linux/drivers/leds/trigger/ledtrig-activity.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Activity LED trigger
   4 *
   5 * Copyright (C) 2017 Willy Tarreau <w@1wt.eu>
   6 * Partially based on Atsushi Nemoto's ledtrig-heartbeat.c.
   7 */
   8
   9#include <linux/init.h>
  10#include <linux/kernel.h>
  11#include <linux/kernel_stat.h>
  12#include <linux/leds.h>
  13#include <linux/module.h>
  14#include <linux/reboot.h>
  15#include <linux/sched.h>
  16#include <linux/slab.h>
  17#include <linux/timer.h>
  18#include "../leds.h"
  19
  20static int panic_detected;
  21
  22struct activity_data {
  23        struct timer_list timer;
  24        struct led_classdev *led_cdev;
  25        u64 last_used;
  26        u64 last_boot;
  27        int time_left;
  28        int state;
  29        int invert;
  30};
  31
  32static void led_activity_function(struct timer_list *t)
  33{
  34        struct activity_data *activity_data = from_timer(activity_data, t,
  35                                                         timer);
  36        struct led_classdev *led_cdev = activity_data->led_cdev;
  37        unsigned int target;
  38        unsigned int usage;
  39        int delay;
  40        u64 curr_used;
  41        u64 curr_boot;
  42        s32 diff_used;
  43        s32 diff_boot;
  44        int cpus;
  45        int i;
  46
  47        if (test_and_clear_bit(LED_BLINK_BRIGHTNESS_CHANGE, &led_cdev->work_flags))
  48                led_cdev->blink_brightness = led_cdev->new_blink_brightness;
  49
  50        if (unlikely(panic_detected)) {
  51                /* full brightness in case of panic */
  52                led_set_brightness_nosleep(led_cdev, led_cdev->blink_brightness);
  53                return;
  54        }
  55
  56        cpus = 0;
  57        curr_used = 0;
  58
  59        for_each_possible_cpu(i) {
  60                struct kernel_cpustat kcpustat;
  61
  62                kcpustat_cpu_fetch(&kcpustat, i);
  63
  64                curr_used += kcpustat.cpustat[CPUTIME_USER]
  65                          +  kcpustat.cpustat[CPUTIME_NICE]
  66                          +  kcpustat.cpustat[CPUTIME_SYSTEM]
  67                          +  kcpustat.cpustat[CPUTIME_SOFTIRQ]
  68                          +  kcpustat.cpustat[CPUTIME_IRQ];
  69                cpus++;
  70        }
  71
  72        /* We come here every 100ms in the worst case, so that's 100M ns of
  73         * cumulated time. By dividing by 2^16, we get the time resolution
  74         * down to 16us, ensuring we won't overflow 32-bit computations below
  75         * even up to 3k CPUs, while keeping divides cheap on smaller systems.
  76         */
  77        curr_boot = ktime_get_boottime_ns() * cpus;
  78        diff_boot = (curr_boot - activity_data->last_boot) >> 16;
  79        diff_used = (curr_used - activity_data->last_used) >> 16;
  80        activity_data->last_boot = curr_boot;
  81        activity_data->last_used = curr_used;
  82
  83        if (diff_boot <= 0 || diff_used < 0)
  84                usage = 0;
  85        else if (diff_used >= diff_boot)
  86                usage = 100;
  87        else
  88                usage = 100 * diff_used / diff_boot;
  89
  90        /*
  91         * Now we know the total boot_time multiplied by the number of CPUs, and
  92         * the total idle+wait time for all CPUs. We'll compare how they evolved
  93         * since last call. The % of overall CPU usage is :
  94         *
  95         *      1 - delta_idle / delta_boot
  96         *
  97         * What we want is that when the CPU usage is zero, the LED must blink
  98         * slowly with very faint flashes that are detectable but not disturbing
  99         * (typically 10ms every second, or 10ms ON, 990ms OFF). Then we want
 100         * blinking frequency to increase up to the point where the load is
 101         * enough to saturate one core in multi-core systems or 50% in single
 102         * core systems. At this point it should reach 10 Hz with a 10/90 duty
 103         * cycle (10ms ON, 90ms OFF). After this point, the blinking frequency
 104         * remains stable (10 Hz) and only the duty cycle increases to report
 105         * the activity, up to the point where we have 90ms ON, 10ms OFF when
 106         * all cores are saturated. It's important that the LED never stays in
 107         * a steady state so that it's easy to distinguish an idle or saturated
 108         * machine from a hung one.
 109         *
 110         * This gives us :
 111         *   - a target CPU usage of min(50%, 100%/#CPU) for a 10% duty cycle
 112         *     (10ms ON, 90ms OFF)
 113         *   - below target :
 114         *      ON_ms  = 10
 115         *      OFF_ms = 90 + (1 - usage/target) * 900
 116         *   - above target :
 117         *      ON_ms  = 10 + (usage-target)/(100%-target) * 80
 118         *      OFF_ms = 90 - (usage-target)/(100%-target) * 80
 119         *
 120         * In order to keep a good responsiveness, we cap the sleep time to
 121         * 100 ms and keep track of the sleep time left. This allows us to
 122         * quickly change it if needed.
 123         */
 124
 125        activity_data->time_left -= 100;
 126        if (activity_data->time_left <= 0) {
 127                activity_data->time_left = 0;
 128                activity_data->state = !activity_data->state;
 129                led_set_brightness_nosleep(led_cdev,
 130                        (activity_data->state ^ activity_data->invert) ?
 131                        led_cdev->blink_brightness : LED_OFF);
 132        }
 133
 134        target = (cpus > 1) ? (100 / cpus) : 50;
 135
 136        if (usage < target)
 137                delay = activity_data->state ?
 138                        10 :                        /* ON  */
 139                        990 - 900 * usage / target; /* OFF */
 140        else
 141                delay = activity_data->state ?
 142                        10 + 80 * (usage - target) / (100 - target) : /* ON  */
 143                        90 - 80 * (usage - target) / (100 - target);  /* OFF */
 144
 145
 146        if (!activity_data->time_left || delay <= activity_data->time_left)
 147                activity_data->time_left = delay;
 148
 149        delay = min_t(int, activity_data->time_left, 100);
 150        mod_timer(&activity_data->timer, jiffies + msecs_to_jiffies(delay));
 151}
 152
 153static ssize_t led_invert_show(struct device *dev,
 154                               struct device_attribute *attr, char *buf)
 155{
 156        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 157
 158        return sprintf(buf, "%u\n", activity_data->invert);
 159}
 160
 161static ssize_t led_invert_store(struct device *dev,
 162                                struct device_attribute *attr,
 163                                const char *buf, size_t size)
 164{
 165        struct activity_data *activity_data = led_trigger_get_drvdata(dev);
 166        unsigned long state;
 167        int ret;
 168
 169        ret = kstrtoul(buf, 0, &state);
 170        if (ret)
 171                return ret;
 172
 173        activity_data->invert = !!state;
 174
 175        return size;
 176}
 177
 178static DEVICE_ATTR(invert, 0644, led_invert_show, led_invert_store);
 179
 180static struct attribute *activity_led_attrs[] = {
 181        &dev_attr_invert.attr,
 182        NULL
 183};
 184ATTRIBUTE_GROUPS(activity_led);
 185
 186static int activity_activate(struct led_classdev *led_cdev)
 187{
 188        struct activity_data *activity_data;
 189
 190        activity_data = kzalloc(sizeof(*activity_data), GFP_KERNEL);
 191        if (!activity_data)
 192                return -ENOMEM;
 193
 194        led_set_trigger_data(led_cdev, activity_data);
 195
 196        activity_data->led_cdev = led_cdev;
 197        timer_setup(&activity_data->timer, led_activity_function, 0);
 198        if (!led_cdev->blink_brightness)
 199                led_cdev->blink_brightness = led_cdev->max_brightness;
 200        led_activity_function(&activity_data->timer);
 201        set_bit(LED_BLINK_SW, &led_cdev->work_flags);
 202
 203        return 0;
 204}
 205
 206static void activity_deactivate(struct led_classdev *led_cdev)
 207{
 208        struct activity_data *activity_data = led_get_trigger_data(led_cdev);
 209
 210        del_timer_sync(&activity_data->timer);
 211        kfree(activity_data);
 212        clear_bit(LED_BLINK_SW, &led_cdev->work_flags);
 213}
 214
 215static struct led_trigger activity_led_trigger = {
 216        .name       = "activity",
 217        .activate   = activity_activate,
 218        .deactivate = activity_deactivate,
 219        .groups     = activity_led_groups,
 220};
 221
 222static int activity_reboot_notifier(struct notifier_block *nb,
 223                                    unsigned long code, void *unused)
 224{
 225        led_trigger_unregister(&activity_led_trigger);
 226        return NOTIFY_DONE;
 227}
 228
 229static int activity_panic_notifier(struct notifier_block *nb,
 230                                   unsigned long code, void *unused)
 231{
 232        panic_detected = 1;
 233        return NOTIFY_DONE;
 234}
 235
 236static struct notifier_block activity_reboot_nb = {
 237        .notifier_call = activity_reboot_notifier,
 238};
 239
 240static struct notifier_block activity_panic_nb = {
 241        .notifier_call = activity_panic_notifier,
 242};
 243
 244static int __init activity_init(void)
 245{
 246        int rc = led_trigger_register(&activity_led_trigger);
 247
 248        if (!rc) {
 249                atomic_notifier_chain_register(&panic_notifier_list,
 250                                               &activity_panic_nb);
 251                register_reboot_notifier(&activity_reboot_nb);
 252        }
 253        return rc;
 254}
 255
 256static void __exit activity_exit(void)
 257{
 258        unregister_reboot_notifier(&activity_reboot_nb);
 259        atomic_notifier_chain_unregister(&panic_notifier_list,
 260                                         &activity_panic_nb);
 261        led_trigger_unregister(&activity_led_trigger);
 262}
 263
 264module_init(activity_init);
 265module_exit(activity_exit);
 266
 267MODULE_AUTHOR("Willy Tarreau <w@1wt.eu>");
 268MODULE_DESCRIPTION("Activity LED trigger");
 269MODULE_LICENSE("GPL v2");
 270