linux/drivers/iio/chemical/sps30.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Sensirion SPS30 particulate matter sensor driver
   4 *
   5 * Copyright (c) Tomasz Duszynski <tduszyns@gmail.com>
   6 *
   7 * I2C slave address: 0x69
   8 */
   9
  10#include <asm/unaligned.h>
  11#include <linux/crc8.h>
  12#include <linux/delay.h>
  13#include <linux/i2c.h>
  14#include <linux/iio/buffer.h>
  15#include <linux/iio/iio.h>
  16#include <linux/iio/sysfs.h>
  17#include <linux/iio/trigger_consumer.h>
  18#include <linux/iio/triggered_buffer.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21
  22#define SPS30_CRC8_POLYNOMIAL 0x31
  23/* max number of bytes needed to store PM measurements or serial string */
  24#define SPS30_MAX_READ_SIZE 48
  25/* sensor measures reliably up to 3000 ug / m3 */
  26#define SPS30_MAX_PM 3000
  27/* minimum and maximum self cleaning periods in seconds */
  28#define SPS30_AUTO_CLEANING_PERIOD_MIN 0
  29#define SPS30_AUTO_CLEANING_PERIOD_MAX 604800
  30
  31/* SPS30 commands */
  32#define SPS30_START_MEAS 0x0010
  33#define SPS30_STOP_MEAS 0x0104
  34#define SPS30_RESET 0xd304
  35#define SPS30_READ_DATA_READY_FLAG 0x0202
  36#define SPS30_READ_DATA 0x0300
  37#define SPS30_READ_SERIAL 0xd033
  38#define SPS30_START_FAN_CLEANING 0x5607
  39#define SPS30_AUTO_CLEANING_PERIOD 0x8004
  40/* not a sensor command per se, used only to distinguish write from read */
  41#define SPS30_READ_AUTO_CLEANING_PERIOD 0x8005
  42
  43enum {
  44        PM1,
  45        PM2P5,
  46        PM4,
  47        PM10,
  48};
  49
  50enum {
  51        RESET,
  52        MEASURING,
  53};
  54
  55struct sps30_state {
  56        struct i2c_client *client;
  57        /*
  58         * Guards against concurrent access to sensor registers.
  59         * Must be held whenever sequence of commands is to be executed.
  60         */
  61        struct mutex lock;
  62        int state;
  63};
  64
  65DECLARE_CRC8_TABLE(sps30_crc8_table);
  66
  67static int sps30_write_then_read(struct sps30_state *state, u8 *txbuf,
  68                                 int txsize, u8 *rxbuf, int rxsize)
  69{
  70        int ret;
  71
  72        /*
  73         * Sensor does not support repeated start so instead of
  74         * sending two i2c messages in a row we just send one by one.
  75         */
  76        ret = i2c_master_send(state->client, txbuf, txsize);
  77        if (ret != txsize)
  78                return ret < 0 ? ret : -EIO;
  79
  80        if (!rxbuf)
  81                return 0;
  82
  83        ret = i2c_master_recv(state->client, rxbuf, rxsize);
  84        if (ret != rxsize)
  85                return ret < 0 ? ret : -EIO;
  86
  87        return 0;
  88}
  89
  90static int sps30_do_cmd(struct sps30_state *state, u16 cmd, u8 *data, int size)
  91{
  92        /*
  93         * Internally sensor stores measurements in a following manner:
  94         *
  95         * PM1: upper two bytes, crc8, lower two bytes, crc8
  96         * PM2P5: upper two bytes, crc8, lower two bytes, crc8
  97         * PM4: upper two bytes, crc8, lower two bytes, crc8
  98         * PM10: upper two bytes, crc8, lower two bytes, crc8
  99         *
 100         * What follows next are number concentration measurements and
 101         * typical particle size measurement which we omit.
 102         */
 103        u8 buf[SPS30_MAX_READ_SIZE] = { cmd >> 8, cmd };
 104        int i, ret = 0;
 105
 106        switch (cmd) {
 107        case SPS30_START_MEAS:
 108                buf[2] = 0x03;
 109                buf[3] = 0x00;
 110                buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
 111                ret = sps30_write_then_read(state, buf, 5, NULL, 0);
 112                break;
 113        case SPS30_STOP_MEAS:
 114        case SPS30_RESET:
 115        case SPS30_START_FAN_CLEANING:
 116                ret = sps30_write_then_read(state, buf, 2, NULL, 0);
 117                break;
 118        case SPS30_READ_AUTO_CLEANING_PERIOD:
 119                buf[0] = SPS30_AUTO_CLEANING_PERIOD >> 8;
 120                buf[1] = (u8)(SPS30_AUTO_CLEANING_PERIOD & 0xff);
 121                fallthrough;
 122        case SPS30_READ_DATA_READY_FLAG:
 123        case SPS30_READ_DATA:
 124        case SPS30_READ_SERIAL:
 125                /* every two data bytes are checksummed */
 126                size += size / 2;
 127                ret = sps30_write_then_read(state, buf, 2, buf, size);
 128                break;
 129        case SPS30_AUTO_CLEANING_PERIOD:
 130                buf[2] = data[0];
 131                buf[3] = data[1];
 132                buf[4] = crc8(sps30_crc8_table, &buf[2], 2, CRC8_INIT_VALUE);
 133                buf[5] = data[2];
 134                buf[6] = data[3];
 135                buf[7] = crc8(sps30_crc8_table, &buf[5], 2, CRC8_INIT_VALUE);
 136                ret = sps30_write_then_read(state, buf, 8, NULL, 0);
 137                break;
 138        }
 139
 140        if (ret)
 141                return ret;
 142
 143        /* validate received data and strip off crc bytes */
 144        for (i = 0; i < size; i += 3) {
 145                u8 crc = crc8(sps30_crc8_table, &buf[i], 2, CRC8_INIT_VALUE);
 146
 147                if (crc != buf[i + 2]) {
 148                        dev_err(&state->client->dev,
 149                                "data integrity check failed\n");
 150                        return -EIO;
 151                }
 152
 153                *data++ = buf[i];
 154                *data++ = buf[i + 1];
 155        }
 156
 157        return 0;
 158}
 159
 160static s32 sps30_float_to_int_clamped(const u8 *fp)
 161{
 162        int val = get_unaligned_be32(fp);
 163        int mantissa = val & GENMASK(22, 0);
 164        /* this is fine since passed float is always non-negative */
 165        int exp = val >> 23;
 166        int fraction, shift;
 167
 168        /* special case 0 */
 169        if (!exp && !mantissa)
 170                return 0;
 171
 172        exp -= 127;
 173        if (exp < 0) {
 174                /* return values ranging from 1 to 99 */
 175                return ((((1 << 23) + mantissa) * 100) >> 23) >> (-exp);
 176        }
 177
 178        /* return values ranging from 100 to 300000 */
 179        shift = 23 - exp;
 180        val = (1 << exp) + (mantissa >> shift);
 181        if (val >= SPS30_MAX_PM)
 182                return SPS30_MAX_PM * 100;
 183
 184        fraction = mantissa & GENMASK(shift - 1, 0);
 185
 186        return val * 100 + ((fraction * 100) >> shift);
 187}
 188
 189static int sps30_do_meas(struct sps30_state *state, s32 *data, int size)
 190{
 191        int i, ret, tries = 5;
 192        u8 tmp[16];
 193
 194        if (state->state == RESET) {
 195                ret = sps30_do_cmd(state, SPS30_START_MEAS, NULL, 0);
 196                if (ret)
 197                        return ret;
 198
 199                state->state = MEASURING;
 200        }
 201
 202        while (tries--) {
 203                ret = sps30_do_cmd(state, SPS30_READ_DATA_READY_FLAG, tmp, 2);
 204                if (ret)
 205                        return -EIO;
 206
 207                /* new measurements ready to be read */
 208                if (tmp[1] == 1)
 209                        break;
 210
 211                msleep_interruptible(300);
 212        }
 213
 214        if (tries == -1)
 215                return -ETIMEDOUT;
 216
 217        ret = sps30_do_cmd(state, SPS30_READ_DATA, tmp, sizeof(int) * size);
 218        if (ret)
 219                return ret;
 220
 221        for (i = 0; i < size; i++)
 222                data[i] = sps30_float_to_int_clamped(&tmp[4 * i]);
 223
 224        return 0;
 225}
 226
 227static irqreturn_t sps30_trigger_handler(int irq, void *p)
 228{
 229        struct iio_poll_func *pf = p;
 230        struct iio_dev *indio_dev = pf->indio_dev;
 231        struct sps30_state *state = iio_priv(indio_dev);
 232        int ret;
 233        struct {
 234                s32 data[4]; /* PM1, PM2P5, PM4, PM10 */
 235                s64 ts;
 236        } scan;
 237
 238        mutex_lock(&state->lock);
 239        ret = sps30_do_meas(state, scan.data, ARRAY_SIZE(scan.data));
 240        mutex_unlock(&state->lock);
 241        if (ret)
 242                goto err;
 243
 244        iio_push_to_buffers_with_timestamp(indio_dev, &scan,
 245                                           iio_get_time_ns(indio_dev));
 246err:
 247        iio_trigger_notify_done(indio_dev->trig);
 248
 249        return IRQ_HANDLED;
 250}
 251
 252static int sps30_read_raw(struct iio_dev *indio_dev,
 253                          struct iio_chan_spec const *chan,
 254                          int *val, int *val2, long mask)
 255{
 256        struct sps30_state *state = iio_priv(indio_dev);
 257        int data[4], ret = -EINVAL;
 258
 259        switch (mask) {
 260        case IIO_CHAN_INFO_PROCESSED:
 261                switch (chan->type) {
 262                case IIO_MASSCONCENTRATION:
 263                        mutex_lock(&state->lock);
 264                        /* read up to the number of bytes actually needed */
 265                        switch (chan->channel2) {
 266                        case IIO_MOD_PM1:
 267                                ret = sps30_do_meas(state, data, 1);
 268                                break;
 269                        case IIO_MOD_PM2P5:
 270                                ret = sps30_do_meas(state, data, 2);
 271                                break;
 272                        case IIO_MOD_PM4:
 273                                ret = sps30_do_meas(state, data, 3);
 274                                break;
 275                        case IIO_MOD_PM10:
 276                                ret = sps30_do_meas(state, data, 4);
 277                                break;
 278                        }
 279                        mutex_unlock(&state->lock);
 280                        if (ret)
 281                                return ret;
 282
 283                        *val = data[chan->address] / 100;
 284                        *val2 = (data[chan->address] % 100) * 10000;
 285
 286                        return IIO_VAL_INT_PLUS_MICRO;
 287                default:
 288                        return -EINVAL;
 289                }
 290        case IIO_CHAN_INFO_SCALE:
 291                switch (chan->type) {
 292                case IIO_MASSCONCENTRATION:
 293                        switch (chan->channel2) {
 294                        case IIO_MOD_PM1:
 295                        case IIO_MOD_PM2P5:
 296                        case IIO_MOD_PM4:
 297                        case IIO_MOD_PM10:
 298                                *val = 0;
 299                                *val2 = 10000;
 300
 301                                return IIO_VAL_INT_PLUS_MICRO;
 302                        default:
 303                                return -EINVAL;
 304                        }
 305                default:
 306                        return -EINVAL;
 307                }
 308        }
 309
 310        return -EINVAL;
 311}
 312
 313static int sps30_do_cmd_reset(struct sps30_state *state)
 314{
 315        int ret;
 316
 317        ret = sps30_do_cmd(state, SPS30_RESET, NULL, 0);
 318        msleep(300);
 319        /*
 320         * Power-on-reset causes sensor to produce some glitch on i2c bus and
 321         * some controllers end up in error state. Recover simply by placing
 322         * some data on the bus, for example STOP_MEAS command, which
 323         * is NOP in this case.
 324         */
 325        sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
 326        state->state = RESET;
 327
 328        return ret;
 329}
 330
 331static ssize_t start_cleaning_store(struct device *dev,
 332                                    struct device_attribute *attr,
 333                                    const char *buf, size_t len)
 334{
 335        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 336        struct sps30_state *state = iio_priv(indio_dev);
 337        int val, ret;
 338
 339        if (kstrtoint(buf, 0, &val) || val != 1)
 340                return -EINVAL;
 341
 342        mutex_lock(&state->lock);
 343        ret = sps30_do_cmd(state, SPS30_START_FAN_CLEANING, NULL, 0);
 344        mutex_unlock(&state->lock);
 345        if (ret)
 346                return ret;
 347
 348        return len;
 349}
 350
 351static ssize_t cleaning_period_show(struct device *dev,
 352                                      struct device_attribute *attr,
 353                                      char *buf)
 354{
 355        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 356        struct sps30_state *state = iio_priv(indio_dev);
 357        u8 tmp[4];
 358        int ret;
 359
 360        mutex_lock(&state->lock);
 361        ret = sps30_do_cmd(state, SPS30_READ_AUTO_CLEANING_PERIOD, tmp, 4);
 362        mutex_unlock(&state->lock);
 363        if (ret)
 364                return ret;
 365
 366        return sprintf(buf, "%d\n", get_unaligned_be32(tmp));
 367}
 368
 369static ssize_t cleaning_period_store(struct device *dev,
 370                                       struct device_attribute *attr,
 371                                       const char *buf, size_t len)
 372{
 373        struct iio_dev *indio_dev = dev_to_iio_dev(dev);
 374        struct sps30_state *state = iio_priv(indio_dev);
 375        int val, ret;
 376        u8 tmp[4];
 377
 378        if (kstrtoint(buf, 0, &val))
 379                return -EINVAL;
 380
 381        if ((val < SPS30_AUTO_CLEANING_PERIOD_MIN) ||
 382            (val > SPS30_AUTO_CLEANING_PERIOD_MAX))
 383                return -EINVAL;
 384
 385        put_unaligned_be32(val, tmp);
 386
 387        mutex_lock(&state->lock);
 388        ret = sps30_do_cmd(state, SPS30_AUTO_CLEANING_PERIOD, tmp, 0);
 389        if (ret) {
 390                mutex_unlock(&state->lock);
 391                return ret;
 392        }
 393
 394        msleep(20);
 395
 396        /*
 397         * sensor requires reset in order to return up to date self cleaning
 398         * period
 399         */
 400        ret = sps30_do_cmd_reset(state);
 401        if (ret)
 402                dev_warn(dev,
 403                         "period changed but reads will return the old value\n");
 404
 405        mutex_unlock(&state->lock);
 406
 407        return len;
 408}
 409
 410static ssize_t cleaning_period_available_show(struct device *dev,
 411                                              struct device_attribute *attr,
 412                                              char *buf)
 413{
 414        return snprintf(buf, PAGE_SIZE, "[%d %d %d]\n",
 415                        SPS30_AUTO_CLEANING_PERIOD_MIN, 1,
 416                        SPS30_AUTO_CLEANING_PERIOD_MAX);
 417}
 418
 419static IIO_DEVICE_ATTR_WO(start_cleaning, 0);
 420static IIO_DEVICE_ATTR_RW(cleaning_period, 0);
 421static IIO_DEVICE_ATTR_RO(cleaning_period_available, 0);
 422
 423static struct attribute *sps30_attrs[] = {
 424        &iio_dev_attr_start_cleaning.dev_attr.attr,
 425        &iio_dev_attr_cleaning_period.dev_attr.attr,
 426        &iio_dev_attr_cleaning_period_available.dev_attr.attr,
 427        NULL
 428};
 429
 430static const struct attribute_group sps30_attr_group = {
 431        .attrs = sps30_attrs,
 432};
 433
 434static const struct iio_info sps30_info = {
 435        .attrs = &sps30_attr_group,
 436        .read_raw = sps30_read_raw,
 437};
 438
 439#define SPS30_CHAN(_index, _mod) { \
 440        .type = IIO_MASSCONCENTRATION, \
 441        .modified = 1, \
 442        .channel2 = IIO_MOD_ ## _mod, \
 443        .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), \
 444        .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
 445        .address = _mod, \
 446        .scan_index = _index, \
 447        .scan_type = { \
 448                .sign = 'u', \
 449                .realbits = 19, \
 450                .storagebits = 32, \
 451                .endianness = IIO_CPU, \
 452        }, \
 453}
 454
 455static const struct iio_chan_spec sps30_channels[] = {
 456        SPS30_CHAN(0, PM1),
 457        SPS30_CHAN(1, PM2P5),
 458        SPS30_CHAN(2, PM4),
 459        SPS30_CHAN(3, PM10),
 460        IIO_CHAN_SOFT_TIMESTAMP(4),
 461};
 462
 463static void sps30_stop_meas(void *data)
 464{
 465        struct sps30_state *state = data;
 466
 467        sps30_do_cmd(state, SPS30_STOP_MEAS, NULL, 0);
 468}
 469
 470static const unsigned long sps30_scan_masks[] = { 0x0f, 0x00 };
 471
 472static int sps30_probe(struct i2c_client *client)
 473{
 474        struct iio_dev *indio_dev;
 475        struct sps30_state *state;
 476        u8 buf[32];
 477        int ret;
 478
 479        if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
 480                return -EOPNOTSUPP;
 481
 482        indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*state));
 483        if (!indio_dev)
 484                return -ENOMEM;
 485
 486        state = iio_priv(indio_dev);
 487        i2c_set_clientdata(client, indio_dev);
 488        state->client = client;
 489        state->state = RESET;
 490        indio_dev->info = &sps30_info;
 491        indio_dev->name = client->name;
 492        indio_dev->channels = sps30_channels;
 493        indio_dev->num_channels = ARRAY_SIZE(sps30_channels);
 494        indio_dev->modes = INDIO_DIRECT_MODE;
 495        indio_dev->available_scan_masks = sps30_scan_masks;
 496
 497        mutex_init(&state->lock);
 498        crc8_populate_msb(sps30_crc8_table, SPS30_CRC8_POLYNOMIAL);
 499
 500        ret = sps30_do_cmd_reset(state);
 501        if (ret) {
 502                dev_err(&client->dev, "failed to reset device\n");
 503                return ret;
 504        }
 505
 506        ret = sps30_do_cmd(state, SPS30_READ_SERIAL, buf, sizeof(buf));
 507        if (ret) {
 508                dev_err(&client->dev, "failed to read serial number\n");
 509                return ret;
 510        }
 511        /* returned serial number is already NUL terminated */
 512        dev_info(&client->dev, "serial number: %s\n", buf);
 513
 514        ret = devm_add_action_or_reset(&client->dev, sps30_stop_meas, state);
 515        if (ret)
 516                return ret;
 517
 518        ret = devm_iio_triggered_buffer_setup(&client->dev, indio_dev, NULL,
 519                                              sps30_trigger_handler, NULL);
 520        if (ret)
 521                return ret;
 522
 523        return devm_iio_device_register(&client->dev, indio_dev);
 524}
 525
 526static const struct i2c_device_id sps30_id[] = {
 527        { "sps30" },
 528        { }
 529};
 530MODULE_DEVICE_TABLE(i2c, sps30_id);
 531
 532static const struct of_device_id sps30_of_match[] = {
 533        { .compatible = "sensirion,sps30" },
 534        { }
 535};
 536MODULE_DEVICE_TABLE(of, sps30_of_match);
 537
 538static struct i2c_driver sps30_driver = {
 539        .driver = {
 540                .name = "sps30",
 541                .of_match_table = sps30_of_match,
 542        },
 543        .id_table = sps30_id,
 544        .probe_new = sps30_probe,
 545};
 546module_i2c_driver(sps30_driver);
 547
 548MODULE_AUTHOR("Tomasz Duszynski <tduszyns@gmail.com>");
 549MODULE_DESCRIPTION("Sensirion SPS30 particulate matter sensor driver");
 550MODULE_LICENSE("GPL v2");
 551