linux/drivers/md/dm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31
  32#define DM_MSG_PREFIX "core"
  33
  34/*
  35 * Cookies are numeric values sent with CHANGE and REMOVE
  36 * uevents while resuming, removing or renaming the device.
  37 */
  38#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  39#define DM_COOKIE_LENGTH 24
  40
  41static const char *_name = DM_NAME;
  42
  43static unsigned int major = 0;
  44static unsigned int _major = 0;
  45
  46static DEFINE_IDR(_minor_idr);
  47
  48static DEFINE_SPINLOCK(_minor_lock);
  49
  50static void do_deferred_remove(struct work_struct *w);
  51
  52static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  53
  54static struct workqueue_struct *deferred_remove_workqueue;
  55
  56atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  57DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  58
  59void dm_issue_global_event(void)
  60{
  61        atomic_inc(&dm_global_event_nr);
  62        wake_up(&dm_global_eventq);
  63}
  64
  65/*
  66 * One of these is allocated (on-stack) per original bio.
  67 */
  68struct clone_info {
  69        struct dm_table *map;
  70        struct bio *bio;
  71        struct dm_io *io;
  72        sector_t sector;
  73        unsigned sector_count;
  74};
  75
  76/*
  77 * One of these is allocated per clone bio.
  78 */
  79#define DM_TIO_MAGIC 7282014
  80struct dm_target_io {
  81        unsigned magic;
  82        struct dm_io *io;
  83        struct dm_target *ti;
  84        unsigned target_bio_nr;
  85        unsigned *len_ptr;
  86        bool inside_dm_io;
  87        struct bio clone;
  88};
  89
  90/*
  91 * One of these is allocated per original bio.
  92 * It contains the first clone used for that original.
  93 */
  94#define DM_IO_MAGIC 5191977
  95struct dm_io {
  96        unsigned magic;
  97        struct mapped_device *md;
  98        blk_status_t status;
  99        atomic_t io_count;
 100        struct bio *orig_bio;
 101        unsigned long start_time;
 102        spinlock_t endio_lock;
 103        struct dm_stats_aux stats_aux;
 104        /* last member of dm_target_io is 'struct bio' */
 105        struct dm_target_io tio;
 106};
 107
 108void *dm_per_bio_data(struct bio *bio, size_t data_size)
 109{
 110        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 111        if (!tio->inside_dm_io)
 112                return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 113        return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 114}
 115EXPORT_SYMBOL_GPL(dm_per_bio_data);
 116
 117struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 118{
 119        struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 120        if (io->magic == DM_IO_MAGIC)
 121                return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 122        BUG_ON(io->magic != DM_TIO_MAGIC);
 123        return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 124}
 125EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 126
 127unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 128{
 129        return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 130}
 131EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 132
 133#define MINOR_ALLOCED ((void *)-1)
 134
 135/*
 136 * Bits for the md->flags field.
 137 */
 138#define DMF_BLOCK_IO_FOR_SUSPEND 0
 139#define DMF_SUSPENDED 1
 140#define DMF_FROZEN 2
 141#define DMF_FREEING 3
 142#define DMF_DELETING 4
 143#define DMF_NOFLUSH_SUSPENDING 5
 144#define DMF_DEFERRED_REMOVE 6
 145#define DMF_SUSPENDED_INTERNALLY 7
 146#define DMF_POST_SUSPENDING 8
 147
 148#define DM_NUMA_NODE NUMA_NO_NODE
 149static int dm_numa_node = DM_NUMA_NODE;
 150
 151/*
 152 * For mempools pre-allocation at the table loading time.
 153 */
 154struct dm_md_mempools {
 155        struct bio_set bs;
 156        struct bio_set io_bs;
 157};
 158
 159struct table_device {
 160        struct list_head list;
 161        refcount_t count;
 162        struct dm_dev dm_dev;
 163};
 164
 165/*
 166 * Bio-based DM's mempools' reserved IOs set by the user.
 167 */
 168#define RESERVED_BIO_BASED_IOS          16
 169static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 170
 171static int __dm_get_module_param_int(int *module_param, int min, int max)
 172{
 173        int param = READ_ONCE(*module_param);
 174        int modified_param = 0;
 175        bool modified = true;
 176
 177        if (param < min)
 178                modified_param = min;
 179        else if (param > max)
 180                modified_param = max;
 181        else
 182                modified = false;
 183
 184        if (modified) {
 185                (void)cmpxchg(module_param, param, modified_param);
 186                param = modified_param;
 187        }
 188
 189        return param;
 190}
 191
 192unsigned __dm_get_module_param(unsigned *module_param,
 193                               unsigned def, unsigned max)
 194{
 195        unsigned param = READ_ONCE(*module_param);
 196        unsigned modified_param = 0;
 197
 198        if (!param)
 199                modified_param = def;
 200        else if (param > max)
 201                modified_param = max;
 202
 203        if (modified_param) {
 204                (void)cmpxchg(module_param, param, modified_param);
 205                param = modified_param;
 206        }
 207
 208        return param;
 209}
 210
 211unsigned dm_get_reserved_bio_based_ios(void)
 212{
 213        return __dm_get_module_param(&reserved_bio_based_ios,
 214                                     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 215}
 216EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 217
 218static unsigned dm_get_numa_node(void)
 219{
 220        return __dm_get_module_param_int(&dm_numa_node,
 221                                         DM_NUMA_NODE, num_online_nodes() - 1);
 222}
 223
 224static int __init local_init(void)
 225{
 226        int r;
 227
 228        r = dm_uevent_init();
 229        if (r)
 230                return r;
 231
 232        deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 233        if (!deferred_remove_workqueue) {
 234                r = -ENOMEM;
 235                goto out_uevent_exit;
 236        }
 237
 238        _major = major;
 239        r = register_blkdev(_major, _name);
 240        if (r < 0)
 241                goto out_free_workqueue;
 242
 243        if (!_major)
 244                _major = r;
 245
 246        return 0;
 247
 248out_free_workqueue:
 249        destroy_workqueue(deferred_remove_workqueue);
 250out_uevent_exit:
 251        dm_uevent_exit();
 252
 253        return r;
 254}
 255
 256static void local_exit(void)
 257{
 258        flush_scheduled_work();
 259        destroy_workqueue(deferred_remove_workqueue);
 260
 261        unregister_blkdev(_major, _name);
 262        dm_uevent_exit();
 263
 264        _major = 0;
 265
 266        DMINFO("cleaned up");
 267}
 268
 269static int (*_inits[])(void) __initdata = {
 270        local_init,
 271        dm_target_init,
 272        dm_linear_init,
 273        dm_stripe_init,
 274        dm_io_init,
 275        dm_kcopyd_init,
 276        dm_interface_init,
 277        dm_statistics_init,
 278};
 279
 280static void (*_exits[])(void) = {
 281        local_exit,
 282        dm_target_exit,
 283        dm_linear_exit,
 284        dm_stripe_exit,
 285        dm_io_exit,
 286        dm_kcopyd_exit,
 287        dm_interface_exit,
 288        dm_statistics_exit,
 289};
 290
 291static int __init dm_init(void)
 292{
 293        const int count = ARRAY_SIZE(_inits);
 294
 295        int r, i;
 296
 297        for (i = 0; i < count; i++) {
 298                r = _inits[i]();
 299                if (r)
 300                        goto bad;
 301        }
 302
 303        return 0;
 304
 305      bad:
 306        while (i--)
 307                _exits[i]();
 308
 309        return r;
 310}
 311
 312static void __exit dm_exit(void)
 313{
 314        int i = ARRAY_SIZE(_exits);
 315
 316        while (i--)
 317                _exits[i]();
 318
 319        /*
 320         * Should be empty by this point.
 321         */
 322        idr_destroy(&_minor_idr);
 323}
 324
 325/*
 326 * Block device functions
 327 */
 328int dm_deleting_md(struct mapped_device *md)
 329{
 330        return test_bit(DMF_DELETING, &md->flags);
 331}
 332
 333static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 334{
 335        struct mapped_device *md;
 336
 337        spin_lock(&_minor_lock);
 338
 339        md = bdev->bd_disk->private_data;
 340        if (!md)
 341                goto out;
 342
 343        if (test_bit(DMF_FREEING, &md->flags) ||
 344            dm_deleting_md(md)) {
 345                md = NULL;
 346                goto out;
 347        }
 348
 349        dm_get(md);
 350        atomic_inc(&md->open_count);
 351out:
 352        spin_unlock(&_minor_lock);
 353
 354        return md ? 0 : -ENXIO;
 355}
 356
 357static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 358{
 359        struct mapped_device *md;
 360
 361        spin_lock(&_minor_lock);
 362
 363        md = disk->private_data;
 364        if (WARN_ON(!md))
 365                goto out;
 366
 367        if (atomic_dec_and_test(&md->open_count) &&
 368            (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 369                queue_work(deferred_remove_workqueue, &deferred_remove_work);
 370
 371        dm_put(md);
 372out:
 373        spin_unlock(&_minor_lock);
 374}
 375
 376int dm_open_count(struct mapped_device *md)
 377{
 378        return atomic_read(&md->open_count);
 379}
 380
 381/*
 382 * Guarantees nothing is using the device before it's deleted.
 383 */
 384int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 385{
 386        int r = 0;
 387
 388        spin_lock(&_minor_lock);
 389
 390        if (dm_open_count(md)) {
 391                r = -EBUSY;
 392                if (mark_deferred)
 393                        set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 394        } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 395                r = -EEXIST;
 396        else
 397                set_bit(DMF_DELETING, &md->flags);
 398
 399        spin_unlock(&_minor_lock);
 400
 401        return r;
 402}
 403
 404int dm_cancel_deferred_remove(struct mapped_device *md)
 405{
 406        int r = 0;
 407
 408        spin_lock(&_minor_lock);
 409
 410        if (test_bit(DMF_DELETING, &md->flags))
 411                r = -EBUSY;
 412        else
 413                clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 414
 415        spin_unlock(&_minor_lock);
 416
 417        return r;
 418}
 419
 420static void do_deferred_remove(struct work_struct *w)
 421{
 422        dm_deferred_remove();
 423}
 424
 425static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 426{
 427        struct mapped_device *md = bdev->bd_disk->private_data;
 428
 429        return dm_get_geometry(md, geo);
 430}
 431
 432#ifdef CONFIG_BLK_DEV_ZONED
 433int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
 434{
 435        struct dm_report_zones_args *args = data;
 436        sector_t sector_diff = args->tgt->begin - args->start;
 437
 438        /*
 439         * Ignore zones beyond the target range.
 440         */
 441        if (zone->start >= args->start + args->tgt->len)
 442                return 0;
 443
 444        /*
 445         * Remap the start sector and write pointer position of the zone
 446         * to match its position in the target range.
 447         */
 448        zone->start += sector_diff;
 449        if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
 450                if (zone->cond == BLK_ZONE_COND_FULL)
 451                        zone->wp = zone->start + zone->len;
 452                else if (zone->cond == BLK_ZONE_COND_EMPTY)
 453                        zone->wp = zone->start;
 454                else
 455                        zone->wp += sector_diff;
 456        }
 457
 458        args->next_sector = zone->start + zone->len;
 459        return args->orig_cb(zone, args->zone_idx++, args->orig_data);
 460}
 461EXPORT_SYMBOL_GPL(dm_report_zones_cb);
 462
 463static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 464                unsigned int nr_zones, report_zones_cb cb, void *data)
 465{
 466        struct mapped_device *md = disk->private_data;
 467        struct dm_table *map;
 468        int srcu_idx, ret;
 469        struct dm_report_zones_args args = {
 470                .next_sector = sector,
 471                .orig_data = data,
 472                .orig_cb = cb,
 473        };
 474
 475        if (dm_suspended_md(md))
 476                return -EAGAIN;
 477
 478        map = dm_get_live_table(md, &srcu_idx);
 479        if (!map) {
 480                ret = -EIO;
 481                goto out;
 482        }
 483
 484        do {
 485                struct dm_target *tgt;
 486
 487                tgt = dm_table_find_target(map, args.next_sector);
 488                if (WARN_ON_ONCE(!tgt->type->report_zones)) {
 489                        ret = -EIO;
 490                        goto out;
 491                }
 492
 493                args.tgt = tgt;
 494                ret = tgt->type->report_zones(tgt, &args,
 495                                              nr_zones - args.zone_idx);
 496                if (ret < 0)
 497                        goto out;
 498        } while (args.zone_idx < nr_zones &&
 499                 args.next_sector < get_capacity(disk));
 500
 501        ret = args.zone_idx;
 502out:
 503        dm_put_live_table(md, srcu_idx);
 504        return ret;
 505}
 506#else
 507#define dm_blk_report_zones             NULL
 508#endif /* CONFIG_BLK_DEV_ZONED */
 509
 510static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 511                            struct block_device **bdev)
 512{
 513        struct dm_target *tgt;
 514        struct dm_table *map;
 515        int r;
 516
 517retry:
 518        r = -ENOTTY;
 519        map = dm_get_live_table(md, srcu_idx);
 520        if (!map || !dm_table_get_size(map))
 521                return r;
 522
 523        /* We only support devices that have a single target */
 524        if (dm_table_get_num_targets(map) != 1)
 525                return r;
 526
 527        tgt = dm_table_get_target(map, 0);
 528        if (!tgt->type->prepare_ioctl)
 529                return r;
 530
 531        if (dm_suspended_md(md))
 532                return -EAGAIN;
 533
 534        r = tgt->type->prepare_ioctl(tgt, bdev);
 535        if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 536                dm_put_live_table(md, *srcu_idx);
 537                msleep(10);
 538                goto retry;
 539        }
 540
 541        return r;
 542}
 543
 544static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 545{
 546        dm_put_live_table(md, srcu_idx);
 547}
 548
 549static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 550                        unsigned int cmd, unsigned long arg)
 551{
 552        struct mapped_device *md = bdev->bd_disk->private_data;
 553        int r, srcu_idx;
 554
 555        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 556        if (r < 0)
 557                goto out;
 558
 559        if (r > 0) {
 560                /*
 561                 * Target determined this ioctl is being issued against a
 562                 * subset of the parent bdev; require extra privileges.
 563                 */
 564                if (!capable(CAP_SYS_RAWIO)) {
 565                        DMDEBUG_LIMIT(
 566        "%s: sending ioctl %x to DM device without required privilege.",
 567                                current->comm, cmd);
 568                        r = -ENOIOCTLCMD;
 569                        goto out;
 570                }
 571        }
 572
 573        if (!bdev->bd_disk->fops->ioctl)
 574                r = -ENOTTY;
 575        else
 576                r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 577out:
 578        dm_unprepare_ioctl(md, srcu_idx);
 579        return r;
 580}
 581
 582u64 dm_start_time_ns_from_clone(struct bio *bio)
 583{
 584        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 585        struct dm_io *io = tio->io;
 586
 587        return jiffies_to_nsecs(io->start_time);
 588}
 589EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 590
 591static void start_io_acct(struct dm_io *io)
 592{
 593        struct mapped_device *md = io->md;
 594        struct bio *bio = io->orig_bio;
 595
 596        io->start_time = bio_start_io_acct(bio);
 597        if (unlikely(dm_stats_used(&md->stats)))
 598                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 599                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 600                                    false, 0, &io->stats_aux);
 601}
 602
 603static void end_io_acct(struct dm_io *io)
 604{
 605        struct mapped_device *md = io->md;
 606        struct bio *bio = io->orig_bio;
 607        unsigned long duration = jiffies - io->start_time;
 608
 609        bio_end_io_acct(bio, io->start_time);
 610
 611        if (unlikely(dm_stats_used(&md->stats)))
 612                dm_stats_account_io(&md->stats, bio_data_dir(bio),
 613                                    bio->bi_iter.bi_sector, bio_sectors(bio),
 614                                    true, duration, &io->stats_aux);
 615
 616        /* nudge anyone waiting on suspend queue */
 617        if (unlikely(wq_has_sleeper(&md->wait)))
 618                wake_up(&md->wait);
 619}
 620
 621static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 622{
 623        struct dm_io *io;
 624        struct dm_target_io *tio;
 625        struct bio *clone;
 626
 627        clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 628        if (!clone)
 629                return NULL;
 630
 631        tio = container_of(clone, struct dm_target_io, clone);
 632        tio->inside_dm_io = true;
 633        tio->io = NULL;
 634
 635        io = container_of(tio, struct dm_io, tio);
 636        io->magic = DM_IO_MAGIC;
 637        io->status = 0;
 638        atomic_set(&io->io_count, 1);
 639        io->orig_bio = bio;
 640        io->md = md;
 641        spin_lock_init(&io->endio_lock);
 642
 643        start_io_acct(io);
 644
 645        return io;
 646}
 647
 648static void free_io(struct mapped_device *md, struct dm_io *io)
 649{
 650        bio_put(&io->tio.clone);
 651}
 652
 653static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 654                                      unsigned target_bio_nr, gfp_t gfp_mask)
 655{
 656        struct dm_target_io *tio;
 657
 658        if (!ci->io->tio.io) {
 659                /* the dm_target_io embedded in ci->io is available */
 660                tio = &ci->io->tio;
 661        } else {
 662                struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 663                if (!clone)
 664                        return NULL;
 665
 666                tio = container_of(clone, struct dm_target_io, clone);
 667                tio->inside_dm_io = false;
 668        }
 669
 670        tio->magic = DM_TIO_MAGIC;
 671        tio->io = ci->io;
 672        tio->ti = ti;
 673        tio->target_bio_nr = target_bio_nr;
 674
 675        return tio;
 676}
 677
 678static void free_tio(struct dm_target_io *tio)
 679{
 680        if (tio->inside_dm_io)
 681                return;
 682        bio_put(&tio->clone);
 683}
 684
 685/*
 686 * Add the bio to the list of deferred io.
 687 */
 688static void queue_io(struct mapped_device *md, struct bio *bio)
 689{
 690        unsigned long flags;
 691
 692        spin_lock_irqsave(&md->deferred_lock, flags);
 693        bio_list_add(&md->deferred, bio);
 694        spin_unlock_irqrestore(&md->deferred_lock, flags);
 695        queue_work(md->wq, &md->work);
 696}
 697
 698/*
 699 * Everyone (including functions in this file), should use this
 700 * function to access the md->map field, and make sure they call
 701 * dm_put_live_table() when finished.
 702 */
 703struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 704{
 705        *srcu_idx = srcu_read_lock(&md->io_barrier);
 706
 707        return srcu_dereference(md->map, &md->io_barrier);
 708}
 709
 710void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 711{
 712        srcu_read_unlock(&md->io_barrier, srcu_idx);
 713}
 714
 715void dm_sync_table(struct mapped_device *md)
 716{
 717        synchronize_srcu(&md->io_barrier);
 718        synchronize_rcu_expedited();
 719}
 720
 721/*
 722 * A fast alternative to dm_get_live_table/dm_put_live_table.
 723 * The caller must not block between these two functions.
 724 */
 725static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 726{
 727        rcu_read_lock();
 728        return rcu_dereference(md->map);
 729}
 730
 731static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 732{
 733        rcu_read_unlock();
 734}
 735
 736static char *_dm_claim_ptr = "I belong to device-mapper";
 737
 738/*
 739 * Open a table device so we can use it as a map destination.
 740 */
 741static int open_table_device(struct table_device *td, dev_t dev,
 742                             struct mapped_device *md)
 743{
 744        struct block_device *bdev;
 745
 746        int r;
 747
 748        BUG_ON(td->dm_dev.bdev);
 749
 750        bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 751        if (IS_ERR(bdev))
 752                return PTR_ERR(bdev);
 753
 754        r = bd_link_disk_holder(bdev, dm_disk(md));
 755        if (r) {
 756                blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 757                return r;
 758        }
 759
 760        td->dm_dev.bdev = bdev;
 761        td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 762        return 0;
 763}
 764
 765/*
 766 * Close a table device that we've been using.
 767 */
 768static void close_table_device(struct table_device *td, struct mapped_device *md)
 769{
 770        if (!td->dm_dev.bdev)
 771                return;
 772
 773        bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 774        blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 775        put_dax(td->dm_dev.dax_dev);
 776        td->dm_dev.bdev = NULL;
 777        td->dm_dev.dax_dev = NULL;
 778}
 779
 780static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 781                                              fmode_t mode)
 782{
 783        struct table_device *td;
 784
 785        list_for_each_entry(td, l, list)
 786                if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 787                        return td;
 788
 789        return NULL;
 790}
 791
 792int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 793                        struct dm_dev **result)
 794{
 795        int r;
 796        struct table_device *td;
 797
 798        mutex_lock(&md->table_devices_lock);
 799        td = find_table_device(&md->table_devices, dev, mode);
 800        if (!td) {
 801                td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 802                if (!td) {
 803                        mutex_unlock(&md->table_devices_lock);
 804                        return -ENOMEM;
 805                }
 806
 807                td->dm_dev.mode = mode;
 808                td->dm_dev.bdev = NULL;
 809
 810                if ((r = open_table_device(td, dev, md))) {
 811                        mutex_unlock(&md->table_devices_lock);
 812                        kfree(td);
 813                        return r;
 814                }
 815
 816                format_dev_t(td->dm_dev.name, dev);
 817
 818                refcount_set(&td->count, 1);
 819                list_add(&td->list, &md->table_devices);
 820        } else {
 821                refcount_inc(&td->count);
 822        }
 823        mutex_unlock(&md->table_devices_lock);
 824
 825        *result = &td->dm_dev;
 826        return 0;
 827}
 828EXPORT_SYMBOL_GPL(dm_get_table_device);
 829
 830void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 831{
 832        struct table_device *td = container_of(d, struct table_device, dm_dev);
 833
 834        mutex_lock(&md->table_devices_lock);
 835        if (refcount_dec_and_test(&td->count)) {
 836                close_table_device(td, md);
 837                list_del(&td->list);
 838                kfree(td);
 839        }
 840        mutex_unlock(&md->table_devices_lock);
 841}
 842EXPORT_SYMBOL(dm_put_table_device);
 843
 844static void free_table_devices(struct list_head *devices)
 845{
 846        struct list_head *tmp, *next;
 847
 848        list_for_each_safe(tmp, next, devices) {
 849                struct table_device *td = list_entry(tmp, struct table_device, list);
 850
 851                DMWARN("dm_destroy: %s still exists with %d references",
 852                       td->dm_dev.name, refcount_read(&td->count));
 853                kfree(td);
 854        }
 855}
 856
 857/*
 858 * Get the geometry associated with a dm device
 859 */
 860int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 861{
 862        *geo = md->geometry;
 863
 864        return 0;
 865}
 866
 867/*
 868 * Set the geometry of a device.
 869 */
 870int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 871{
 872        sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 873
 874        if (geo->start > sz) {
 875                DMWARN("Start sector is beyond the geometry limits.");
 876                return -EINVAL;
 877        }
 878
 879        md->geometry = *geo;
 880
 881        return 0;
 882}
 883
 884static int __noflush_suspending(struct mapped_device *md)
 885{
 886        return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 887}
 888
 889/*
 890 * Decrements the number of outstanding ios that a bio has been
 891 * cloned into, completing the original io if necc.
 892 */
 893static void dec_pending(struct dm_io *io, blk_status_t error)
 894{
 895        unsigned long flags;
 896        blk_status_t io_error;
 897        struct bio *bio;
 898        struct mapped_device *md = io->md;
 899
 900        /* Push-back supersedes any I/O errors */
 901        if (unlikely(error)) {
 902                spin_lock_irqsave(&io->endio_lock, flags);
 903                if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 904                        io->status = error;
 905                spin_unlock_irqrestore(&io->endio_lock, flags);
 906        }
 907
 908        if (atomic_dec_and_test(&io->io_count)) {
 909                if (io->status == BLK_STS_DM_REQUEUE) {
 910                        /*
 911                         * Target requested pushing back the I/O.
 912                         */
 913                        spin_lock_irqsave(&md->deferred_lock, flags);
 914                        if (__noflush_suspending(md))
 915                                /* NOTE early return due to BLK_STS_DM_REQUEUE below */
 916                                bio_list_add_head(&md->deferred, io->orig_bio);
 917                        else
 918                                /* noflush suspend was interrupted. */
 919                                io->status = BLK_STS_IOERR;
 920                        spin_unlock_irqrestore(&md->deferred_lock, flags);
 921                }
 922
 923                io_error = io->status;
 924                bio = io->orig_bio;
 925                end_io_acct(io);
 926                free_io(md, io);
 927
 928                if (io_error == BLK_STS_DM_REQUEUE)
 929                        return;
 930
 931                if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 932                        /*
 933                         * Preflush done for flush with data, reissue
 934                         * without REQ_PREFLUSH.
 935                         */
 936                        bio->bi_opf &= ~REQ_PREFLUSH;
 937                        queue_io(md, bio);
 938                } else {
 939                        /* done with normal IO or empty flush */
 940                        if (io_error)
 941                                bio->bi_status = io_error;
 942                        bio_endio(bio);
 943                }
 944        }
 945}
 946
 947void disable_discard(struct mapped_device *md)
 948{
 949        struct queue_limits *limits = dm_get_queue_limits(md);
 950
 951        /* device doesn't really support DISCARD, disable it */
 952        limits->max_discard_sectors = 0;
 953        blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 954}
 955
 956void disable_write_same(struct mapped_device *md)
 957{
 958        struct queue_limits *limits = dm_get_queue_limits(md);
 959
 960        /* device doesn't really support WRITE SAME, disable it */
 961        limits->max_write_same_sectors = 0;
 962}
 963
 964void disable_write_zeroes(struct mapped_device *md)
 965{
 966        struct queue_limits *limits = dm_get_queue_limits(md);
 967
 968        /* device doesn't really support WRITE ZEROES, disable it */
 969        limits->max_write_zeroes_sectors = 0;
 970}
 971
 972static void clone_endio(struct bio *bio)
 973{
 974        blk_status_t error = bio->bi_status;
 975        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 976        struct dm_io *io = tio->io;
 977        struct mapped_device *md = tio->io->md;
 978        dm_endio_fn endio = tio->ti->type->end_io;
 979        struct bio *orig_bio = io->orig_bio;
 980
 981        if (unlikely(error == BLK_STS_TARGET)) {
 982                if (bio_op(bio) == REQ_OP_DISCARD &&
 983                    !bio->bi_disk->queue->limits.max_discard_sectors)
 984                        disable_discard(md);
 985                else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 986                         !bio->bi_disk->queue->limits.max_write_same_sectors)
 987                        disable_write_same(md);
 988                else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 989                         !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 990                        disable_write_zeroes(md);
 991        }
 992
 993        /*
 994         * For zone-append bios get offset in zone of the written
 995         * sector and add that to the original bio sector pos.
 996         */
 997        if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
 998                sector_t written_sector = bio->bi_iter.bi_sector;
 999                struct request_queue *q = orig_bio->bi_disk->queue;
1000                u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1001
1002                orig_bio->bi_iter.bi_sector += written_sector & mask;
1003        }
1004
1005        if (endio) {
1006                int r = endio(tio->ti, bio, &error);
1007                switch (r) {
1008                case DM_ENDIO_REQUEUE:
1009                        error = BLK_STS_DM_REQUEUE;
1010                        fallthrough;
1011                case DM_ENDIO_DONE:
1012                        break;
1013                case DM_ENDIO_INCOMPLETE:
1014                        /* The target will handle the io */
1015                        return;
1016                default:
1017                        DMWARN("unimplemented target endio return value: %d", r);
1018                        BUG();
1019                }
1020        }
1021
1022        free_tio(tio);
1023        dec_pending(io, error);
1024}
1025
1026/*
1027 * Return maximum size of I/O possible at the supplied sector up to the current
1028 * target boundary.
1029 */
1030static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1031                                                  sector_t target_offset)
1032{
1033        return ti->len - target_offset;
1034}
1035
1036static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1037{
1038        sector_t target_offset = dm_target_offset(ti, sector);
1039        sector_t len = max_io_len_target_boundary(ti, target_offset);
1040        sector_t max_len;
1041
1042        /*
1043         * Does the target need to split IO even further?
1044         * - varied (per target) IO splitting is a tenet of DM; this
1045         *   explains why stacked chunk_sectors based splitting via
1046         *   blk_max_size_offset() isn't possible here. So pass in
1047         *   ti->max_io_len to override stacked chunk_sectors.
1048         */
1049        if (ti->max_io_len) {
1050                max_len = blk_max_size_offset(ti->table->md->queue,
1051                                              target_offset, ti->max_io_len);
1052                if (len > max_len)
1053                        len = max_len;
1054        }
1055
1056        return len;
1057}
1058
1059int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1060{
1061        if (len > UINT_MAX) {
1062                DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1063                      (unsigned long long)len, UINT_MAX);
1064                ti->error = "Maximum size of target IO is too large";
1065                return -EINVAL;
1066        }
1067
1068        ti->max_io_len = (uint32_t) len;
1069
1070        return 0;
1071}
1072EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1073
1074static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1075                                                sector_t sector, int *srcu_idx)
1076        __acquires(md->io_barrier)
1077{
1078        struct dm_table *map;
1079        struct dm_target *ti;
1080
1081        map = dm_get_live_table(md, srcu_idx);
1082        if (!map)
1083                return NULL;
1084
1085        ti = dm_table_find_target(map, sector);
1086        if (!ti)
1087                return NULL;
1088
1089        return ti;
1090}
1091
1092static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1093                                 long nr_pages, void **kaddr, pfn_t *pfn)
1094{
1095        struct mapped_device *md = dax_get_private(dax_dev);
1096        sector_t sector = pgoff * PAGE_SECTORS;
1097        struct dm_target *ti;
1098        long len, ret = -EIO;
1099        int srcu_idx;
1100
1101        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1102
1103        if (!ti)
1104                goto out;
1105        if (!ti->type->direct_access)
1106                goto out;
1107        len = max_io_len(ti, sector) / PAGE_SECTORS;
1108        if (len < 1)
1109                goto out;
1110        nr_pages = min(len, nr_pages);
1111        ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1112
1113 out:
1114        dm_put_live_table(md, srcu_idx);
1115
1116        return ret;
1117}
1118
1119static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1120                int blocksize, sector_t start, sector_t len)
1121{
1122        struct mapped_device *md = dax_get_private(dax_dev);
1123        struct dm_table *map;
1124        bool ret = false;
1125        int srcu_idx;
1126
1127        map = dm_get_live_table(md, &srcu_idx);
1128        if (!map)
1129                goto out;
1130
1131        ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1132
1133out:
1134        dm_put_live_table(md, srcu_idx);
1135
1136        return ret;
1137}
1138
1139static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1140                                    void *addr, size_t bytes, struct iov_iter *i)
1141{
1142        struct mapped_device *md = dax_get_private(dax_dev);
1143        sector_t sector = pgoff * PAGE_SECTORS;
1144        struct dm_target *ti;
1145        long ret = 0;
1146        int srcu_idx;
1147
1148        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1149
1150        if (!ti)
1151                goto out;
1152        if (!ti->type->dax_copy_from_iter) {
1153                ret = copy_from_iter(addr, bytes, i);
1154                goto out;
1155        }
1156        ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1157 out:
1158        dm_put_live_table(md, srcu_idx);
1159
1160        return ret;
1161}
1162
1163static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1164                void *addr, size_t bytes, struct iov_iter *i)
1165{
1166        struct mapped_device *md = dax_get_private(dax_dev);
1167        sector_t sector = pgoff * PAGE_SECTORS;
1168        struct dm_target *ti;
1169        long ret = 0;
1170        int srcu_idx;
1171
1172        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1173
1174        if (!ti)
1175                goto out;
1176        if (!ti->type->dax_copy_to_iter) {
1177                ret = copy_to_iter(addr, bytes, i);
1178                goto out;
1179        }
1180        ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1181 out:
1182        dm_put_live_table(md, srcu_idx);
1183
1184        return ret;
1185}
1186
1187static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1188                                  size_t nr_pages)
1189{
1190        struct mapped_device *md = dax_get_private(dax_dev);
1191        sector_t sector = pgoff * PAGE_SECTORS;
1192        struct dm_target *ti;
1193        int ret = -EIO;
1194        int srcu_idx;
1195
1196        ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1197
1198        if (!ti)
1199                goto out;
1200        if (WARN_ON(!ti->type->dax_zero_page_range)) {
1201                /*
1202                 * ->zero_page_range() is mandatory dax operation. If we are
1203                 *  here, something is wrong.
1204                 */
1205                goto out;
1206        }
1207        ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1208 out:
1209        dm_put_live_table(md, srcu_idx);
1210
1211        return ret;
1212}
1213
1214/*
1215 * A target may call dm_accept_partial_bio only from the map routine.  It is
1216 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1217 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1218 *
1219 * dm_accept_partial_bio informs the dm that the target only wants to process
1220 * additional n_sectors sectors of the bio and the rest of the data should be
1221 * sent in a next bio.
1222 *
1223 * A diagram that explains the arithmetics:
1224 * +--------------------+---------------+-------+
1225 * |         1          |       2       |   3   |
1226 * +--------------------+---------------+-------+
1227 *
1228 * <-------------- *tio->len_ptr --------------->
1229 *                      <------- bi_size ------->
1230 *                      <-- n_sectors -->
1231 *
1232 * Region 1 was already iterated over with bio_advance or similar function.
1233 *      (it may be empty if the target doesn't use bio_advance)
1234 * Region 2 is the remaining bio size that the target wants to process.
1235 *      (it may be empty if region 1 is non-empty, although there is no reason
1236 *       to make it empty)
1237 * The target requires that region 3 is to be sent in the next bio.
1238 *
1239 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1240 * the partially processed part (the sum of regions 1+2) must be the same for all
1241 * copies of the bio.
1242 */
1243void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1244{
1245        struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1246        unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1247        BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1248        BUG_ON(bi_size > *tio->len_ptr);
1249        BUG_ON(n_sectors > bi_size);
1250        *tio->len_ptr -= bi_size - n_sectors;
1251        bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1252}
1253EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1254
1255static blk_qc_t __map_bio(struct dm_target_io *tio)
1256{
1257        int r;
1258        sector_t sector;
1259        struct bio *clone = &tio->clone;
1260        struct dm_io *io = tio->io;
1261        struct dm_target *ti = tio->ti;
1262        blk_qc_t ret = BLK_QC_T_NONE;
1263
1264        clone->bi_end_io = clone_endio;
1265
1266        /*
1267         * Map the clone.  If r == 0 we don't need to do
1268         * anything, the target has assumed ownership of
1269         * this io.
1270         */
1271        atomic_inc(&io->io_count);
1272        sector = clone->bi_iter.bi_sector;
1273
1274        r = ti->type->map(ti, clone);
1275        switch (r) {
1276        case DM_MAPIO_SUBMITTED:
1277                break;
1278        case DM_MAPIO_REMAPPED:
1279                /* the bio has been remapped so dispatch it */
1280                trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1281                ret = submit_bio_noacct(clone);
1282                break;
1283        case DM_MAPIO_KILL:
1284                free_tio(tio);
1285                dec_pending(io, BLK_STS_IOERR);
1286                break;
1287        case DM_MAPIO_REQUEUE:
1288                free_tio(tio);
1289                dec_pending(io, BLK_STS_DM_REQUEUE);
1290                break;
1291        default:
1292                DMWARN("unimplemented target map return value: %d", r);
1293                BUG();
1294        }
1295
1296        return ret;
1297}
1298
1299static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1300{
1301        bio->bi_iter.bi_sector = sector;
1302        bio->bi_iter.bi_size = to_bytes(len);
1303}
1304
1305/*
1306 * Creates a bio that consists of range of complete bvecs.
1307 */
1308static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1309                     sector_t sector, unsigned len)
1310{
1311        struct bio *clone = &tio->clone;
1312        int r;
1313
1314        __bio_clone_fast(clone, bio);
1315
1316        r = bio_crypt_clone(clone, bio, GFP_NOIO);
1317        if (r < 0)
1318                return r;
1319
1320        if (bio_integrity(bio)) {
1321                if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1322                             !dm_target_passes_integrity(tio->ti->type))) {
1323                        DMWARN("%s: the target %s doesn't support integrity data.",
1324                                dm_device_name(tio->io->md),
1325                                tio->ti->type->name);
1326                        return -EIO;
1327                }
1328
1329                r = bio_integrity_clone(clone, bio, GFP_NOIO);
1330                if (r < 0)
1331                        return r;
1332        }
1333
1334        bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1335        clone->bi_iter.bi_size = to_bytes(len);
1336
1337        if (bio_integrity(bio))
1338                bio_integrity_trim(clone);
1339
1340        return 0;
1341}
1342
1343static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1344                                struct dm_target *ti, unsigned num_bios)
1345{
1346        struct dm_target_io *tio;
1347        int try;
1348
1349        if (!num_bios)
1350                return;
1351
1352        if (num_bios == 1) {
1353                tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1354                bio_list_add(blist, &tio->clone);
1355                return;
1356        }
1357
1358        for (try = 0; try < 2; try++) {
1359                int bio_nr;
1360                struct bio *bio;
1361
1362                if (try)
1363                        mutex_lock(&ci->io->md->table_devices_lock);
1364                for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1365                        tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1366                        if (!tio)
1367                                break;
1368
1369                        bio_list_add(blist, &tio->clone);
1370                }
1371                if (try)
1372                        mutex_unlock(&ci->io->md->table_devices_lock);
1373                if (bio_nr == num_bios)
1374                        return;
1375
1376                while ((bio = bio_list_pop(blist))) {
1377                        tio = container_of(bio, struct dm_target_io, clone);
1378                        free_tio(tio);
1379                }
1380        }
1381}
1382
1383static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1384                                           struct dm_target_io *tio, unsigned *len)
1385{
1386        struct bio *clone = &tio->clone;
1387
1388        tio->len_ptr = len;
1389
1390        __bio_clone_fast(clone, ci->bio);
1391        if (len)
1392                bio_setup_sector(clone, ci->sector, *len);
1393
1394        return __map_bio(tio);
1395}
1396
1397static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1398                                  unsigned num_bios, unsigned *len)
1399{
1400        struct bio_list blist = BIO_EMPTY_LIST;
1401        struct bio *bio;
1402        struct dm_target_io *tio;
1403
1404        alloc_multiple_bios(&blist, ci, ti, num_bios);
1405
1406        while ((bio = bio_list_pop(&blist))) {
1407                tio = container_of(bio, struct dm_target_io, clone);
1408                (void) __clone_and_map_simple_bio(ci, tio, len);
1409        }
1410}
1411
1412static int __send_empty_flush(struct clone_info *ci)
1413{
1414        unsigned target_nr = 0;
1415        struct dm_target *ti;
1416        struct bio flush_bio;
1417
1418        /*
1419         * Use an on-stack bio for this, it's safe since we don't
1420         * need to reference it after submit. It's just used as
1421         * the basis for the clone(s).
1422         */
1423        bio_init(&flush_bio, NULL, 0);
1424        flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1425        flush_bio.bi_disk = ci->io->md->disk;
1426        bio_associate_blkg(&flush_bio);
1427
1428        ci->bio = &flush_bio;
1429        ci->sector_count = 0;
1430
1431        BUG_ON(bio_has_data(ci->bio));
1432        while ((ti = dm_table_get_target(ci->map, target_nr++)))
1433                __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1434
1435        bio_uninit(ci->bio);
1436        return 0;
1437}
1438
1439static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1440                                    sector_t sector, unsigned *len)
1441{
1442        struct bio *bio = ci->bio;
1443        struct dm_target_io *tio;
1444        int r;
1445
1446        tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1447        tio->len_ptr = len;
1448        r = clone_bio(tio, bio, sector, *len);
1449        if (r < 0) {
1450                free_tio(tio);
1451                return r;
1452        }
1453        (void) __map_bio(tio);
1454
1455        return 0;
1456}
1457
1458static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1459                                       unsigned num_bios)
1460{
1461        unsigned len;
1462
1463        /*
1464         * Even though the device advertised support for this type of
1465         * request, that does not mean every target supports it, and
1466         * reconfiguration might also have changed that since the
1467         * check was performed.
1468         */
1469        if (!num_bios)
1470                return -EOPNOTSUPP;
1471
1472        len = min_t(sector_t, ci->sector_count,
1473                    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1474
1475        __send_duplicate_bios(ci, ti, num_bios, &len);
1476
1477        ci->sector += len;
1478        ci->sector_count -= len;
1479
1480        return 0;
1481}
1482
1483static bool is_abnormal_io(struct bio *bio)
1484{
1485        bool r = false;
1486
1487        switch (bio_op(bio)) {
1488        case REQ_OP_DISCARD:
1489        case REQ_OP_SECURE_ERASE:
1490        case REQ_OP_WRITE_SAME:
1491        case REQ_OP_WRITE_ZEROES:
1492                r = true;
1493                break;
1494        }
1495
1496        return r;
1497}
1498
1499static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1500                                  int *result)
1501{
1502        struct bio *bio = ci->bio;
1503        unsigned num_bios = 0;
1504
1505        switch (bio_op(bio)) {
1506        case REQ_OP_DISCARD:
1507                num_bios = ti->num_discard_bios;
1508                break;
1509        case REQ_OP_SECURE_ERASE:
1510                num_bios = ti->num_secure_erase_bios;
1511                break;
1512        case REQ_OP_WRITE_SAME:
1513                num_bios = ti->num_write_same_bios;
1514                break;
1515        case REQ_OP_WRITE_ZEROES:
1516                num_bios = ti->num_write_zeroes_bios;
1517                break;
1518        default:
1519                return false;
1520        }
1521
1522        *result = __send_changing_extent_only(ci, ti, num_bios);
1523        return true;
1524}
1525
1526/*
1527 * Select the correct strategy for processing a non-flush bio.
1528 */
1529static int __split_and_process_non_flush(struct clone_info *ci)
1530{
1531        struct dm_target *ti;
1532        unsigned len;
1533        int r;
1534
1535        ti = dm_table_find_target(ci->map, ci->sector);
1536        if (!ti)
1537                return -EIO;
1538
1539        if (__process_abnormal_io(ci, ti, &r))
1540                return r;
1541
1542        len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1543
1544        r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1545        if (r < 0)
1546                return r;
1547
1548        ci->sector += len;
1549        ci->sector_count -= len;
1550
1551        return 0;
1552}
1553
1554static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1555                            struct dm_table *map, struct bio *bio)
1556{
1557        ci->map = map;
1558        ci->io = alloc_io(md, bio);
1559        ci->sector = bio->bi_iter.bi_sector;
1560}
1561
1562#define __dm_part_stat_sub(part, field, subnd)  \
1563        (part_stat_get(part, field) -= (subnd))
1564
1565/*
1566 * Entry point to split a bio into clones and submit them to the targets.
1567 */
1568static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1569                                        struct dm_table *map, struct bio *bio)
1570{
1571        struct clone_info ci;
1572        blk_qc_t ret = BLK_QC_T_NONE;
1573        int error = 0;
1574
1575        init_clone_info(&ci, md, map, bio);
1576
1577        if (bio->bi_opf & REQ_PREFLUSH) {
1578                error = __send_empty_flush(&ci);
1579                /* dec_pending submits any data associated with flush */
1580        } else if (op_is_zone_mgmt(bio_op(bio))) {
1581                ci.bio = bio;
1582                ci.sector_count = 0;
1583                error = __split_and_process_non_flush(&ci);
1584        } else {
1585                ci.bio = bio;
1586                ci.sector_count = bio_sectors(bio);
1587                while (ci.sector_count && !error) {
1588                        error = __split_and_process_non_flush(&ci);
1589                        if (ci.sector_count && !error) {
1590                                /*
1591                                 * Remainder must be passed to submit_bio_noacct()
1592                                 * so that it gets handled *after* bios already submitted
1593                                 * have been completely processed.
1594                                 * We take a clone of the original to store in
1595                                 * ci.io->orig_bio to be used by end_io_acct() and
1596                                 * for dec_pending to use for completion handling.
1597                                 */
1598                                struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1599                                                          GFP_NOIO, &md->queue->bio_split);
1600                                ci.io->orig_bio = b;
1601
1602                                /*
1603                                 * Adjust IO stats for each split, otherwise upon queue
1604                                 * reentry there will be redundant IO accounting.
1605                                 * NOTE: this is a stop-gap fix, a proper fix involves
1606                                 * significant refactoring of DM core's bio splitting
1607                                 * (by eliminating DM's splitting and just using bio_split)
1608                                 */
1609                                part_stat_lock();
1610                                __dm_part_stat_sub(dm_disk(md)->part0,
1611                                                   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1612                                part_stat_unlock();
1613
1614                                bio_chain(b, bio);
1615                                trace_block_split(b, bio->bi_iter.bi_sector);
1616                                ret = submit_bio_noacct(bio);
1617                                break;
1618                        }
1619                }
1620        }
1621
1622        /* drop the extra reference count */
1623        dec_pending(ci.io, errno_to_blk_status(error));
1624        return ret;
1625}
1626
1627static blk_qc_t dm_submit_bio(struct bio *bio)
1628{
1629        struct mapped_device *md = bio->bi_disk->private_data;
1630        blk_qc_t ret = BLK_QC_T_NONE;
1631        int srcu_idx;
1632        struct dm_table *map;
1633
1634        map = dm_get_live_table(md, &srcu_idx);
1635        if (unlikely(!map)) {
1636                DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1637                            dm_device_name(md));
1638                bio_io_error(bio);
1639                goto out;
1640        }
1641
1642        /* If suspended, queue this IO for later */
1643        if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1644                if (bio->bi_opf & REQ_NOWAIT)
1645                        bio_wouldblock_error(bio);
1646                else if (bio->bi_opf & REQ_RAHEAD)
1647                        bio_io_error(bio);
1648                else
1649                        queue_io(md, bio);
1650                goto out;
1651        }
1652
1653        /*
1654         * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1655         * otherwise associated queue_limits won't be imposed.
1656         */
1657        if (is_abnormal_io(bio))
1658                blk_queue_split(&bio);
1659
1660        ret = __split_and_process_bio(md, map, bio);
1661out:
1662        dm_put_live_table(md, srcu_idx);
1663        return ret;
1664}
1665
1666/*-----------------------------------------------------------------
1667 * An IDR is used to keep track of allocated minor numbers.
1668 *---------------------------------------------------------------*/
1669static void free_minor(int minor)
1670{
1671        spin_lock(&_minor_lock);
1672        idr_remove(&_minor_idr, minor);
1673        spin_unlock(&_minor_lock);
1674}
1675
1676/*
1677 * See if the device with a specific minor # is free.
1678 */
1679static int specific_minor(int minor)
1680{
1681        int r;
1682
1683        if (minor >= (1 << MINORBITS))
1684                return -EINVAL;
1685
1686        idr_preload(GFP_KERNEL);
1687        spin_lock(&_minor_lock);
1688
1689        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1690
1691        spin_unlock(&_minor_lock);
1692        idr_preload_end();
1693        if (r < 0)
1694                return r == -ENOSPC ? -EBUSY : r;
1695        return 0;
1696}
1697
1698static int next_free_minor(int *minor)
1699{
1700        int r;
1701
1702        idr_preload(GFP_KERNEL);
1703        spin_lock(&_minor_lock);
1704
1705        r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1706
1707        spin_unlock(&_minor_lock);
1708        idr_preload_end();
1709        if (r < 0)
1710                return r;
1711        *minor = r;
1712        return 0;
1713}
1714
1715static const struct block_device_operations dm_blk_dops;
1716static const struct block_device_operations dm_rq_blk_dops;
1717static const struct dax_operations dm_dax_ops;
1718
1719static void dm_wq_work(struct work_struct *work);
1720
1721static void cleanup_mapped_device(struct mapped_device *md)
1722{
1723        if (md->wq)
1724                destroy_workqueue(md->wq);
1725        bioset_exit(&md->bs);
1726        bioset_exit(&md->io_bs);
1727
1728        if (md->dax_dev) {
1729                kill_dax(md->dax_dev);
1730                put_dax(md->dax_dev);
1731                md->dax_dev = NULL;
1732        }
1733
1734        if (md->disk) {
1735                spin_lock(&_minor_lock);
1736                md->disk->private_data = NULL;
1737                spin_unlock(&_minor_lock);
1738                del_gendisk(md->disk);
1739                put_disk(md->disk);
1740        }
1741
1742        if (md->queue)
1743                blk_cleanup_queue(md->queue);
1744
1745        cleanup_srcu_struct(&md->io_barrier);
1746
1747        mutex_destroy(&md->suspend_lock);
1748        mutex_destroy(&md->type_lock);
1749        mutex_destroy(&md->table_devices_lock);
1750
1751        dm_mq_cleanup_mapped_device(md);
1752}
1753
1754/*
1755 * Allocate and initialise a blank device with a given minor.
1756 */
1757static struct mapped_device *alloc_dev(int minor)
1758{
1759        int r, numa_node_id = dm_get_numa_node();
1760        struct mapped_device *md;
1761        void *old_md;
1762
1763        md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1764        if (!md) {
1765                DMWARN("unable to allocate device, out of memory.");
1766                return NULL;
1767        }
1768
1769        if (!try_module_get(THIS_MODULE))
1770                goto bad_module_get;
1771
1772        /* get a minor number for the dev */
1773        if (minor == DM_ANY_MINOR)
1774                r = next_free_minor(&minor);
1775        else
1776                r = specific_minor(minor);
1777        if (r < 0)
1778                goto bad_minor;
1779
1780        r = init_srcu_struct(&md->io_barrier);
1781        if (r < 0)
1782                goto bad_io_barrier;
1783
1784        md->numa_node_id = numa_node_id;
1785        md->init_tio_pdu = false;
1786        md->type = DM_TYPE_NONE;
1787        mutex_init(&md->suspend_lock);
1788        mutex_init(&md->type_lock);
1789        mutex_init(&md->table_devices_lock);
1790        spin_lock_init(&md->deferred_lock);
1791        atomic_set(&md->holders, 1);
1792        atomic_set(&md->open_count, 0);
1793        atomic_set(&md->event_nr, 0);
1794        atomic_set(&md->uevent_seq, 0);
1795        INIT_LIST_HEAD(&md->uevent_list);
1796        INIT_LIST_HEAD(&md->table_devices);
1797        spin_lock_init(&md->uevent_lock);
1798
1799        /*
1800         * default to bio-based until DM table is loaded and md->type
1801         * established. If request-based table is loaded: blk-mq will
1802         * override accordingly.
1803         */
1804        md->queue = blk_alloc_queue(numa_node_id);
1805        if (!md->queue)
1806                goto bad;
1807
1808        md->disk = alloc_disk_node(1, md->numa_node_id);
1809        if (!md->disk)
1810                goto bad;
1811
1812        init_waitqueue_head(&md->wait);
1813        INIT_WORK(&md->work, dm_wq_work);
1814        init_waitqueue_head(&md->eventq);
1815        init_completion(&md->kobj_holder.completion);
1816
1817        md->disk->major = _major;
1818        md->disk->first_minor = minor;
1819        md->disk->fops = &dm_blk_dops;
1820        md->disk->queue = md->queue;
1821        md->disk->private_data = md;
1822        sprintf(md->disk->disk_name, "dm-%d", minor);
1823
1824        if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1825                md->dax_dev = alloc_dax(md, md->disk->disk_name,
1826                                        &dm_dax_ops, 0);
1827                if (IS_ERR(md->dax_dev))
1828                        goto bad;
1829        }
1830
1831        add_disk_no_queue_reg(md->disk);
1832        format_dev_t(md->name, MKDEV(_major, minor));
1833
1834        md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1835        if (!md->wq)
1836                goto bad;
1837
1838        dm_stats_init(&md->stats);
1839
1840        /* Populate the mapping, nobody knows we exist yet */
1841        spin_lock(&_minor_lock);
1842        old_md = idr_replace(&_minor_idr, md, minor);
1843        spin_unlock(&_minor_lock);
1844
1845        BUG_ON(old_md != MINOR_ALLOCED);
1846
1847        return md;
1848
1849bad:
1850        cleanup_mapped_device(md);
1851bad_io_barrier:
1852        free_minor(minor);
1853bad_minor:
1854        module_put(THIS_MODULE);
1855bad_module_get:
1856        kvfree(md);
1857        return NULL;
1858}
1859
1860static void unlock_fs(struct mapped_device *md);
1861
1862static void free_dev(struct mapped_device *md)
1863{
1864        int minor = MINOR(disk_devt(md->disk));
1865
1866        unlock_fs(md);
1867
1868        cleanup_mapped_device(md);
1869
1870        free_table_devices(&md->table_devices);
1871        dm_stats_cleanup(&md->stats);
1872        free_minor(minor);
1873
1874        module_put(THIS_MODULE);
1875        kvfree(md);
1876}
1877
1878static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1879{
1880        struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1881        int ret = 0;
1882
1883        if (dm_table_bio_based(t)) {
1884                /*
1885                 * The md may already have mempools that need changing.
1886                 * If so, reload bioset because front_pad may have changed
1887                 * because a different table was loaded.
1888                 */
1889                bioset_exit(&md->bs);
1890                bioset_exit(&md->io_bs);
1891
1892        } else if (bioset_initialized(&md->bs)) {
1893                /*
1894                 * There's no need to reload with request-based dm
1895                 * because the size of front_pad doesn't change.
1896                 * Note for future: If you are to reload bioset,
1897                 * prep-ed requests in the queue may refer
1898                 * to bio from the old bioset, so you must walk
1899                 * through the queue to unprep.
1900                 */
1901                goto out;
1902        }
1903
1904        BUG_ON(!p ||
1905               bioset_initialized(&md->bs) ||
1906               bioset_initialized(&md->io_bs));
1907
1908        ret = bioset_init_from_src(&md->bs, &p->bs);
1909        if (ret)
1910                goto out;
1911        ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1912        if (ret)
1913                bioset_exit(&md->bs);
1914out:
1915        /* mempool bind completed, no longer need any mempools in the table */
1916        dm_table_free_md_mempools(t);
1917        return ret;
1918}
1919
1920/*
1921 * Bind a table to the device.
1922 */
1923static void event_callback(void *context)
1924{
1925        unsigned long flags;
1926        LIST_HEAD(uevents);
1927        struct mapped_device *md = (struct mapped_device *) context;
1928
1929        spin_lock_irqsave(&md->uevent_lock, flags);
1930        list_splice_init(&md->uevent_list, &uevents);
1931        spin_unlock_irqrestore(&md->uevent_lock, flags);
1932
1933        dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1934
1935        atomic_inc(&md->event_nr);
1936        wake_up(&md->eventq);
1937        dm_issue_global_event();
1938}
1939
1940/*
1941 * Returns old map, which caller must destroy.
1942 */
1943static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1944                               struct queue_limits *limits)
1945{
1946        struct dm_table *old_map;
1947        struct request_queue *q = md->queue;
1948        bool request_based = dm_table_request_based(t);
1949        sector_t size;
1950        int ret;
1951
1952        lockdep_assert_held(&md->suspend_lock);
1953
1954        size = dm_table_get_size(t);
1955
1956        /*
1957         * Wipe any geometry if the size of the table changed.
1958         */
1959        if (size != dm_get_size(md))
1960                memset(&md->geometry, 0, sizeof(md->geometry));
1961
1962        set_capacity_and_notify(md->disk, size);
1963
1964        dm_table_event_callback(t, event_callback, md);
1965
1966        /*
1967         * The queue hasn't been stopped yet, if the old table type wasn't
1968         * for request-based during suspension.  So stop it to prevent
1969         * I/O mapping before resume.
1970         * This must be done before setting the queue restrictions,
1971         * because request-based dm may be run just after the setting.
1972         */
1973        if (request_based)
1974                dm_stop_queue(q);
1975
1976        if (request_based) {
1977                /*
1978                 * Leverage the fact that request-based DM targets are
1979                 * immutable singletons - used to optimize dm_mq_queue_rq.
1980                 */
1981                md->immutable_target = dm_table_get_immutable_target(t);
1982        }
1983
1984        ret = __bind_mempools(md, t);
1985        if (ret) {
1986                old_map = ERR_PTR(ret);
1987                goto out;
1988        }
1989
1990        old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1991        rcu_assign_pointer(md->map, (void *)t);
1992        md->immutable_target_type = dm_table_get_immutable_target_type(t);
1993
1994        dm_table_set_restrictions(t, q, limits);
1995        if (old_map)
1996                dm_sync_table(md);
1997
1998out:
1999        return old_map;
2000}
2001
2002/*
2003 * Returns unbound table for the caller to free.
2004 */
2005static struct dm_table *__unbind(struct mapped_device *md)
2006{
2007        struct dm_table *map = rcu_dereference_protected(md->map, 1);
2008
2009        if (!map)
2010                return NULL;
2011
2012        dm_table_event_callback(map, NULL, NULL);
2013        RCU_INIT_POINTER(md->map, NULL);
2014        dm_sync_table(md);
2015
2016        return map;
2017}
2018
2019/*
2020 * Constructor for a new device.
2021 */
2022int dm_create(int minor, struct mapped_device **result)
2023{
2024        int r;
2025        struct mapped_device *md;
2026
2027        md = alloc_dev(minor);
2028        if (!md)
2029                return -ENXIO;
2030
2031        r = dm_sysfs_init(md);
2032        if (r) {
2033                free_dev(md);
2034                return r;
2035        }
2036
2037        *result = md;
2038        return 0;
2039}
2040
2041/*
2042 * Functions to manage md->type.
2043 * All are required to hold md->type_lock.
2044 */
2045void dm_lock_md_type(struct mapped_device *md)
2046{
2047        mutex_lock(&md->type_lock);
2048}
2049
2050void dm_unlock_md_type(struct mapped_device *md)
2051{
2052        mutex_unlock(&md->type_lock);
2053}
2054
2055void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2056{
2057        BUG_ON(!mutex_is_locked(&md->type_lock));
2058        md->type = type;
2059}
2060
2061enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2062{
2063        return md->type;
2064}
2065
2066struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2067{
2068        return md->immutable_target_type;
2069}
2070
2071/*
2072 * The queue_limits are only valid as long as you have a reference
2073 * count on 'md'.
2074 */
2075struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2076{
2077        BUG_ON(!atomic_read(&md->holders));
2078        return &md->queue->limits;
2079}
2080EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2081
2082/*
2083 * Setup the DM device's queue based on md's type
2084 */
2085int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2086{
2087        int r;
2088        struct queue_limits limits;
2089        enum dm_queue_mode type = dm_get_md_type(md);
2090
2091        switch (type) {
2092        case DM_TYPE_REQUEST_BASED:
2093                md->disk->fops = &dm_rq_blk_dops;
2094                r = dm_mq_init_request_queue(md, t);
2095                if (r) {
2096                        DMERR("Cannot initialize queue for request-based dm mapped device");
2097                        return r;
2098                }
2099                break;
2100        case DM_TYPE_BIO_BASED:
2101        case DM_TYPE_DAX_BIO_BASED:
2102                break;
2103        case DM_TYPE_NONE:
2104                WARN_ON_ONCE(true);
2105                break;
2106        }
2107
2108        r = dm_calculate_queue_limits(t, &limits);
2109        if (r) {
2110                DMERR("Cannot calculate initial queue limits");
2111                return r;
2112        }
2113        dm_table_set_restrictions(t, md->queue, &limits);
2114        blk_register_queue(md->disk);
2115
2116        return 0;
2117}
2118
2119struct mapped_device *dm_get_md(dev_t dev)
2120{
2121        struct mapped_device *md;
2122        unsigned minor = MINOR(dev);
2123
2124        if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2125                return NULL;
2126
2127        spin_lock(&_minor_lock);
2128
2129        md = idr_find(&_minor_idr, minor);
2130        if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2131            test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2132                md = NULL;
2133                goto out;
2134        }
2135        dm_get(md);
2136out:
2137        spin_unlock(&_minor_lock);
2138
2139        return md;
2140}
2141EXPORT_SYMBOL_GPL(dm_get_md);
2142
2143void *dm_get_mdptr(struct mapped_device *md)
2144{
2145        return md->interface_ptr;
2146}
2147
2148void dm_set_mdptr(struct mapped_device *md, void *ptr)
2149{
2150        md->interface_ptr = ptr;
2151}
2152
2153void dm_get(struct mapped_device *md)
2154{
2155        atomic_inc(&md->holders);
2156        BUG_ON(test_bit(DMF_FREEING, &md->flags));
2157}
2158
2159int dm_hold(struct mapped_device *md)
2160{
2161        spin_lock(&_minor_lock);
2162        if (test_bit(DMF_FREEING, &md->flags)) {
2163                spin_unlock(&_minor_lock);
2164                return -EBUSY;
2165        }
2166        dm_get(md);
2167        spin_unlock(&_minor_lock);
2168        return 0;
2169}
2170EXPORT_SYMBOL_GPL(dm_hold);
2171
2172const char *dm_device_name(struct mapped_device *md)
2173{
2174        return md->name;
2175}
2176EXPORT_SYMBOL_GPL(dm_device_name);
2177
2178static void __dm_destroy(struct mapped_device *md, bool wait)
2179{
2180        struct dm_table *map;
2181        int srcu_idx;
2182
2183        might_sleep();
2184
2185        spin_lock(&_minor_lock);
2186        idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2187        set_bit(DMF_FREEING, &md->flags);
2188        spin_unlock(&_minor_lock);
2189
2190        blk_set_queue_dying(md->queue);
2191
2192        /*
2193         * Take suspend_lock so that presuspend and postsuspend methods
2194         * do not race with internal suspend.
2195         */
2196        mutex_lock(&md->suspend_lock);
2197        map = dm_get_live_table(md, &srcu_idx);
2198        if (!dm_suspended_md(md)) {
2199                dm_table_presuspend_targets(map);
2200                set_bit(DMF_SUSPENDED, &md->flags);
2201                set_bit(DMF_POST_SUSPENDING, &md->flags);
2202                dm_table_postsuspend_targets(map);
2203        }
2204        /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2205        dm_put_live_table(md, srcu_idx);
2206        mutex_unlock(&md->suspend_lock);
2207
2208        /*
2209         * Rare, but there may be I/O requests still going to complete,
2210         * for example.  Wait for all references to disappear.
2211         * No one should increment the reference count of the mapped_device,
2212         * after the mapped_device state becomes DMF_FREEING.
2213         */
2214        if (wait)
2215                while (atomic_read(&md->holders))
2216                        msleep(1);
2217        else if (atomic_read(&md->holders))
2218                DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2219                       dm_device_name(md), atomic_read(&md->holders));
2220
2221        dm_sysfs_exit(md);
2222        dm_table_destroy(__unbind(md));
2223        free_dev(md);
2224}
2225
2226void dm_destroy(struct mapped_device *md)
2227{
2228        __dm_destroy(md, true);
2229}
2230
2231void dm_destroy_immediate(struct mapped_device *md)
2232{
2233        __dm_destroy(md, false);
2234}
2235
2236void dm_put(struct mapped_device *md)
2237{
2238        atomic_dec(&md->holders);
2239}
2240EXPORT_SYMBOL_GPL(dm_put);
2241
2242static bool md_in_flight_bios(struct mapped_device *md)
2243{
2244        int cpu;
2245        struct block_device *part = dm_disk(md)->part0;
2246        long sum = 0;
2247
2248        for_each_possible_cpu(cpu) {
2249                sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2250                sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2251        }
2252
2253        return sum != 0;
2254}
2255
2256static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2257{
2258        int r = 0;
2259        DEFINE_WAIT(wait);
2260
2261        while (true) {
2262                prepare_to_wait(&md->wait, &wait, task_state);
2263
2264                if (!md_in_flight_bios(md))
2265                        break;
2266
2267                if (signal_pending_state(task_state, current)) {
2268                        r = -EINTR;
2269                        break;
2270                }
2271
2272                io_schedule();
2273        }
2274        finish_wait(&md->wait, &wait);
2275
2276        return r;
2277}
2278
2279static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2280{
2281        int r = 0;
2282
2283        if (!queue_is_mq(md->queue))
2284                return dm_wait_for_bios_completion(md, task_state);
2285
2286        while (true) {
2287                if (!blk_mq_queue_inflight(md->queue))
2288                        break;
2289
2290                if (signal_pending_state(task_state, current)) {
2291                        r = -EINTR;
2292                        break;
2293                }
2294
2295                msleep(5);
2296        }
2297
2298        return r;
2299}
2300
2301/*
2302 * Process the deferred bios
2303 */
2304static void dm_wq_work(struct work_struct *work)
2305{
2306        struct mapped_device *md = container_of(work, struct mapped_device, work);
2307        struct bio *bio;
2308
2309        while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2310                spin_lock_irq(&md->deferred_lock);
2311                bio = bio_list_pop(&md->deferred);
2312                spin_unlock_irq(&md->deferred_lock);
2313
2314                if (!bio)
2315                        break;
2316
2317                submit_bio_noacct(bio);
2318        }
2319}
2320
2321static void dm_queue_flush(struct mapped_device *md)
2322{
2323        clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2324        smp_mb__after_atomic();
2325        queue_work(md->wq, &md->work);
2326}
2327
2328/*
2329 * Swap in a new table, returning the old one for the caller to destroy.
2330 */
2331struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2332{
2333        struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2334        struct queue_limits limits;
2335        int r;
2336
2337        mutex_lock(&md->suspend_lock);
2338
2339        /* device must be suspended */
2340        if (!dm_suspended_md(md))
2341                goto out;
2342
2343        /*
2344         * If the new table has no data devices, retain the existing limits.
2345         * This helps multipath with queue_if_no_path if all paths disappear,
2346         * then new I/O is queued based on these limits, and then some paths
2347         * reappear.
2348         */
2349        if (dm_table_has_no_data_devices(table)) {
2350                live_map = dm_get_live_table_fast(md);
2351                if (live_map)
2352                        limits = md->queue->limits;
2353                dm_put_live_table_fast(md);
2354        }
2355
2356        if (!live_map) {
2357                r = dm_calculate_queue_limits(table, &limits);
2358                if (r) {
2359                        map = ERR_PTR(r);
2360                        goto out;
2361                }
2362        }
2363
2364        map = __bind(md, table, &limits);
2365        dm_issue_global_event();
2366
2367out:
2368        mutex_unlock(&md->suspend_lock);
2369        return map;
2370}
2371
2372/*
2373 * Functions to lock and unlock any filesystem running on the
2374 * device.
2375 */
2376static int lock_fs(struct mapped_device *md)
2377{
2378        int r;
2379
2380        WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2381
2382        r = freeze_bdev(md->disk->part0);
2383        if (!r)
2384                set_bit(DMF_FROZEN, &md->flags);
2385        return r;
2386}
2387
2388static void unlock_fs(struct mapped_device *md)
2389{
2390        if (!test_bit(DMF_FROZEN, &md->flags))
2391                return;
2392        thaw_bdev(md->disk->part0);
2393        clear_bit(DMF_FROZEN, &md->flags);
2394}
2395
2396/*
2397 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2398 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2399 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2400 *
2401 * If __dm_suspend returns 0, the device is completely quiescent
2402 * now. There is no request-processing activity. All new requests
2403 * are being added to md->deferred list.
2404 */
2405static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2406                        unsigned suspend_flags, long task_state,
2407                        int dmf_suspended_flag)
2408{
2409        bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2410        bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2411        int r;
2412
2413        lockdep_assert_held(&md->suspend_lock);
2414
2415        /*
2416         * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2417         * This flag is cleared before dm_suspend returns.
2418         */
2419        if (noflush)
2420                set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2421        else
2422                DMDEBUG("%s: suspending with flush", dm_device_name(md));
2423
2424        /*
2425         * This gets reverted if there's an error later and the targets
2426         * provide the .presuspend_undo hook.
2427         */
2428        dm_table_presuspend_targets(map);
2429
2430        /*
2431         * Flush I/O to the device.
2432         * Any I/O submitted after lock_fs() may not be flushed.
2433         * noflush takes precedence over do_lockfs.
2434         * (lock_fs() flushes I/Os and waits for them to complete.)
2435         */
2436        if (!noflush && do_lockfs) {
2437                r = lock_fs(md);
2438                if (r) {
2439                        dm_table_presuspend_undo_targets(map);
2440                        return r;
2441                }
2442        }
2443
2444        /*
2445         * Here we must make sure that no processes are submitting requests
2446         * to target drivers i.e. no one may be executing
2447         * __split_and_process_bio from dm_submit_bio.
2448         *
2449         * To get all processes out of __split_and_process_bio in dm_submit_bio,
2450         * we take the write lock. To prevent any process from reentering
2451         * __split_and_process_bio from dm_submit_bio and quiesce the thread
2452         * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2453         * flush_workqueue(md->wq).
2454         */
2455        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2456        if (map)
2457                synchronize_srcu(&md->io_barrier);
2458
2459        /*
2460         * Stop md->queue before flushing md->wq in case request-based
2461         * dm defers requests to md->wq from md->queue.
2462         */
2463        if (dm_request_based(md))
2464                dm_stop_queue(md->queue);
2465
2466        flush_workqueue(md->wq);
2467
2468        /*
2469         * At this point no more requests are entering target request routines.
2470         * We call dm_wait_for_completion to wait for all existing requests
2471         * to finish.
2472         */
2473        r = dm_wait_for_completion(md, task_state);
2474        if (!r)
2475                set_bit(dmf_suspended_flag, &md->flags);
2476
2477        if (noflush)
2478                clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2479        if (map)
2480                synchronize_srcu(&md->io_barrier);
2481
2482        /* were we interrupted ? */
2483        if (r < 0) {
2484                dm_queue_flush(md);
2485
2486                if (dm_request_based(md))
2487                        dm_start_queue(md->queue);
2488
2489                unlock_fs(md);
2490                dm_table_presuspend_undo_targets(map);
2491                /* pushback list is already flushed, so skip flush */
2492        }
2493
2494        return r;
2495}
2496
2497/*
2498 * We need to be able to change a mapping table under a mounted
2499 * filesystem.  For example we might want to move some data in
2500 * the background.  Before the table can be swapped with
2501 * dm_bind_table, dm_suspend must be called to flush any in
2502 * flight bios and ensure that any further io gets deferred.
2503 */
2504/*
2505 * Suspend mechanism in request-based dm.
2506 *
2507 * 1. Flush all I/Os by lock_fs() if needed.
2508 * 2. Stop dispatching any I/O by stopping the request_queue.
2509 * 3. Wait for all in-flight I/Os to be completed or requeued.
2510 *
2511 * To abort suspend, start the request_queue.
2512 */
2513int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2514{
2515        struct dm_table *map = NULL;
2516        int r = 0;
2517
2518retry:
2519        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2520
2521        if (dm_suspended_md(md)) {
2522                r = -EINVAL;
2523                goto out_unlock;
2524        }
2525
2526        if (dm_suspended_internally_md(md)) {
2527                /* already internally suspended, wait for internal resume */
2528                mutex_unlock(&md->suspend_lock);
2529                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2530                if (r)
2531                        return r;
2532                goto retry;
2533        }
2534
2535        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2536
2537        r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2538        if (r)
2539                goto out_unlock;
2540
2541        set_bit(DMF_POST_SUSPENDING, &md->flags);
2542        dm_table_postsuspend_targets(map);
2543        clear_bit(DMF_POST_SUSPENDING, &md->flags);
2544
2545out_unlock:
2546        mutex_unlock(&md->suspend_lock);
2547        return r;
2548}
2549
2550static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2551{
2552        if (map) {
2553                int r = dm_table_resume_targets(map);
2554                if (r)
2555                        return r;
2556        }
2557
2558        dm_queue_flush(md);
2559
2560        /*
2561         * Flushing deferred I/Os must be done after targets are resumed
2562         * so that mapping of targets can work correctly.
2563         * Request-based dm is queueing the deferred I/Os in its request_queue.
2564         */
2565        if (dm_request_based(md))
2566                dm_start_queue(md->queue);
2567
2568        unlock_fs(md);
2569
2570        return 0;
2571}
2572
2573int dm_resume(struct mapped_device *md)
2574{
2575        int r;
2576        struct dm_table *map = NULL;
2577
2578retry:
2579        r = -EINVAL;
2580        mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2581
2582        if (!dm_suspended_md(md))
2583                goto out;
2584
2585        if (dm_suspended_internally_md(md)) {
2586                /* already internally suspended, wait for internal resume */
2587                mutex_unlock(&md->suspend_lock);
2588                r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2589                if (r)
2590                        return r;
2591                goto retry;
2592        }
2593
2594        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2595        if (!map || !dm_table_get_size(map))
2596                goto out;
2597
2598        r = __dm_resume(md, map);
2599        if (r)
2600                goto out;
2601
2602        clear_bit(DMF_SUSPENDED, &md->flags);
2603out:
2604        mutex_unlock(&md->suspend_lock);
2605
2606        return r;
2607}
2608
2609/*
2610 * Internal suspend/resume works like userspace-driven suspend. It waits
2611 * until all bios finish and prevents issuing new bios to the target drivers.
2612 * It may be used only from the kernel.
2613 */
2614
2615static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2616{
2617        struct dm_table *map = NULL;
2618
2619        lockdep_assert_held(&md->suspend_lock);
2620
2621        if (md->internal_suspend_count++)
2622                return; /* nested internal suspend */
2623
2624        if (dm_suspended_md(md)) {
2625                set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2626                return; /* nest suspend */
2627        }
2628
2629        map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2630
2631        /*
2632         * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2633         * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2634         * would require changing .presuspend to return an error -- avoid this
2635         * until there is a need for more elaborate variants of internal suspend.
2636         */
2637        (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2638                            DMF_SUSPENDED_INTERNALLY);
2639
2640        set_bit(DMF_POST_SUSPENDING, &md->flags);
2641        dm_table_postsuspend_targets(map);
2642        clear_bit(DMF_POST_SUSPENDING, &md->flags);
2643}
2644
2645static void __dm_internal_resume(struct mapped_device *md)
2646{
2647        BUG_ON(!md->internal_suspend_count);
2648
2649        if (--md->internal_suspend_count)
2650                return; /* resume from nested internal suspend */
2651
2652        if (dm_suspended_md(md))
2653                goto done; /* resume from nested suspend */
2654
2655        /*
2656         * NOTE: existing callers don't need to call dm_table_resume_targets
2657         * (which may fail -- so best to avoid it for now by passing NULL map)
2658         */
2659        (void) __dm_resume(md, NULL);
2660
2661done:
2662        clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2663        smp_mb__after_atomic();
2664        wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2665}
2666
2667void dm_internal_suspend_noflush(struct mapped_device *md)
2668{
2669        mutex_lock(&md->suspend_lock);
2670        __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2671        mutex_unlock(&md->suspend_lock);
2672}
2673EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2674
2675void dm_internal_resume(struct mapped_device *md)
2676{
2677        mutex_lock(&md->suspend_lock);
2678        __dm_internal_resume(md);
2679        mutex_unlock(&md->suspend_lock);
2680}
2681EXPORT_SYMBOL_GPL(dm_internal_resume);
2682
2683/*
2684 * Fast variants of internal suspend/resume hold md->suspend_lock,
2685 * which prevents interaction with userspace-driven suspend.
2686 */
2687
2688void dm_internal_suspend_fast(struct mapped_device *md)
2689{
2690        mutex_lock(&md->suspend_lock);
2691        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2692                return;
2693
2694        set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2695        synchronize_srcu(&md->io_barrier);
2696        flush_workqueue(md->wq);
2697        dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2698}
2699EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2700
2701void dm_internal_resume_fast(struct mapped_device *md)
2702{
2703        if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2704                goto done;
2705
2706        dm_queue_flush(md);
2707
2708done:
2709        mutex_unlock(&md->suspend_lock);
2710}
2711EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2712
2713/*-----------------------------------------------------------------
2714 * Event notification.
2715 *---------------------------------------------------------------*/
2716int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2717                       unsigned cookie)
2718{
2719        int r;
2720        unsigned noio_flag;
2721        char udev_cookie[DM_COOKIE_LENGTH];
2722        char *envp[] = { udev_cookie, NULL };
2723
2724        noio_flag = memalloc_noio_save();
2725
2726        if (!cookie)
2727                r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2728        else {
2729                snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2730                         DM_COOKIE_ENV_VAR_NAME, cookie);
2731                r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2732                                       action, envp);
2733        }
2734
2735        memalloc_noio_restore(noio_flag);
2736
2737        return r;
2738}
2739
2740uint32_t dm_next_uevent_seq(struct mapped_device *md)
2741{
2742        return atomic_add_return(1, &md->uevent_seq);
2743}
2744
2745uint32_t dm_get_event_nr(struct mapped_device *md)
2746{
2747        return atomic_read(&md->event_nr);
2748}
2749
2750int dm_wait_event(struct mapped_device *md, int event_nr)
2751{
2752        return wait_event_interruptible(md->eventq,
2753                        (event_nr != atomic_read(&md->event_nr)));
2754}
2755
2756void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2757{
2758        unsigned long flags;
2759
2760        spin_lock_irqsave(&md->uevent_lock, flags);
2761        list_add(elist, &md->uevent_list);
2762        spin_unlock_irqrestore(&md->uevent_lock, flags);
2763}
2764
2765/*
2766 * The gendisk is only valid as long as you have a reference
2767 * count on 'md'.
2768 */
2769struct gendisk *dm_disk(struct mapped_device *md)
2770{
2771        return md->disk;
2772}
2773EXPORT_SYMBOL_GPL(dm_disk);
2774
2775struct kobject *dm_kobject(struct mapped_device *md)
2776{
2777        return &md->kobj_holder.kobj;
2778}
2779
2780struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2781{
2782        struct mapped_device *md;
2783
2784        md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2785
2786        spin_lock(&_minor_lock);
2787        if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2788                md = NULL;
2789                goto out;
2790        }
2791        dm_get(md);
2792out:
2793        spin_unlock(&_minor_lock);
2794
2795        return md;
2796}
2797
2798int dm_suspended_md(struct mapped_device *md)
2799{
2800        return test_bit(DMF_SUSPENDED, &md->flags);
2801}
2802
2803static int dm_post_suspending_md(struct mapped_device *md)
2804{
2805        return test_bit(DMF_POST_SUSPENDING, &md->flags);
2806}
2807
2808int dm_suspended_internally_md(struct mapped_device *md)
2809{
2810        return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2811}
2812
2813int dm_test_deferred_remove_flag(struct mapped_device *md)
2814{
2815        return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2816}
2817
2818int dm_suspended(struct dm_target *ti)
2819{
2820        return dm_suspended_md(ti->table->md);
2821}
2822EXPORT_SYMBOL_GPL(dm_suspended);
2823
2824int dm_post_suspending(struct dm_target *ti)
2825{
2826        return dm_post_suspending_md(ti->table->md);
2827}
2828EXPORT_SYMBOL_GPL(dm_post_suspending);
2829
2830int dm_noflush_suspending(struct dm_target *ti)
2831{
2832        return __noflush_suspending(ti->table->md);
2833}
2834EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2835
2836struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2837                                            unsigned integrity, unsigned per_io_data_size,
2838                                            unsigned min_pool_size)
2839{
2840        struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2841        unsigned int pool_size = 0;
2842        unsigned int front_pad, io_front_pad;
2843        int ret;
2844
2845        if (!pools)
2846                return NULL;
2847
2848        switch (type) {
2849        case DM_TYPE_BIO_BASED:
2850        case DM_TYPE_DAX_BIO_BASED:
2851                pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2852                front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2853                io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2854                ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2855                if (ret)
2856                        goto out;
2857                if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2858                        goto out;
2859                break;
2860        case DM_TYPE_REQUEST_BASED:
2861                pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
2862                front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2863                /* per_io_data_size is used for blk-mq pdu at queue allocation */
2864                break;
2865        default:
2866                BUG();
2867        }
2868
2869        ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2870        if (ret)
2871                goto out;
2872
2873        if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2874                goto out;
2875
2876        return pools;
2877
2878out:
2879        dm_free_md_mempools(pools);
2880
2881        return NULL;
2882}
2883
2884void dm_free_md_mempools(struct dm_md_mempools *pools)
2885{
2886        if (!pools)
2887                return;
2888
2889        bioset_exit(&pools->bs);
2890        bioset_exit(&pools->io_bs);
2891
2892        kfree(pools);
2893}
2894
2895struct dm_pr {
2896        u64     old_key;
2897        u64     new_key;
2898        u32     flags;
2899        bool    fail_early;
2900};
2901
2902static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2903                      void *data)
2904{
2905        struct mapped_device *md = bdev->bd_disk->private_data;
2906        struct dm_table *table;
2907        struct dm_target *ti;
2908        int ret = -ENOTTY, srcu_idx;
2909
2910        table = dm_get_live_table(md, &srcu_idx);
2911        if (!table || !dm_table_get_size(table))
2912                goto out;
2913
2914        /* We only support devices that have a single target */
2915        if (dm_table_get_num_targets(table) != 1)
2916                goto out;
2917        ti = dm_table_get_target(table, 0);
2918
2919        ret = -EINVAL;
2920        if (!ti->type->iterate_devices)
2921                goto out;
2922
2923        ret = ti->type->iterate_devices(ti, fn, data);
2924out:
2925        dm_put_live_table(md, srcu_idx);
2926        return ret;
2927}
2928
2929/*
2930 * For register / unregister we need to manually call out to every path.
2931 */
2932static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2933                            sector_t start, sector_t len, void *data)
2934{
2935        struct dm_pr *pr = data;
2936        const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2937
2938        if (!ops || !ops->pr_register)
2939                return -EOPNOTSUPP;
2940        return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2941}
2942
2943static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2944                          u32 flags)
2945{
2946        struct dm_pr pr = {
2947                .old_key        = old_key,
2948                .new_key        = new_key,
2949                .flags          = flags,
2950                .fail_early     = true,
2951        };
2952        int ret;
2953
2954        ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2955        if (ret && new_key) {
2956                /* unregister all paths if we failed to register any path */
2957                pr.old_key = new_key;
2958                pr.new_key = 0;
2959                pr.flags = 0;
2960                pr.fail_early = false;
2961                dm_call_pr(bdev, __dm_pr_register, &pr);
2962        }
2963
2964        return ret;
2965}
2966
2967static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2968                         u32 flags)
2969{
2970        struct mapped_device *md = bdev->bd_disk->private_data;
2971        const struct pr_ops *ops;
2972        int r, srcu_idx;
2973
2974        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2975        if (r < 0)
2976                goto out;
2977
2978        ops = bdev->bd_disk->fops->pr_ops;
2979        if (ops && ops->pr_reserve)
2980                r = ops->pr_reserve(bdev, key, type, flags);
2981        else
2982                r = -EOPNOTSUPP;
2983out:
2984        dm_unprepare_ioctl(md, srcu_idx);
2985        return r;
2986}
2987
2988static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2989{
2990        struct mapped_device *md = bdev->bd_disk->private_data;
2991        const struct pr_ops *ops;
2992        int r, srcu_idx;
2993
2994        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2995        if (r < 0)
2996                goto out;
2997
2998        ops = bdev->bd_disk->fops->pr_ops;
2999        if (ops && ops->pr_release)
3000                r = ops->pr_release(bdev, key, type);
3001        else
3002                r = -EOPNOTSUPP;
3003out:
3004        dm_unprepare_ioctl(md, srcu_idx);
3005        return r;
3006}
3007
3008static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3009                         enum pr_type type, bool abort)
3010{
3011        struct mapped_device *md = bdev->bd_disk->private_data;
3012        const struct pr_ops *ops;
3013        int r, srcu_idx;
3014
3015        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3016        if (r < 0)
3017                goto out;
3018
3019        ops = bdev->bd_disk->fops->pr_ops;
3020        if (ops && ops->pr_preempt)
3021                r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3022        else
3023                r = -EOPNOTSUPP;
3024out:
3025        dm_unprepare_ioctl(md, srcu_idx);
3026        return r;
3027}
3028
3029static int dm_pr_clear(struct block_device *bdev, u64 key)
3030{
3031        struct mapped_device *md = bdev->bd_disk->private_data;
3032        const struct pr_ops *ops;
3033        int r, srcu_idx;
3034
3035        r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3036        if (r < 0)
3037                goto out;
3038
3039        ops = bdev->bd_disk->fops->pr_ops;
3040        if (ops && ops->pr_clear)
3041                r = ops->pr_clear(bdev, key);
3042        else
3043                r = -EOPNOTSUPP;
3044out:
3045        dm_unprepare_ioctl(md, srcu_idx);
3046        return r;
3047}
3048
3049static const struct pr_ops dm_pr_ops = {
3050        .pr_register    = dm_pr_register,
3051        .pr_reserve     = dm_pr_reserve,
3052        .pr_release     = dm_pr_release,
3053        .pr_preempt     = dm_pr_preempt,
3054        .pr_clear       = dm_pr_clear,
3055};
3056
3057static const struct block_device_operations dm_blk_dops = {
3058        .submit_bio = dm_submit_bio,
3059        .open = dm_blk_open,
3060        .release = dm_blk_close,
3061        .ioctl = dm_blk_ioctl,
3062        .getgeo = dm_blk_getgeo,
3063        .report_zones = dm_blk_report_zones,
3064        .pr_ops = &dm_pr_ops,
3065        .owner = THIS_MODULE
3066};
3067
3068static const struct block_device_operations dm_rq_blk_dops = {
3069        .open = dm_blk_open,
3070        .release = dm_blk_close,
3071        .ioctl = dm_blk_ioctl,
3072        .getgeo = dm_blk_getgeo,
3073        .pr_ops = &dm_pr_ops,
3074        .owner = THIS_MODULE
3075};
3076
3077static const struct dax_operations dm_dax_ops = {
3078        .direct_access = dm_dax_direct_access,
3079        .dax_supported = dm_dax_supported,
3080        .copy_from_iter = dm_dax_copy_from_iter,
3081        .copy_to_iter = dm_dax_copy_to_iter,
3082        .zero_page_range = dm_dax_zero_page_range,
3083};
3084
3085/*
3086 * module hooks
3087 */
3088module_init(dm_init);
3089module_exit(dm_exit);
3090
3091module_param(major, uint, 0);
3092MODULE_PARM_DESC(major, "The major number of the device mapper");
3093
3094module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3095MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3096
3097module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3098MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3099
3100MODULE_DESCRIPTION(DM_NAME " driver");
3101MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3102MODULE_LICENSE("GPL");
3103