active wait. */
1886        *cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
1887                 MI_BATCH_BUFFER_START :
1888                 MI_BATCH_BUFFER_START_GEN8);
1889        *cs++ = i915_ggtt_offset(stream->noa_wait);
1890        *cs++ = 0;
1891
1892        i915_gem_object_flush_map(obj);
1893        __i915_gem_object_release_map(obj);
1894
1895        oa_bo->vma = i915_vma_instance(obj,
1896                                       &stream->engine->gt->ggtt->vm,
1897                                       NULL);
1898        if (IS_ERR(oa_bo->vma)) {
1899                err = PTR_ERR(oa_bo->vma);
1900                goto err_oa_bo;
1901        }
1902
1903        oa_bo->oa_config = i915_oa_config_get(oa_config);
1904        llist_add(&oa_bo->node, &stream->oa_config_bos);
1905
1906        return oa_bo;
1907
1908err_oa_bo:
1909        i915_gem_object_put(obj);
1910err_free:
1911        kfree(oa_bo);
1912        return ERR_PTR(err);
1913}
1914
1915static struct i915_vma *
1916get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1917{
1918        struct i915_oa_config_bo *oa_bo;
1919
1920        /*
1921         * Look for the buffer in the already allocated BOs attached
1922         * to the stream.
1923         */
1924        llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1925                if (oa_bo->oa_config == oa_config &&
1926                    memcmp(oa_bo->oa_config->uuid,
1927                           oa_config->uuid,
1928                           sizeof(oa_config->uuid)) == 0)
1929                        goto out;
1930        }
1931
1932        oa_bo = alloc_oa_config_buffer(stream, oa_config);
1933        if (IS_ERR(oa_bo))
1934                return ERR_CAST(oa_bo);
1935
1936out:
1937        return i915_vma_get(oa_bo->vma);
1938}
1939
1940static int
1941emit_oa_config(struct i915_perf_stream *stream,
1942               struct i915_oa_config *oa_config,
1943               struct intel_context *ce,
1944               struct i915_active *active)
1945{
1946        struct i915_request *rq;
1947        struct i915_vma *vma;
1948        struct i915_gem_ww_ctx ww;
1949        int err;
1950
1951        vma = get_oa_vma(stream, oa_config);
1952        if (IS_ERR(vma))
1953                return PTR_ERR(vma);
1954
1955        i915_gem_ww_ctx_init(&ww, true);
1956retry:
1957        err = i915_gem_object_lock(vma->obj, &ww);
1958        if (err)
1959                goto err;
1960
1961        err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1962        if (err)
1963                goto err;
1964
1965        intel_engine_pm_get(ce->engine);
1966        rq = i915_request_create(ce);
1967        intel_engine_pm_put(ce->engine);
1968        if (IS_ERR(rq)) {
1969                err = PTR_ERR(rq);
1970                goto err_vma_unpin;
1971        }
1972
1973        if (!IS_ERR_OR_NULL(active)) {
1974                /* After all individual context modifications */
1975                err = i915_request_await_active(rq, active,
1976                                                I915_ACTIVE_AWAIT_ACTIVE);
1977                if (err)
1978                        goto err_add_request;
1979
1980                err = i915_active_add_request(active, rq);
1981                if (err)
1982                        goto err_add_request;
1983        }
1984
1985        err = i915_request_await_object(rq, vma->obj, 0);
1986        if (!err)
1987                err = i915_vma_move_to_active(vma, rq, 0);
1988        if (err)
1989                goto err_add_request;
1990
1991        err = rq->engine->emit_bb_start(rq,
1992                                        vma->node.start, 0,
1993                                        I915_DISPATCH_SECURE);
1994        if (err)
1995                goto err_add_request;
1996
1997err_add_request:
1998        i915_request_add(rq);
1999err_vma_unpin:
2000        i915_vma_unpin(vma);
2001err:
2002        if (err == -EDEADLK) {
2003                err = i915_gem_ww_ctx_backoff(&ww);
2004                if (!err)
2005                        goto retry;
2006        }
2007
2008        i915_gem_ww_ctx_fini(&ww);
2009        i915_vma_put(vma);
2010        return err;
2011}
2012
2013static struct intel_context *oa_context(struct i915_perf_stream *stream)
2014{
2015        return stream->pinned_ctx ?: stream->engine->kernel_context;
2016}
2017
2018static int
2019hsw_enable_metric_set(struct i915_perf_stream *stream,
2020                      struct i915_active *active)
2021{
2022        struct intel_uncore *uncore = stream->uncore;
2023
2024        /*
2025         * PRM:
2026         *
2027         * OA unit is using “crclk” for its functionality. When trunk
2028         * level clock gating takes place, OA clock would be gated,
2029         * unable to count the events from non-render clock domain.
2030         * Render clock gating must be disabled when OA is enabled to
2031         * count the events from non-render domain. Unit level clock
2032         * gating for RCS should also be disabled.
2033         */
2034        intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2035                         GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2036        intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2037                         0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2038
2039        return emit_oa_config(stream,
2040                              stream->oa_config, oa_context(stream),
2041                              active);
2042}
2043
2044static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2045{
2046        struct intel_uncore *uncore = stream->uncore;
2047
2048        intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2049                         GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2050        intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2051                         0, GEN7_DOP_CLOCK_GATE_ENABLE);
2052
2053        intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2054}
2055
2056static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2057                              i915_reg_t reg)
2058{
2059        u32 mmio = i915_mmio_reg_offset(reg);
2060        int i;
2061
2062        /*
2063         * This arbitrary default will select the 'EU FPU0 Pipeline
2064         * Active' event. In the future it's anticipated that there
2065         * will be an explicit 'No Event' we can select, but not yet...
2066         */
2067        if (!oa_config)
2068                return 0;
2069
2070        for (i = 0; i < oa_config->flex_regs_len; i++) {
2071                if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2072                        return oa_config->flex_regs[i].value;
2073        }
2074
2075        return 0;
2076}
2077/*
2078 * NB: It must always remain pointer safe to run this even if the OA unit
2079 * has been disabled.
2080 *
2081 * It's fine to put out-of-date values into these per-context registers
2082 * in the case that the OA unit has been disabled.
2083 */
2084static void
2085gen8_update_reg_state_unlocked(const struct intel_context *ce,
2086                               const struct i915_perf_stream *stream)
2087{
2088        u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2089        u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2090        /* The MMIO offsets for Flex EU registers aren't contiguous */
2091        i915_reg_t flex_regs[] = {
2092                EU_PERF_CNTL0,
2093                EU_PERF_CNTL1,
2094                EU_PERF_CNTL2,
2095                EU_PERF_CNTL3,
2096                EU_PERF_CNTL4,
2097                EU_PERF_CNTL5,
2098                EU_PERF_CNTL6,
2099        };
2100        u32 *reg_state = ce->lrc_reg_state;
2101        int i;
2102
2103        reg_state[ctx_oactxctrl + 1] =
2104                (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2105                (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2106                GEN8_OA_COUNTER_RESUME;
2107
2108        for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2109                reg_state[ctx_flexeu0 + i * 2 + 1] =
2110                        oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2111}
2112
2113struct flex {
2114        i915_reg_t reg;
2115        u32 offset;
2116        u32 value;
2117};
2118
2119static int
2120gen8_store_flex(struct i915_request *rq,
2121                struct intel_context *ce,
2122                const struct flex *flex, unsigned int count)
2123{
2124        u32 offset;
2125        u32 *cs;
2126
2127        cs = intel_ring_begin(rq, 4 * count);
2128        if (IS_ERR(cs))
2129                return PTR_ERR(cs);
2130
2131        offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2132        do {
2133                *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2134                *cs++ = offset + flex->offset * sizeof(u32);
2135                *cs++ = 0;
2136                *cs++ = flex->value;
2137        } while (flex++, --count);
2138
2139        intel_ring_advance(rq, cs);
2140
2141        return 0;
2142}
2143
2144static int
2145gen8_load_flex(struct i915_request *rq,
2146               struct intel_context *ce,
2147               const struct flex *flex, unsigned int count)
2148{
2149        u32 *cs;
2150
2151        GEM_BUG_ON(!count || count > 63);
2152
2153        cs = intel_ring_begin(rq, 2 * count + 2);
2154        if (IS_ERR(cs))
2155                return PTR_ERR(cs);
2156
2157        *cs++ = MI_LOAD_REGISTER_IMM(count);
2158        do {
2159                *cs++ = i915_mmio_reg_offset(flex->reg);
2160                *cs++ = flex->value;
2161        } while (flex++, --count);
2162        *cs++ = MI_NOOP;
2163
2164        intel_ring_advance(rq, cs);
2165
2166        return 0;
2167}
2168
2169static int gen8_modify_context(struct intel_context *ce,
2170                               const struct flex *flex, unsigned int count)
2171{
2172        struct i915_request *rq;
2173        int err;
2174
2175        rq = intel_engine_create_kernel_request(ce->engine);
2176        if (IS_ERR(rq))
2177                return PTR_ERR(rq);
2178
2179        /* Serialise with the remote context */
2180        err = intel_context_prepare_remote_request(ce, rq);
2181        if (err == 0)
2182                err = gen8_store_flex(rq, ce, flex, count);
2183
2184        i915_request_add(rq);
2185        return err;
2186}
2187
2188static int
2189gen8_modify_self(struct intel_context *ce,
2190                 const struct flex *flex, unsigned int count,
2191                 struct i915_active *active)
2192{
2193        struct i915_request *rq;
2194        int err;
2195
2196        intel_engine_pm_get(ce->engine);
2197        rq = i915_request_create(ce);
2198        intel_engine_pm_put(ce->engine);
2199        if (IS_ERR(rq))
2200                return PTR_ERR(rq);
2201
2202        if (!IS_ERR_OR_NULL(active)) {
2203                err = i915_active_add_request(active, rq);
2204                if (err)
2205                        goto err_add_request;
2206        }
2207
2208        err = gen8_load_flex(rq, ce, flex, count);
2209        if (err)
2210                goto err_add_request;
2211
2212err_add_request:
2213        i915_request_add(rq);
2214        return err;
2215}
2216
2217static int gen8_configure_context(struct i915_gem_context *ctx,
2218                                  struct flex *flex, unsigned int count)
2219{
2220        struct i915_gem_engines_iter it;
2221        struct intel_context *ce;
2222        int err = 0;
2223
2224        for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2225                GEM_BUG_ON(ce == ce->engine->kernel_context);
2226
2227                if (ce->engine->class != RENDER_CLASS)
2228                        continue;
2229
2230                /* Otherwise OA settings will be set upon first use */
2231                if (!intel_context_pin_if_active(ce))
2232                        continue;
2233
2234                flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2235                err = gen8_modify_context(ce, flex, count);
2236
2237                intel_context_unpin(ce);
2238                if (err)
2239                        break;
2240        }
2241        i915_gem_context_unlock_engines(ctx);
2242
2243        return err;
2244}
2245
2246static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2247                                       struct i915_active *active)
2248{
2249        int err;
2250        struct intel_context *ce = stream->pinned_ctx;
2251        u32 format = stream->oa_buffer.format;
2252        struct flex regs_context[] = {
2253                {
2254                        GEN8_OACTXCONTROL,
2255                        stream->perf->ctx_oactxctrl_offset + 1,
2256                        active ? GEN8_OA_COUNTER_RESUME : 0,
2257                },
2258        };
2259        /* Offsets in regs_lri are not used since this configuration is only
2260         * applied using LRI. Initialize the correct offsets for posterity.
2261         */
2262#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2263        struct flex regs_lri[] = {
2264                {
2265                        GEN12_OAR_OACONTROL,
2266                        GEN12_OAR_OACONTROL_OFFSET + 1,
2267                        (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2268                        (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2269                },
2270                {
2271                        RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2272                        CTX_CONTEXT_CONTROL,
2273                        _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2274                                      active ?
2275                                      GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2276                                      0)
2277                },
2278        };
2279
2280        /* Modify the context image of pinned context with regs_context*/
2281        err = intel_context_lock_pinned(ce);
2282        if (err)
2283                return err;
2284
2285        err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2286        intel_context_unlock_pinned(ce);
2287        if (err)
2288                return err;
2289
2290        /* Apply regs_lri using LRI with pinned context */
2291        return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2292}
2293
2294/*
2295 * Manages updating the per-context aspects of the OA stream
2296 * configuration across all contexts.
2297 *
2298 * The awkward consideration here is that OACTXCONTROL controls the
2299 * exponent for periodic sampling which is primarily used for system
2300 * wide profiling where we'd like a consistent sampling period even in
2301 * the face of context switches.
2302 *
2303 * Our approach of updating the register state context (as opposed to
2304 * say using a workaround batch buffer) ensures that the hardware
2305 * won't automatically reload an out-of-date timer exponent even
2306 * transiently before a WA BB could be parsed.
2307 *
2308 * This function needs to:
2309 * - Ensure the currently running context's per-context OA state is
2310 *   updated
2311 * - Ensure that all existing contexts will have the correct per-context
2312 *   OA state if they are scheduled for use.
2313 * - Ensure any new contexts will be initialized with the correct
2314 *   per-context OA state.
2315 *
2316 * Note: it's only the RCS/Render context that has any OA state.
2317 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2318 */
2319static int
2320oa_configure_all_contexts(struct i915_perf_stream *stream,
2321                          struct flex *regs,
2322                          size_t num_regs,
2323                          struct i915_active *active)
2324{
2325        struct drm_i915_private *i915 = stream->perf->i915;
2326        struct intel_engine_cs *engine;
2327        struct i915_gem_context *ctx, *cn;
2328        int err;
2329
2330        lockdep_assert_held(&stream->perf->lock);
2331
2332        /*
2333         * The OA register config is setup through the context image. This image
2334         * might be written to by the GPU on context switch (in particular on
2335         * lite-restore). This means we can't safely update a context's image,
2336         * if this context is scheduled/submitted to run on the GPU.
2337         *
2338         * We could emit the OA register config through the batch buffer but
2339         * this might leave small interval of time where the OA unit is
2340         * configured at an invalid sampling period.
2341         *
2342         * Note that since we emit all requests from a single ring, there
2343         * is still an implicit global barrier here that may cause a high
2344         * priority context to wait for an otherwise independent low priority
2345         * context. Contexts idle at the time of reconfiguration are not
2346         * trapped behind the barrier.
2347         */
2348        spin_lock(&i915->gem.contexts.lock);
2349        list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2350                if (!kref_get_unless_zero(&ctx->ref))
2351                        continue;
2352
2353                spin_unlock(&i915->gem.contexts.lock);
2354
2355                err = gen8_configure_context(ctx, regs, num_regs);
2356                if (err) {
2357                        i915_gem_context_put(ctx);
2358                        return err;
2359                }
2360
2361                spin_lock(&i915->gem.contexts.lock);
2362                list_safe_reset_next(ctx, cn, link);
2363                i915_gem_context_put(ctx);
2364        }
2365        spin_unlock(&i915->gem.contexts.lock);
2366
2367        /*
2368         * After updating all other contexts, we need to modify ourselves.
2369         * If we don't modify the kernel_context, we do not get events while
2370         * idle.
2371         */
2372        for_each_uabi_engine(engine, i915) {
2373                struct intel_context *ce = engine->kernel_context;
2374
2375                if (engine->class != RENDER_CLASS)
2376                        continue;
2377
2378                regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2379
2380                err = gen8_modify_self(ce, regs, num_regs, active);
2381                if (err)
2382                        return err;
2383        }
2384
2385        return 0;
2386}
2387
2388static int
2389gen12_configure_all_contexts(struct i915_perf_stream *stream,
2390                             const struct i915_oa_config *oa_config,
2391                             struct i915_active *active)
2392{
2393        struct flex regs[] = {
2394                {
2395                        GEN8_R_PWR_CLK_STATE,
2396                        CTX_R_PWR_CLK_STATE,
2397                },
2398        };
2399
2400        return oa_configure_all_contexts(stream,
2401                                         regs, ARRAY_SIZE(regs),
2402                                         active);
2403}
2404
2405static int
2406lrc_configure_all_contexts(struct i915_perf_stream *stream,
2407                           const struct i915_oa_config *oa_config,
2408                           struct i915_active *active)
2409{
2410        /* The MMIO offsets for Flex EU registers aren't contiguous */
2411        const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2412#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2413        struct flex regs[] = {
2414                {
2415                        GEN8_R_PWR_CLK_STATE,
2416                        CTX_R_PWR_CLK_STATE,
2417                },
2418                {
2419                        GEN8_OACTXCONTROL,
2420                        stream->perf->ctx_oactxctrl_offset + 1,
2421                },
2422                { EU_PERF_CNTL0, ctx_flexeuN(0) },
2423                { EU_PERF_CNTL1, ctx_flexeuN(1) },
2424                { EU_PERF_CNTL2, ctx_flexeuN(2) },
2425                { EU_PERF_CNTL3, ctx_flexeuN(3) },
2426                { EU_PERF_CNTL4, ctx_flexeuN(4) },
2427                { EU_PERF_CNTL5, ctx_flexeuN(5) },
2428                { EU_PERF_CNTL6, ctx_flexeuN(6) },
2429        };
2430#undef ctx_flexeuN
2431        int i;
2432
2433        regs[1].value =
2434                (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2435                (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2436                GEN8_OA_COUNTER_RESUME;
2437
2438        for (i = 2; i < ARRAY_SIZE(regs); i++)
2439                regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2440
2441        return oa_configure_all_contexts(stream,
2442                                         regs, ARRAY_SIZE(regs),
2443                                         active);
2444}
2445
2446static int
2447gen8_enable_metric_set(struct i915_perf_stream *stream,
2448                       struct i915_active *active)
2449{
2450        struct intel_uncore *uncore = stream->uncore;
2451        struct i915_oa_config *oa_config = stream->oa_config;
2452        int ret;
2453
2454        /*
2455         * We disable slice/unslice clock ratio change reports on SKL since
2456         * they are too noisy. The HW generates a lot of redundant reports
2457         * where the ratio hasn't really changed causing a lot of redundant
2458         * work to processes and increasing the chances we'll hit buffer
2459         * overruns.
2460         *
2461         * Although we don't currently use the 'disable overrun' OABUFFER
2462         * feature it's worth noting that clock ratio reports have to be
2463         * disabled before considering to use that feature since the HW doesn't
2464         * correctly block these reports.
2465         *
2466         * Currently none of the high-level metrics we have depend on knowing
2467         * this ratio to normalize.
2468         *
2469         * Note: This register is not power context saved and restored, but
2470         * that's OK considering that we disable RC6 while the OA unit is
2471         * enabled.
2472         *
2473         * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2474         * be read back from automatically triggered reports, as part of the
2475         * RPT_ID field.
2476         */
2477        if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
2478                intel_uncore_write(uncore, GEN8_OA_DEBUG,
2479                                   _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2480                                                      GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2481        }
2482
2483        /*
2484         * Update all contexts prior writing the mux configurations as we need
2485         * to make sure all slices/subslices are ON before writing to NOA
2486         * registers.
2487         */
2488        ret = lrc_configure_all_contexts(stream, oa_config, active);
2489        if (ret)
2490                return ret;
2491
2492        return emit_oa_config(stream,
2493                              stream->oa_config, oa_context(stream),
2494                              active);
2495}
2496
2497static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2498{
2499        return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2500                             (stream->sample_flags & SAMPLE_OA_REPORT) ?
2501                             0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2502}
2503
2504static int
2505gen12_enable_metric_set(struct i915_perf_stream *stream,
2506                        struct i915_active *active)
2507{
2508        struct intel_uncore *uncore = stream->uncore;
2509        struct i915_oa_config *oa_config = stream->oa_config;
2510        bool periodic = stream->periodic;
2511        u32 period_exponent = stream->period_exponent;
2512        int ret;
2513
2514        intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2515                           /* Disable clk ratio reports, like previous Gens. */
2516                           _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2517                                              GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2518                           /*
2519                            * If the user didn't require OA reports, instruct
2520                            * the hardware not to emit ctx switch reports.
2521                            */
2522                           oag_report_ctx_switches(stream));
2523
2524        intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2525                           (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2526                            GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2527                            (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2528                            : 0);
2529
2530        /*
2531         * Update all contexts prior writing the mux configurations as we need
2532         * to make sure all slices/subslices are ON before writing to NOA
2533         * registers.
2534         */
2535        ret = gen12_configure_all_contexts(stream, oa_config, active);
2536        if (ret)
2537                return ret;
2538
2539        /*
2540         * For Gen12, performance counters are context
2541         * saved/restored. Only enable it for the context that
2542         * requested this.
2543         */
2544        if (stream->ctx) {
2545                ret = gen12_configure_oar_context(stream, active);
2546                if (ret)
2547                        return ret;
2548        }
2549
2550        return emit_oa_config(stream,
2551                              stream->oa_config, oa_context(stream),
2552                              active);
2553}
2554
2555static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2556{
2557        struct intel_uncore *uncore = stream->uncore;
2558
2559        /* Reset all contexts' slices/subslices configurations. */
2560        lrc_configure_all_contexts(stream, NULL, NULL);
2561
2562        intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2563}
2564
2565static void gen10_disable_metric_set(struct i915_perf_stream *stream)
2566{
2567        struct intel_uncore *uncore = stream->uncore;
2568
2569        /* Reset all contexts' slices/subslices configurations. */
2570        lrc_configure_all_contexts(stream, NULL, NULL);
2571
2572        /* Make sure we disable noa to save power. */
2573        intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2574}
2575
2576static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2577{
2578        struct intel_uncore *uncore = stream->uncore;
2579
2580        /* Reset all contexts' slices/subslices configurations. */
2581        gen12_configure_all_contexts(stream, NULL, NULL);
2582
2583        /* disable the context save/restore or OAR counters */
2584        if (stream->ctx)
2585                gen12_configure_oar_context(stream, NULL);
2586
2587        /* Make sure we disable noa to save power. */
2588        intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2589}
2590
2591static void gen7_oa_enable(struct i915_perf_stream *stream)
2592{
2593        struct intel_uncore *uncore = stream->uncore;
2594        struct i915_gem_context *ctx = stream->ctx;
2595        u32 ctx_id = stream->specific_ctx_id;
2596        bool periodic = stream->periodic;
2597        u32 period_exponent = stream->period_exponent;
2598        u32 report_format = stream->oa_buffer.format;
2599
2600        /*
2601         * Reset buf pointers so we don't forward reports from before now.
2602         *
2603         * Think carefully if considering trying to avoid this, since it
2604         * also ensures status flags and the buffer itself are cleared
2605         * in error paths, and we have checks for invalid reports based
2606         * on the assumption that certain fields are written to zeroed
2607         * memory which this helps maintains.
2608         */
2609        gen7_init_oa_buffer(stream);
2610
2611        intel_uncore_write(uncore, GEN7_OACONTROL,
2612                           (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2613                           (period_exponent <<
2614                            GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2615                           (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2616                           (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2617                           (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2618                           GEN7_OACONTROL_ENABLE);
2619}
2620
2621static void gen8_oa_enable(struct i915_perf_stream *stream)
2622{
2623        struct intel_uncore *uncore = stream->uncore;
2624        u32 report_format = stream->oa_buffer.format;
2625
2626        /*
2627         * Reset buf pointers so we don't forward reports from before now.
2628         *
2629         * Think carefully if considering trying to avoid this, since it
2630         * also ensures status flags and the buffer itself are cleared
2631         * in error paths, and we have checks for invalid reports based
2632         * on the assumption that certain fields are written to zeroed
2633         * memory which this helps maintains.
2634         */
2635        gen8_init_oa_buffer(stream);
2636
2637        /*
2638         * Note: we don't rely on the hardware to perform single context
2639         * filtering and instead filter on the cpu based on the context-id
2640         * field of reports
2641         */
2642        intel_uncore_write(uncore, GEN8_OACONTROL,
2643                           (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2644                           GEN8_OA_COUNTER_ENABLE);
2645}
2646
2647static void gen12_oa_enable(struct i915_perf_stream *stream)
2648{
2649        struct intel_uncore *uncore = stream->uncore;
2650        u32 report_format = stream->oa_buffer.format;
2651
2652        /*
2653         * If we don't want OA reports from the OA buffer, then we don't even
2654         * need to program the OAG unit.
2655         */
2656        if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2657                return;
2658
2659        gen12_init_oa_buffer(stream);
2660
2661        intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2662                           (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2663                           GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2664}
2665
2666/**
2667 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2668 * @stream: An i915 perf stream opened for OA metrics
2669 *
2670 * [Re]enables hardware periodic sampling according to the period configured
2671 * when opening the stream. This also starts a hrtimer that will periodically
2672 * check for data in the circular OA buffer for notifying userspace (e.g.
2673 * during a read() or poll()).
2674 */
2675static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2676{
2677        stream->pollin = false;
2678
2679        stream->perf->ops.oa_enable(stream);
2680
2681        if (stream->periodic)
2682                hrtimer_start(&stream->poll_check_timer,
2683                              ns_to_ktime(stream->poll_oa_period),
2684                              HRTIMER_MODE_REL_PINNED);
2685}
2686
2687static void gen7_oa_disable(struct i915_perf_stream *stream)
2688{
2689        struct intel_uncore *uncore = stream->uncore;
2690
2691        intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2692        if (intel_wait_for_register(uncore,
2693                                    GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2694                                    50))
2695                drm_err(&stream->perf->i915->drm,
2696                        "wait for OA to be disabled timed out\n");
2697}
2698
2699static void gen8_oa_disable(struct i915_perf_stream *stream)
2700{
2701        struct intel_uncore *uncore = stream->uncore;
2702
2703        intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2704        if (intel_wait_for_register(uncore,
2705                                    GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2706                                    50))
2707                drm_err(&stream->perf->i915->drm,
2708                        "wait for OA to be disabled timed out\n");
2709}
2710
2711static void gen12_oa_disable(struct i915_perf_stream *stream)
2712{
2713        struct intel_uncore *uncore = stream->uncore;
2714
2715        intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2716        if (intel_wait_for_register(uncore,
2717                                    GEN12_OAG_OACONTROL,
2718                                    GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2719                                    50))
2720                drm_err(&stream->perf->i915->drm,
2721                        "wait for OA to be disabled timed out\n");
2722
2723        intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2724        if (intel_wait_for_register(uncore,
2725                                    GEN12_OA_TLB_INV_CR,
2726                                    1, 0,
2727                                    50))
2728                drm_err(&stream->perf->i915->drm,
2729                        "wait for OA tlb invalidate timed out\n");
2730}
2731
2732/**
2733 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2734 * @stream: An i915 perf stream opened for OA metrics
2735 *
2736 * Stops the OA unit from periodically writing counter reports into the
2737 * circular OA buffer. This also stops the hrtimer that periodically checks for
2738 * data in the circular OA buffer, for notifying userspace.
2739 */
2740static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2741{
2742        stream->perf->ops.oa_disable(stream);
2743
2744        if (stream->periodic)
2745                hrtimer_cancel(&stream->poll_check_timer);
2746}
2747
2748static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2749        .destroy = i915_oa_stream_destroy,
2750        .enable = i915_oa_stream_enable,
2751        .disable = i915_oa_stream_disable,
2752        .wait_unlocked = i915_oa_wait_unlocked,
2753        .poll_wait = i915_oa_poll_wait,
2754        .read = i915_oa_read,
2755};
2756
2757static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2758{
2759        struct i915_active *active;
2760        int err;
2761
2762        active = i915_active_create();
2763        if (!active)
2764                return -ENOMEM;
2765
2766        err = stream->perf->ops.enable_metric_set(stream, active);
2767        if (err == 0)
2768                __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2769
2770        i915_active_put(active);
2771        return err;
2772}
2773
2774static void
2775get_default_sseu_config(struct intel_sseu *out_sseu,
2776                        struct intel_engine_cs *engine)
2777{
2778        const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2779
2780        *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2781
2782        if (IS_GEN(engine->i915, 11)) {
2783                /*
2784                 * We only need subslice count so it doesn't matter which ones
2785                 * we select - just turn off low bits in the amount of half of
2786                 * all available subslices per slice.
2787                 */
2788                out_sseu->subslice_mask =
2789                        ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2790                out_sseu->slice_mask = 0x1;
2791        }
2792}
2793
2794static int
2795get_sseu_config(struct intel_sseu *out_sseu,
2796                struct intel_engine_cs *engine,
2797                const struct drm_i915_gem_context_param_sseu *drm_sseu)
2798{
2799        if (drm_sseu->engine.engine_class != engine->uabi_class ||
2800            drm_sseu->engine.engine_instance != engine->uabi_instance)
2801                return -EINVAL;
2802
2803        return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2804}
2805
2806/**
2807 * i915_oa_stream_init - validate combined props for OA stream and init
2808 * @stream: An i915 perf stream
2809 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2810 * @props: The property state that configures stream (individually validated)
2811 *
2812 * While read_properties_unlocked() validates properties in isolation it
2813 * doesn't ensure that the combination necessarily makes sense.
2814 *
2815 * At this point it has been determined that userspace wants a stream of
2816 * OA metrics, but still we need to further validate the combined
2817 * properties are OK.
2818 *
2819 * If the configuration makes sense then we can allocate memory for
2820 * a circular OA buffer and apply the requested metric set configuration.
2821 *
2822 * Returns: zero on success or a negative error code.
2823 */
2824static int i915_oa_stream_init(struct i915_perf_stream *stream,
2825                               struct drm_i915_perf_open_param *param,
2826                               struct perf_open_properties *props)
2827{
2828        struct drm_i915_private *i915 = stream->perf->i915;
2829        struct i915_perf *perf = stream->perf;
2830        int format_size;
2831        int ret;
2832
2833        if (!props->engine) {
2834                DRM_DEBUG("OA engine not specified\n");
2835                return -EINVAL;
2836        }
2837
2838        /*
2839         * If the sysfs metrics/ directory wasn't registered for some
2840         * reason then don't let userspace try their luck with config
2841         * IDs
2842         */
2843        if (!perf->metrics_kobj) {
2844                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
2845                return -EINVAL;
2846        }
2847
2848        if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2849            (INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
2850                DRM_DEBUG("Only OA report sampling supported\n");
2851                return -EINVAL;
2852        }
2853
2854        if (!perf->ops.enable_metric_set) {
2855                DRM_DEBUG("OA unit not supported\n");
2856                return -ENODEV;
2857        }
2858
2859        /*
2860         * To avoid the complexity of having to accurately filter
2861         * counter reports and marshal to the appropriate client
2862         * we currently only allow exclusive access
2863         */
2864        if (perf->exclusive_stream) {
2865                DRM_DEBUG("OA unit already in use\n");
2866                return -EBUSY;
2867        }
2868
2869        if (!props->oa_format) {
2870                DRM_DEBUG("OA report format not specified\n");
2871                return -EINVAL;
2872        }
2873
2874        stream->engine = props->engine;
2875        stream->uncore = stream->engine->gt->uncore;
2876
2877        stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2878
2879        format_size = perf->oa_formats[props->oa_format].size;
2880
2881        stream->sample_flags = props->sample_flags;
2882        stream->sample_size += format_size;
2883
2884        stream->oa_buffer.format_size = format_size;
2885        if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2886                return -EINVAL;
2887
2888        stream->hold_preemption = props->hold_preemption;
2889
2890        stream->oa_buffer.format =
2891                perf->oa_formats[props->oa_format].format;
2892
2893        stream->periodic = props->oa_periodic;
2894        if (stream->periodic)
2895                stream->period_exponent = props->oa_period_exponent;
2896
2897        if (stream->ctx) {
2898                ret = oa_get_render_ctx_id(stream);
2899                if (ret) {
2900                        DRM_DEBUG("Invalid context id to filter with\n");
2901                        return ret;
2902                }
2903        }
2904
2905        ret = alloc_noa_wait(stream);
2906        if (ret) {
2907                DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
2908                goto err_noa_wait_alloc;
2909        }
2910
2911        stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2912        if (!stream->oa_config) {
2913                DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
2914                ret = -EINVAL;
2915                goto err_config;
2916        }
2917
2918        /* PRM - observability performance counters:
2919         *
2920         *   OACONTROL, performance counter enable, note:
2921         *
2922         *   "When this bit is set, in order to have coherent counts,
2923         *   RC6 power state and trunk clock gating must be disabled.
2924         *   This can be achieved by programming MMIO registers as
2925         *   0xA094=0 and 0xA090[31]=1"
2926         *
2927         *   In our case we are expecting that taking pm + FORCEWAKE
2928         *   references will effectively disable RC6.
2929         */
2930        intel_engine_pm_get(stream->engine);
2931        intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2932
2933        ret = alloc_oa_buffer(stream);
2934        if (ret)
2935                goto err_oa_buf_alloc;
2936
2937        stream->ops = &i915_oa_stream_ops;
2938
2939        perf->sseu = props->sseu;
2940        WRITE_ONCE(perf->exclusive_stream, stream);
2941
2942        ret = i915_perf_stream_enable_sync(stream);
2943        if (ret) {
2944                DRM_DEBUG("Unable to enable metric set\n");
2945                goto err_enable;
2946        }
2947
2948        DRM_DEBUG("opening stream oa config uuid=%s\n",
2949                  stream->oa_config->uuid);
2950
2951        hrtimer_init(&stream->poll_check_timer,
2952                     CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2953        stream->poll_check_timer.function = oa_poll_check_timer_cb;
2954        init_waitqueue_head(&stream->poll_wq);
2955        spin_lock_init(&stream->oa_buffer.ptr_lock);
2956
2957        return 0;
2958
2959err_enable:
2960        WRITE_ONCE(perf->exclusive_stream, NULL);
2961        perf->ops.disable_metric_set(stream);
2962
2963        free_oa_buffer(stream);
2964
2965err_oa_buf_alloc:
2966        free_oa_configs(stream);
2967
2968        intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
2969        intel_engine_pm_put(stream->engine);
2970
2971err_config:
2972        free_noa_wait(stream);
2973
2974err_noa_wait_alloc:
2975        if (stream->ctx)
2976                oa_put_render_ctx_id(stream);
2977
2978        return ret;
2979}
2980
2981void i915_oa_init_reg_state(const struct intel_context *ce,
2982                            const struct intel_engine_cs *engine)
2983{
2984        struct i915_perf_stream *stream;
2985
2986        if (engine->class != RENDER_CLASS)
2987                return;
2988
2989        /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
2990        stream = READ_ONCE(engine->i915->perf.exclusive_stream);
2991        if (stream && INTEL_GEN(stream->perf->i915) < 12)
2992                gen8_update_reg_state_unlocked(ce, stream);
2993}
2994
2995/**
2996 * i915_perf_read - handles read() FOP for i915 perf stream FDs
2997 * @file: An i915 perf stream file
2998 * @buf: destination buffer given by userspace
2999 * @count: the number of bytes userspace wants to read
3000 * @ppos: (inout) file seek position (unused)
3001 *
3002 * The entry point for handling a read() on a stream file descriptor from
3003 * userspace. Most of the work is left to the i915_perf_read_locked() and
3004 * &i915_perf_stream_ops->read but to save having stream implementations (of
3005 * which we might have multiple later) we handle blocking read here.
3006 *
3007 * We can also consistently treat trying to read from a disabled stream
3008 * as an IO error so implementations can assume the stream is enabled
3009 * while reading.
3010 *
3011 * Returns: The number of bytes copied or a negative error code on failure.
3012 */
3013static ssize_t i915_perf_read(struct file *file,
3014                              char __user *buf,
3015                              size_t count,
3016                              loff_t *ppos)
3017{
3018        struct i915_perf_stream *stream = file->private_data;
3019        struct i915_perf *perf = stream->perf;
3020        size_t offset = 0;
3021        int ret;
3022
3023        /* To ensure it's handled consistently we simply treat all reads of a
3024         * disabled stream as an error. In particular it might otherwise lead
3025         * to a deadlock for blocking file descriptors...
3026         */
3027        if (!stream->enabled)
3028                return -EIO;
3029
3030        if (!(file->f_flags & O_NONBLOCK)) {
3031                /* There's the small chance of false positives from
3032                 * stream->ops->wait_unlocked.
3033                 *
3034                 * E.g. with single context filtering since we only wait until
3035                 * oabuffer has >= 1 report we don't immediately know whether
3036                 * any reports really belong to the current context
3037                 */
3038                do {
3039                        ret = stream->ops->wait_unlocked(stream);
3040                        if (ret)
3041                                return ret;
3042
3043                        mutex_lock(&perf->lock);
3044                        ret = stream->ops->read(stream, buf, count, &offset);
3045                        mutex_unlock(&perf->lock);
3046                } while (!offset && !ret);
3047        } else {
3048                mutex_lock(&perf->lock);
3049                ret = stream->ops->read(stream, buf, count, &offset);
3050                mutex_unlock(&perf->lock);
3051        }
3052
3053        /* We allow the poll checking to sometimes report false positive EPOLLIN
3054         * events where we might actually report EAGAIN on read() if there's
3055         * not really any data available. In this situation though we don't
3056         * want to enter a busy loop between poll() reporting a EPOLLIN event
3057         * and read() returning -EAGAIN. Clearing the oa.pollin state here
3058         * effectively ensures we back off until the next hrtimer callback
3059         * before reporting another EPOLLIN event.
3060         * The exception to this is if ops->read() returned -ENOSPC which means
3061         * that more OA data is available than could fit in the user provided
3062         * buffer. In this case we want the next poll() call to not block.
3063         */
3064        if (ret != -ENOSPC)
3065                stream->pollin = false;
3066
3067        /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3068        return offset ?: (ret ?: -EAGAIN);
3069}
3070
3071static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3072{
3073        struct i915_perf_stream *stream =
3074                container_of(hrtimer, typeof(*stream), poll_check_timer);
3075
3076        if (oa_buffer_check_unlocked(stream)) {
3077                stream->pollin = true;
3078                wake_up(&stream->poll_wq);
3079        }
3080
3081        hrtimer_forward_now(hrtimer,
3082                            ns_to_ktime(stream->poll_oa_period));
3083
3084        return HRTIMER_RESTART;
3085}
3086
3087/**
3088 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3089 * @stream: An i915 perf stream
3090 * @file: An i915 perf stream file
3091 * @wait: poll() state table
3092 *
3093 * For handling userspace polling on an i915 perf stream, this calls through to
3094 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3095 * will be woken for new stream data.
3096 *
3097 * Note: The &perf->lock mutex has been taken to serialize
3098 * with any non-file-operation driver hooks.
3099 *
3100 * Returns: any poll events that are ready without sleeping
3101 */
3102static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3103                                      struct file *file,
3104                                      poll_table *wait)
3105{
3106        __poll_t events = 0;
3107
3108        stream->ops->poll_wait(stream, file, wait);
3109
3110        /* Note: we don't explicitly check whether there's something to read
3111         * here since this path may be very hot depending on what else
3112         * userspace is polling, or on the timeout in use. We rely solely on
3113         * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3114         * samples to read.
3115         */
3116        if (stream->pollin)
3117                events |= EPOLLIN;
3118
3119        return events;
3120}
3121
3122/**
3123 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3124 * @file: An i915 perf stream file
3125 * @wait: poll() state table
3126 *
3127 * For handling userspace polling on an i915 perf stream, this ensures
3128 * poll_wait() gets called with a wait queue that will be woken for new stream
3129 * data.
3130 *
3131 * Note: Implementation deferred to i915_perf_poll_locked()
3132 *
3133 * Returns: any poll events that are ready without sleeping
3134 */
3135static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3136{
3137        struct i915_perf_stream *stream = file->private_data;
3138        struct i915_perf *perf = stream->perf;
3139        __poll_t ret;
3140
3141        mutex_lock(&perf->lock);
3142        ret = i915_perf_poll_locked(stream, file, wait);
3143        mutex_unlock(&perf->lock);
3144
3145        return ret;
3146}
3147
3148/**
3149 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3150 * @stream: A disabled i915 perf stream
3151 *
3152 * [Re]enables the associated capture of data for this stream.
3153 *
3154 * If a stream was previously enabled then there's currently no intention
3155 * to provide userspace any guarantee about the preservation of previously
3156 * buffered data.
3157 */
3158static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3159{
3160        if (stream->enabled)
3161                return;
3162
3163        /* Allow stream->ops->enable() to refer to this */
3164        stream->enabled = true;
3165
3166        if (stream->ops->enable)
3167                stream->ops->enable(stream);
3168
3169        if (stream->hold_preemption)
3170                intel_context_set_nopreempt(stream->pinned_ctx);
3171}
3172
3173/**
3174 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3175 * @stream: An enabled i915 perf stream
3176 *
3177 * Disables the associated capture of data for this stream.
3178 *
3179 * The intention is that disabling an re-enabling a stream will ideally be
3180 * cheaper than destroying and re-opening a stream with the same configuration,
3181 * though there are no formal guarantees about what state or buffered data
3182 * must be retained between disabling and re-enabling a stream.
3183 *
3184 * Note: while a stream is disabled it's considered an error for userspace
3185 * to attempt to read from the stream (-EIO).
3186 */
3187static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3188{
3189        if (!stream->enabled)
3190                return;
3191
3192        /* Allow stream->ops->disable() to refer to this */
3193        stream->enabled = false;
3194
3195        if (stream->hold_preemption)
3196                intel_context_clear_nopreempt(stream->pinned_ctx);
3197
3198        if (stream->ops->disable)
3199                stream->ops->disable(stream);
3200}
3201
3202static long i915_perf_config_locked(struct i915_perf_stream *stream,
3203                                    unsigned long metrics_set)
3204{
3205        struct i915_oa_config *config;
3206        long ret = stream->oa_config->id;
3207
3208        config = i915_perf_get_oa_config(stream->perf, metrics_set);
3209        if (!config)
3210                return -EINVAL;
3211
3212        if (config != stream->oa_config) {
3213                int err;
3214
3215                /*
3216                 * If OA is bound to a specific context, emit the
3217                 * reconfiguration inline from that context. The update
3218                 * will then be ordered with respect to submission on that
3219                 * context.
3220                 *
3221                 * When set globally, we use a low priority kernel context,
3222                 * so it will effectively take effect when idle.
3223                 */
3224                err = emit_oa_config(stream, config, oa_context(stream), NULL);
3225                if (!err)
3226                        config = xchg(&stream->oa_config, config);
3227                else
3228                        ret = err;
3229        }
3230
3231        i915_oa_config_put(config);
3232
3233        return ret;
3234}
3235
3236/**
3237 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3238 * @stream: An i915 perf stream
3239 * @cmd: the ioctl request
3240 * @arg: the ioctl data
3241 *
3242 * Note: The &perf->lock mutex has been taken to serialize
3243 * with any non-file-operation driver hooks.
3244 *
3245 * Returns: zero on success or a negative error code. Returns -EINVAL for
3246 * an unknown ioctl request.
3247 */
3248static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3249                                   unsigned int cmd,
3250                                   unsigned long arg)
3251{
3252        switch (cmd) {
3253        case I915_PERF_IOCTL_ENABLE:
3254                i915_perf_enable_locked(stream);
3255                return 0;
3256        case I915_PERF_IOCTL_DISABLE:
3257                i915_perf_disable_locked(stream);
3258                return 0;
3259        case I915_PERF_IOCTL_CONFIG:
3260                return i915_perf_config_locked(stream, arg);
3261        }
3262
3263        return -EINVAL;
3264}
3265
3266/**
3267 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3268 * @file: An i915 perf stream file
3269 * @cmd: the ioctl request
3270 * @arg: the ioctl data
3271 *
3272 * Implementation deferred to i915_perf_ioctl_locked().
3273 *
3274 * Returns: zero on success or a negative error code. Returns -EINVAL for
3275 * an unknown ioctl request.
3276 */
3277static long i915_perf_ioctl(struct file *file,
3278                            unsigned int cmd,
3279                            unsigned long arg)
3280{
3281        struct i915_perf_stream *stream = file->private_data;
3282        struct i915_perf *perf = stream->perf;
3283        long ret;
3284
3285        mutex_lock(&perf->lock);
3286        ret = i915_perf_ioctl_locked(stream, cmd, arg);
3287        mutex_unlock(&perf->lock);
3288
3289        return ret;
3290}
3291
3292/**
3293 * i915_perf_destroy_locked - destroy an i915 perf stream
3294 * @stream: An i915 perf stream
3295 *
3296 * Frees all resources associated with the given i915 perf @stream, disabling
3297 * any associated data capture in the process.
3298 *
3299 * Note: The &perf->lock mutex has been taken to serialize
3300 * with any non-file-operation driver hooks.
3301 */
3302static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3303{
3304        if (stream->enabled)
3305                i915_perf_disable_locked(stream);
3306
3307        if (stream->ops->destroy)
3308                stream->ops->destroy(stream);
3309
3310        if (stream->ctx)
3311                i915_gem_context_put(stream->ctx);
3312
3313        kfree(stream);
3314}
3315
3316/**
3317 * i915_perf_release - handles userspace close() of a stream file
3318 * @inode: anonymous inode associated with file
3319 * @file: An i915 perf stream file
3320 *
3321 * Cleans up any resources associated with an open i915 perf stream file.
3322 *
3323 * NB: close() can't really fail from the userspace point of view.
3324 *
3325 * Returns: zero on success or a negative error code.
3326 */
3327static int i915_perf_release(struct inode *inode, struct file *file)
3328{
3329        struct i915_perf_stream *stream = file->private_data;
3330        struct i915_perf *perf = stream->perf;
3331
3332        mutex_lock(&perf->lock);
3333        i915_perf_destroy_locked(stream);
3334        mutex_unlock(&perf->lock);
3335
3336        /* Release the reference the perf stream kept on the driver. */
3337        drm_dev_put(&perf->i915->drm);
3338
3339        return 0;
3340}
3341
3342
3343static const struct file_operations fops = {
3344        .owner          = THIS_MODULE,
3345        .llseek         = no_llseek,
3346        .release        = i915_perf_release,
3347        .poll           = i915_perf_poll,
3348        .read           = i915_perf_read,
3349        .unlocked_ioctl = i915_perf_ioctl,
3350        /* Our ioctl have no arguments, so it's safe to use the same function
3351         * to handle 32bits compatibility.
3352         */
3353        .compat_ioctl   = i915_perf_ioctl,
3354};
3355
3356
3357/**
3358 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3359 * @perf: i915 perf instance
3360 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3361 * @props: individually validated u64 property value pairs
3362 * @file: drm file
3363 *
3364 * See i915_perf_ioctl_open() for interface details.
3365 *
3366 * Implements further stream config validation and stream initialization on
3367 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3368 * taken to serialize with any non-file-operation driver hooks.
3369 *
3370 * Note: at this point the @props have only been validated in isolation and
3371 * it's still necessary to validate that the combination of properties makes
3372 * sense.
3373 *
3374 * In the case where userspace is interested in OA unit metrics then further
3375 * config validation and stream initialization details will be handled by
3376 * i915_oa_stream_init(). The code here should only validate config state that
3377 * will be relevant to all stream types / backends.
3378 *
3379 * Returns: zero on success or a negative error code.
3380 */
3381static int
3382i915_perf_open_ioctl_locked(struct i915_perf *perf,
3383                            struct drm_i915_perf_open_param *param,
3384                            struct perf_open_properties *props,
3385                            struct drm_file *file)
3386{
3387        struct i915_gem_context *specific_ctx = NULL;
3388        struct i915_perf_stream *stream = NULL;
3389        unsigned long f_flags = 0;
3390        bool privileged_op = true;
3391        int stream_fd;
3392        int ret;
3393
3394        if (props->single_context) {
3395                u32 ctx_handle = props->ctx_handle;
3396                struct drm_i915_file_private *file_priv = file->driver_priv;
3397
3398                specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3399                if (!specific_ctx) {
3400                        DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
3401                                  ctx_handle);
3402                        ret = -ENOENT;
3403                        goto err;
3404                }
3405        }
3406
3407        /*
3408         * On Haswell the OA unit supports clock gating off for a specific
3409         * context and in this mode there's no visibility of metrics for the
3410         * rest of the system, which we consider acceptable for a
3411         * non-privileged client.
3412         *
3413         * For Gen8->11 the OA unit no longer supports clock gating off for a
3414         * specific context and the kernel can't securely stop the counters
3415         * from updating as system-wide / global values. Even though we can
3416         * filter reports based on the included context ID we can't block
3417         * clients from seeing the raw / global counter values via
3418         * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3419         * enable the OA unit by default.
3420         *
3421         * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3422         * per context basis. So we can relax requirements there if the user
3423         * doesn't request global stream access (i.e. query based sampling
3424         * using MI_RECORD_PERF_COUNT.
3425         */
3426        if (IS_HASWELL(perf->i915) && specific_ctx)
3427                privileged_op = false;
3428        else if (IS_GEN(perf->i915, 12) && specific_ctx &&
3429                 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3430                privileged_op = false;
3431
3432        if (props->hold_preemption) {
3433                if (!props->single_context) {
3434                        DRM_DEBUG("preemption disable with no context\n");
3435                        ret = -EINVAL;
3436                        goto err;
3437                }
3438                privileged_op = true;
3439        }
3440
3441        /*
3442         * Asking for SSEU configuration is a priviliged operation.
3443         */
3444        if (props->has_sseu)
3445                privileged_op = true;
3446        else
3447                get_default_sseu_config(&props->sseu, props->engine);
3448
3449        /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3450         * we check a dev.i915.perf_stream_paranoid sysctl option
3451         * to determine if it's ok to access system wide OA counters
3452         * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3453         */
3454        if (privileged_op &&
3455            i915_perf_stream_paranoid && !perfmon_capable()) {
3456                DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
3457                ret = -EACCES;
3458                goto err_ctx;
3459        }
3460
3461        stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3462        if (!stream) {
3463                ret = -ENOMEM;
3464                goto err_ctx;
3465        }
3466
3467        stream->perf = perf;
3468        stream->ctx = specific_ctx;
3469        stream->poll_oa_period = props->poll_oa_period;
3470
3471        ret = i915_oa_stream_init(stream, param, props);
3472        if (ret)
3473                goto err_alloc;
3474
3475        /* we avoid simply assigning stream->sample_flags = props->sample_flags
3476         * to have _stream_init check the combination of sample flags more
3477         * thoroughly, but still this is the expected result at this point.
3478         */
3479        if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3480                ret = -ENODEV;
3481                goto err_flags;
3482        }
3483
3484        if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3485                f_flags |= O_CLOEXEC;
3486        if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3487                f_flags |= O_NONBLOCK;
3488
3489        stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3490        if (stream_fd < 0) {
3491                ret = stream_fd;
3492                goto err_flags;
3493        }
3494
3495        if (!(param->flags & I915_PERF_FLAG_DISABLED))
3496                i915_perf_enable_locked(stream);
3497
3498        /* Take a reference on the driver that will be kept with stream_fd
3499         * until its release.
3500         */
3501        drm_dev_get(&perf->i915->drm);
3502
3503        return stream_fd;
3504
3505err_flags:
3506        if (stream->ops->destroy)
3507                stream->ops->destroy(stream);
3508err_alloc:
3509        kfree(stream);
3510err_ctx:
3511        if (specific_ctx)
3512                i915_gem_context_put(specific_ctx);
3513err:
3514        return ret;
3515}
3516
3517static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3518{
3519        return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
3520}
3521
3522/**
3523 * read_properties_unlocked - validate + copy userspace stream open properties
3524 * @perf: i915 perf instance
3525 * @uprops: The array of u64 key value pairs given by userspace
3526 * @n_props: The number of key value pairs expected in @uprops
3527 * @props: The stream configuration built up while validating properties
3528 *
3529 * Note this function only validates properties in isolation it doesn't
3530 * validate that the combination of properties makes sense or that all
3531 * properties necessary for a particular kind of stream have been set.
3532 *
3533 * Note that there currently aren't any ordering requirements for properties so
3534 * we shouldn't validate or assume anything about ordering here. This doesn't
3535 * rule out defining new properties with ordering requirements in the future.
3536 */
3537static int read_properties_unlocked(struct i915_perf *perf,
3538                                    u64 __user *uprops,
3539                                    u32 n_props,
3540                                    struct perf_open_properties *props)
3541{
3542        u64 __user *uprop = uprops;
3543        u32 i;
3544        int ret;
3545
3546        memset(props, 0, sizeof(struct perf_open_properties));
3547        props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3548
3549        if (!n_props) {
3550                DRM_DEBUG("No i915 perf properties given\n");
3551                return -EINVAL;
3552        }
3553
3554        /* At the moment we only support using i915-perf on the RCS. */
3555        props->engine = intel_engine_lookup_user(perf->i915,
3556                                                 I915_ENGINE_CLASS_RENDER,
3557                                                 0);
3558        if (!props->engine) {
3559                DRM_DEBUG("No RENDER-capable engines\n");
3560                return -EINVAL;
3561        }
3562
3563        /* Considering that ID = 0 is reserved and assuming that we don't
3564         * (currently) expect any configurations to ever specify duplicate
3565         * values for a particular property ID then the last _PROP_MAX value is
3566         * one greater than the maximum number of properties we expect to get
3567         * from userspace.
3568         */
3569        if (n_props >= DRM_I915_PERF_PROP_MAX) {
3570                DRM_DEBUG("More i915 perf properties specified than exist\n");
3571                return -EINVAL;
3572        }
3573
3574        for (i = 0; i < n_props; i++) {
3575                u64 oa_period, oa_freq_hz;
3576                u64 id, value;
3577
3578                ret = get_user(id, uprop);
3579                if (ret)
3580                        return ret;
3581
3582                ret = get_user(value, uprop + 1);
3583                if (ret)
3584                        return ret;
3585
3586                if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3587                        DRM_DEBUG("Unknown i915 perf property ID\n");
3588                        return -EINVAL;
3589                }
3590
3591                switch ((enum drm_i915_perf_property_id)id) {
3592                case DRM_I915_PERF_PROP_CTX_HANDLE:
3593                        props->single_context = 1;
3594                        props->ctx_handle = value;
3595                        break;
3596                case DRM_I915_PERF_PROP_SAMPLE_OA:
3597                        if (value)
3598                                props->sample_flags |= SAMPLE_OA_REPORT;
3599                        break;
3600                case DRM_I915_PERF_PROP_OA_METRICS_SET:
3601                        if (value == 0) {
3602                                DRM_DEBUG("Unknown OA metric set ID\n");
3603                                return -EINVAL;
3604                        }
3605                        props->metrics_set = value;
3606                        break;
3607                case DRM_I915_PERF_PROP_OA_FORMAT:
3608                        if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3609                                DRM_DEBUG("Out-of-range OA report format %llu\n",
3610                                          value);
3611                                return -EINVAL;
3612                        }
3613                        if (!perf->oa_formats[value].size) {
3614                                DRM_DEBUG("Unsupported OA report format %llu\n",
3615                                          value);
3616                                return -EINVAL;
3617                        }
3618                        props->oa_format = value;
3619                        break;
3620                case DRM_I915_PERF_PROP_OA_EXPONENT:
3621                        if (value > OA_EXPONENT_MAX) {
3622                                DRM_DEBUG("OA timer exponent too high (> %u)\n",
3623                                         OA_EXPONENT_MAX);
3624                                return -EINVAL;
3625                        }
3626
3627                        /* Theoretically we can program the OA unit to sample
3628                         * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3629                         * for BXT. We don't allow such high sampling
3630                         * frequencies by default unless root.
3631                         */
3632
3633                        BUILD_BUG_ON(sizeof(oa_period) != 8);
3634                        oa_period = oa_exponent_to_ns(perf, value);
3635
3636                        /* This check is primarily to ensure that oa_period <=
3637                         * UINT32_MAX (before passing to do_div which only
3638                         * accepts a u32 denominator), but we can also skip
3639                         * checking anything < 1Hz which implicitly can't be
3640                         * limited via an integer oa_max_sample_rate.
3641                         */
3642                        if (oa_period <= NSEC_PER_SEC) {
3643                                u64 tmp = NSEC_PER_SEC;
3644                                do_div(tmp, oa_period);
3645                                oa_freq_hz = tmp;
3646                        } else
3647                                oa_freq_hz = 0;
3648
3649                        if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3650                                DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3651                                          i915_oa_max_sample_rate);
3652                                return -EACCES;
3653                        }
3654
3655                        props->oa_periodic = true;
3656                        props->oa_period_exponent = value;
3657                        break;
3658                case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3659                        props->hold_preemption = !!value;
3660                        break;
3661                case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3662                        struct drm_i915_gem_context_param_sseu user_sseu;
3663
3664                        if (copy_from_user(&user_sseu,
3665                                           u64_to_user_ptr(value),
3666                                           sizeof(user_sseu))) {
3667                                DRM_DEBUG("Unable to copy global sseu parameter\n");
3668                                return -EFAULT;
3669                        }
3670
3671                        ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3672                        if (ret) {
3673                                DRM_DEBUG("Invalid SSEU configuration\n");
3674                                return ret;
3675                        }
3676                        props->has_sseu = true;
3677                        break;
3678                }
3679                case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3680                        if (value < 100000 /* 100us */) {
3681                                DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
3682                                          value);
3683                                return -EINVAL;
3684                        }
3685                        props->poll_oa_period = value;
3686                        break;
3687                case DRM_I915_PERF_PROP_MAX:
3688                        MISSING_CASE(id);
3689                        return -EINVAL;
3690                }
3691
3692                uprop += 2;
3693        }
3694
3695        return 0;
3696}
3697
3698/**
3699 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3700 * @dev: drm device
3701 * @data: ioctl data copied from userspace (unvalidated)
3702 * @file: drm file
3703 *
3704 * Validates the stream open parameters given by userspace including flags
3705 * and an array of u64 key, value pair properties.
3706 *
3707 * Very little is assumed up front about the nature of the stream being
3708 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3709 * i915-perf stream is expected to be a suitable interface for other forms of
3710 * buffered data written by the GPU besides periodic OA metrics.
3711 *
3712 * Note we copy the properties from userspace outside of the i915 perf
3713 * mutex to avoid an awkward lockdep with mmap_lock.
3714 *
3715 * Most of the implementation details are handled by
3716 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3717 * mutex for serializing with any non-file-operation driver hooks.
3718 *
3719 * Return: A newly opened i915 Perf stream file descriptor or negative
3720 * error code on failure.
3721 */
3722int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3723                         struct drm_file *file)
3724{
3725        struct i915_perf *perf = &to_i915(dev)->perf;
3726        struct drm_i915_perf_open_param *param = data;
3727        struct perf_open_properties props;
3728        u32 known_open_flags;
3729        int ret;
3730
3731        if (!perf->i915) {
3732                DRM_DEBUG("i915 perf interface not available for this system\n");
3733                return -ENOTSUPP;
3734        }
3735
3736        known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3737                           I915_PERF_FLAG_FD_NONBLOCK |
3738                           I915_PERF_FLAG_DISABLED;
3739        if (param->flags & ~known_open_flags) {
3740                DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
3741                return -EINVAL;
3742        }
3743
3744        ret = read_properties_unlocked(perf,
3745                                       u64_to_user_ptr(param->properties_ptr),
3746                                       param->num_properties,
3747                                       &props);
3748        if (ret)
3749                return ret;
3750
3751        mutex_lock(&perf->lock);
3752        ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3753        mutex_unlock(&perf->lock);
3754
3755        return ret;
3756}
3757
3758/**
3759 * i915_perf_register - exposes i915-perf to userspace
3760 * @i915: i915 device instance
3761 *
3762 * In particular OA metric sets are advertised under a sysfs metrics/
3763 * directory allowing userspace to enumerate valid IDs that can be
3764 * used to open an i915-perf stream.
3765 */
3766void i915_perf_register(struct drm_i915_private *i915)
3767{
3768        struct i915_perf *perf = &i915->perf;
3769
3770        if (!perf->i915)
3771                return;
3772
3773        /* To be sure we're synchronized with an attempted
3774         * i915_perf_open_ioctl(); considering that we register after
3775         * being exposed to userspace.
3776         */
3777        mutex_lock(&perf->lock);
3778
3779        perf->metrics_kobj =
3780                kobject_create_and_add("metrics",
3781                                       &i915->drm.primary->kdev->kobj);
3782
3783        mutex_unlock(&perf->lock);
3784}
3785
3786/**
3787 * i915_perf_unregister - hide i915-perf from userspace
3788 * @i915: i915 device instance
3789 *
3790 * i915-perf state cleanup is split up into an 'unregister' and
3791 * 'deinit' phase where the interface is first hidden from
3792 * userspace by i915_perf_unregister() before cleaning up
3793 * remaining state in i915_perf_fini().
3794 */
3795void i915_perf_unregister(struct drm_i915_private *i915)
3796{
3797        struct i915_perf *perf = &i915->perf;
3798
3799        if (!perf->metrics_kobj)
3800                return;
3801
3802        kobject_put(perf->metrics_kobj);
3803        perf->metrics_kobj = NULL;
3804}
3805
3806static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3807{
3808        static const i915_reg_t flex_eu_regs[] = {
3809                EU_PERF_CNTL0,
3810                EU_PERF_CNTL1,
3811                EU_PERF_CNTL2,
3812                EU_PERF_CNTL3,
3813                EU_PERF_CNTL4,
3814                EU_PERF_CNTL5,
3815                EU_PERF_CNTL6,
3816        };
3817        int i;
3818
3819        for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3820                if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3821                        return true;
3822        }
3823        return false;
3824}
3825
3826#define ADDR_IN_RANGE(addr, start, end) \
3827        ((addr) >= (start) && \
3828         (addr) <= (end))
3829
3830#define REG_IN_RANGE(addr, start, end) \
3831        ((addr) >= i915_mmio_reg_offset(start) && \
3832         (addr) <= i915_mmio_reg_offset(end))
3833
3834#define REG_EQUAL(addr, mmio) \
3835        ((addr) == i915_mmio_reg_offset(mmio))
3836
3837static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3838{
3839        return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
3840               REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
3841               REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
3842}
3843
3844static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3845{
3846        return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
3847               REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
3848               REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
3849               REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
3850}
3851
3852static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3853{
3854        return gen7_is_valid_mux_addr(perf, addr) ||
3855               REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3856               REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
3857}
3858
3859static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3860{
3861        return gen8_is_valid_mux_addr(perf, addr) ||
3862               REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3863               REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
3864}
3865
3866static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3867{
3868        return gen7_is_valid_mux_addr(perf, addr) ||
3869               ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
3870               REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
3871               REG_EQUAL(addr, HSW_MBVID2_MISR0);
3872}
3873
3874static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3875{
3876        return gen7_is_valid_mux_addr(perf, addr) ||
3877               ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
3878}
3879
3880static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3881{
3882        return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
3883               REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
3884               REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
3885               REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
3886               REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
3887               REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
3888               REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
3889}
3890
3891static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3892{
3893        return REG_EQUAL(addr, NOA_WRITE) ||
3894               REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
3895               REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
3896               REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
3897               REG_EQUAL(addr, RPM_CONFIG0) ||
3898               REG_EQUAL(addr, RPM_CONFIG1) ||
3899               REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
3900}
3901
3902static u32 mask_reg_value(u32 reg, u32 val)
3903{
3904        /* HALF_SLICE_CHICKEN2 is programmed with a the
3905         * WaDisableSTUnitPowerOptimization workaround. Make sure the value
3906         * programmed by userspace doesn't change this.
3907         */
3908        if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
3909                val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
3910
3911        /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
3912         * indicated by its name and a bunch of selection fields used by OA
3913         * configs.
3914         */
3915        if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
3916                val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
3917
3918        return val;
3919}
3920
3921static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
3922                                         bool (*is_valid)(struct i915_perf *perf, u32 addr),
3923                                         u32 __user *regs,
3924                                         u32 n_regs)
3925{
3926        struct i915_oa_reg *oa_regs;
3927        int err;
3928        u32 i;
3929
3930        if (!n_regs)
3931                return NULL;
3932
3933        /* No is_valid function means we're not allowing any register to be programmed. */
3934        GEM_BUG_ON(!is_valid);
3935        if (!is_valid)
3936                return ERR_PTR(-EINVAL);
3937
3938        oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
3939        if (!oa_regs)
3940                return ERR_PTR(-ENOMEM);
3941
3942        for (i = 0; i < n_regs; i++) {
3943                u32 addr, value;
3944
3945                err = get_user(addr, regs);
3946                if (err)
3947                        goto addr_err;
3948
3949                if (!is_valid(perf, addr)) {
3950                        DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
3951                        err = -EINVAL;
3952                        goto addr_err;
3953                }
3954
3955                err = get_user(value, regs + 1);
3956                if (err)
3957                        goto addr_err;
3958
3959                oa_regs[i].addr = _MMIO(addr);
3960                oa_regs[i].value = mask_reg_value(addr, value);
3961
3962                regs += 2;
3963        }
3964
3965        return oa_regs;
3966
3967addr_err:
3968        kfree(oa_regs);
3969        return ERR_PTR(err);
3970}
3971
3972static ssize_t show_dynamic_id(struct device *dev,
3973                               struct device_attribute *attr,
3974                               char *buf)
3975{
3976        struct i915_oa_config *oa_config =
3977                container_of(attr, typeof(*oa_config), sysfs_metric_id);
3978
3979        return sprintf(buf, "%d\n", oa_config->id);
3980}
3981
3982static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
3983                                         struct i915_oa_config *oa_config)
3984{
3985        sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
3986        oa_config->sysfs_metric_id.attr.name = "id";
3987        oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
3988        oa_config->sysfs_metric_id.show = show_dynamic_id;
3989        oa_config->sysfs_metric_id.store = NULL;
3990
3991        oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
3992        oa_config->attrs[1] = NULL;
3993
3994        oa_config->sysfs_metric.name = oa_config->uuid;
3995        oa_config->sysfs_metric.attrs = oa_config->attrs;
3996
3997        return sysfs_create_group(perf->metrics_kobj,
3998                                  &oa_config->sysfs_metric);
3999}
4000
4001/**
4002 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4003 * @dev: drm device
4004 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4005 *        userspace (unvalidated)
4006 * @file: drm file
4007 *
4008 * Validates the submitted OA register to be saved into a new OA config that
4009 * can then be used for programming the OA unit and its NOA network.
4010 *
4011 * Returns: A new allocated config number to be used with the perf open ioctl
4012 * or a negative error code on failure.
4013 */
4014int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4015                               struct drm_file *file)
4016{
4017        struct i915_perf *perf = &to_i915(dev)->perf;
4018        struct drm_i915_perf_oa_config *args = data;
4019        struct i915_oa_config *oa_config, *tmp;
4020        struct i915_oa_reg *regs;
4021        int err, id;
4022
4023        if (!perf->i915) {
4024                DRM_DEBUG("i915 perf interface not available for this system\n");
4025                return -ENOTSUPP;
4026        }
4027
4028        if (!perf->metrics_kobj) {
4029                DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
4030                return -EINVAL;
4031        }
4032
4033        if (i915_perf_stream_paranoid && !perfmon_capable()) {
4034                DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
4035                return -EACCES;
4036        }
4037
4038        if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4039            (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4040            (!args->flex_regs_ptr || !args->n_flex_regs)) {
4041                DRM_DEBUG("No OA registers given\n");
4042                return -EINVAL;
4043        }
4044
4045        oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4046        if (!oa_config) {
4047                DRM_DEBUG("Failed to allocate memory for the OA config\n");
4048                return -ENOMEM;
4049        }
4050
4051        oa_config->perf = perf;
4052        kref_init(&oa_config->ref);
4053
4054        if (!uuid_is_valid(args->uuid)) {
4055                DRM_DEBUG("Invalid uuid format for OA config\n");
4056                err = -EINVAL;
4057                goto reg_err;
4058        }
4059
4060        /* Last character in oa_config->uuid will be 0 because oa_config is
4061         * kzalloc.
4062         */
4063        memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4064
4065        oa_config->mux_regs_len = args->n_mux_regs;
4066        regs = alloc_oa_regs(perf,
4067                             perf->ops.is_valid_mux_reg,
4068                             u64_to_user_ptr(args->mux_regs_ptr),
4069                             args->n_mux_regs);
4070
4071        if (IS_ERR(regs)) {
4072                DRM_DEBUG("Failed to create OA config for mux_regs\n");
4073                err = PTR_ERR(regs);
4074                goto reg_err;
4075        }
4076        oa_config->mux_regs = regs;
4077
4078        oa_config->b_counter_regs_len = args->n_boolean_regs;
4079        regs = alloc_oa_regs(perf,
4080                             perf->ops.is_valid_b_counter_reg,
4081                             u64_to_user_ptr(args->boolean_regs_ptr),
4082                             args->n_boolean_regs);
4083
4084        if (IS_ERR(regs)) {
4085                DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
4086                err = PTR_ERR(regs);
4087                goto reg_err;
4088        }
4089        oa_config->b_counter_regs = regs;
4090
4091        if (INTEL_GEN(perf->i915) < 8) {
4092                if (args->n_flex_regs != 0) {
4093                        err = -EINVAL;
4094                        goto reg_err;
4095                }
4096        } else {
4097                oa_config->flex_regs_len = args->n_flex_regs;
4098                regs = alloc_oa_regs(perf,
4099                                     perf->ops.is_valid_flex_reg,
4100                                     u64_to_user_ptr(args->flex_regs_ptr),
4101                                     args->n_flex_regs);
4102
4103                if (IS_ERR(regs)) {
4104                        DRM_DEBUG("Failed to create OA config for flex_regs\n");
4105                        err = PTR_ERR(regs);
4106                        goto reg_err;
4107                }
4108                oa_config->flex_regs = regs;
4109        }
4110
4111        err = mutex_lock_interruptible(&perf->metrics_lock);
4112        if (err)
4113                goto reg_err;
4114
4115        /* We shouldn't have too many configs, so this iteration shouldn't be
4116         * too costly.
4117         */
4118        idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4119                if (!strcmp(tmp->uuid, oa_config->uuid)) {
4120                        DRM_DEBUG("OA config already exists with this uuid\n");
4121                        err = -EADDRINUSE;
4122                        goto sysfs_err;
4123                }
4124        }
4125
4126        err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4127        if (err) {
4128                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4129                goto sysfs_err;
4130        }
4131
4132        /* Config id 0 is invalid, id 1 for kernel stored test config. */
4133        oa_config->id = idr_alloc(&perf->metrics_idr,
4134                                  oa_config, 2,
4135                                  0, GFP_KERNEL);
4136        if (oa_config->id < 0) {
4137                DRM_DEBUG("Failed to create sysfs entry for OA config\n");
4138                err = oa_config->id;
4139                goto sysfs_err;
4140        }
4141
4142        mutex_unlock(&perf->metrics_lock);
4143
4144        DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4145
4146        return oa_config->id;
4147
4148sysfs_err:
4149        mutex_unlock(&perf->metrics_lock);
4150reg_err:
4151        i915_oa_config_put(oa_config);
4152        DRM_DEBUG("Failed to add new OA config\n");
4153        return err;
4154}
4155
4156/**
4157 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4158 * @dev: drm device
4159 * @data: ioctl data (pointer to u64 integer) copied from userspace
4160 * @file: drm file
4161 *
4162 * Configs can be removed while being used, the will stop appearing in sysfs
4163 * and their content will be freed when the stream using the config is closed.
4164 *
4165 * Returns: 0 on success or a negative error code on failure.
4166 */
4167int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4168                                  struct drm_file *file)
4169{
4170        struct i915_perf *perf = &to_i915(dev)->perf;
4171        u64 *arg = data;
4172        struct i915_oa_config *oa_config;
4173        int ret;
4174
4175        if (!perf->i915) {
4176                DRM_DEBUG("i915 perf interface not available for this system\n");
4177                return -ENOTSUPP;
4178        }
4179
4180        if (i915_perf_stream_paranoid && !perfmon_capable()) {
4181                DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
4182                return -EACCES;
4183        }
4184
4185        ret = mutex_lock_interruptible(&perf->metrics_lock);
4186        if (ret)
4187                return ret;
4188
4189        oa_config = idr_find(&perf->metrics_idr, *arg);
4190        if (!oa_config) {
4191                DRM_DEBUG("Failed to remove unknown OA config\n");
4192                ret = -ENOENT;
4193                goto err_unlock;
4194        }
4195
4196        GEM_BUG_ON(*arg != oa_config->id);
4197
4198        sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4199
4200        idr_remove(&perf->metrics_idr, *arg);
4201
4202        mutex_unlock(&perf->metrics_lock);
4203
4204        DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4205
4206        i915_oa_config_put(oa_config);
4207
4208        return 0;
4209
4210err_unlock:
4211        mutex_unlock(&perf->metrics_lock);
4212        return ret;
4213}
4214
4215static struct ctl_table oa_table[] = {
4216        {
4217         .procname = "perf_stream_paranoid",
4218         .data = &i915_perf_stream_paranoid,
4219         .maxlen = sizeof(i915_perf_stream_paranoid),
4220         .mode = 0644,
4221         .proc_handler = proc_dointvec_minmax,
4222         .extra1 = SYSCTL_ZERO,
4223         .extra2 = SYSCTL_ONE,
4224         },
4225        {
4226         .procname = "oa_max_sample_rate",
4227         .data = &i915_oa_max_sample_rate,
4228         .maxlen = sizeof(i915_oa_max_sample_rate),
4229         .mode = 0644,
4230         .proc_handler = proc_dointvec_minmax,
4231         .extra1 = SYSCTL_ZERO,
4232         .extra2 = &oa_sample_rate_hard_limit,
4233         },
4234        {}
4235};
4236
4237static struct ctl_table i915_root[] = {
4238        {
4239         .procname = "i915",
4240         .maxlen = 0,
4241         .mode = 0555,
4242         .child = oa_table,
4243         },
4244        {}
4245};
4246
4247static struct ctl_table dev_root[] = {
4248        {
4249         .procname = "dev",
4250         .maxlen = 0,
4251         .mode = 0555,
4252         .child = i915_root,
4253         },
4254        {}
4255};
4256
4257/**
4258 * i915_perf_init - initialize i915-perf state on module bind
4259 * @i915: i915 device instance
4260 *
4261 * Initializes i915-perf state without exposing anything to userspace.
4262 *
4263 * Note: i915-perf initialization is split into an 'init' and 'register'
4264 * phase with the i915_perf_register() exposing state to userspace.
4265 */
4266void i915_perf_init(struct drm_i915_private *i915)
4267{
4268        struct i915_perf *perf = &i915->perf;
4269
4270        /* XXX const struct i915_perf_ops! */
4271
4272        if (IS_HASWELL(i915)) {
4273                perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4274                perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4275                perf->ops.is_valid_flex_reg = NULL;
4276                perf->ops.enable_metric_set = hsw_enable_metric_set;
4277                perf->ops.disable_metric_set = hsw_disable_metric_set;
4278                perf->ops.oa_enable = gen7_oa_enable;
4279                perf->ops.oa_disable = gen7_oa_disable;
4280                perf->ops.read = gen7_oa_read;
4281                perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4282
4283                perf->oa_formats = hsw_oa_formats;
4284        } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4285                /* Note: that although we could theoretically also support the
4286                 * legacy ringbuffer mode on BDW (and earlier iterations of
4287                 * this driver, before upstreaming did this) it didn't seem
4288                 * worth the complexity to maintain now that BDW+ enable
4289                 * execlist mode by default.
4290                 */
4291                perf->ops.read = gen8_oa_read;
4292
4293                if (IS_GEN_RANGE(i915, 8, 9)) {
4294                        perf->oa_formats = gen8_plus_oa_formats;
4295
4296                        perf->ops.is_valid_b_counter_reg =
4297                                gen7_is_valid_b_counter_addr;
4298                        perf->ops.is_valid_mux_reg =
4299                                gen8_is_valid_mux_addr;
4300                        perf->ops.is_valid_flex_reg =
4301                                gen8_is_valid_flex_addr;
4302
4303                        if (IS_CHERRYVIEW(i915)) {
4304                                perf->ops.is_valid_mux_reg =
4305                                        chv_is_valid_mux_addr;
4306                        }
4307
4308                        perf->ops.oa_enable = gen8_oa_enable;
4309                        perf->ops.oa_disable = gen8_oa_disable;
4310                        perf->ops.enable_metric_set = gen8_enable_metric_set;
4311                        perf->ops.disable_metric_set = gen8_disable_metric_set;
4312                        perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4313
4314                        if (IS_GEN(i915, 8)) {
4315                                perf->ctx_oactxctrl_offset = 0x120;
4316                                perf->ctx_flexeu0_offset = 0x2ce;
4317
4318                                perf->gen8_valid_ctx_bit = BIT(25);
4319                        } else {
4320                                perf->ctx_oactxctrl_offset = 0x128;
4321                                perf->ctx_flexeu0_offset = 0x3de;
4322
4323                                perf->gen8_valid_ctx_bit = BIT(16);
4324                        }
4325                } else if (IS_GEN_RANGE(i915, 10, 11)) {
4326                        perf->oa_formats = gen8_plus_oa_formats;
4327
4328                        perf->ops.is_valid_b_counter_reg =
4329                                gen7_is_valid_b_counter_addr;
4330                        perf->ops.is_valid_mux_reg =
4331                                gen10_is_valid_mux_addr;
4332                        perf->ops.is_valid_flex_reg =
4333                                gen8_is_valid_flex_addr;
4334
4335                        perf->ops.oa_enable = gen8_oa_enable;
4336                        perf->ops.oa_disable = gen8_oa_disable;
4337                        perf->ops.enable_metric_set = gen8_enable_metric_set;
4338                        perf->ops.disable_metric_set = gen10_disable_metric_set;
4339                        perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4340
4341                        if (IS_GEN(i915, 10)) {
4342                                perf->ctx_oactxctrl_offset = 0x128;
4343                                perf->ctx_flexeu0_offset = 0x3de;
4344                        } else {
4345                                perf->ctx_oactxctrl_offset = 0x124;
4346                                perf->ctx_flexeu0_offset = 0x78e;
4347                        }
4348                        perf->gen8_valid_ctx_bit = BIT(16);
4349                } else if (IS_GEN(i915, 12)) {
4350                        perf->oa_formats = gen12_oa_formats;
4351
4352                        perf->ops.is_valid_b_counter_reg =
4353                                gen12_is_valid_b_counter_addr;
4354                        perf->ops.is_valid_mux_reg =
4355                                gen12_is_valid_mux_addr;
4356                        perf->ops.is_valid_flex_reg =
4357                                gen8_is_valid_flex_addr;
4358
4359                        perf->ops.oa_enable = gen12_oa_enable;
4360                        perf->ops.oa_disable = gen12_oa_disable;
4361                        perf->ops.enable_metric_set = gen12_enable_metric_set;
4362                        perf->ops.disable_metric_set = gen12_disable_metric_set;
4363                        perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4364
4365                        perf->ctx_flexeu0_offset = 0;
4366                        perf->ctx_oactxctrl_offset = 0x144;
4367                }
4368        }
4369
4370        if (perf->ops.enable_metric_set) {
4371                mutex_init(&perf->lock);
4372
4373                oa_sample_rate_hard_limit =
4374                        RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
4375
4376                mutex_init(&perf->metrics_lock);
4377                idr_init(&perf->metrics_idr);
4378
4379                /* We set up some ratelimit state to potentially throttle any
4380                 * _NOTES about spurious, invalid OA reports which we don't
4381                 * forward to userspace.
4382                 *
4383                 * We print a _NOTE about any throttling when closing the
4384                 * stream instead of waiting until driver _fini which no one
4385                 * would ever see.
4386                 *
4387                 * Using the same limiting factors as printk_ratelimit()
4388                 */
4389                ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4390                /* Since we use a DRM_NOTE for spurious reports it would be
4391                 * inconsistent to let __ratelimit() automatically print a
4392                 * warning for throttling.
4393                 */
4394                ratelimit_set_flags(&perf->spurious_report_rs,
4395                                    RATELIMIT_MSG_ON_RELEASE);
4396
4397                ratelimit_state_init(&perf->tail_pointer_race,
4398                                     5 * HZ, 10);
4399                ratelimit_set_flags(&perf->tail_pointer_race,
4400                                    RATELIMIT_MSG_ON_RELEASE);
4401
4402                atomic64_set(&perf->noa_programming_delay,
4403                             500 * 1000 /* 500us */);
4404
4405                perf->i915 = i915;
4406        }
4407}
4408
4409static int destroy_config(int id, void *p, void *data)
4410{
4411        i915_oa_config_put(p);
4412        return 0;
4413}
4414
4415void i915_perf_sysctl_register(void)
4416{
4417        sysctl_header = register_sysctl_table(dev_root);
4418}
4419
4420void i915_perf_sysctl_unregister(void)
4421{
4422        unregister_sysctl_table(sysctl_header);
4423}
4424
4425/**
4426 * i915_perf_fini - Counter part to i915_perf_init()
4427 * @i915: i915 device instance
4428 */
4429void i915_perf_fini(struct drm_i915_private *i915)
4430{
4431        struct i915_perf *perf = &i915->perf;
4432
4433        if (!perf->i915)
4434                return;
4435
4436        idr_for_each(&perf->metrics_idr, destroy_config, perf);
4437        idr_destroy(&perf->metrics_idr);
4438
4439        memset(&perf->ops, 0, sizeof(perf->ops));
4440        perf->i915 = NULL;
4441}
4442
4443/**
4444 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4445 *
4446 * This version number is used by userspace to detect available features.
4447 */
4448int i915_perf_ioctl_version(void)
4449{
4450        /*
4451         * 1: Initial version
4452         *   I915_PERF_IOCTL_ENABLE
4453         *   I915_PERF_IOCTL_DISABLE
4454         *
4455         * 2: Added runtime modification of OA config.
4456         *   I915_PERF_IOCTL_CONFIG
4457         *
4458         * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4459         *    preemption on a particular context so that performance data is
4460         *    accessible from a delta of MI_RPC reports without looking at the
4461         *    OA buffer.
4462         *
4463         * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4464         *    be run for the duration of the performance recording based on
4465         *    their SSEU configuration.
4466         *
4467         * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4468         *    interval for the hrtimer used to check for OA data.
4469         */
4470        return 5;
4471}
4472
4473#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4474#include "selftests/i915_perf.c"
4475#endif
4476