linux/drivers/md/raid10.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * raid10.c : Multiple Devices driver for Linux
   4 *
   5 * Copyright (C) 2000-2004 Neil Brown
   6 *
   7 * RAID-10 support for md.
   8 *
   9 * Base on code in raid1.c.  See raid1.c for further copyright information.
  10 */
  11
  12#include <linux/slab.h>
  13#include <linux/delay.h>
  14#include <linux/blkdev.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/ratelimit.h>
  18#include <linux/kthread.h>
  19#include <linux/raid/md_p.h>
  20#include <trace/events/block.h>
  21#include "md.h"
  22#include "raid10.h"
  23#include "raid0.h"
  24#include "md-bitmap.h"
  25
  26/*
  27 * RAID10 provides a combination of RAID0 and RAID1 functionality.
  28 * The layout of data is defined by
  29 *    chunk_size
  30 *    raid_disks
  31 *    near_copies (stored in low byte of layout)
  32 *    far_copies (stored in second byte of layout)
  33 *    far_offset (stored in bit 16 of layout )
  34 *    use_far_sets (stored in bit 17 of layout )
  35 *    use_far_sets_bugfixed (stored in bit 18 of layout )
  36 *
  37 * The data to be stored is divided into chunks using chunksize.  Each device
  38 * is divided into far_copies sections.   In each section, chunks are laid out
  39 * in a style similar to raid0, but near_copies copies of each chunk is stored
  40 * (each on a different drive).  The starting device for each section is offset
  41 * near_copies from the starting device of the previous section.  Thus there
  42 * are (near_copies * far_copies) of each chunk, and each is on a different
  43 * drive.  near_copies and far_copies must be at least one, and their product
  44 * is at most raid_disks.
  45 *
  46 * If far_offset is true, then the far_copies are handled a bit differently.
  47 * The copies are still in different stripes, but instead of being very far
  48 * apart on disk, there are adjacent stripes.
  49 *
  50 * The far and offset algorithms are handled slightly differently if
  51 * 'use_far_sets' is true.  In this case, the array's devices are grouped into
  52 * sets that are (near_copies * far_copies) in size.  The far copied stripes
  53 * are still shifted by 'near_copies' devices, but this shifting stays confined
  54 * to the set rather than the entire array.  This is done to improve the number
  55 * of device combinations that can fail without causing the array to fail.
  56 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
  57 * on a device):
  58 *    A B C D    A B C D E
  59 *      ...         ...
  60 *    D A B C    E A B C D
  61 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
  62 *    [A B] [C D]    [A B] [C D E]
  63 *    |...| |...|    |...| | ... |
  64 *    [B A] [D C]    [B A] [E C D]
  65 */
  66
  67static void allow_barrier(struct r10conf *conf);
  68static void lower_barrier(struct r10conf *conf);
  69static int _enough(struct r10conf *conf, int previous, int ignore);
  70static int enough(struct r10conf *conf, int ignore);
  71static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
  72                                int *skipped);
  73static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
  74static void end_reshape_write(struct bio *bio);
  75static void end_reshape(struct r10conf *conf);
  76
  77#define raid10_log(md, fmt, args...)                            \
  78        do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
  79
  80#include "raid1-10.c"
  81
  82/*
  83 * for resync bio, r10bio pointer can be retrieved from the per-bio
  84 * 'struct resync_pages'.
  85 */
  86static inline struct r10bio *get_resync_r10bio(struct bio *bio)
  87{
  88        return get_resync_pages(bio)->raid_bio;
  89}
  90
  91static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
  92{
  93        struct r10conf *conf = data;
  94        int size = offsetof(struct r10bio, devs[conf->copies]);
  95
  96        /* allocate a r10bio with room for raid_disks entries in the
  97         * bios array */
  98        return kzalloc(size, gfp_flags);
  99}
 100
 101#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
 102/* amount of memory to reserve for resync requests */
 103#define RESYNC_WINDOW (1024*1024)
 104/* maximum number of concurrent requests, memory permitting */
 105#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
 106#define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
 107#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 108
 109/*
 110 * When performing a resync, we need to read and compare, so
 111 * we need as many pages are there are copies.
 112 * When performing a recovery, we need 2 bios, one for read,
 113 * one for write (we recover only one drive per r10buf)
 114 *
 115 */
 116static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
 117{
 118        struct r10conf *conf = data;
 119        struct r10bio *r10_bio;
 120        struct bio *bio;
 121        int j;
 122        int nalloc, nalloc_rp;
 123        struct resync_pages *rps;
 124
 125        r10_bio = r10bio_pool_alloc(gfp_flags, conf);
 126        if (!r10_bio)
 127                return NULL;
 128
 129        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
 130            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
 131                nalloc = conf->copies; /* resync */
 132        else
 133                nalloc = 2; /* recovery */
 134
 135        /* allocate once for all bios */
 136        if (!conf->have_replacement)
 137                nalloc_rp = nalloc;
 138        else
 139                nalloc_rp = nalloc * 2;
 140        rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
 141        if (!rps)
 142                goto out_free_r10bio;
 143
 144        /*
 145         * Allocate bios.
 146         */
 147        for (j = nalloc ; j-- ; ) {
 148                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 149                if (!bio)
 150                        goto out_free_bio;
 151                r10_bio->devs[j].bio = bio;
 152                if (!conf->have_replacement)
 153                        continue;
 154                bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 155                if (!bio)
 156                        goto out_free_bio;
 157                r10_bio->devs[j].repl_bio = bio;
 158        }
 159        /*
 160         * Allocate RESYNC_PAGES data pages and attach them
 161         * where needed.
 162         */
 163        for (j = 0; j < nalloc; j++) {
 164                struct bio *rbio = r10_bio->devs[j].repl_bio;
 165                struct resync_pages *rp, *rp_repl;
 166
 167                rp = &rps[j];
 168                if (rbio)
 169                        rp_repl = &rps[nalloc + j];
 170
 171                bio = r10_bio->devs[j].bio;
 172
 173                if (!j || test_bit(MD_RECOVERY_SYNC,
 174                                   &conf->mddev->recovery)) {
 175                        if (resync_alloc_pages(rp, gfp_flags))
 176                                goto out_free_pages;
 177                } else {
 178                        memcpy(rp, &rps[0], sizeof(*rp));
 179                        resync_get_all_pages(rp);
 180                }
 181
 182                rp->raid_bio = r10_bio;
 183                bio->bi_private = rp;
 184                if (rbio) {
 185                        memcpy(rp_repl, rp, sizeof(*rp));
 186                        rbio->bi_private = rp_repl;
 187                }
 188        }
 189
 190        return r10_bio;
 191
 192out_free_pages:
 193        while (--j >= 0)
 194                resync_free_pages(&rps[j]);
 195
 196        j = 0;
 197out_free_bio:
 198        for ( ; j < nalloc; j++) {
 199                if (r10_bio->devs[j].bio)
 200                        bio_put(r10_bio->devs[j].bio);
 201                if (r10_bio->devs[j].repl_bio)
 202                        bio_put(r10_bio->devs[j].repl_bio);
 203        }
 204        kfree(rps);
 205out_free_r10bio:
 206        rbio_pool_free(r10_bio, conf);
 207        return NULL;
 208}
 209
 210static void r10buf_pool_free(void *__r10_bio, void *data)
 211{
 212        struct r10conf *conf = data;
 213        struct r10bio *r10bio = __r10_bio;
 214        int j;
 215        struct resync_pages *rp = NULL;
 216
 217        for (j = conf->copies; j--; ) {
 218                struct bio *bio = r10bio->devs[j].bio;
 219
 220                if (bio) {
 221                        rp = get_resync_pages(bio);
 222                        resync_free_pages(rp);
 223                        bio_put(bio);
 224                }
 225
 226                bio = r10bio->devs[j].repl_bio;
 227                if (bio)
 228                        bio_put(bio);
 229        }
 230
 231        /* resync pages array stored in the 1st bio's .bi_private */
 232        kfree(rp);
 233
 234        rbio_pool_free(r10bio, conf);
 235}
 236
 237static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
 238{
 239        int i;
 240
 241        for (i = 0; i < conf->copies; i++) {
 242                struct bio **bio = & r10_bio->devs[i].bio;
 243                if (!BIO_SPECIAL(*bio))
 244                        bio_put(*bio);
 245                *bio = NULL;
 246                bio = &r10_bio->devs[i].repl_bio;
 247                if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
 248                        bio_put(*bio);
 249                *bio = NULL;
 250        }
 251}
 252
 253static void free_r10bio(struct r10bio *r10_bio)
 254{
 255        struct r10conf *conf = r10_bio->mddev->private;
 256
 257        put_all_bios(conf, r10_bio);
 258        mempool_free(r10_bio, &conf->r10bio_pool);
 259}
 260
 261static void put_buf(struct r10bio *r10_bio)
 262{
 263        struct r10conf *conf = r10_bio->mddev->private;
 264
 265        mempool_free(r10_bio, &conf->r10buf_pool);
 266
 267        lower_barrier(conf);
 268}
 269
 270static void reschedule_retry(struct r10bio *r10_bio)
 271{
 272        unsigned long flags;
 273        struct mddev *mddev = r10_bio->mddev;
 274        struct r10conf *conf = mddev->private;
 275
 276        spin_lock_irqsave(&conf->device_lock, flags);
 277        list_add(&r10_bio->retry_list, &conf->retry_list);
 278        conf->nr_queued ++;
 279        spin_unlock_irqrestore(&conf->device_lock, flags);
 280
 281        /* wake up frozen array... */
 282        wake_up(&conf->wait_barrier);
 283
 284        md_wakeup_thread(mddev->thread);
 285}
 286
 287/*
 288 * raid_end_bio_io() is called when we have finished servicing a mirrored
 289 * operation and are ready to return a success/failure code to the buffer
 290 * cache layer.
 291 */
 292static void raid_end_bio_io(struct r10bio *r10_bio)
 293{
 294        struct bio *bio = r10_bio->master_bio;
 295        struct r10conf *conf = r10_bio->mddev->private;
 296
 297        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
 298                bio->bi_status = BLK_STS_IOERR;
 299
 300        bio_endio(bio);
 301        /*
 302         * Wake up any possible resync thread that waits for the device
 303         * to go idle.
 304         */
 305        allow_barrier(conf);
 306
 307        free_r10bio(r10_bio);
 308}
 309
 310/*
 311 * Update disk head position estimator based on IRQ completion info.
 312 */
 313static inline void update_head_pos(int slot, struct r10bio *r10_bio)
 314{
 315        struct r10conf *conf = r10_bio->mddev->private;
 316
 317        conf->mirrors[r10_bio->devs[slot].devnum].head_position =
 318                r10_bio->devs[slot].addr + (r10_bio->sectors);
 319}
 320
 321/*
 322 * Find the disk number which triggered given bio
 323 */
 324static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
 325                         struct bio *bio, int *slotp, int *replp)
 326{
 327        int slot;
 328        int repl = 0;
 329
 330        for (slot = 0; slot < conf->copies; slot++) {
 331                if (r10_bio->devs[slot].bio == bio)
 332                        break;
 333                if (r10_bio->devs[slot].repl_bio == bio) {
 334                        repl = 1;
 335                        break;
 336                }
 337        }
 338
 339        BUG_ON(slot == conf->copies);
 340        update_head_pos(slot, r10_bio);
 341
 342        if (slotp)
 343                *slotp = slot;
 344        if (replp)
 345                *replp = repl;
 346        return r10_bio->devs[slot].devnum;
 347}
 348
 349static void raid10_end_read_request(struct bio *bio)
 350{
 351        int uptodate = !bio->bi_status;
 352        struct r10bio *r10_bio = bio->bi_private;
 353        int slot;
 354        struct md_rdev *rdev;
 355        struct r10conf *conf = r10_bio->mddev->private;
 356
 357        slot = r10_bio->read_slot;
 358        rdev = r10_bio->devs[slot].rdev;
 359        /*
 360         * this branch is our 'one mirror IO has finished' event handler:
 361         */
 362        update_head_pos(slot, r10_bio);
 363
 364        if (uptodate) {
 365                /*
 366                 * Set R10BIO_Uptodate in our master bio, so that
 367                 * we will return a good error code to the higher
 368                 * levels even if IO on some other mirrored buffer fails.
 369                 *
 370                 * The 'master' represents the composite IO operation to
 371                 * user-side. So if something waits for IO, then it will
 372                 * wait for the 'master' bio.
 373                 */
 374                set_bit(R10BIO_Uptodate, &r10_bio->state);
 375        } else {
 376                /* If all other devices that store this block have
 377                 * failed, we want to return the error upwards rather
 378                 * than fail the last device.  Here we redefine
 379                 * "uptodate" to mean "Don't want to retry"
 380                 */
 381                if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
 382                             rdev->raid_disk))
 383                        uptodate = 1;
 384        }
 385        if (uptodate) {
 386                raid_end_bio_io(r10_bio);
 387                rdev_dec_pending(rdev, conf->mddev);
 388        } else {
 389                /*
 390                 * oops, read error - keep the refcount on the rdev
 391                 */
 392                char b[BDEVNAME_SIZE];
 393                pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
 394                                   mdname(conf->mddev),
 395                                   bdevname(rdev->bdev, b),
 396                                   (unsigned long long)r10_bio->sector);
 397                set_bit(R10BIO_ReadError, &r10_bio->state);
 398                reschedule_retry(r10_bio);
 399        }
 400}
 401
 402static void close_write(struct r10bio *r10_bio)
 403{
 404        /* clear the bitmap if all writes complete successfully */
 405        md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
 406                           r10_bio->sectors,
 407                           !test_bit(R10BIO_Degraded, &r10_bio->state),
 408                           0);
 409        md_write_end(r10_bio->mddev);
 410}
 411
 412static void one_write_done(struct r10bio *r10_bio)
 413{
 414        if (atomic_dec_and_test(&r10_bio->remaining)) {
 415                if (test_bit(R10BIO_WriteError, &r10_bio->state))
 416                        reschedule_retry(r10_bio);
 417                else {
 418                        close_write(r10_bio);
 419                        if (test_bit(R10BIO_MadeGood, &r10_bio->state))
 420                                reschedule_retry(r10_bio);
 421                        else
 422                                raid_end_bio_io(r10_bio);
 423                }
 424        }
 425}
 426
 427static void raid10_end_write_request(struct bio *bio)
 428{
 429        struct r10bio *r10_bio = bio->bi_private;
 430        int dev;
 431        int dec_rdev = 1;
 432        struct r10conf *conf = r10_bio->mddev->private;
 433        int slot, repl;
 434        struct md_rdev *rdev = NULL;
 435        struct bio *to_put = NULL;
 436        bool discard_error;
 437
 438        discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
 439
 440        dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
 441
 442        if (repl)
 443                rdev = conf->mirrors[dev].replacement;
 444        if (!rdev) {
 445                smp_rmb();
 446                repl = 0;
 447                rdev = conf->mirrors[dev].rdev;
 448        }
 449        /*
 450         * this branch is our 'one mirror IO has finished' event handler:
 451         */
 452        if (bio->bi_status && !discard_error) {
 453                if (repl)
 454                        /* Never record new bad blocks to replacement,
 455                         * just fail it.
 456                         */
 457                        md_error(rdev->mddev, rdev);
 458                else {
 459                        set_bit(WriteErrorSeen, &rdev->flags);
 460                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
 461                                set_bit(MD_RECOVERY_NEEDED,
 462                                        &rdev->mddev->recovery);
 463
 464                        dec_rdev = 0;
 465                        if (test_bit(FailFast, &rdev->flags) &&
 466                            (bio->bi_opf & MD_FAILFAST)) {
 467                                md_error(rdev->mddev, rdev);
 468                        }
 469
 470                        /*
 471                         * When the device is faulty, it is not necessary to
 472                         * handle write error.
 473                         * For failfast, this is the only remaining device,
 474                         * We need to retry the write without FailFast.
 475                         */
 476                        if (!test_bit(Faulty, &rdev->flags))
 477                                set_bit(R10BIO_WriteError, &r10_bio->state);
 478                        else {
 479                                r10_bio->devs[slot].bio = NULL;
 480                                to_put = bio;
 481                                dec_rdev = 1;
 482                        }
 483                }
 484        } else {
 485                /*
 486                 * Set R10BIO_Uptodate in our master bio, so that
 487                 * we will return a good error code for to the higher
 488                 * levels even if IO on some other mirrored buffer fails.
 489                 *
 490                 * The 'master' represents the composite IO operation to
 491                 * user-side. So if something waits for IO, then it will
 492                 * wait for the 'master' bio.
 493                 */
 494                sector_t first_bad;
 495                int bad_sectors;
 496
 497                /*
 498                 * Do not set R10BIO_Uptodate if the current device is
 499                 * rebuilding or Faulty. This is because we cannot use
 500                 * such device for properly reading the data back (we could
 501                 * potentially use it, if the current write would have felt
 502                 * before rdev->recovery_offset, but for simplicity we don't
 503                 * check this here.
 504                 */
 505                if (test_bit(In_sync, &rdev->flags) &&
 506                    !test_bit(Faulty, &rdev->flags))
 507                        set_bit(R10BIO_Uptodate, &r10_bio->state);
 508
 509                /* Maybe we can clear some bad blocks. */
 510                if (is_badblock(rdev,
 511                                r10_bio->devs[slot].addr,
 512                                r10_bio->sectors,
 513                                &first_bad, &bad_sectors) && !discard_error) {
 514                        bio_put(bio);
 515                        if (repl)
 516                                r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
 517                        else
 518                                r10_bio->devs[slot].bio = IO_MADE_GOOD;
 519                        dec_rdev = 0;
 520                        set_bit(R10BIO_MadeGood, &r10_bio->state);
 521                }
 522        }
 523
 524        /*
 525         *
 526         * Let's see if all mirrored write operations have finished
 527         * already.
 528         */
 529        one_write_done(r10_bio);
 530        if (dec_rdev)
 531                rdev_dec_pending(rdev, conf->mddev);
 532        if (to_put)
 533                bio_put(to_put);
 534}
 535
 536/*
 537 * RAID10 layout manager
 538 * As well as the chunksize and raid_disks count, there are two
 539 * parameters: near_copies and far_copies.
 540 * near_copies * far_copies must be <= raid_disks.
 541 * Normally one of these will be 1.
 542 * If both are 1, we get raid0.
 543 * If near_copies == raid_disks, we get raid1.
 544 *
 545 * Chunks are laid out in raid0 style with near_copies copies of the
 546 * first chunk, followed by near_copies copies of the next chunk and
 547 * so on.
 548 * If far_copies > 1, then after 1/far_copies of the array has been assigned
 549 * as described above, we start again with a device offset of near_copies.
 550 * So we effectively have another copy of the whole array further down all
 551 * the drives, but with blocks on different drives.
 552 * With this layout, and block is never stored twice on the one device.
 553 *
 554 * raid10_find_phys finds the sector offset of a given virtual sector
 555 * on each device that it is on.
 556 *
 557 * raid10_find_virt does the reverse mapping, from a device and a
 558 * sector offset to a virtual address
 559 */
 560
 561static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
 562{
 563        int n,f;
 564        sector_t sector;
 565        sector_t chunk;
 566        sector_t stripe;
 567        int dev;
 568        int slot = 0;
 569        int last_far_set_start, last_far_set_size;
 570
 571        last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 572        last_far_set_start *= geo->far_set_size;
 573
 574        last_far_set_size = geo->far_set_size;
 575        last_far_set_size += (geo->raid_disks % geo->far_set_size);
 576
 577        /* now calculate first sector/dev */
 578        chunk = r10bio->sector >> geo->chunk_shift;
 579        sector = r10bio->sector & geo->chunk_mask;
 580
 581        chunk *= geo->near_copies;
 582        stripe = chunk;
 583        dev = sector_div(stripe, geo->raid_disks);
 584        if (geo->far_offset)
 585                stripe *= geo->far_copies;
 586
 587        sector += stripe << geo->chunk_shift;
 588
 589        /* and calculate all the others */
 590        for (n = 0; n < geo->near_copies; n++) {
 591                int d = dev;
 592                int set;
 593                sector_t s = sector;
 594                r10bio->devs[slot].devnum = d;
 595                r10bio->devs[slot].addr = s;
 596                slot++;
 597
 598                for (f = 1; f < geo->far_copies; f++) {
 599                        set = d / geo->far_set_size;
 600                        d += geo->near_copies;
 601
 602                        if ((geo->raid_disks % geo->far_set_size) &&
 603                            (d > last_far_set_start)) {
 604                                d -= last_far_set_start;
 605                                d %= last_far_set_size;
 606                                d += last_far_set_start;
 607                        } else {
 608                                d %= geo->far_set_size;
 609                                d += geo->far_set_size * set;
 610                        }
 611                        s += geo->stride;
 612                        r10bio->devs[slot].devnum = d;
 613                        r10bio->devs[slot].addr = s;
 614                        slot++;
 615                }
 616                dev++;
 617                if (dev >= geo->raid_disks) {
 618                        dev = 0;
 619                        sector += (geo->chunk_mask + 1);
 620                }
 621        }
 622}
 623
 624static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
 625{
 626        struct geom *geo = &conf->geo;
 627
 628        if (conf->reshape_progress != MaxSector &&
 629            ((r10bio->sector >= conf->reshape_progress) !=
 630             conf->mddev->reshape_backwards)) {
 631                set_bit(R10BIO_Previous, &r10bio->state);
 632                geo = &conf->prev;
 633        } else
 634                clear_bit(R10BIO_Previous, &r10bio->state);
 635
 636        __raid10_find_phys(geo, r10bio);
 637}
 638
 639static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
 640{
 641        sector_t offset, chunk, vchunk;
 642        /* Never use conf->prev as this is only called during resync
 643         * or recovery, so reshape isn't happening
 644         */
 645        struct geom *geo = &conf->geo;
 646        int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
 647        int far_set_size = geo->far_set_size;
 648        int last_far_set_start;
 649
 650        if (geo->raid_disks % geo->far_set_size) {
 651                last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
 652                last_far_set_start *= geo->far_set_size;
 653
 654                if (dev >= last_far_set_start) {
 655                        far_set_size = geo->far_set_size;
 656                        far_set_size += (geo->raid_disks % geo->far_set_size);
 657                        far_set_start = last_far_set_start;
 658                }
 659        }
 660
 661        offset = sector & geo->chunk_mask;
 662        if (geo->far_offset) {
 663                int fc;
 664                chunk = sector >> geo->chunk_shift;
 665                fc = sector_div(chunk, geo->far_copies);
 666                dev -= fc * geo->near_copies;
 667                if (dev < far_set_start)
 668                        dev += far_set_size;
 669        } else {
 670                while (sector >= geo->stride) {
 671                        sector -= geo->stride;
 672                        if (dev < (geo->near_copies + far_set_start))
 673                                dev += far_set_size - geo->near_copies;
 674                        else
 675                                dev -= geo->near_copies;
 676                }
 677                chunk = sector >> geo->chunk_shift;
 678        }
 679        vchunk = chunk * geo->raid_disks + dev;
 680        sector_div(vchunk, geo->near_copies);
 681        return (vchunk << geo->chunk_shift) + offset;
 682}
 683
 684/*
 685 * This routine returns the disk from which the requested read should
 686 * be done. There is a per-array 'next expected sequential IO' sector
 687 * number - if this matches on the next IO then we use the last disk.
 688 * There is also a per-disk 'last know head position' sector that is
 689 * maintained from IRQ contexts, both the normal and the resync IO
 690 * completion handlers update this position correctly. If there is no
 691 * perfect sequential match then we pick the disk whose head is closest.
 692 *
 693 * If there are 2 mirrors in the same 2 devices, performance degrades
 694 * because position is mirror, not device based.
 695 *
 696 * The rdev for the device selected will have nr_pending incremented.
 697 */
 698
 699/*
 700 * FIXME: possibly should rethink readbalancing and do it differently
 701 * depending on near_copies / far_copies geometry.
 702 */
 703static struct md_rdev *read_balance(struct r10conf *conf,
 704                                    struct r10bio *r10_bio,
 705                                    int *max_sectors)
 706{
 707        const sector_t this_sector = r10_bio->sector;
 708        int disk, slot;
 709        int sectors = r10_bio->sectors;
 710        int best_good_sectors;
 711        sector_t new_distance, best_dist;
 712        struct md_rdev *best_dist_rdev, *best_pending_rdev, *rdev = NULL;
 713        int do_balance;
 714        int best_dist_slot, best_pending_slot;
 715        bool has_nonrot_disk = false;
 716        unsigned int min_pending;
 717        struct geom *geo = &conf->geo;
 718
 719        raid10_find_phys(conf, r10_bio);
 720        rcu_read_lock();
 721        best_dist_slot = -1;
 722        min_pending = UINT_MAX;
 723        best_dist_rdev = NULL;
 724        best_pending_rdev = NULL;
 725        best_dist = MaxSector;
 726        best_good_sectors = 0;
 727        do_balance = 1;
 728        clear_bit(R10BIO_FailFast, &r10_bio->state);
 729        /*
 730         * Check if we can balance. We can balance on the whole
 731         * device if no resync is going on (recovery is ok), or below
 732         * the resync window. We take the first readable disk when
 733         * above the resync window.
 734         */
 735        if ((conf->mddev->recovery_cp < MaxSector
 736             && (this_sector + sectors >= conf->next_resync)) ||
 737            (mddev_is_clustered(conf->mddev) &&
 738             md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 739                                            this_sector + sectors)))
 740                do_balance = 0;
 741
 742        for (slot = 0; slot < conf->copies ; slot++) {
 743                sector_t first_bad;
 744                int bad_sectors;
 745                sector_t dev_sector;
 746                unsigned int pending;
 747                bool nonrot;
 748
 749                if (r10_bio->devs[slot].bio == IO_BLOCKED)
 750                        continue;
 751                disk = r10_bio->devs[slot].devnum;
 752                rdev = rcu_dereference(conf->mirrors[disk].replacement);
 753                if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
 754                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 755                        rdev = rcu_dereference(conf->mirrors[disk].rdev);
 756                if (rdev == NULL ||
 757                    test_bit(Faulty, &rdev->flags))
 758                        continue;
 759                if (!test_bit(In_sync, &rdev->flags) &&
 760                    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
 761                        continue;
 762
 763                dev_sector = r10_bio->devs[slot].addr;
 764                if (is_badblock(rdev, dev_sector, sectors,
 765                                &first_bad, &bad_sectors)) {
 766                        if (best_dist < MaxSector)
 767                                /* Already have a better slot */
 768                                continue;
 769                        if (first_bad <= dev_sector) {
 770                                /* Cannot read here.  If this is the
 771                                 * 'primary' device, then we must not read
 772                                 * beyond 'bad_sectors' from another device.
 773                                 */
 774                                bad_sectors -= (dev_sector - first_bad);
 775                                if (!do_balance && sectors > bad_sectors)
 776                                        sectors = bad_sectors;
 777                                if (best_good_sectors > sectors)
 778                                        best_good_sectors = sectors;
 779                        } else {
 780                                sector_t good_sectors =
 781                                        first_bad - dev_sector;
 782                                if (good_sectors > best_good_sectors) {
 783                                        best_good_sectors = good_sectors;
 784                                        best_dist_slot = slot;
 785                                        best_dist_rdev = rdev;
 786                                }
 787                                if (!do_balance)
 788                                        /* Must read from here */
 789                                        break;
 790                        }
 791                        continue;
 792                } else
 793                        best_good_sectors = sectors;
 794
 795                if (!do_balance)
 796                        break;
 797
 798                nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 799                has_nonrot_disk |= nonrot;
 800                pending = atomic_read(&rdev->nr_pending);
 801                if (min_pending > pending && nonrot) {
 802                        min_pending = pending;
 803                        best_pending_slot = slot;
 804                        best_pending_rdev = rdev;
 805                }
 806
 807                if (best_dist_slot >= 0)
 808                        /* At least 2 disks to choose from so failfast is OK */
 809                        set_bit(R10BIO_FailFast, &r10_bio->state);
 810                /* This optimisation is debatable, and completely destroys
 811                 * sequential read speed for 'far copies' arrays.  So only
 812                 * keep it for 'near' arrays, and review those later.
 813                 */
 814                if (geo->near_copies > 1 && !pending)
 815                        new_distance = 0;
 816
 817                /* for far > 1 always use the lowest address */
 818                else if (geo->far_copies > 1)
 819                        new_distance = r10_bio->devs[slot].addr;
 820                else
 821                        new_distance = abs(r10_bio->devs[slot].addr -
 822                                           conf->mirrors[disk].head_position);
 823
 824                if (new_distance < best_dist) {
 825                        best_dist = new_distance;
 826                        best_dist_slot = slot;
 827                        best_dist_rdev = rdev;
 828                }
 829        }
 830        if (slot >= conf->copies) {
 831                if (has_nonrot_disk) {
 832                        slot = best_pending_slot;
 833                        rdev = best_pending_rdev;
 834                } else {
 835                        slot = best_dist_slot;
 836                        rdev = best_dist_rdev;
 837                }
 838        }
 839
 840        if (slot >= 0) {
 841                atomic_inc(&rdev->nr_pending);
 842                r10_bio->read_slot = slot;
 843        } else
 844                rdev = NULL;
 845        rcu_read_unlock();
 846        *max_sectors = best_good_sectors;
 847
 848        return rdev;
 849}
 850
 851static void flush_pending_writes(struct r10conf *conf)
 852{
 853        /* Any writes that have been queued but are awaiting
 854         * bitmap updates get flushed here.
 855         */
 856        spin_lock_irq(&conf->device_lock);
 857
 858        if (conf->pending_bio_list.head) {
 859                struct blk_plug plug;
 860                struct bio *bio;
 861
 862                bio = bio_list_get(&conf->pending_bio_list);
 863                conf->pending_count = 0;
 864                spin_unlock_irq(&conf->device_lock);
 865
 866                /*
 867                 * As this is called in a wait_event() loop (see freeze_array),
 868                 * current->state might be TASK_UNINTERRUPTIBLE which will
 869                 * cause a warning when we prepare to wait again.  As it is
 870                 * rare that this path is taken, it is perfectly safe to force
 871                 * us to go around the wait_event() loop again, so the warning
 872                 * is a false-positive. Silence the warning by resetting
 873                 * thread state
 874                 */
 875                __set_current_state(TASK_RUNNING);
 876
 877                blk_start_plug(&plug);
 878                /* flush any pending bitmap writes to disk
 879                 * before proceeding w/ I/O */
 880                md_bitmap_unplug(conf->mddev->bitmap);
 881                wake_up(&conf->wait_barrier);
 882
 883                while (bio) { /* submit pending writes */
 884                        struct bio *next = bio->bi_next;
 885                        struct md_rdev *rdev = (void*)bio->bi_disk;
 886                        bio->bi_next = NULL;
 887                        bio_set_dev(bio, rdev->bdev);
 888                        if (test_bit(Faulty, &rdev->flags)) {
 889                                bio_io_error(bio);
 890                        } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
 891                                            !blk_queue_discard(bio->bi_disk->queue)))
 892                                /* Just ignore it */
 893                                bio_endio(bio);
 894                        else
 895                                submit_bio_noacct(bio);
 896                        bio = next;
 897                }
 898                blk_finish_plug(&plug);
 899        } else
 900                spin_unlock_irq(&conf->device_lock);
 901}
 902
 903/* Barriers....
 904 * Sometimes we need to suspend IO while we do something else,
 905 * either some resync/recovery, or reconfigure the array.
 906 * To do this we raise a 'barrier'.
 907 * The 'barrier' is a counter that can be raised multiple times
 908 * to count how many activities are happening which preclude
 909 * normal IO.
 910 * We can only raise the barrier if there is no pending IO.
 911 * i.e. if nr_pending == 0.
 912 * We choose only to raise the barrier if no-one is waiting for the
 913 * barrier to go down.  This means that as soon as an IO request
 914 * is ready, no other operations which require a barrier will start
 915 * until the IO request has had a chance.
 916 *
 917 * So: regular IO calls 'wait_barrier'.  When that returns there
 918 *    is no backgroup IO happening,  It must arrange to call
 919 *    allow_barrier when it has finished its IO.
 920 * backgroup IO calls must call raise_barrier.  Once that returns
 921 *    there is no normal IO happeing.  It must arrange to call
 922 *    lower_barrier when the particular background IO completes.
 923 */
 924
 925static void raise_barrier(struct r10conf *conf, int force)
 926{
 927        BUG_ON(force && !conf->barrier);
 928        spin_lock_irq(&conf->resync_lock);
 929
 930        /* Wait until no block IO is waiting (unless 'force') */
 931        wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
 932                            conf->resync_lock);
 933
 934        /* block any new IO from starting */
 935        conf->barrier++;
 936
 937        /* Now wait for all pending IO to complete */
 938        wait_event_lock_irq(conf->wait_barrier,
 939                            !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
 940                            conf->resync_lock);
 941
 942        spin_unlock_irq(&conf->resync_lock);
 943}
 944
 945static void lower_barrier(struct r10conf *conf)
 946{
 947        unsigned long flags;
 948        spin_lock_irqsave(&conf->resync_lock, flags);
 949        conf->barrier--;
 950        spin_unlock_irqrestore(&conf->resync_lock, flags);
 951        wake_up(&conf->wait_barrier);
 952}
 953
 954static void wait_barrier(struct r10conf *conf)
 955{
 956        spin_lock_irq(&conf->resync_lock);
 957        if (conf->barrier) {
 958                struct bio_list *bio_list = current->bio_list;
 959                conf->nr_waiting++;
 960                /* Wait for the barrier to drop.
 961                 * However if there are already pending
 962                 * requests (preventing the barrier from
 963                 * rising completely), and the
 964                 * pre-process bio queue isn't empty,
 965                 * then don't wait, as we need to empty
 966                 * that queue to get the nr_pending
 967                 * count down.
 968                 */
 969                raid10_log(conf->mddev, "wait barrier");
 970                wait_event_lock_irq(conf->wait_barrier,
 971                                    !conf->barrier ||
 972                                    (atomic_read(&conf->nr_pending) &&
 973                                     bio_list &&
 974                                     (!bio_list_empty(&bio_list[0]) ||
 975                                      !bio_list_empty(&bio_list[1]))) ||
 976                                     /* move on if recovery thread is
 977                                      * blocked by us
 978                                      */
 979                                     (conf->mddev->thread->tsk == current &&
 980                                      test_bit(MD_RECOVERY_RUNNING,
 981                                               &conf->mddev->recovery) &&
 982                                      conf->nr_queued > 0),
 983                                    conf->resync_lock);
 984                conf->nr_waiting--;
 985                if (!conf->nr_waiting)
 986                        wake_up(&conf->wait_barrier);
 987        }
 988        atomic_inc(&conf->nr_pending);
 989        spin_unlock_irq(&conf->resync_lock);
 990}
 991
 992static void allow_barrier(struct r10conf *conf)
 993{
 994        if ((atomic_dec_and_test(&conf->nr_pending)) ||
 995                        (conf->array_freeze_pending))
 996                wake_up(&conf->wait_barrier);
 997}
 998
 999static void freeze_array(struct r10conf *conf, int extra)
1000{
1001        /* stop syncio and normal IO and wait for everything to
1002         * go quiet.
1003         * We increment barrier and nr_waiting, and then
1004         * wait until nr_pending match nr_queued+extra
1005         * This is called in the context of one normal IO request
1006         * that has failed. Thus any sync request that might be pending
1007         * will be blocked by nr_pending, and we need to wait for
1008         * pending IO requests to complete or be queued for re-try.
1009         * Thus the number queued (nr_queued) plus this request (extra)
1010         * must match the number of pending IOs (nr_pending) before
1011         * we continue.
1012         */
1013        spin_lock_irq(&conf->resync_lock);
1014        conf->array_freeze_pending++;
1015        conf->barrier++;
1016        conf->nr_waiting++;
1017        wait_event_lock_irq_cmd(conf->wait_barrier,
1018                                atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1019                                conf->resync_lock,
1020                                flush_pending_writes(conf));
1021
1022        conf->array_freeze_pending--;
1023        spin_unlock_irq(&conf->resync_lock);
1024}
1025
1026static void unfreeze_array(struct r10conf *conf)
1027{
1028        /* reverse the effect of the freeze */
1029        spin_lock_irq(&conf->resync_lock);
1030        conf->barrier--;
1031        conf->nr_waiting--;
1032        wake_up(&conf->wait_barrier);
1033        spin_unlock_irq(&conf->resync_lock);
1034}
1035
1036static sector_t choose_data_offset(struct r10bio *r10_bio,
1037                                   struct md_rdev *rdev)
1038{
1039        if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1040            test_bit(R10BIO_Previous, &r10_bio->state))
1041                return rdev->data_offset;
1042        else
1043                return rdev->new_data_offset;
1044}
1045
1046struct raid10_plug_cb {
1047        struct blk_plug_cb      cb;
1048        struct bio_list         pending;
1049        int                     pending_cnt;
1050};
1051
1052static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1053{
1054        struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1055                                                   cb);
1056        struct mddev *mddev = plug->cb.data;
1057        struct r10conf *conf = mddev->private;
1058        struct bio *bio;
1059
1060        if (from_schedule || current->bio_list) {
1061                spin_lock_irq(&conf->device_lock);
1062                bio_list_merge(&conf->pending_bio_list, &plug->pending);
1063                conf->pending_count += plug->pending_cnt;
1064                spin_unlock_irq(&conf->device_lock);
1065                wake_up(&conf->wait_barrier);
1066                md_wakeup_thread(mddev->thread);
1067                kfree(plug);
1068                return;
1069        }
1070
1071        /* we aren't scheduling, so we can do the write-out directly. */
1072        bio = bio_list_get(&plug->pending);
1073        md_bitmap_unplug(mddev->bitmap);
1074        wake_up(&conf->wait_barrier);
1075
1076        while (bio) { /* submit pending writes */
1077                struct bio *next = bio->bi_next;
1078                struct md_rdev *rdev = (void*)bio->bi_disk;
1079                bio->bi_next = NULL;
1080                bio_set_dev(bio, rdev->bdev);
1081                if (test_bit(Faulty, &rdev->flags)) {
1082                        bio_io_error(bio);
1083                } else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1084                                    !blk_queue_discard(bio->bi_disk->queue)))
1085                        /* Just ignore it */
1086                        bio_endio(bio);
1087                else
1088                        submit_bio_noacct(bio);
1089                bio = next;
1090        }
1091        kfree(plug);
1092}
1093
1094/*
1095 * 1. Register the new request and wait if the reconstruction thread has put
1096 * up a bar for new requests. Continue immediately if no resync is active
1097 * currently.
1098 * 2. If IO spans the reshape position.  Need to wait for reshape to pass.
1099 */
1100static void regular_request_wait(struct mddev *mddev, struct r10conf *conf,
1101                                 struct bio *bio, sector_t sectors)
1102{
1103        wait_barrier(conf);
1104        while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1105            bio->bi_iter.bi_sector < conf->reshape_progress &&
1106            bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1107                raid10_log(conf->mddev, "wait reshape");
1108                allow_barrier(conf);
1109                wait_event(conf->wait_barrier,
1110                           conf->reshape_progress <= bio->bi_iter.bi_sector ||
1111                           conf->reshape_progress >= bio->bi_iter.bi_sector +
1112                           sectors);
1113                wait_barrier(conf);
1114        }
1115}
1116
1117static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1118                                struct r10bio *r10_bio)
1119{
1120        struct r10conf *conf = mddev->private;
1121        struct bio *read_bio;
1122        const int op = bio_op(bio);
1123        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1124        int max_sectors;
1125        struct md_rdev *rdev;
1126        char b[BDEVNAME_SIZE];
1127        int slot = r10_bio->read_slot;
1128        struct md_rdev *err_rdev = NULL;
1129        gfp_t gfp = GFP_NOIO;
1130
1131        if (slot >= 0 && r10_bio->devs[slot].rdev) {
1132                /*
1133                 * This is an error retry, but we cannot
1134                 * safely dereference the rdev in the r10_bio,
1135                 * we must use the one in conf.
1136                 * If it has already been disconnected (unlikely)
1137                 * we lose the device name in error messages.
1138                 */
1139                int disk;
1140                /*
1141                 * As we are blocking raid10, it is a little safer to
1142                 * use __GFP_HIGH.
1143                 */
1144                gfp = GFP_NOIO | __GFP_HIGH;
1145
1146                rcu_read_lock();
1147                disk = r10_bio->devs[slot].devnum;
1148                err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1149                if (err_rdev)
1150                        bdevname(err_rdev->bdev, b);
1151                else {
1152                        strcpy(b, "???");
1153                        /* This never gets dereferenced */
1154                        err_rdev = r10_bio->devs[slot].rdev;
1155                }
1156                rcu_read_unlock();
1157        }
1158
1159        regular_request_wait(mddev, conf, bio, r10_bio->sectors);
1160        rdev = read_balance(conf, r10_bio, &max_sectors);
1161        if (!rdev) {
1162                if (err_rdev) {
1163                        pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1164                                            mdname(mddev), b,
1165                                            (unsigned long long)r10_bio->sector);
1166                }
1167                raid_end_bio_io(r10_bio);
1168                return;
1169        }
1170        if (err_rdev)
1171                pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1172                                   mdname(mddev),
1173                                   bdevname(rdev->bdev, b),
1174                                   (unsigned long long)r10_bio->sector);
1175        if (max_sectors < bio_sectors(bio)) {
1176                struct bio *split = bio_split(bio, max_sectors,
1177                                              gfp, &conf->bio_split);
1178                bio_chain(split, bio);
1179                allow_barrier(conf);
1180                submit_bio_noacct(bio);
1181                wait_barrier(conf);
1182                bio = split;
1183                r10_bio->master_bio = bio;
1184                r10_bio->sectors = max_sectors;
1185        }
1186        slot = r10_bio->read_slot;
1187
1188        read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1189
1190        r10_bio->devs[slot].bio = read_bio;
1191        r10_bio->devs[slot].rdev = rdev;
1192
1193        read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1194                choose_data_offset(r10_bio, rdev);
1195        bio_set_dev(read_bio, rdev->bdev);
1196        read_bio->bi_end_io = raid10_end_read_request;
1197        bio_set_op_attrs(read_bio, op, do_sync);
1198        if (test_bit(FailFast, &rdev->flags) &&
1199            test_bit(R10BIO_FailFast, &r10_bio->state))
1200                read_bio->bi_opf |= MD_FAILFAST;
1201        read_bio->bi_private = r10_bio;
1202
1203        if (mddev->gendisk)
1204                trace_block_bio_remap(read_bio, disk_devt(mddev->gendisk),
1205                                      r10_bio->sector);
1206        submit_bio_noacct(read_bio);
1207        return;
1208}
1209
1210static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1211                                  struct bio *bio, bool replacement,
1212                                  int n_copy)
1213{
1214        const int op = bio_op(bio);
1215        const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1216        const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1217        unsigned long flags;
1218        struct blk_plug_cb *cb;
1219        struct raid10_plug_cb *plug = NULL;
1220        struct r10conf *conf = mddev->private;
1221        struct md_rdev *rdev;
1222        int devnum = r10_bio->devs[n_copy].devnum;
1223        struct bio *mbio;
1224
1225        if (replacement) {
1226                rdev = conf->mirrors[devnum].replacement;
1227                if (rdev == NULL) {
1228                        /* Replacement just got moved to main 'rdev' */
1229                        smp_mb();
1230                        rdev = conf->mirrors[devnum].rdev;
1231                }
1232        } else
1233                rdev = conf->mirrors[devnum].rdev;
1234
1235        mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1236        if (replacement)
1237                r10_bio->devs[n_copy].repl_bio = mbio;
1238        else
1239                r10_bio->devs[n_copy].bio = mbio;
1240
1241        mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1242                                   choose_data_offset(r10_bio, rdev));
1243        bio_set_dev(mbio, rdev->bdev);
1244        mbio->bi_end_io = raid10_end_write_request;
1245        bio_set_op_attrs(mbio, op, do_sync | do_fua);
1246        if (!replacement && test_bit(FailFast,
1247                                     &conf->mirrors[devnum].rdev->flags)
1248                         && enough(conf, devnum))
1249                mbio->bi_opf |= MD_FAILFAST;
1250        mbio->bi_private = r10_bio;
1251
1252        if (conf->mddev->gendisk)
1253                trace_block_bio_remap(mbio, disk_devt(conf->mddev->gendisk),
1254                                      r10_bio->sector);
1255        /* flush_pending_writes() needs access to the rdev so...*/
1256        mbio->bi_disk = (void *)rdev;
1257
1258        atomic_inc(&r10_bio->remaining);
1259
1260        cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1261        if (cb)
1262                plug = container_of(cb, struct raid10_plug_cb, cb);
1263        else
1264                plug = NULL;
1265        if (plug) {
1266                bio_list_add(&plug->pending, mbio);
1267                plug->pending_cnt++;
1268        } else {
1269                spin_lock_irqsave(&conf->device_lock, flags);
1270                bio_list_add(&conf->pending_bio_list, mbio);
1271                conf->pending_count++;
1272                spin_unlock_irqrestore(&conf->device_lock, flags);
1273                md_wakeup_thread(mddev->thread);
1274        }
1275}
1276
1277static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1278                                 struct r10bio *r10_bio)
1279{
1280        struct r10conf *conf = mddev->private;
1281        int i;
1282        struct md_rdev *blocked_rdev;
1283        sector_t sectors;
1284        int max_sectors;
1285
1286        if ((mddev_is_clustered(mddev) &&
1287             md_cluster_ops->area_resyncing(mddev, WRITE,
1288                                            bio->bi_iter.bi_sector,
1289                                            bio_end_sector(bio)))) {
1290                DEFINE_WAIT(w);
1291                for (;;) {
1292                        prepare_to_wait(&conf->wait_barrier,
1293                                        &w, TASK_IDLE);
1294                        if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1295                                 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1296                                break;
1297                        schedule();
1298                }
1299                finish_wait(&conf->wait_barrier, &w);
1300        }
1301
1302        sectors = r10_bio->sectors;
1303        regular_request_wait(mddev, conf, bio, sectors);
1304        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1305            (mddev->reshape_backwards
1306             ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1307                bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1308             : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1309                bio->bi_iter.bi_sector < conf->reshape_progress))) {
1310                /* Need to update reshape_position in metadata */
1311                mddev->reshape_position = conf->reshape_progress;
1312                set_mask_bits(&mddev->sb_flags, 0,
1313                              BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1314                md_wakeup_thread(mddev->thread);
1315                raid10_log(conf->mddev, "wait reshape metadata");
1316                wait_event(mddev->sb_wait,
1317                           !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1318
1319                conf->reshape_safe = mddev->reshape_position;
1320        }
1321
1322        if (conf->pending_count >= max_queued_requests) {
1323                md_wakeup_thread(mddev->thread);
1324                raid10_log(mddev, "wait queued");
1325                wait_event(conf->wait_barrier,
1326                           conf->pending_count < max_queued_requests);
1327        }
1328        /* first select target devices under rcu_lock and
1329         * inc refcount on their rdev.  Record them by setting
1330         * bios[x] to bio
1331         * If there are known/acknowledged bad blocks on any device
1332         * on which we have seen a write error, we want to avoid
1333         * writing to those blocks.  This potentially requires several
1334         * writes to write around the bad blocks.  Each set of writes
1335         * gets its own r10_bio with a set of bios attached.
1336         */
1337
1338        r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1339        raid10_find_phys(conf, r10_bio);
1340retry_write:
1341        blocked_rdev = NULL;
1342        rcu_read_lock();
1343        max_sectors = r10_bio->sectors;
1344
1345        for (i = 0;  i < conf->copies; i++) {
1346                int d = r10_bio->devs[i].devnum;
1347                struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1348                struct md_rdev *rrdev = rcu_dereference(
1349                        conf->mirrors[d].replacement);
1350                if (rdev == rrdev)
1351                        rrdev = NULL;
1352                if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1353                        atomic_inc(&rdev->nr_pending);
1354                        blocked_rdev = rdev;
1355                        break;
1356                }
1357                if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1358                        atomic_inc(&rrdev->nr_pending);
1359                        blocked_rdev = rrdev;
1360                        break;
1361                }
1362                if (rdev && (test_bit(Faulty, &rdev->flags)))
1363                        rdev = NULL;
1364                if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1365                        rrdev = NULL;
1366
1367                r10_bio->devs[i].bio = NULL;
1368                r10_bio->devs[i].repl_bio = NULL;
1369
1370                if (!rdev && !rrdev) {
1371                        set_bit(R10BIO_Degraded, &r10_bio->state);
1372                        continue;
1373                }
1374                if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1375                        sector_t first_bad;
1376                        sector_t dev_sector = r10_bio->devs[i].addr;
1377                        int bad_sectors;
1378                        int is_bad;
1379
1380                        is_bad = is_badblock(rdev, dev_sector, max_sectors,
1381                                             &first_bad, &bad_sectors);
1382                        if (is_bad < 0) {
1383                                /* Mustn't write here until the bad block
1384                                 * is acknowledged
1385                                 */
1386                                atomic_inc(&rdev->nr_pending);
1387                                set_bit(BlockedBadBlocks, &rdev->flags);
1388                                blocked_rdev = rdev;
1389                                break;
1390                        }
1391                        if (is_bad && first_bad <= dev_sector) {
1392                                /* Cannot write here at all */
1393                                bad_sectors -= (dev_sector - first_bad);
1394                                if (bad_sectors < max_sectors)
1395                                        /* Mustn't write more than bad_sectors
1396                                         * to other devices yet
1397                                         */
1398                                        max_sectors = bad_sectors;
1399                                /* We don't set R10BIO_Degraded as that
1400                                 * only applies if the disk is missing,
1401                                 * so it might be re-added, and we want to
1402                                 * know to recover this chunk.
1403                                 * In this case the device is here, and the
1404                                 * fact that this chunk is not in-sync is
1405                                 * recorded in the bad block log.
1406                                 */
1407                                continue;
1408                        }
1409                        if (is_bad) {
1410                                int good_sectors = first_bad - dev_sector;
1411                                if (good_sectors < max_sectors)
1412                                        max_sectors = good_sectors;
1413                        }
1414                }
1415                if (rdev) {
1416                        r10_bio->devs[i].bio = bio;
1417                        atomic_inc(&rdev->nr_pending);
1418                }
1419                if (rrdev) {
1420                        r10_bio->devs[i].repl_bio = bio;
1421                        atomic_inc(&rrdev->nr_pending);
1422                }
1423        }
1424        rcu_read_unlock();
1425
1426        if (unlikely(blocked_rdev)) {
1427                /* Have to wait for this device to get unblocked, then retry */
1428                int j;
1429                int d;
1430
1431                for (j = 0; j < i; j++) {
1432                        if (r10_bio->devs[j].bio) {
1433                                d = r10_bio->devs[j].devnum;
1434                                rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1435                        }
1436                        if (r10_bio->devs[j].repl_bio) {
1437                                struct md_rdev *rdev;
1438                                d = r10_bio->devs[j].devnum;
1439                                rdev = conf->mirrors[d].replacement;
1440                                if (!rdev) {
1441                                        /* Race with remove_disk */
1442                                        smp_mb();
1443                                        rdev = conf->mirrors[d].rdev;
1444                                }
1445                                rdev_dec_pending(rdev, mddev);
1446                        }
1447                }
1448                allow_barrier(conf);
1449                raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1450                md_wait_for_blocked_rdev(blocked_rdev, mddev);
1451                wait_barrier(conf);
1452                goto retry_write;
1453        }
1454
1455        if (max_sectors < r10_bio->sectors)
1456                r10_bio->sectors = max_sectors;
1457
1458        if (r10_bio->sectors < bio_sectors(bio)) {
1459                struct bio *split = bio_split(bio, r10_bio->sectors,
1460                                              GFP_NOIO, &conf->bio_split);
1461                bio_chain(split, bio);
1462                allow_barrier(conf);
1463                submit_bio_noacct(bio);
1464                wait_barrier(conf);
1465                bio = split;
1466                r10_bio->master_bio = bio;
1467        }
1468
1469        atomic_set(&r10_bio->remaining, 1);
1470        md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1471
1472        for (i = 0; i < conf->copies; i++) {
1473                if (r10_bio->devs[i].bio)
1474                        raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1475                if (r10_bio->devs[i].repl_bio)
1476                        raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1477        }
1478        one_write_done(r10_bio);
1479}
1480
1481static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1482{
1483        struct r10conf *conf = mddev->private;
1484        struct r10bio *r10_bio;
1485
1486        r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1487
1488        r10_bio->master_bio = bio;
1489        r10_bio->sectors = sectors;
1490
1491        r10_bio->mddev = mddev;
1492        r10_bio->sector = bio->bi_iter.bi_sector;
1493        r10_bio->state = 0;
1494        r10_bio->read_slot = -1;
1495        memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1496
1497        if (bio_data_dir(bio) == READ)
1498                raid10_read_request(mddev, bio, r10_bio);
1499        else
1500                raid10_write_request(mddev, bio, r10_bio);
1501}
1502
1503static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1504{
1505        struct r10conf *conf = mddev->private;
1506        sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1507        int chunk_sects = chunk_mask + 1;
1508        int sectors = bio_sectors(bio);
1509
1510        if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1511            && md_flush_request(mddev, bio))
1512                return true;
1513
1514        if (!md_write_start(mddev, bio))
1515                return false;
1516
1517        /*
1518         * If this request crosses a chunk boundary, we need to split
1519         * it.
1520         */
1521        if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1522                     sectors > chunk_sects
1523                     && (conf->geo.near_copies < conf->geo.raid_disks
1524                         || conf->prev.near_copies <
1525                         conf->prev.raid_disks)))
1526                sectors = chunk_sects -
1527                        (bio->bi_iter.bi_sector &
1528                         (chunk_sects - 1));
1529        __make_request(mddev, bio, sectors);
1530
1531        /* In case raid10d snuck in to freeze_array */
1532        wake_up(&conf->wait_barrier);
1533        return true;
1534}
1535
1536static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1537{
1538        struct r10conf *conf = mddev->private;
1539        int i;
1540
1541        if (conf->geo.near_copies < conf->geo.raid_disks)
1542                seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1543        if (conf->geo.near_copies > 1)
1544                seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1545        if (conf->geo.far_copies > 1) {
1546                if (conf->geo.far_offset)
1547                        seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1548                else
1549                        seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1550                if (conf->geo.far_set_size != conf->geo.raid_disks)
1551                        seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1552        }
1553        seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1554                                        conf->geo.raid_disks - mddev->degraded);
1555        rcu_read_lock();
1556        for (i = 0; i < conf->geo.raid_disks; i++) {
1557                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1558                seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1559        }
1560        rcu_read_unlock();
1561        seq_printf(seq, "]");
1562}
1563
1564/* check if there are enough drives for
1565 * every block to appear on atleast one.
1566 * Don't consider the device numbered 'ignore'
1567 * as we might be about to remove it.
1568 */
1569static int _enough(struct r10conf *conf, int previous, int ignore)
1570{
1571        int first = 0;
1572        int has_enough = 0;
1573        int disks, ncopies;
1574        if (previous) {
1575                disks = conf->prev.raid_disks;
1576                ncopies = conf->prev.near_copies;
1577        } else {
1578                disks = conf->geo.raid_disks;
1579                ncopies = conf->geo.near_copies;
1580        }
1581
1582        rcu_read_lock();
1583        do {
1584                int n = conf->copies;
1585                int cnt = 0;
1586                int this = first;
1587                while (n--) {
1588                        struct md_rdev *rdev;
1589                        if (this != ignore &&
1590                            (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1591                            test_bit(In_sync, &rdev->flags))
1592                                cnt++;
1593                        this = (this+1) % disks;
1594                }
1595                if (cnt == 0)
1596                        goto out;
1597                first = (first + ncopies) % disks;
1598        } while (first != 0);
1599        has_enough = 1;
1600out:
1601        rcu_read_unlock();
1602        return has_enough;
1603}
1604
1605static int enough(struct r10conf *conf, int ignore)
1606{
1607        /* when calling 'enough', both 'prev' and 'geo' must
1608         * be stable.
1609         * This is ensured if ->reconfig_mutex or ->device_lock
1610         * is held.
1611         */
1612        return _enough(conf, 0, ignore) &&
1613                _enough(conf, 1, ignore);
1614}
1615
1616static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1617{
1618        char b[BDEVNAME_SIZE];
1619        struct r10conf *conf = mddev->private;
1620        unsigned long flags;
1621
1622        /*
1623         * If it is not operational, then we have already marked it as dead
1624         * else if it is the last working disks with "fail_last_dev == false",
1625         * ignore the error, let the next level up know.
1626         * else mark the drive as failed
1627         */
1628        spin_lock_irqsave(&conf->device_lock, flags);
1629        if (test_bit(In_sync, &rdev->flags) && !mddev->fail_last_dev
1630            && !enough(conf, rdev->raid_disk)) {
1631                /*
1632                 * Don't fail the drive, just return an IO error.
1633                 */
1634                spin_unlock_irqrestore(&conf->device_lock, flags);
1635                return;
1636        }
1637        if (test_and_clear_bit(In_sync, &rdev->flags))
1638                mddev->degraded++;
1639        /*
1640         * If recovery is running, make sure it aborts.
1641         */
1642        set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1643        set_bit(Blocked, &rdev->flags);
1644        set_bit(Faulty, &rdev->flags);
1645        set_mask_bits(&mddev->sb_flags, 0,
1646                      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1647        spin_unlock_irqrestore(&conf->device_lock, flags);
1648        pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1649                "md/raid10:%s: Operation continuing on %d devices.\n",
1650                mdname(mddev), bdevname(rdev->bdev, b),
1651                mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1652}
1653
1654static void print_conf(struct r10conf *conf)
1655{
1656        int i;
1657        struct md_rdev *rdev;
1658
1659        pr_debug("RAID10 conf printout:\n");
1660        if (!conf) {
1661                pr_debug("(!conf)\n");
1662                return;
1663        }
1664        pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1665                 conf->geo.raid_disks);
1666
1667        /* This is only called with ->reconfix_mutex held, so
1668         * rcu protection of rdev is not needed */
1669        for (i = 0; i < conf->geo.raid_disks; i++) {
1670                char b[BDEVNAME_SIZE];
1671                rdev = conf->mirrors[i].rdev;
1672                if (rdev)
1673                        pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1674                                 i, !test_bit(In_sync, &rdev->flags),
1675                                 !test_bit(Faulty, &rdev->flags),
1676                                 bdevname(rdev->bdev,b));
1677        }
1678}
1679
1680static void close_sync(struct r10conf *conf)
1681{
1682        wait_barrier(conf);
1683        allow_barrier(conf);
1684
1685        mempool_exit(&conf->r10buf_pool);
1686}
1687
1688static int raid10_spare_active(struct mddev *mddev)
1689{
1690        int i;
1691        struct r10conf *conf = mddev->private;
1692        struct raid10_info *tmp;
1693        int count = 0;
1694        unsigned long flags;
1695
1696        /*
1697         * Find all non-in_sync disks within the RAID10 configuration
1698         * and mark them in_sync
1699         */
1700        for (i = 0; i < conf->geo.raid_disks; i++) {
1701                tmp = conf->mirrors + i;
1702                if (tmp->replacement
1703                    && tmp->replacement->recovery_offset == MaxSector
1704                    && !test_bit(Faulty, &tmp->replacement->flags)
1705                    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1706                        /* Replacement has just become active */
1707                        if (!tmp->rdev
1708                            || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1709                                count++;
1710                        if (tmp->rdev) {
1711                                /* Replaced device not technically faulty,
1712                                 * but we need to be sure it gets removed
1713                                 * and never re-added.
1714                                 */
1715                                set_bit(Faulty, &tmp->rdev->flags);
1716                                sysfs_notify_dirent_safe(
1717                                        tmp->rdev->sysfs_state);
1718                        }
1719                        sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1720                } else if (tmp->rdev
1721                           && tmp->rdev->recovery_offset == MaxSector
1722                           && !test_bit(Faulty, &tmp->rdev->flags)
1723                           && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1724                        count++;
1725                        sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1726                }
1727        }
1728        spin_lock_irqsave(&conf->device_lock, flags);
1729        mddev->degraded -= count;
1730        spin_unlock_irqrestore(&conf->device_lock, flags);
1731
1732        print_conf(conf);
1733        return count;
1734}
1735
1736static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1737{
1738        struct r10conf *conf = mddev->private;
1739        int err = -EEXIST;
1740        int mirror;
1741        int first = 0;
1742        int last = conf->geo.raid_disks - 1;
1743
1744        if (mddev->recovery_cp < MaxSector)
1745                /* only hot-add to in-sync arrays, as recovery is
1746                 * very different from resync
1747                 */
1748                return -EBUSY;
1749        if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1750                return -EINVAL;
1751
1752        if (md_integrity_add_rdev(rdev, mddev))
1753                return -ENXIO;
1754
1755        if (rdev->raid_disk >= 0)
1756                first = last = rdev->raid_disk;
1757
1758        if (rdev->saved_raid_disk >= first &&
1759            rdev->saved_raid_disk < conf->geo.raid_disks &&
1760            conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1761                mirror = rdev->saved_raid_disk;
1762        else
1763                mirror = first;
1764        for ( ; mirror <= last ; mirror++) {
1765                struct raid10_info *p = &conf->mirrors[mirror];
1766                if (p->recovery_disabled == mddev->recovery_disabled)
1767                        continue;
1768                if (p->rdev) {
1769                        if (!test_bit(WantReplacement, &p->rdev->flags) ||
1770                            p->replacement != NULL)
1771                                continue;
1772                        clear_bit(In_sync, &rdev->flags);
1773                        set_bit(Replacement, &rdev->flags);
1774                        rdev->raid_disk = mirror;
1775                        err = 0;
1776                        if (mddev->gendisk)
1777                                disk_stack_limits(mddev->gendisk, rdev->bdev,
1778                                                  rdev->data_offset << 9);
1779                        conf->fullsync = 1;
1780                        rcu_assign_pointer(p->replacement, rdev);
1781                        break;
1782                }
1783
1784                if (mddev->gendisk)
1785                        disk_stack_limits(mddev->gendisk, rdev->bdev,
1786                                          rdev->data_offset << 9);
1787
1788                p->head_position = 0;
1789                p->recovery_disabled = mddev->recovery_disabled - 1;
1790                rdev->raid_disk = mirror;
1791                err = 0;
1792                if (rdev->saved_raid_disk != mirror)
1793                        conf->fullsync = 1;
1794                rcu_assign_pointer(p->rdev, rdev);
1795                break;
1796        }
1797        if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1798                blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1799
1800        print_conf(conf);
1801        return err;
1802}
1803
1804static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1805{
1806        struct r10conf *conf = mddev->private;
1807        int err = 0;
1808        int number = rdev->raid_disk;
1809        struct md_rdev **rdevp;
1810        struct raid10_info *p = conf->mirrors + number;
1811
1812        print_conf(conf);
1813        if (rdev == p->rdev)
1814                rdevp = &p->rdev;
1815        else if (rdev == p->replacement)
1816                rdevp = &p->replacement;
1817        else
1818                return 0;
1819
1820        if (test_bit(In_sync, &rdev->flags) ||
1821            atomic_read(&rdev->nr_pending)) {
1822                err = -EBUSY;
1823                goto abort;
1824        }
1825        /* Only remove non-faulty devices if recovery
1826         * is not possible.
1827         */
1828        if (!test_bit(Faulty, &rdev->flags) &&
1829            mddev->recovery_disabled != p->recovery_disabled &&
1830            (!p->replacement || p->replacement == rdev) &&
1831            number < conf->geo.raid_disks &&
1832            enough(conf, -1)) {
1833                err = -EBUSY;
1834                goto abort;
1835        }
1836        *rdevp = NULL;
1837        if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1838                synchronize_rcu();
1839                if (atomic_read(&rdev->nr_pending)) {
1840                        /* lost the race, try later */
1841                        err = -EBUSY;
1842                        *rdevp = rdev;
1843                        goto abort;
1844                }
1845        }
1846        if (p->replacement) {
1847                /* We must have just cleared 'rdev' */
1848                p->rdev = p->replacement;
1849                clear_bit(Replacement, &p->replacement->flags);
1850                smp_mb(); /* Make sure other CPUs may see both as identical
1851                           * but will never see neither -- if they are careful.
1852                           */
1853                p->replacement = NULL;
1854        }
1855
1856        clear_bit(WantReplacement, &rdev->flags);
1857        err = md_integrity_register(mddev);
1858
1859abort:
1860
1861        print_conf(conf);
1862        return err;
1863}
1864
1865static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1866{
1867        struct r10conf *conf = r10_bio->mddev->private;
1868
1869        if (!bio->bi_status)
1870                set_bit(R10BIO_Uptodate, &r10_bio->state);
1871        else
1872                /* The write handler will notice the lack of
1873                 * R10BIO_Uptodate and record any errors etc
1874                 */
1875                atomic_add(r10_bio->sectors,
1876                           &conf->mirrors[d].rdev->corrected_errors);
1877
1878        /* for reconstruct, we always reschedule after a read.
1879         * for resync, only after all reads
1880         */
1881        rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1882        if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1883            atomic_dec_and_test(&r10_bio->remaining)) {
1884                /* we have read all the blocks,
1885                 * do the comparison in process context in raid10d
1886                 */
1887                reschedule_retry(r10_bio);
1888        }
1889}
1890
1891static void end_sync_read(struct bio *bio)
1892{
1893        struct r10bio *r10_bio = get_resync_r10bio(bio);
1894        struct r10conf *conf = r10_bio->mddev->private;
1895        int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1896
1897        __end_sync_read(r10_bio, bio, d);
1898}
1899
1900static void end_reshape_read(struct bio *bio)
1901{
1902        /* reshape read bio isn't allocated from r10buf_pool */
1903        struct r10bio *r10_bio = bio->bi_private;
1904
1905        __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1906}
1907
1908static void end_sync_request(struct r10bio *r10_bio)
1909{
1910        struct mddev *mddev = r10_bio->mddev;
1911
1912        while (atomic_dec_and_test(&r10_bio->remaining)) {
1913                if (r10_bio->master_bio == NULL) {
1914                        /* the primary of several recovery bios */
1915                        sector_t s = r10_bio->sectors;
1916                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1917                            test_bit(R10BIO_WriteError, &r10_bio->state))
1918                                reschedule_retry(r10_bio);
1919                        else
1920                                put_buf(r10_bio);
1921                        md_done_sync(mddev, s, 1);
1922                        break;
1923                } else {
1924                        struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1925                        if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1926                            test_bit(R10BIO_WriteError, &r10_bio->state))
1927                                reschedule_retry(r10_bio);
1928                        else
1929                                put_buf(r10_bio);
1930                        r10_bio = r10_bio2;
1931                }
1932        }
1933}
1934
1935static void end_sync_write(struct bio *bio)
1936{
1937        struct r10bio *r10_bio = get_resync_r10bio(bio);
1938        struct mddev *mddev = r10_bio->mddev;
1939        struct r10conf *conf = mddev->private;
1940        int d;
1941        sector_t first_bad;
1942        int bad_sectors;
1943        int slot;
1944        int repl;
1945        struct md_rdev *rdev = NULL;
1946
1947        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1948        if (repl)
1949                rdev = conf->mirrors[d].replacement;
1950        else
1951                rdev = conf->mirrors[d].rdev;
1952
1953        if (bio->bi_status) {
1954                if (repl)
1955                        md_error(mddev, rdev);
1956                else {
1957                        set_bit(WriteErrorSeen, &rdev->flags);
1958                        if (!test_and_set_bit(WantReplacement, &rdev->flags))
1959                                set_bit(MD_RECOVERY_NEEDED,
1960                                        &rdev->mddev->recovery);
1961                        set_bit(R10BIO_WriteError, &r10_bio->state);
1962                }
1963        } else if (is_badblock(rdev,
1964                             r10_bio->devs[slot].addr,
1965                             r10_bio->sectors,
1966                             &first_bad, &bad_sectors))
1967                set_bit(R10BIO_MadeGood, &r10_bio->state);
1968
1969        rdev_dec_pending(rdev, mddev);
1970
1971        end_sync_request(r10_bio);
1972}
1973
1974/*
1975 * Note: sync and recover and handled very differently for raid10
1976 * This code is for resync.
1977 * For resync, we read through virtual addresses and read all blocks.
1978 * If there is any error, we schedule a write.  The lowest numbered
1979 * drive is authoritative.
1980 * However requests come for physical address, so we need to map.
1981 * For every physical address there are raid_disks/copies virtual addresses,
1982 * which is always are least one, but is not necessarly an integer.
1983 * This means that a physical address can span multiple chunks, so we may
1984 * have to submit multiple io requests for a single sync request.
1985 */
1986/*
1987 * We check if all blocks are in-sync and only write to blocks that
1988 * aren't in sync
1989 */
1990static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1991{
1992        struct r10conf *conf = mddev->private;
1993        int i, first;
1994        struct bio *tbio, *fbio;
1995        int vcnt;
1996        struct page **tpages, **fpages;
1997
1998        atomic_set(&r10_bio->remaining, 1);
1999
2000        /* find the first device with a block */
2001        for (i=0; i<conf->copies; i++)
2002                if (!r10_bio->devs[i].bio->bi_status)
2003                        break;
2004
2005        if (i == conf->copies)
2006                goto done;
2007
2008        first = i;
2009        fbio = r10_bio->devs[i].bio;
2010        fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2011        fbio->bi_iter.bi_idx = 0;
2012        fpages = get_resync_pages(fbio)->pages;
2013
2014        vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2015        /* now find blocks with errors */
2016        for (i=0 ; i < conf->copies ; i++) {
2017                int  j, d;
2018                struct md_rdev *rdev;
2019                struct resync_pages *rp;
2020
2021                tbio = r10_bio->devs[i].bio;
2022
2023                if (tbio->bi_end_io != end_sync_read)
2024                        continue;
2025                if (i == first)
2026                        continue;
2027
2028                tpages = get_resync_pages(tbio)->pages;
2029                d = r10_bio->devs[i].devnum;
2030                rdev = conf->mirrors[d].rdev;
2031                if (!r10_bio->devs[i].bio->bi_status) {
2032                        /* We know that the bi_io_vec layout is the same for
2033                         * both 'first' and 'i', so we just compare them.
2034                         * All vec entries are PAGE_SIZE;
2035                         */
2036                        int sectors = r10_bio->sectors;
2037                        for (j = 0; j < vcnt; j++) {
2038                                int len = PAGE_SIZE;
2039                                if (sectors < (len / 512))
2040                                        len = sectors * 512;
2041                                if (memcmp(page_address(fpages[j]),
2042                                           page_address(tpages[j]),
2043                                           len))
2044                                        break;
2045                                sectors -= len/512;
2046                        }
2047                        if (j == vcnt)
2048                                continue;
2049                        atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2050                        if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2051                                /* Don't fix anything. */
2052                                continue;
2053                } else if (test_bit(FailFast, &rdev->flags)) {
2054                        /* Just give up on this device */
2055                        md_error(rdev->mddev, rdev);
2056                        continue;
2057                }
2058                /* Ok, we need to write this bio, either to correct an
2059                 * inconsistency or to correct an unreadable block.
2060                 * First we need to fixup bv_offset, bv_len and
2061                 * bi_vecs, as the read request might have corrupted these
2062                 */
2063                rp = get_resync_pages(tbio);
2064                bio_reset(tbio);
2065
2066                md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2067
2068                rp->raid_bio = r10_bio;
2069                tbio->bi_private = rp;
2070                tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2071                tbio->bi_end_io = end_sync_write;
2072                bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2073
2074                bio_copy_data(tbio, fbio);
2075
2076                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2077                atomic_inc(&r10_bio->remaining);
2078                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2079
2080                if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2081                        tbio->bi_opf |= MD_FAILFAST;
2082                tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2083                bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2084                submit_bio_noacct(tbio);
2085        }
2086
2087        /* Now write out to any replacement devices
2088         * that are active
2089         */
2090        for (i = 0; i < conf->copies; i++) {
2091                int d;
2092
2093                tbio = r10_bio->devs[i].repl_bio;
2094                if (!tbio || !tbio->bi_end_io)
2095                        continue;
2096                if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2097                    && r10_bio->devs[i].bio != fbio)
2098                        bio_copy_data(tbio, fbio);
2099                d = r10_bio->devs[i].devnum;
2100                atomic_inc(&r10_bio->remaining);
2101                md_sync_acct(conf->mirrors[d].replacement->bdev,
2102                             bio_sectors(tbio));
2103                submit_bio_noacct(tbio);
2104        }
2105
2106done:
2107        if (atomic_dec_and_test(&r10_bio->remaining)) {
2108                md_done_sync(mddev, r10_bio->sectors, 1);
2109                put_buf(r10_bio);
2110        }
2111}
2112
2113/*
2114 * Now for the recovery code.
2115 * Recovery happens across physical sectors.
2116 * We recover all non-is_sync drives by finding the virtual address of
2117 * each, and then choose a working drive that also has that virt address.
2118 * There is a separate r10_bio for each non-in_sync drive.
2119 * Only the first two slots are in use. The first for reading,
2120 * The second for writing.
2121 *
2122 */
2123static void fix_recovery_read_error(struct r10bio *r10_bio)
2124{
2125        /* We got a read error during recovery.
2126         * We repeat the read in smaller page-sized sections.
2127         * If a read succeeds, write it to the new device or record
2128         * a bad block if we cannot.
2129         * If a read fails, record a bad block on both old and
2130         * new devices.
2131         */
2132        struct mddev *mddev = r10_bio->mddev;
2133        struct r10conf *conf = mddev->private;
2134        struct bio *bio = r10_bio->devs[0].bio;
2135        sector_t sect = 0;
2136        int sectors = r10_bio->sectors;
2137        int idx = 0;
2138        int dr = r10_bio->devs[0].devnum;
2139        int dw = r10_bio->devs[1].devnum;
2140        struct page **pages = get_resync_pages(bio)->pages;
2141
2142        while (sectors) {
2143                int s = sectors;
2144                struct md_rdev *rdev;
2145                sector_t addr;
2146                int ok;
2147
2148                if (s > (PAGE_SIZE>>9))
2149                        s = PAGE_SIZE >> 9;
2150
2151                rdev = conf->mirrors[dr].rdev;
2152                addr = r10_bio->devs[0].addr + sect,
2153                ok = sync_page_io(rdev,
2154                                  addr,
2155                                  s << 9,
2156                                  pages[idx],
2157                                  REQ_OP_READ, 0, false);
2158                if (ok) {
2159                        rdev = conf->mirrors[dw].rdev;
2160                        addr = r10_bio->devs[1].addr + sect;
2161                        ok = sync_page_io(rdev,
2162                                          addr,
2163                                          s << 9,
2164                                          pages[idx],
2165                                          REQ_OP_WRITE, 0, false);
2166                        if (!ok) {
2167                                set_bit(WriteErrorSeen, &rdev->flags);
2168                                if (!test_and_set_bit(WantReplacement,
2169                                                      &rdev->flags))
2170                                        set_bit(MD_RECOVERY_NEEDED,
2171                                                &rdev->mddev->recovery);
2172                        }
2173                }
2174                if (!ok) {
2175                        /* We don't worry if we cannot set a bad block -
2176                         * it really is bad so there is no loss in not
2177                         * recording it yet
2178                         */
2179                        rdev_set_badblocks(rdev, addr, s, 0);
2180
2181                        if (rdev != conf->mirrors[dw].rdev) {
2182                                /* need bad block on destination too */
2183                                struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2184                                addr = r10_bio->devs[1].addr + sect;
2185                                ok = rdev_set_badblocks(rdev2, addr, s, 0);
2186                                if (!ok) {
2187                                        /* just abort the recovery */
2188                                        pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2189                                                  mdname(mddev));
2190
2191                                        conf->mirrors[dw].recovery_disabled
2192                                                = mddev->recovery_disabled;
2193                                        set_bit(MD_RECOVERY_INTR,
2194                                                &mddev->recovery);
2195                                        break;
2196                                }
2197                        }
2198                }
2199
2200                sectors -= s;
2201                sect += s;
2202                idx++;
2203        }
2204}
2205
2206static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2207{
2208        struct r10conf *conf = mddev->private;
2209        int d;
2210        struct bio *wbio, *wbio2;
2211
2212        if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2213                fix_recovery_read_error(r10_bio);
2214                end_sync_request(r10_bio);
2215                return;
2216        }
2217
2218        /*
2219         * share the pages with the first bio
2220         * and submit the write request
2221         */
2222        d = r10_bio->devs[1].devnum;
2223        wbio = r10_bio->devs[1].bio;
2224        wbio2 = r10_bio->devs[1].repl_bio;
2225        /* Need to test wbio2->bi_end_io before we call
2226         * submit_bio_noacct as if the former is NULL,
2227         * the latter is free to free wbio2.
2228         */
2229        if (wbio2 && !wbio2->bi_end_io)
2230                wbio2 = NULL;
2231        if (wbio->bi_end_io) {
2232                atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2233                md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2234                submit_bio_noacct(wbio);
2235        }
2236        if (wbio2) {
2237                atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2238                md_sync_acct(conf->mirrors[d].replacement->bdev,
2239                             bio_sectors(wbio2));
2240                submit_bio_noacct(wbio2);
2241        }
2242}
2243
2244/*
2245 * Used by fix_read_error() to decay the per rdev read_errors.
2246 * We halve the read error count for every hour that has elapsed
2247 * since the last recorded read error.
2248 *
2249 */
2250static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2251{
2252        long cur_time_mon;
2253        unsigned long hours_since_last;
2254        unsigned int read_errors = atomic_read(&rdev->read_errors);
2255
2256        cur_time_mon = ktime_get_seconds();
2257
2258        if (rdev->last_read_error == 0) {
2259                /* first time we've seen a read error */
2260                rdev->last_read_error = cur_time_mon;
2261                return;
2262        }
2263
2264        hours_since_last = (long)(cur_time_mon -
2265                            rdev->last_read_error) / 3600;
2266
2267        rdev->last_read_error = cur_time_mon;
2268
2269        /*
2270         * if hours_since_last is > the number of bits in read_errors
2271         * just set read errors to 0. We do this to avoid
2272         * overflowing the shift of read_errors by hours_since_last.
2273         */
2274        if (hours_since_last >= 8 * sizeof(read_errors))
2275                atomic_set(&rdev->read_errors, 0);
2276        else
2277                atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2278}
2279
2280static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2281                            int sectors, struct page *page, int rw)
2282{
2283        sector_t first_bad;
2284        int bad_sectors;
2285
2286        if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2287            && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2288                return -1;
2289        if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2290                /* success */
2291                return 1;
2292        if (rw == WRITE) {
2293                set_bit(WriteErrorSeen, &rdev->flags);
2294                if (!test_and_set_bit(WantReplacement, &rdev->flags))
2295                        set_bit(MD_RECOVERY_NEEDED,
2296                                &rdev->mddev->recovery);
2297        }
2298        /* need to record an error - either for the block or the device */
2299        if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2300                md_error(rdev->mddev, rdev);
2301        return 0;
2302}
2303
2304/*
2305 * This is a kernel thread which:
2306 *
2307 *      1.      Retries failed read operations on working mirrors.
2308 *      2.      Updates the raid superblock when problems encounter.
2309 *      3.      Performs writes following reads for array synchronising.
2310 */
2311
2312static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2313{
2314        int sect = 0; /* Offset from r10_bio->sector */
2315        int sectors = r10_bio->sectors;
2316        struct md_rdev *rdev;
2317        int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2318        int d = r10_bio->devs[r10_bio->read_slot].devnum;
2319
2320        /* still own a reference to this rdev, so it cannot
2321         * have been cleared recently.
2322         */
2323        rdev = conf->mirrors[d].rdev;
2324
2325        if (test_bit(Faulty, &rdev->flags))
2326                /* drive has already been failed, just ignore any
2327                   more fix_read_error() attempts */
2328                return;
2329
2330        check_decay_read_errors(mddev, rdev);
2331        atomic_inc(&rdev->read_errors);
2332        if (atomic_read(&rdev->read_errors) > max_read_errors) {
2333                char b[BDEVNAME_SIZE];
2334                bdevname(rdev->bdev, b);
2335
2336                pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2337                          mdname(mddev), b,
2338                          atomic_read(&rdev->read_errors), max_read_errors);
2339                pr_notice("md/raid10:%s: %s: Failing raid device\n",
2340                          mdname(mddev), b);
2341                md_error(mddev, rdev);
2342                r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2343                return;
2344        }
2345
2346        while(sectors) {
2347                int s = sectors;
2348                int sl = r10_bio->read_slot;
2349                int success = 0;
2350                int start;
2351
2352                if (s > (PAGE_SIZE>>9))
2353                        s = PAGE_SIZE >> 9;
2354
2355                rcu_read_lock();
2356                do {
2357                        sector_t first_bad;
2358                        int bad_sectors;
2359
2360                        d = r10_bio->devs[sl].devnum;
2361                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2362                        if (rdev &&
2363                            test_bit(In_sync, &rdev->flags) &&
2364                            !test_bit(Faulty, &rdev->flags) &&
2365                            is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2366                                        &first_bad, &bad_sectors) == 0) {
2367                                atomic_inc(&rdev->nr_pending);
2368                                rcu_read_unlock();
2369                                success = sync_page_io(rdev,
2370                                                       r10_bio->devs[sl].addr +
2371                                                       sect,
2372                                                       s<<9,
2373                                                       conf->tmppage,
2374                                                       REQ_OP_READ, 0, false);
2375                                rdev_dec_pending(rdev, mddev);
2376                                rcu_read_lock();
2377                                if (success)
2378                                        break;
2379                        }
2380                        sl++;
2381                        if (sl == conf->copies)
2382                                sl = 0;
2383                } while (!success && sl != r10_bio->read_slot);
2384                rcu_read_unlock();
2385
2386                if (!success) {
2387                        /* Cannot read from anywhere, just mark the block
2388                         * as bad on the first device to discourage future
2389                         * reads.
2390                         */
2391                        int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2392                        rdev = conf->mirrors[dn].rdev;
2393
2394                        if (!rdev_set_badblocks(
2395                                    rdev,
2396                                    r10_bio->devs[r10_bio->read_slot].addr
2397                                    + sect,
2398                                    s, 0)) {
2399                                md_error(mddev, rdev);
2400                                r10_bio->devs[r10_bio->read_slot].bio
2401                                        = IO_BLOCKED;
2402                        }
2403                        break;
2404                }
2405
2406                start = sl;
2407                /* write it back and re-read */
2408                rcu_read_lock();
2409                while (sl != r10_bio->read_slot) {
2410                        char b[BDEVNAME_SIZE];
2411
2412                        if (sl==0)
2413                                sl = conf->copies;
2414                        sl--;
2415                        d = r10_bio->devs[sl].devnum;
2416                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2417                        if (!rdev ||
2418                            test_bit(Faulty, &rdev->flags) ||
2419                            !test_bit(In_sync, &rdev->flags))
2420                                continue;
2421
2422                        atomic_inc(&rdev->nr_pending);
2423                        rcu_read_unlock();
2424                        if (r10_sync_page_io(rdev,
2425                                             r10_bio->devs[sl].addr +
2426                                             sect,
2427                                             s, conf->tmppage, WRITE)
2428                            == 0) {
2429                                /* Well, this device is dead */
2430                                pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2431                                          mdname(mddev), s,
2432                                          (unsigned long long)(
2433                                                  sect +
2434                                                  choose_data_offset(r10_bio,
2435                                                                     rdev)),
2436                                          bdevname(rdev->bdev, b));
2437                                pr_notice("md/raid10:%s: %s: failing drive\n",
2438                                          mdname(mddev),
2439                                          bdevname(rdev->bdev, b));
2440                        }
2441                        rdev_dec_pending(rdev, mddev);
2442                        rcu_read_lock();
2443                }
2444                sl = start;
2445                while (sl != r10_bio->read_slot) {
2446                        char b[BDEVNAME_SIZE];
2447
2448                        if (sl==0)
2449                                sl = conf->copies;
2450                        sl--;
2451                        d = r10_bio->devs[sl].devnum;
2452                        rdev = rcu_dereference(conf->mirrors[d].rdev);
2453                        if (!rdev ||
2454                            test_bit(Faulty, &rdev->flags) ||
2455                            !test_bit(In_sync, &rdev->flags))
2456                                continue;
2457
2458                        atomic_inc(&rdev->nr_pending);
2459                        rcu_read_unlock();
2460                        switch (r10_sync_page_io(rdev,
2461                                             r10_bio->devs[sl].addr +
2462                                             sect,
2463                                             s, conf->tmppage,
2464                                                 READ)) {
2465                        case 0:
2466                                /* Well, this device is dead */
2467                                pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2468                                       mdname(mddev), s,
2469                                       (unsigned long long)(
2470                                               sect +
2471                                               choose_data_offset(r10_bio, rdev)),
2472                                       bdevname(rdev->bdev, b));
2473                                pr_notice("md/raid10:%s: %s: failing drive\n",
2474                                       mdname(mddev),
2475                                       bdevname(rdev->bdev, b));
2476                                break;
2477                        case 1:
2478                                pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2479                                       mdname(mddev), s,
2480                                       (unsigned long long)(
2481                                               sect +
2482                                               choose_data_offset(r10_bio, rdev)),
2483                                       bdevname(rdev->bdev, b));
2484                                atomic_add(s, &rdev->corrected_errors);
2485                        }
2486
2487                        rdev_dec_pending(rdev, mddev);
2488                        rcu_read_lock();
2489                }
2490                rcu_read_unlock();
2491
2492                sectors -= s;
2493                sect += s;
2494        }
2495}
2496
2497static int narrow_write_error(struct r10bio *r10_bio, int i)
2498{
2499        struct bio *bio = r10_bio->master_bio;
2500        struct mddev *mddev = r10_bio->mddev;
2501        struct r10conf *conf = mddev->private;
2502        struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2503        /* bio has the data to be written to slot 'i' where
2504         * we just recently had a write error.
2505         * We repeatedly clone the bio and trim down to one block,
2506         * then try the write.  Where the write fails we record
2507         * a bad block.
2508         * It is conceivable that the bio doesn't exactly align with
2509         * blocks.  We must handle this.
2510         *
2511         * We currently own a reference to the rdev.
2512         */
2513
2514        int block_sectors;
2515        sector_t sector;
2516        int sectors;
2517        int sect_to_write = r10_bio->sectors;
2518        int ok = 1;
2519
2520        if (rdev->badblocks.shift < 0)
2521                return 0;
2522
2523        block_sectors = roundup(1 << rdev->badblocks.shift,
2524                                bdev_logical_block_size(rdev->bdev) >> 9);
2525        sector = r10_bio->sector;
2526        sectors = ((r10_bio->sector + block_sectors)
2527                   & ~(sector_t)(block_sectors - 1))
2528                - sector;
2529
2530        while (sect_to_write) {
2531                struct bio *wbio;
2532                sector_t wsector;
2533                if (sectors > sect_to_write)
2534                        sectors = sect_to_write;
2535                /* Write at 'sector' for 'sectors' */
2536                wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2537                bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2538                wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2539                wbio->bi_iter.bi_sector = wsector +
2540                                   choose_data_offset(r10_bio, rdev);
2541                bio_set_dev(wbio, rdev->bdev);
2542                bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2543
2544                if (submit_bio_wait(wbio) < 0)
2545                        /* Failure! */
2546                        ok = rdev_set_badblocks(rdev, wsector,
2547                                                sectors, 0)
2548                                && ok;
2549
2550                bio_put(wbio);
2551                sect_to_write -= sectors;
2552                sector += sectors;
2553                sectors = block_sectors;
2554        }
2555        return ok;
2556}
2557
2558static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2559{
2560        int slot = r10_bio->read_slot;
2561        struct bio *bio;
2562        struct r10conf *conf = mddev->private;
2563        struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2564
2565        /* we got a read error. Maybe the drive is bad.  Maybe just
2566         * the block and we can fix it.
2567         * We freeze all other IO, and try reading the block from
2568         * other devices.  When we find one, we re-write
2569         * and check it that fixes the read error.
2570         * This is all done synchronously while the array is
2571         * frozen.
2572         */
2573        bio = r10_bio->devs[slot].bio;
2574        bio_put(bio);
2575        r10_bio->devs[slot].bio = NULL;
2576
2577        if (mddev->ro)
2578                r10_bio->devs[slot].bio = IO_BLOCKED;
2579        else if (!test_bit(FailFast, &rdev->flags)) {
2580                freeze_array(conf, 1);
2581                fix_read_error(conf, mddev, r10_bio);
2582                unfreeze_array(conf);
2583        } else
2584                md_error(mddev, rdev);
2585
2586        rdev_dec_pending(rdev, mddev);
2587        allow_barrier(conf);
2588        r10_bio->state = 0;
2589        raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2590}
2591
2592static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2593{
2594        /* Some sort of write request has finished and it
2595         * succeeded in writing where we thought there was a
2596         * bad block.  So forget the bad block.
2597         * Or possibly if failed and we need to record
2598         * a bad block.
2599         */
2600        int m;
2601        struct md_rdev *rdev;
2602
2603        if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2604            test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2605                for (m = 0; m < conf->copies; m++) {
2606                        int dev = r10_bio->devs[m].devnum;
2607                        rdev = conf->mirrors[dev].rdev;
2608                        if (r10_bio->devs[m].bio == NULL ||
2609                                r10_bio->devs[m].bio->bi_end_io == NULL)
2610                                continue;
2611                        if (!r10_bio->devs[m].bio->bi_status) {
2612                                rdev_clear_badblocks(
2613                                        rdev,
2614                                        r10_bio->devs[m].addr,
2615                                        r10_bio->sectors, 0);
2616                        } else {
2617                                if (!rdev_set_badblocks(
2618                                            rdev,
2619                                            r10_bio->devs[m].addr,
2620                                            r10_bio->sectors, 0))
2621                                        md_error(conf->mddev, rdev);
2622                        }
2623                        rdev = conf->mirrors[dev].replacement;
2624                        if (r10_bio->devs[m].repl_bio == NULL ||
2625                                r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2626                                continue;
2627
2628                        if (!r10_bio->devs[m].repl_bio->bi_status) {
2629                                rdev_clear_badblocks(
2630                                        rdev,
2631                                        r10_bio->devs[m].addr,
2632                                        r10_bio->sectors, 0);
2633                        } else {
2634                                if (!rdev_set_badblocks(
2635                                            rdev,
2636                                            r10_bio->devs[m].addr,
2637                                            r10_bio->sectors, 0))
2638                                        md_error(conf->mddev, rdev);
2639                        }
2640                }
2641                put_buf(r10_bio);
2642        } else {
2643                bool fail = false;
2644                for (m = 0; m < conf->copies; m++) {
2645                        int dev = r10_bio->devs[m].devnum;
2646                        struct bio *bio = r10_bio->devs[m].bio;
2647                        rdev = conf->mirrors[dev].rdev;
2648                        if (bio == IO_MADE_GOOD) {
2649                                rdev_clear_badblocks(
2650                                        rdev,
2651                                        r10_bio->devs[m].addr,
2652                                        r10_bio->sectors, 0);
2653                                rdev_dec_pending(rdev, conf->mddev);
2654                        } else if (bio != NULL && bio->bi_status) {
2655                                fail = true;
2656                                if (!narrow_write_error(r10_bio, m)) {
2657                                        md_error(conf->mddev, rdev);
2658                                        set_bit(R10BIO_Degraded,
2659                                                &r10_bio->state);
2660                                }
2661                                rdev_dec_pending(rdev, conf->mddev);
2662                        }
2663                        bio = r10_bio->devs[m].repl_bio;
2664                        rdev = conf->mirrors[dev].replacement;
2665                        if (rdev && bio == IO_MADE_GOOD) {
2666                                rdev_clear_badblocks(
2667                                        rdev,
2668                                        r10_bio->devs[m].addr,
2669                                        r10_bio->sectors, 0);
2670                                rdev_dec_pending(rdev, conf->mddev);
2671                        }
2672                }
2673                if (fail) {
2674                        spin_lock_irq(&conf->device_lock);
2675                        list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2676                        conf->nr_queued++;
2677                        spin_unlock_irq(&conf->device_lock);
2678                        /*
2679                         * In case freeze_array() is waiting for condition
2680                         * nr_pending == nr_queued + extra to be true.
2681                         */
2682                        wake_up(&conf->wait_barrier);
2683                        md_wakeup_thread(conf->mddev->thread);
2684                } else {
2685                        if (test_bit(R10BIO_WriteError,
2686                                     &r10_bio->state))
2687                                close_write(r10_bio);
2688                        raid_end_bio_io(r10_bio);
2689                }
2690        }
2691}
2692
2693static void raid10d(struct md_thread *thread)
2694{
2695        struct mddev *mddev = thread->mddev;
2696        struct r10bio *r10_bio;
2697        unsigned long flags;
2698        struct r10conf *conf = mddev->private;
2699        struct list_head *head = &conf->retry_list;
2700        struct blk_plug plug;
2701
2702        md_check_recovery(mddev);
2703
2704        if (!list_empty_careful(&conf->bio_end_io_list) &&
2705            !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2706                LIST_HEAD(tmp);
2707                spin_lock_irqsave(&conf->device_lock, flags);
2708                if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2709                        while (!list_empty(&conf->bio_end_io_list)) {
2710                                list_move(conf->bio_end_io_list.prev, &tmp);
2711                                conf->nr_queued--;
2712                        }
2713                }
2714                spin_unlock_irqrestore(&conf->device_lock, flags);
2715                while (!list_empty(&tmp)) {
2716                        r10_bio = list_first_entry(&tmp, struct r10bio,
2717                                                   retry_list);
2718                        list_del(&r10_bio->retry_list);
2719                        if (mddev->degraded)
2720                                set_bit(R10BIO_Degraded, &r10_bio->state);
2721
2722                        if (test_bit(R10BIO_WriteError,
2723                                     &r10_bio->state))
2724                                close_write(r10_bio);
2725                        raid_end_bio_io(r10_bio);
2726                }
2727        }
2728
2729        blk_start_plug(&plug);
2730        for (;;) {
2731
2732                flush_pending_writes(conf);
2733
2734                spin_lock_irqsave(&conf->device_lock, flags);
2735                if (list_empty(head)) {
2736                        spin_unlock_irqrestore(&conf->device_lock, flags);
2737                        break;
2738                }
2739                r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2740                list_del(head->prev);
2741                conf->nr_queued--;
2742                spin_unlock_irqrestore(&conf->device_lock, flags);
2743
2744                mddev = r10_bio->mddev;
2745                conf = mddev->private;
2746                if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2747                    test_bit(R10BIO_WriteError, &r10_bio->state))
2748                        handle_write_completed(conf, r10_bio);
2749                else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2750                        reshape_request_write(mddev, r10_bio);
2751                else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2752                        sync_request_write(mddev, r10_bio);
2753                else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2754                        recovery_request_write(mddev, r10_bio);
2755                else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2756                        handle_read_error(mddev, r10_bio);
2757                else
2758                        WARN_ON_ONCE(1);
2759
2760                cond_resched();
2761                if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2762                        md_check_recovery(mddev);
2763        }
2764        blk_finish_plug(&plug);
2765}
2766
2767static int init_resync(struct r10conf *conf)
2768{
2769        int ret, buffs, i;
2770
2771        buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2772        BUG_ON(mempool_initialized(&conf->r10buf_pool));
2773        conf->have_replacement = 0;
2774        for (i = 0; i < conf->geo.raid_disks; i++)
2775                if (conf->mirrors[i].replacement)
2776                        conf->have_replacement = 1;
2777        ret = mempool_init(&conf->r10buf_pool, buffs,
2778                           r10buf_pool_alloc, r10buf_pool_free, conf);
2779        if (ret)
2780                return ret;
2781        conf->next_resync = 0;
2782        return 0;
2783}
2784
2785static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2786{
2787        struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2788        struct rsync_pages *rp;
2789        struct bio *bio;
2790        int nalloc;
2791        int i;
2792
2793        if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2794            test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2795                nalloc = conf->copies; /* resync */
2796        else
2797                nalloc = 2; /* recovery */
2798
2799        for (i = 0; i < nalloc; i++) {
2800                bio = r10bio->devs[i].bio;
2801                rp = bio->bi_private;
2802                bio_reset(bio);
2803                bio->bi_private = rp;
2804                bio = r10bio->devs[i].repl_bio;
2805                if (bio) {
2806                        rp = bio->bi_private;
2807                        bio_reset(bio);
2808                        bio->bi_private = rp;
2809                }
2810        }
2811        return r10bio;
2812}
2813
2814/*
2815 * Set cluster_sync_high since we need other nodes to add the
2816 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2817 */
2818static void raid10_set_cluster_sync_high(struct r10conf *conf)
2819{
2820        sector_t window_size;
2821        int extra_chunk, chunks;
2822
2823        /*
2824         * First, here we define "stripe" as a unit which across
2825         * all member devices one time, so we get chunks by use
2826         * raid_disks / near_copies. Otherwise, if near_copies is
2827         * close to raid_disks, then resync window could increases
2828         * linearly with the increase of raid_disks, which means
2829         * we will suspend a really large IO window while it is not
2830         * necessary. If raid_disks is not divisible by near_copies,
2831         * an extra chunk is needed to ensure the whole "stripe" is
2832         * covered.
2833         */
2834
2835        chunks = conf->geo.raid_disks / conf->geo.near_copies;
2836        if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2837                extra_chunk = 0;
2838        else
2839                extra_chunk = 1;
2840        window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2841
2842        /*
2843         * At least use a 32M window to align with raid1's resync window
2844         */
2845        window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2846                        CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2847
2848        conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2849}
2850
2851/*
2852 * perform a "sync" on one "block"
2853 *
2854 * We need to make sure that no normal I/O request - particularly write
2855 * requests - conflict with active sync requests.
2856 *
2857 * This is achieved by tracking pending requests and a 'barrier' concept
2858 * that can be installed to exclude normal IO requests.
2859 *
2860 * Resync and recovery are handled very differently.
2861 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2862 *
2863 * For resync, we iterate over virtual addresses, read all copies,
2864 * and update if there are differences.  If only one copy is live,
2865 * skip it.
2866 * For recovery, we iterate over physical addresses, read a good
2867 * value for each non-in_sync drive, and over-write.
2868 *
2869 * So, for recovery we may have several outstanding complex requests for a
2870 * given address, one for each out-of-sync device.  We model this by allocating
2871 * a number of r10_bio structures, one for each out-of-sync device.
2872 * As we setup these structures, we collect all bio's together into a list
2873 * which we then process collectively to add pages, and then process again
2874 * to pass to submit_bio_noacct.
2875 *
2876 * The r10_bio structures are linked using a borrowed master_bio pointer.
2877 * This link is counted in ->remaining.  When the r10_bio that points to NULL
2878 * has its remaining count decremented to 0, the whole complex operation
2879 * is complete.
2880 *
2881 */
2882
2883static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2884                             int *skipped)
2885{
2886        struct r10conf *conf = mddev->private;
2887        struct r10bio *r10_bio;
2888        struct bio *biolist = NULL, *bio;
2889        sector_t max_sector, nr_sectors;
2890        int i;
2891        int max_sync;
2892        sector_t sync_blocks;
2893        sector_t sectors_skipped = 0;
2894        int chunks_skipped = 0;
2895        sector_t chunk_mask = conf->geo.chunk_mask;
2896        int page_idx = 0;
2897
2898        if (!mempool_initialized(&conf->r10buf_pool))
2899                if (init_resync(conf))
2900                        return 0;
2901
2902        /*
2903         * Allow skipping a full rebuild for incremental assembly
2904         * of a clean array, like RAID1 does.
2905         */
2906        if (mddev->bitmap == NULL &&
2907            mddev->recovery_cp == MaxSector &&
2908            mddev->reshape_position == MaxSector &&
2909            !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2910            !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2911            !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2912            conf->fullsync == 0) {
2913                *skipped = 1;
2914                return mddev->dev_sectors - sector_nr;
2915        }
2916
2917 skipped:
2918        max_sector = mddev->dev_sectors;
2919        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2920            test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2921                max_sector = mddev->resync_max_sectors;
2922        if (sector_nr >= max_sector) {
2923                conf->cluster_sync_low = 0;
2924                conf->cluster_sync_high = 0;
2925
2926                /* If we aborted, we need to abort the
2927                 * sync on the 'current' bitmap chucks (there can
2928                 * be several when recovering multiple devices).
2929                 * as we may have started syncing it but not finished.
2930                 * We can find the current address in
2931                 * mddev->curr_resync, but for recovery,
2932                 * we need to convert that to several
2933                 * virtual addresses.
2934                 */
2935                if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2936                        end_reshape(conf);
2937                        close_sync(conf);
2938                        return 0;
2939                }
2940
2941                if (mddev->curr_resync < max_sector) { /* aborted */
2942                        if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2943                                md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2944                                                   &sync_blocks, 1);
2945                        else for (i = 0; i < conf->geo.raid_disks; i++) {
2946                                sector_t sect =
2947                                        raid10_find_virt(conf, mddev->curr_resync, i);
2948                                md_bitmap_end_sync(mddev->bitmap, sect,
2949                                                   &sync_blocks, 1);
2950                        }
2951                } else {
2952                        /* completed sync */
2953                        if ((!mddev->bitmap || conf->fullsync)
2954                            && conf->have_replacement
2955                            && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2956                                /* Completed a full sync so the replacements
2957                                 * are now fully recovered.
2958                                 */
2959                                rcu_read_lock();
2960                                for (i = 0; i < conf->geo.raid_disks; i++) {
2961                                        struct md_rdev *rdev =
2962                                                rcu_dereference(conf->mirrors[i].replacement);
2963                                        if (rdev)
2964                                                rdev->recovery_offset = MaxSector;
2965                                }
2966                                rcu_read_unlock();
2967                        }
2968                        conf->fullsync = 0;
2969                }
2970                md_bitmap_close_sync(mddev->bitmap);
2971                close_sync(conf);
2972                *skipped = 1;
2973                return sectors_skipped;
2974        }
2975
2976        if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2977                return reshape_request(mddev, sector_nr, skipped);
2978
2979        if (chunks_skipped >= conf->geo.raid_disks) {
2980                /* if there has been nothing to do on any drive,
2981                 * then there is nothing to do at all..
2982                 */
2983                *skipped = 1;
2984                return (max_sector - sector_nr) + sectors_skipped;
2985        }
2986
2987        if (max_sector > mddev->resync_max)
2988                max_sector = mddev->resync_max; /* Don't do IO beyond here */
2989
2990        /* make sure whole request will fit in a chunk - if chunks
2991         * are meaningful
2992         */
2993        if (conf->geo.near_copies < conf->geo.raid_disks &&
2994            max_sector > (sector_nr | chunk_mask))
2995                max_sector = (sector_nr | chunk_mask) + 1;
2996
2997        /*
2998         * If there is non-resync activity waiting for a turn, then let it
2999         * though before starting on this new sync request.
3000         */
3001        if (conf->nr_waiting)
3002                schedule_timeout_uninterruptible(1);
3003
3004        /* Again, very different code for resync and recovery.
3005         * Both must result in an r10bio with a list of bios that
3006         * have bi_end_io, bi_sector, bi_disk set,
3007         * and bi_private set to the r10bio.
3008         * For recovery, we may actually create several r10bios
3009         * with 2 bios in each, that correspond to the bios in the main one.
3010         * In this case, the subordinate r10bios link back through a
3011         * borrowed master_bio pointer, and the counter in the master
3012         * includes a ref from each subordinate.
3013         */
3014        /* First, we decide what to do and set ->bi_end_io
3015         * To end_sync_read if we want to read, and
3016         * end_sync_write if we will want to write.
3017         */
3018
3019        max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3020        if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3021                /* recovery... the complicated one */
3022                int j;
3023                r10_bio = NULL;
3024
3025                for (i = 0 ; i < conf->geo.raid_disks; i++) {
3026                        int still_degraded;
3027                        struct r10bio *rb2;
3028                        sector_t sect;
3029                        int must_sync;
3030                        int any_working;
3031                        int need_recover = 0;
3032                        int need_replace = 0;
3033                        struct raid10_info *mirror = &conf->mirrors[i];
3034                        struct md_rdev *mrdev, *mreplace;
3035
3036                        rcu_read_lock();
3037                        mrdev = rcu_dereference(mirror->rdev);
3038                        mreplace = rcu_dereference(mirror->replacement);
3039
3040                        if (mrdev != NULL &&
3041                            !test_bit(Faulty, &mrdev->flags) &&
3042                            !test_bit(In_sync, &mrdev->flags))
3043                                need_recover = 1;
3044                        if (mreplace != NULL &&
3045                            !test_bit(Faulty, &mreplace->flags))
3046                                need_replace = 1;
3047
3048                        if (!need_recover && !need_replace) {
3049                                rcu_read_unlock();
3050                                continue;
3051                        }
3052
3053                        still_degraded = 0;
3054                        /* want to reconstruct this device */
3055                        rb2 = r10_bio;
3056                        sect = raid10_find_virt(conf, sector_nr, i);
3057                        if (sect >= mddev->resync_max_sectors) {
3058                                /* last stripe is not complete - don't
3059                                 * try to recover this sector.
3060                                 */
3061                                rcu_read_unlock();
3062                                continue;
3063                        }
3064                        if (mreplace && test_bit(Faulty, &mreplace->flags))
3065                                mreplace = NULL;
3066                        /* Unless we are doing a full sync, or a replacement
3067                         * we only need to recover the block if it is set in
3068                         * the bitmap
3069                         */
3070                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3071                                                         &sync_blocks, 1);
3072                        if (sync_blocks < max_sync)
3073                                max_sync = sync_blocks;
3074                        if (!must_sync &&
3075                            mreplace == NULL &&
3076                            !conf->fullsync) {
3077                                /* yep, skip the sync_blocks here, but don't assume
3078                                 * that there will never be anything to do here
3079                                 */
3080                                chunks_skipped = -1;
3081                                rcu_read_unlock();
3082                                continue;
3083                        }
3084                        atomic_inc(&mrdev->nr_pending);
3085                        if (mreplace)
3086                                atomic_inc(&mreplace->nr_pending);
3087                        rcu_read_unlock();
3088
3089                        r10_bio = raid10_alloc_init_r10buf(conf);
3090                        r10_bio->state = 0;
3091                        raise_barrier(conf, rb2 != NULL);
3092                        atomic_set(&r10_bio->remaining, 0);
3093
3094                        r10_bio->master_bio = (struct bio*)rb2;
3095                        if (rb2)
3096                                atomic_inc(&rb2->remaining);
3097                        r10_bio->mddev = mddev;
3098                        set_bit(R10BIO_IsRecover, &r10_bio->state);
3099                        r10_bio->sector = sect;
3100
3101                        raid10_find_phys(conf, r10_bio);
3102
3103                        /* Need to check if the array will still be
3104                         * degraded
3105                         */
3106                        rcu_read_lock();
3107                        for (j = 0; j < conf->geo.raid_disks; j++) {
3108                                struct md_rdev *rdev = rcu_dereference(
3109                                        conf->mirrors[j].rdev);
3110                                if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3111                                        still_degraded = 1;
3112                                        break;
3113                                }
3114                        }
3115
3116                        must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3117                                                         &sync_blocks, still_degraded);
3118
3119                        any_working = 0;
3120                        for (j=0; j<conf->copies;j++) {
3121                                int k;
3122                                int d = r10_bio->devs[j].devnum;
3123                                sector_t from_addr, to_addr;
3124                                struct md_rdev *rdev =
3125                                        rcu_dereference(conf->mirrors[d].rdev);
3126                                sector_t sector, first_bad;
3127                                int bad_sectors;
3128                                if (!rdev ||
3129                                    !test_bit(In_sync, &rdev->flags))
3130                                        continue;
3131                                /* This is where we read from */
3132                                any_working = 1;
3133                                sector = r10_bio->devs[j].addr;
3134
3135                                if (is_badblock(rdev, sector, max_sync,
3136                                                &first_bad, &bad_sectors)) {
3137                                        if (first_bad > sector)
3138                                                max_sync = first_bad - sector;
3139                                        else {
3140                                                bad_sectors -= (sector
3141                                                                - first_bad);
3142                                                if (max_sync > bad_sectors)
3143                                                        max_sync = bad_sectors;
3144                                                continue;
3145                                        }
3146                                }
3147                                bio = r10_bio->devs[0].bio;
3148                                bio->bi_next = biolist;
3149                                biolist = bio;
3150                                bio->bi_end_io = end_sync_read;
3151                                bio_set_op_attrs(bio, REQ_OP_READ, 0);
3152                                if (test_bit(FailFast, &rdev->flags))
3153                                        bio->bi_opf |= MD_FAILFAST;
3154                                from_addr = r10_bio->devs[j].addr;
3155                                bio->bi_iter.bi_sector = from_addr +
3156                                        rdev->data_offset;
3157                                bio_set_dev(bio, rdev->bdev);
3158                                atomic_inc(&rdev->nr_pending);
3159                                /* and we write to 'i' (if not in_sync) */
3160
3161                                for (k=0; k<conf->copies; k++)
3162                                        if (r10_bio->devs[k].devnum == i)
3163                                                break;
3164                                BUG_ON(k == conf->copies);
3165                                to_addr = r10_bio->devs[k].addr;
3166                                r10_bio->devs[0].devnum = d;
3167                                r10_bio->devs[0].addr = from_addr;
3168                                r10_bio->devs[1].devnum = i;
3169                                r10_bio->devs[1].addr = to_addr;
3170
3171                                if (need_recover) {
3172                                        bio = r10_bio->devs[1].bio;
3173                                        bio->bi_next = biolist;
3174                                        biolist = bio;
3175                                        bio->bi_end_io = end_sync_write;
3176                                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3177                                        bio->bi_iter.bi_sector = to_addr
3178                                                + mrdev->data_offset;
3179                                        bio_set_dev(bio, mrdev->bdev);
3180                                        atomic_inc(&r10_bio->remaining);
3181                                } else
3182                                        r10_bio->devs[1].bio->bi_end_io = NULL;
3183
3184                                /* and maybe write to replacement */
3185                                bio = r10_bio->devs[1].repl_bio;
3186                                if (bio)
3187                                        bio->bi_end_io = NULL;
3188                                /* Note: if need_replace, then bio
3189                                 * cannot be NULL as r10buf_pool_alloc will
3190                                 * have allocated it.
3191                                 */
3192                                if (!need_replace)
3193                                        break;
3194                                bio->bi_next = biolist;
3195                                biolist = bio;
3196                                bio->bi_end_io = end_sync_write;
3197                                bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3198                                bio->bi_iter.bi_sector = to_addr +
3199                                        mreplace->data_offset;
3200                                bio_set_dev(bio, mreplace->bdev);
3201                                atomic_inc(&r10_bio->remaining);
3202                                break;
3203                        }
3204                        rcu_read_unlock();
3205                        if (j == conf->copies) {
3206                                /* Cannot recover, so abort the recovery or
3207                                 * record a bad block */
3208                                if (any_working) {
3209                                        /* problem is that there are bad blocks
3210                                         * on other device(s)
3211                                         */
3212                                        int k;
3213                                        for (k = 0; k < conf->copies; k++)
3214                                                if (r10_bio->devs[k].devnum == i)
3215                                                        break;
3216                                        if (!test_bit(In_sync,
3217                                                      &mrdev->flags)
3218                                            && !rdev_set_badblocks(
3219                                                    mrdev,
3220                                                    r10_bio->devs[k].addr,
3221                                                    max_sync, 0))
3222                                                any_working = 0;
3223                                        if (mreplace &&
3224                                            !rdev_set_badblocks(
3225                                                    mreplace,
3226                                                    r10_bio->devs[k].addr,
3227                                                    max_sync, 0))
3228                                                any_working = 0;
3229                                }
3230                                if (!any_working)  {
3231                                        if (!test_and_set_bit(MD_RECOVERY_INTR,
3232                                                              &mddev->recovery))
3233                                                pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3234                                                       mdname(mddev));
3235                                        mirror->recovery_disabled
3236                                                = mddev->recovery_disabled;
3237                                }
3238                                put_buf(r10_bio);
3239                                if (rb2)
3240                                        atomic_dec(&rb2->remaining);
3241                                r10_bio = rb2;
3242                                rdev_dec_pending(mrdev, mddev);
3243                                if (mreplace)
3244                                        rdev_dec_pending(mreplace, mddev);
3245                                break;
3246                        }
3247                        rdev_dec_pending(mrdev, mddev);
3248                        if (mreplace)
3249                                rdev_dec_pending(mreplace, mddev);
3250                        if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3251                                /* Only want this if there is elsewhere to
3252                                 * read from. 'j' is currently the first
3253                                 * readable copy.
3254                                 */
3255                                int targets = 1;
3256                                for (; j < conf->copies; j++) {
3257                                        int d = r10_bio->devs[j].devnum;
3258                                        if (conf->mirrors[d].rdev &&
3259                                            test_bit(In_sync,
3260                                                      &conf->mirrors[d].rdev->flags))
3261                                                targets++;
3262                                }
3263                                if (targets == 1)
3264                                        r10_bio->devs[0].bio->bi_opf
3265                                                &= ~MD_FAILFAST;
3266                        }
3267                }
3268                if (biolist == NULL) {
3269                        while (r10_bio) {
3270                                struct r10bio *rb2 = r10_bio;
3271                                r10_bio = (struct r10bio*) rb2->master_bio;
3272                                rb2->master_bio = NULL;
3273                                put_buf(rb2);
3274                        }
3275                        goto giveup;
3276                }
3277        } else {
3278                /* resync. Schedule a read for every block at this virt offset */
3279                int count = 0;
3280
3281                /*
3282                 * Since curr_resync_completed could probably not update in
3283                 * time, and we will set cluster_sync_low based on it.
3284                 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3285                 * safety reason, which ensures curr_resync_completed is
3286                 * updated in bitmap_cond_end_sync.
3287                 */
3288                md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3289                                        mddev_is_clustered(mddev) &&
3290                                        (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3291
3292                if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3293                                          &sync_blocks, mddev->degraded) &&
3294                    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3295                                                 &mddev->recovery)) {
3296                        /* We can skip this block */
3297                        *skipped = 1;
3298                        return sync_blocks + sectors_skipped;
3299                }
3300                if (sync_blocks < max_sync)
3301                        max_sync = sync_blocks;
3302                r10_bio = raid10_alloc_init_r10buf(conf);
3303                r10_bio->state = 0;
3304
3305                r10_bio->mddev = mddev;
3306                atomic_set(&r10_bio->remaining, 0);
3307                raise_barrier(conf, 0);
3308                conf->next_resync = sector_nr;
3309
3310                r10_bio->master_bio = NULL;
3311                r10_bio->sector = sector_nr;
3312                set_bit(R10BIO_IsSync, &r10_bio->state);
3313                raid10_find_phys(conf, r10_bio);
3314                r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3315
3316                for (i = 0; i < conf->copies; i++) {
3317                        int d = r10_bio->devs[i].devnum;
3318                        sector_t first_bad, sector;
3319                        int bad_sectors;
3320                        struct md_rdev *rdev;
3321
3322                        if (r10_bio->devs[i].repl_bio)
3323                                r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3324
3325                        bio = r10_bio->devs[i].bio;
3326                        bio->bi_status = BLK_STS_IOERR;
3327                        rcu_read_lock();
3328                        rdev = rcu_dereference(conf->mirrors[d].rdev);
3329                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3330                                rcu_read_unlock();
3331                                continue;
3332                        }
3333                        sector = r10_bio->devs[i].addr;
3334                        if (is_badblock(rdev, sector, max_sync,
3335                                        &first_bad, &bad_sectors)) {
3336                                if (first_bad > sector)
3337                                        max_sync = first_bad - sector;
3338                                else {
3339                                        bad_sectors -= (sector - first_bad);
3340                                        if (max_sync > bad_sectors)
3341                                                max_sync = bad_sectors;
3342                                        rcu_read_unlock();
3343                                        continue;
3344                                }
3345                        }
3346                        atomic_inc(&rdev->nr_pending);
3347                        atomic_inc(&r10_bio->remaining);
3348                        bio->bi_next = biolist;
3349                        biolist = bio;
3350                        bio->bi_end_io = end_sync_read;
3351                        bio_set_op_attrs(bio, REQ_OP_READ, 0);
3352                        if (test_bit(FailFast, &rdev->flags))
3353                                bio->bi_opf |= MD_FAILFAST;
3354                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3355                        bio_set_dev(bio, rdev->bdev);
3356                        count++;
3357
3358                        rdev = rcu_dereference(conf->mirrors[d].replacement);
3359                        if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3360                                rcu_read_unlock();
3361                                continue;
3362                        }
3363                        atomic_inc(&rdev->nr_pending);
3364
3365                        /* Need to set up for writing to the replacement */
3366                        bio = r10_bio->devs[i].repl_bio;
3367                        bio->bi_status = BLK_STS_IOERR;
3368
3369                        sector = r10_bio->devs[i].addr;
3370                        bio->bi_next = biolist;
3371                        biolist = bio;
3372                        bio->bi_end_io = end_sync_write;
3373                        bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3374                        if (test_bit(FailFast, &rdev->flags))
3375                                bio->bi_opf |= MD_FAILFAST;
3376                        bio->bi_iter.bi_sector = sector + rdev->data_offset;
3377                        bio_set_dev(bio, rdev->bdev);
3378                        count++;
3379                        rcu_read_unlock();
3380                }
3381
3382                if (count < 2) {
3383                        for (i=0; i<conf->copies; i++) {
3384                                int d = r10_bio->devs[i].devnum;
3385                                if (r10_bio->devs[i].bio->bi_end_io)
3386                                        rdev_dec_pending(conf->mirrors[d].rdev,
3387                                                         mddev);
3388                                if (r10_bio->devs[i].repl_bio &&
3389                                    r10_bio->devs[i].repl_bio->bi_end_io)
3390                                        rdev_dec_pending(
3391                                                conf->mirrors[d].replacement,
3392                                                mddev);
3393                        }
3394                        put_buf(r10_bio);
3395                        biolist = NULL;
3396                        goto giveup;
3397                }
3398        }
3399
3400        nr_sectors = 0;
3401        if (sector_nr + max_sync < max_sector)
3402                max_sector = sector_nr + max_sync;
3403        do {
3404                struct page *page;
3405                int len = PAGE_SIZE;
3406                if (sector_nr + (len>>9) > max_sector)
3407                        len = (max_sector - sector_nr) << 9;
3408                if (len == 0)
3409                        break;
3410                for (bio= biolist ; bio ; bio=bio->bi_next) {
3411                        struct resync_pages *rp = get_resync_pages(bio);
3412                        page = resync_fetch_page(rp, page_idx);
3413                        /*
3414                         * won't fail because the vec table is big enough
3415                         * to hold all these pages
3416                         */
3417                        bio_add_page(bio, page, len, 0);
3418                }
3419                nr_sectors += len>>9;
3420                sector_nr += len>>9;
3421        } while (++page_idx < RESYNC_PAGES);
3422        r10_bio->sectors = nr_sectors;
3423
3424        if (mddev_is_clustered(mddev) &&
3425            test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3426                /* It is resync not recovery */
3427                if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3428                        conf->cluster_sync_low = mddev->curr_resync_completed;
3429                        raid10_set_cluster_sync_high(conf);
3430                        /* Send resync message */
3431                        md_cluster_ops->resync_info_update(mddev,
3432                                                conf->cluster_sync_low,
3433                                                conf->cluster_sync_high);
3434                }
3435        } else if (mddev_is_clustered(mddev)) {
3436                /* This is recovery not resync */
3437                sector_t sect_va1, sect_va2;
3438                bool broadcast_msg = false;
3439
3440                for (i = 0; i < conf->geo.raid_disks; i++) {
3441                        /*
3442                         * sector_nr is a device address for recovery, so we
3443                         * need translate it to array address before compare
3444                         * with cluster_sync_high.
3445                         */
3446                        sect_va1 = raid10_find_virt(conf, sector_nr, i);
3447
3448                        if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3449                                broadcast_msg = true;
3450                                /*
3451                                 * curr_resync_completed is similar as
3452                                 * sector_nr, so make the translation too.
3453                                 */
3454                                sect_va2 = raid10_find_virt(conf,
3455                                        mddev->curr_resync_completed, i);
3456
3457                                if (conf->cluster_sync_low == 0 ||
3458                                    conf->cluster_sync_low > sect_va2)
3459                                        conf->cluster_sync_low = sect_va2;
3460                        }
3461                }
3462                if (broadcast_msg) {
3463                        raid10_set_cluster_sync_high(conf);
3464                        md_cluster_ops->resync_info_update(mddev,
3465                                                conf->cluster_sync_low,
3466                                                conf->cluster_sync_high);
3467                }
3468        }
3469
3470        while (biolist) {
3471                bio = biolist;
3472                biolist = biolist->bi_next;
3473
3474                bio->bi_next = NULL;
3475                r10_bio = get_resync_r10bio(bio);
3476                r10_bio->sectors = nr_sectors;
3477
3478                if (bio->bi_end_io == end_sync_read) {
3479                        md_sync_acct_bio(bio, nr_sectors);
3480                        bio->bi_status = 0;
3481                        submit_bio_noacct(bio);
3482                }
3483        }
3484
3485        if (sectors_skipped)
3486                /* pretend they weren't skipped, it makes
3487                 * no important difference in this case
3488                 */
3489                md_done_sync(mddev, sectors_skipped, 1);
3490
3491        return sectors_skipped + nr_sectors;
3492 giveup:
3493        /* There is nowhere to write, so all non-sync
3494         * drives must be failed or in resync, all drives
3495         * have a bad block, so try the next chunk...
3496         */
3497        if (sector_nr + max_sync < max_sector)
3498                max_sector = sector_nr + max_sync;
3499
3500        sectors_skipped += (max_sector - sector_nr);
3501        chunks_skipped ++;
3502        sector_nr = max_sector;
3503        goto skipped;
3504}
3505
3506static sector_t
3507raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3508{
3509        sector_t size;
3510        struct r10conf *conf = mddev->private;
3511
3512        if (!raid_disks)
3513                raid_disks = min(conf->geo.raid_disks,
3514                                 conf->prev.raid_disks);
3515        if (!sectors)
3516                sectors = conf->dev_sectors;
3517
3518        size = sectors >> conf->geo.chunk_shift;
3519        sector_div(size, conf->geo.far_copies);
3520        size = size * raid_disks;
3521        sector_div(size, conf->geo.near_copies);
3522
3523        return size << conf->geo.chunk_shift;
3524}
3525
3526static void calc_sectors(struct r10conf *conf, sector_t size)
3527{
3528        /* Calculate the number of sectors-per-device that will
3529         * actually be used, and set conf->dev_sectors and
3530         * conf->stride
3531         */
3532
3533        size = size >> conf->geo.chunk_shift;
3534        sector_div(size, conf->geo.far_copies);
3535        size = size * conf->geo.raid_disks;
3536        sector_div(size, conf->geo.near_copies);
3537        /* 'size' is now the number of chunks in the array */
3538        /* calculate "used chunks per device" */
3539        size = size * conf->copies;
3540
3541        /* We need to round up when dividing by raid_disks to
3542         * get the stride size.
3543         */
3544        size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3545
3546        conf->dev_sectors = size << conf->geo.chunk_shift;
3547
3548        if (conf->geo.far_offset)
3549                conf->geo.stride = 1 << conf->geo.chunk_shift;
3550        else {
3551                sector_div(size, conf->geo.far_copies);
3552                conf->geo.stride = size << conf->geo.chunk_shift;
3553        }
3554}
3555
3556enum geo_type {geo_new, geo_old, geo_start};
3557static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3558{
3559        int nc, fc, fo;
3560        int layout, chunk, disks;
3561        switch (new) {
3562        case geo_old:
3563                layout = mddev->layout;
3564                chunk = mddev->chunk_sectors;
3565                disks = mddev->raid_disks - mddev->delta_disks;
3566                break;
3567        case geo_new:
3568                layout = mddev->new_layout;
3569                chunk = mddev->new_chunk_sectors;
3570                disks = mddev->raid_disks;
3571                break;
3572        default: /* avoid 'may be unused' warnings */
3573        case geo_start: /* new when starting reshape - raid_disks not
3574                         * updated yet. */
3575                layout = mddev->new_layout;
3576                chunk = mddev->new_chunk_sectors;
3577                disks = mddev->raid_disks + mddev->delta_disks;
3578                break;
3579        }
3580        if (layout >> 19)
3581                return -1;
3582        if (chunk < (PAGE_SIZE >> 9) ||
3583            !is_power_of_2(chunk))
3584                return -2;
3585        nc = layout & 255;
3586        fc = (layout >> 8) & 255;
3587        fo = layout & (1<<16);
3588        geo->raid_disks = disks;
3589        geo->near_copies = nc;
3590        geo->far_copies = fc;
3591        geo->far_offset = fo;
3592        switch (layout >> 17) {
3593        case 0: /* original layout.  simple but not always optimal */
3594                geo->far_set_size = disks;
3595                break;
3596        case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3597                 * actually using this, but leave code here just in case.*/
3598                geo->far_set_size = disks/fc;
3599                WARN(geo->far_set_size < fc,
3600                     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3601                break;
3602        case 2: /* "improved" layout fixed to match documentation */
3603                geo->far_set_size = fc * nc;
3604                break;
3605        default: /* Not a valid layout */
3606                return -1;
3607        }
3608        geo->chunk_mask = chunk - 1;
3609        geo->chunk_shift = ffz(~chunk);
3610        return nc*fc;
3611}
3612
3613static struct r10conf *setup_conf(struct mddev *mddev)
3614{
3615        struct r10conf *conf = NULL;
3616        int err = -EINVAL;
3617        struct geom geo;
3618        int copies;
3619
3620        copies = setup_geo(&geo, mddev, geo_new);
3621
3622        if (copies == -2) {
3623                pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3624                        mdname(mddev), PAGE_SIZE);
3625                goto out;
3626        }
3627
3628        if (copies < 2 || copies > mddev->raid_disks) {
3629                pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3630                        mdname(mddev), mddev->new_layout);
3631                goto out;
3632        }
3633
3634        err = -ENOMEM;
3635        conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3636        if (!conf)
3637                goto out;
3638
3639        /* FIXME calc properly */
3640        conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3641                                sizeof(struct raid10_info),
3642                                GFP_KERNEL);
3643        if (!conf->mirrors)
3644                goto out;
3645
3646        conf->tmppage = alloc_page(GFP_KERNEL);
3647        if (!conf->tmppage)
3648                goto out;
3649
3650        conf->geo = geo;
3651        conf->copies = copies;
3652        err = mempool_init(&conf->r10bio_pool, NR_RAID_BIOS, r10bio_pool_alloc,
3653                           rbio_pool_free, conf);
3654        if (err)
3655                goto out;
3656
3657        err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3658        if (err)
3659                goto out;
3660
3661        calc_sectors(conf, mddev->dev_sectors);
3662        if (mddev->reshape_position == MaxSector) {
3663                conf->prev = conf->geo;
3664                conf->reshape_progress = MaxSector;
3665        } else {
3666                if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3667                        err = -EINVAL;
3668                        goto out;
3669                }
3670                conf->reshape_progress = mddev->reshape_position;
3671                if (conf->prev.far_offset)
3672                        conf->prev.stride = 1 << conf->prev.chunk_shift;
3673                else
3674                        /* far_copies must be 1 */
3675                        conf->prev.stride = conf->dev_sectors;
3676        }
3677        conf->reshape_safe = conf->reshape_progress;
3678        spin_lock_init(&conf->device_lock);
3679        INIT_LIST_HEAD(&conf->retry_list);
3680        INIT_LIST_HEAD(&conf->bio_end_io_list);
3681
3682        spin_lock_init(&conf->resync_lock);
3683        init_waitqueue_head(&conf->wait_barrier);
3684        atomic_set(&conf->nr_pending, 0);
3685
3686        err = -ENOMEM;
3687        conf->thread = md_register_thread(raid10d, mddev, "raid10");
3688        if (!conf->thread)
3689                goto out;
3690
3691        conf->mddev = mddev;
3692        return conf;
3693
3694 out:
3695        if (conf) {
3696                mempool_exit(&conf->r10bio_pool);
3697                kfree(conf->mirrors);
3698                safe_put_page(conf->tmppage);
3699                bioset_exit(&conf->bio_split);
3700                kfree(conf);
3701        }
3702        return ERR_PTR(err);
3703}
3704
3705static void raid10_set_io_opt(struct r10conf *conf)
3706{
3707        int raid_disks = conf->geo.raid_disks;
3708
3709        if (!(conf->geo.raid_disks % conf->geo.near_copies))
3710                raid_disks /= conf->geo.near_copies;
3711        blk_queue_io_opt(conf->mddev->queue, (conf->mddev->chunk_sectors << 9) *
3712                         raid_disks);
3713}
3714
3715static int raid10_run(struct mddev *mddev)
3716{
3717        struct r10conf *conf;
3718        int i, disk_idx;
3719        struct raid10_info *disk;
3720        struct md_rdev *rdev;
3721        sector_t size;
3722        sector_t min_offset_diff = 0;
3723        int first = 1;
3724        bool discard_supported = false;
3725
3726        if (mddev_init_writes_pending(mddev) < 0)
3727                return -ENOMEM;
3728
3729        if (mddev->private == NULL) {
3730                conf = setup_conf(mddev);
3731                if (IS_ERR(conf))
3732                        return PTR_ERR(conf);
3733                mddev->private = conf;
3734        }
3735        conf = mddev->private;
3736        if (!conf)
3737                goto out;
3738
3739        if (mddev_is_clustered(conf->mddev)) {
3740                int fc, fo;
3741
3742                fc = (mddev->layout >> 8) & 255;
3743                fo = mddev->layout & (1<<16);
3744                if (fc > 1 || fo > 0) {
3745                        pr_err("only near layout is supported by clustered"
3746                                " raid10\n");
3747                        goto out_free_conf;
3748                }
3749        }
3750
3751        mddev->thread = conf->thread;
3752        conf->thread = NULL;
3753
3754        if (mddev->queue) {
3755                blk_queue_max_discard_sectors(mddev->queue,
3756                                              mddev->chunk_sectors);
3757                blk_queue_max_write_same_sectors(mddev->queue, 0);
3758                blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3759                blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
3760                raid10_set_io_opt(conf);
3761        }
3762
3763        rdev_for_each(rdev, mddev) {
3764                long long diff;
3765
3766                disk_idx = rdev->raid_disk;
3767                if (disk_idx < 0)
3768                        continue;
3769                if (disk_idx >= conf->geo.raid_disks &&
3770                    disk_idx >= conf->prev.raid_disks)
3771                        continue;
3772                disk = conf->mirrors + disk_idx;
3773
3774                if (test_bit(Replacement, &rdev->flags)) {
3775                        if (disk->replacement)
3776                                goto out_free_conf;
3777                        disk->replacement = rdev;
3778                } else {
3779                        if (disk->rdev)
3780                                goto out_free_conf;
3781                        disk->rdev = rdev;
3782                }
3783                diff = (rdev->new_data_offset - rdev->data_offset);
3784                if (!mddev->reshape_backwards)
3785                        diff = -diff;
3786                if (diff < 0)
3787                        diff = 0;
3788                if (first || diff < min_offset_diff)
3789                        min_offset_diff = diff;
3790
3791                if (mddev->gendisk)
3792                        disk_stack_limits(mddev->gendisk, rdev->bdev,
3793                                          rdev->data_offset << 9);
3794
3795                disk->head_position = 0;
3796
3797                if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3798                        discard_supported = true;
3799                first = 0;
3800        }
3801
3802        if (mddev->queue) {
3803                if (discard_supported)
3804                        blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3805                                                mddev->queue);
3806                else
3807                        blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3808                                                  mddev->queue);
3809        }
3810        /* need to check that every block has at least one working mirror */
3811        if (!enough(conf, -1)) {
3812                pr_err("md/raid10:%s: not enough operational mirrors.\n",
3813                       mdname(mddev));
3814                goto out_free_conf;
3815        }
3816
3817        if (conf->reshape_progress != MaxSector) {
3818                /* must ensure that shape change is supported */
3819                if (conf->geo.far_copies != 1 &&
3820                    conf->geo.far_offset == 0)
3821                        goto out_free_conf;
3822                if (conf->prev.far_copies != 1 &&
3823                    conf->prev.far_offset == 0)
3824                        goto out_free_conf;
3825        }
3826
3827        mddev->degraded = 0;
3828        for (i = 0;
3829             i < conf->geo.raid_disks
3830                     || i < conf->prev.raid_disks;
3831             i++) {
3832
3833                disk = conf->mirrors + i;
3834
3835                if (!disk->rdev && disk->replacement) {
3836                        /* The replacement is all we have - use it */
3837                        disk->rdev = disk->replacement;
3838                        disk->replacement = NULL;
3839                        clear_bit(Replacement, &disk->rdev->flags);
3840                }
3841
3842                if (!disk->rdev ||
3843                    !test_bit(In_sync, &disk->rdev->flags)) {
3844                        disk->head_position = 0;
3845                        mddev->degraded++;
3846                        if (disk->rdev &&
3847                            disk->rdev->saved_raid_disk < 0)
3848                                conf->fullsync = 1;
3849                }
3850
3851                if (disk->replacement &&
3852                    !test_bit(In_sync, &disk->replacement->flags) &&
3853                    disk->replacement->saved_raid_disk < 0) {
3854                        conf->fullsync = 1;
3855                }
3856
3857                disk->recovery_disabled = mddev->recovery_disabled - 1;
3858        }
3859
3860        if (mddev->recovery_cp != MaxSector)
3861                pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3862                          mdname(mddev));
3863        pr_info("md/raid10:%s: active with %d out of %d devices\n",
3864                mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3865                conf->geo.raid_disks);
3866        /*
3867         * Ok, everything is just fine now
3868         */
3869        mddev->dev_sectors = conf->dev_sectors;
3870        size = raid10_size(mddev, 0, 0);
3871        md_set_array_sectors(mddev, size);
3872        mddev->resync_max_sectors = size;
3873        set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3874
3875        if (md_integrity_register(mddev))
3876                goto out_free_conf;
3877
3878        if (conf->reshape_progress != MaxSector) {
3879                unsigned long before_length, after_length;
3880
3881                before_length = ((1 << conf->prev.chunk_shift) *
3882                                 conf->prev.far_copies);
3883                after_length = ((1 << conf->geo.chunk_shift) *
3884                                conf->geo.far_copies);
3885
3886                if (max(before_length, after_length) > min_offset_diff) {
3887                        /* This cannot work */
3888                        pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3889                        goto out_free_conf;
3890                }
3891                conf->offset_diff = min_offset_diff;
3892
3893                clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3894                clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3895                set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3896                set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3897                mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3898                                                        "reshape");
3899                if (!mddev->sync_thread)
3900                        goto out_free_conf;
3901        }
3902
3903        return 0;
3904
3905out_free_conf:
3906        md_unregister_thread(&mddev->thread);
3907        mempool_exit(&conf->r10bio_pool);
3908        safe_put_page(conf->tmppage);
3909        kfree(conf->mirrors);
3910        kfree(conf);
3911        mddev->private = NULL;
3912out:
3913        return -EIO;
3914}
3915
3916static void raid10_free(struct mddev *mddev, void *priv)
3917{
3918        struct r10conf *conf = priv;
3919
3920        mempool_exit(&conf->r10bio_pool);
3921        safe_put_page(conf->tmppage);
3922        kfree(conf->mirrors);
3923        kfree(conf->mirrors_old);
3924        kfree(conf->mirrors_new);
3925        bioset_exit(&conf->bio_split);
3926        kfree(conf);
3927}
3928
3929static void raid10_quiesce(struct mddev *mddev, int quiesce)
3930{
3931        struct r10conf *conf = mddev->private;
3932
3933        if (quiesce)
3934                raise_barrier(conf, 0);
3935        else
3936                lower_barrier(conf);
3937}
3938
3939static int raid10_resize(struct mddev *mddev, sector_t sectors)
3940{
3941        /* Resize of 'far' arrays is not supported.
3942         * For 'near' and 'offset' arrays we can set the
3943         * number of sectors used to be an appropriate multiple
3944         * of the chunk size.
3945         * For 'offset', this is far_copies*chunksize.
3946         * For 'near' the multiplier is the LCM of
3947         * near_copies and raid_disks.
3948         * So if far_copies > 1 && !far_offset, fail.
3949         * Else find LCM(raid_disks, near_copy)*far_copies and
3950         * multiply by chunk_size.  Then round to this number.
3951         * This is mostly done by raid10_size()
3952         */
3953        struct r10conf *conf = mddev->private;
3954        sector_t oldsize, size;
3955
3956        if (mddev->reshape_position != MaxSector)
3957                return -EBUSY;
3958
3959        if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3960                return -EINVAL;
3961
3962        oldsize = raid10_size(mddev, 0, 0);
3963        size = raid10_size(mddev, sectors, 0);
3964        if (mddev->external_size &&
3965            mddev->array_sectors > size)
3966                return -EINVAL;
3967        if (mddev->bitmap) {
3968                int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
3969                if (ret)
3970                        return ret;
3971        }
3972        md_set_array_sectors(mddev, size);
3973        if (sectors > mddev->dev_sectors &&
3974            mddev->recovery_cp > oldsize) {
3975                mddev->recovery_cp = oldsize;
3976                set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3977        }
3978        calc_sectors(conf, sectors);
3979        mddev->dev_sectors = conf->dev_sectors;
3980        mddev->resync_max_sectors = size;
3981        return 0;
3982}
3983
3984static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3985{
3986        struct md_rdev *rdev;
3987        struct r10conf *conf;
3988
3989        if (mddev->degraded > 0) {
3990                pr_warn("md/raid10:%s: Error: degraded raid0!\n",
3991                        mdname(mddev));
3992                return ERR_PTR(-EINVAL);
3993        }
3994        sector_div(size, devs);
3995
3996        /* Set new parameters */
3997        mddev->new_level = 10;
3998        /* new layout: far_copies = 1, near_copies = 2 */
3999        mddev->new_layout = (1<<8) + 2;
4000        mddev->new_chunk_sectors = mddev->chunk_sectors;
4001        mddev->delta_disks = mddev->raid_disks;
4002        mddev->raid_disks *= 2;
4003        /* make sure it will be not marked as dirty */
4004        mddev->recovery_cp = MaxSector;
4005        mddev->dev_sectors = size;
4006
4007        conf = setup_conf(mddev);
4008        if (!IS_ERR(conf)) {
4009                rdev_for_each(rdev, mddev)
4010                        if (rdev->raid_disk >= 0) {
4011                                rdev->new_raid_disk = rdev->raid_disk * 2;
4012                                rdev->sectors = size;
4013                        }
4014                conf->barrier = 1;
4015        }
4016
4017        return conf;
4018}
4019
4020static void *raid10_takeover(struct mddev *mddev)
4021{
4022        struct r0conf *raid0_conf;
4023
4024        /* raid10 can take over:
4025         *  raid0 - providing it has only two drives
4026         */
4027        if (mddev->level == 0) {
4028                /* for raid0 takeover only one zone is supported */
4029                raid0_conf = mddev->private;
4030                if (raid0_conf->nr_strip_zones > 1) {
4031                        pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4032                                mdname(mddev));
4033                        return ERR_PTR(-EINVAL);
4034                }
4035                return raid10_takeover_raid0(mddev,
4036                        raid0_conf->strip_zone->zone_end,
4037                        raid0_conf->strip_zone->nb_dev);
4038        }
4039        return ERR_PTR(-EINVAL);
4040}
4041
4042static int raid10_check_reshape(struct mddev *mddev)
4043{
4044        /* Called when there is a request to change
4045         * - layout (to ->new_layout)
4046         * - chunk size (to ->new_chunk_sectors)
4047         * - raid_disks (by delta_disks)
4048         * or when trying to restart a reshape that was ongoing.
4049         *
4050         * We need to validate the request and possibly allocate
4051         * space if that might be an issue later.
4052         *
4053         * Currently we reject any reshape of a 'far' mode array,
4054         * allow chunk size to change if new is generally acceptable,
4055         * allow raid_disks to increase, and allow
4056         * a switch between 'near' mode and 'offset' mode.
4057         */
4058        struct r10conf *conf = mddev->private;
4059        struct geom geo;
4060
4061        if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4062                return -EINVAL;
4063
4064        if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4065                /* mustn't change number of copies */
4066                return -EINVAL;
4067        if (geo.far_copies > 1 && !geo.far_offset)
4068                /* Cannot switch to 'far' mode */
4069                return -EINVAL;
4070
4071        if (mddev->array_sectors & geo.chunk_mask)
4072                        /* not factor of array size */
4073                        return -EINVAL;
4074
4075        if (!enough(conf, -1))
4076                return -EINVAL;
4077
4078        kfree(conf->mirrors_new);
4079        conf->mirrors_new = NULL;
4080        if (mddev->delta_disks > 0) {
4081                /* allocate new 'mirrors' list */
4082                conf->mirrors_new =
4083                        kcalloc(mddev->raid_disks + mddev->delta_disks,
4084                                sizeof(struct raid10_info),
4085                                GFP_KERNEL);
4086                if (!conf->mirrors_new)
4087                        return -ENOMEM;
4088        }
4089        return 0;
4090}
4091
4092/*
4093 * Need to check if array has failed when deciding whether to:
4094 *  - start an array
4095 *  - remove non-faulty devices
4096 *  - add a spare
4097 *  - allow a reshape
4098 * This determination is simple when no reshape is happening.
4099 * However if there is a reshape, we need to carefully check
4100 * both the before and after sections.
4101 * This is because some failed devices may only affect one
4102 * of the two sections, and some non-in_sync devices may
4103 * be insync in the section most affected by failed devices.
4104 */
4105static int calc_degraded(struct r10conf *conf)
4106{
4107        int degraded, degraded2;
4108        int i;
4109
4110        rcu_read_lock();
4111        degraded = 0;
4112        /* 'prev' section first */
4113        for (i = 0; i < conf->prev.raid_disks; i++) {
4114                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4115                if (!rdev || test_bit(Faulty, &rdev->flags))
4116                        degraded++;
4117                else if (!test_bit(In_sync, &rdev->flags))
4118                        /* When we can reduce the number of devices in
4119                         * an array, this might not contribute to
4120                         * 'degraded'.  It does now.
4121                         */
4122                        degraded++;
4123        }
4124        rcu_read_unlock();
4125        if (conf->geo.raid_disks == conf->prev.raid_disks)
4126                return degraded;
4127        rcu_read_lock();
4128        degraded2 = 0;
4129        for (i = 0; i < conf->geo.raid_disks; i++) {
4130                struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4131                if (!rdev || test_bit(Faulty, &rdev->flags))
4132                        degraded2++;
4133                else if (!test_bit(In_sync, &rdev->flags)) {
4134                        /* If reshape is increasing the number of devices,
4135                         * this section has already been recovered, so
4136                         * it doesn't contribute to degraded.
4137                         * else it does.
4138                         */
4139                        if (conf->geo.raid_disks <= conf->prev.raid_disks)
4140                                degraded2++;
4141                }
4142        }
4143        rcu_read_unlock();
4144        if (degraded2 > degraded)
4145                return degraded2;
4146        return degraded;
4147}
4148
4149static int raid10_start_reshape(struct mddev *mddev)
4150{
4151        /* A 'reshape' has been requested. This commits
4152         * the various 'new' fields and sets MD_RECOVER_RESHAPE
4153         * This also checks if there are enough spares and adds them
4154         * to the array.
4155         * We currently require enough spares to make the final
4156         * array non-degraded.  We also require that the difference
4157         * between old and new data_offset - on each device - is
4158         * enough that we never risk over-writing.
4159         */
4160
4161        unsigned long before_length, after_length;
4162        sector_t min_offset_diff = 0;
4163        int first = 1;
4164        struct geom new;
4165        struct r10conf *conf = mddev->private;
4166        struct md_rdev *rdev;
4167        int spares = 0;
4168        int ret;
4169
4170        if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4171                return -EBUSY;
4172
4173        if (setup_geo(&new, mddev, geo_start) != conf->copies)
4174                return -EINVAL;
4175
4176        before_length = ((1 << conf->prev.chunk_shift) *
4177                         conf->prev.far_copies);
4178        after_length = ((1 << conf->geo.chunk_shift) *
4179                        conf->geo.far_copies);
4180
4181        rdev_for_each(rdev, mddev) {
4182                if (!test_bit(In_sync, &rdev->flags)
4183                    && !test_bit(Faulty, &rdev->flags))
4184                        spares++;
4185                if (rdev->raid_disk >= 0) {
4186                        long long diff = (rdev->new_data_offset
4187                                          - rdev->data_offset);
4188                        if (!mddev->reshape_backwards)
4189                                diff = -diff;
4190                        if (diff < 0)
4191                                diff = 0;
4192                        if (first || diff < min_offset_diff)
4193                                min_offset_diff = diff;
4194                        first = 0;
4195                }
4196        }
4197
4198        if (max(before_length, after_length) > min_offset_diff)
4199                return -EINVAL;
4200
4201        if (spares < mddev->delta_disks)
4202                return -EINVAL;
4203
4204        conf->offset_diff = min_offset_diff;
4205        spin_lock_irq(&conf->device_lock);
4206        if (conf->mirrors_new) {
4207                memcpy(conf->mirrors_new, conf->mirrors,
4208                       sizeof(struct raid10_info)*conf->prev.raid_disks);
4209                smp_mb();
4210                kfree(conf->mirrors_old);
4211                conf->mirrors_old = conf->mirrors;
4212                conf->mirrors = conf->mirrors_new;
4213                conf->mirrors_new = NULL;
4214        }
4215        setup_geo(&conf->geo, mddev, geo_start);
4216        smp_mb();
4217        if (mddev->reshape_backwards) {
4218                sector_t size = raid10_size(mddev, 0, 0);
4219                if (size < mddev->array_sectors) {
4220                        spin_unlock_irq(&conf->device_lock);
4221                        pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4222                                mdname(mddev));
4223                        return -EINVAL;
4224                }
4225                mddev->resync_max_sectors = size;
4226                conf->reshape_progress = size;
4227        } else
4228                conf->reshape_progress = 0;
4229        conf->reshape_safe = conf->reshape_progress;
4230        spin_unlock_irq(&conf->device_lock);
4231
4232        if (mddev->delta_disks && mddev->bitmap) {
4233                struct mdp_superblock_1 *sb = NULL;
4234                sector_t oldsize, newsize;
4235
4236                oldsize = raid10_size(mddev, 0, 0);
4237                newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4238
4239                if (!mddev_is_clustered(mddev)) {
4240                        ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4241                        if (ret)
4242                                goto abort;
4243                        else
4244                                goto out;
4245                }
4246
4247                rdev_for_each(rdev, mddev) {
4248                        if (rdev->raid_disk > -1 &&
4249                            !test_bit(Faulty, &rdev->flags))
4250                                sb = page_address(rdev->sb_page);
4251                }
4252
4253                /*
4254                 * some node is already performing reshape, and no need to
4255                 * call md_bitmap_resize again since it should be called when
4256                 * receiving BITMAP_RESIZE msg
4257                 */
4258                if ((sb && (le32_to_cpu(sb->feature_map) &
4259                            MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4260                        goto out;
4261
4262                ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4263                if (ret)
4264                        goto abort;
4265
4266                ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4267                if (ret) {
4268                        md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4269                        goto abort;
4270                }
4271        }
4272out:
4273        if (mddev->delta_disks > 0) {
4274                rdev_for_each(rdev, mddev)
4275                        if (rdev->raid_disk < 0 &&
4276                            !test_bit(Faulty, &rdev->flags)) {
4277                                if (raid10_add_disk(mddev, rdev) == 0) {
4278                                        if (rdev->raid_disk >=
4279                                            conf->prev.raid_disks)
4280                                                set_bit(In_sync, &rdev->flags);
4281                                        else
4282                                                rdev->recovery_offset = 0;
4283
4284                                        /* Failure here is OK */
4285                                        sysfs_link_rdev(mddev, rdev);
4286                                }
4287                        } else if (rdev->raid_disk >= conf->prev.raid_disks
4288                                   && !test_bit(Faulty, &rdev->flags)) {
4289                                /* This is a spare that was manually added */
4290                                set_bit(In_sync, &rdev->flags);
4291                        }
4292        }
4293        /* When a reshape changes the number of devices,
4294         * ->degraded is measured against the larger of the
4295         * pre and  post numbers.
4296         */
4297        spin_lock_irq(&conf->device_lock);
4298        mddev->degraded = calc_degraded(conf);
4299        spin_unlock_irq(&conf->device_lock);
4300        mddev->raid_disks = conf->geo.raid_disks;
4301        mddev->reshape_position = conf->reshape_progress;
4302        set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4303
4304        clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4305        clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4306        clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4307        set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4308        set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4309
4310        mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4311                                                "reshape");
4312        if (!mddev->sync_thread) {
4313                ret = -EAGAIN;
4314                goto abort;
4315        }
4316        conf->reshape_checkpoint = jiffies;
4317        md_wakeup_thread(mddev->sync_thread);
4318        md_new_event(mddev);
4319        return 0;
4320
4321abort:
4322        mddev->recovery = 0;
4323        spin_lock_irq(&conf->device_lock);
4324        conf->geo = conf->prev;
4325        mddev->raid_disks = conf->geo.raid_disks;
4326        rdev_for_each(rdev, mddev)
4327                rdev->new_data_offset = rdev->data_offset;
4328        smp_wmb();
4329        conf->reshape_progress = MaxSector;
4330        conf->reshape_safe = MaxSector;
4331        mddev->reshape_position = MaxSector;
4332        spin_unlock_irq(&conf->device_lock);
4333        return ret;
4334}
4335
4336/* Calculate the last device-address that could contain
4337 * any block from the chunk that includes the array-address 's'
4338 * and report the next address.
4339 * i.e. the address returned will be chunk-aligned and after
4340 * any data that is in the chunk containing 's'.
4341 */
4342static sector_t last_dev_address(sector_t s, struct geom *geo)
4343{
4344        s = (s | geo->chunk_mask) + 1;
4345        s >>= geo->chunk_shift;
4346        s *= geo->near_copies;
4347        s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4348        s *= geo->far_copies;
4349        s <<= geo->chunk_shift;
4350        return s;
4351}
4352
4353/* Calculate the first device-address that could contain
4354 * any block from the chunk that includes the array-address 's'.
4355 * This too will be the start of a chunk
4356 */
4357static sector_t first_dev_address(sector_t s, struct geom *geo)
4358{
4359        s >>= geo->chunk_shift;
4360        s *= geo->near_copies;
4361        sector_div(s, geo->raid_disks);
4362        s *= geo->far_copies;
4363        s <<= geo->chunk_shift;
4364        return s;
4365}
4366
4367static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4368                                int *skipped)
4369{
4370        /* We simply copy at most one chunk (smallest of old and new)
4371         * at a time, possibly less if that exceeds RESYNC_PAGES,
4372         * or we hit a bad block or something.
4373         * This might mean we pause for normal IO in the middle of
4374         * a chunk, but that is not a problem as mddev->reshape_position
4375         * can record any location.
4376         *
4377         * If we will want to write to a location that isn't
4378         * yet recorded as 'safe' (i.e. in metadata on disk) then
4379         * we need to flush all reshape requests and update the metadata.
4380         *
4381         * When reshaping forwards (e.g. to more devices), we interpret
4382         * 'safe' as the earliest block which might not have been copied
4383         * down yet.  We divide this by previous stripe size and multiply
4384         * by previous stripe length to get lowest device offset that we
4385         * cannot write to yet.
4386         * We interpret 'sector_nr' as an address that we want to write to.
4387         * From this we use last_device_address() to find where we might
4388         * write to, and first_device_address on the  'safe' position.
4389         * If this 'next' write position is after the 'safe' position,
4390         * we must update the metadata to increase the 'safe' position.
4391         *
4392         * When reshaping backwards, we round in the opposite direction
4393         * and perform the reverse test:  next write position must not be
4394         * less than current safe position.
4395         *
4396         * In all this the minimum difference in data offsets
4397         * (conf->offset_diff - always positive) allows a bit of slack,
4398         * so next can be after 'safe', but not by more than offset_diff
4399         *
4400         * We need to prepare all the bios here before we start any IO
4401         * to ensure the size we choose is acceptable to all devices.
4402         * The means one for each copy for write-out and an extra one for
4403         * read-in.
4404         * We store the read-in bio in ->master_bio and the others in
4405         * ->devs[x].bio and ->devs[x].repl_bio.
4406         */
4407        struct r10conf *conf = mddev->private;
4408        struct r10bio *r10_bio;
4409        sector_t next, safe, last;
4410        int max_sectors;
4411        int nr_sectors;
4412        int s;
4413        struct md_rdev *rdev;
4414        int need_flush = 0;
4415        struct bio *blist;
4416        struct bio *bio, *read_bio;
4417        int sectors_done = 0;
4418        struct page **pages;
4419
4420        if (sector_nr == 0) {
4421                /* If restarting in the middle, skip the initial sectors */
4422                if (mddev->reshape_backwards &&
4423                    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4424                        sector_nr = (raid10_size(mddev, 0, 0)
4425                                     - conf->reshape_progress);
4426                } else if (!mddev->reshape_backwards &&
4427                           conf->reshape_progress > 0)
4428                        sector_nr = conf->reshape_progress;
4429                if (sector_nr) {
4430                        mddev->curr_resync_completed = sector_nr;
4431                        sysfs_notify_dirent_safe(mddev->sysfs_completed);
4432                        *skipped = 1;
4433                        return sector_nr;
4434                }
4435        }
4436
4437        /* We don't use sector_nr to track where we are up to
4438         * as that doesn't work well for ->reshape_backwards.
4439         * So just use ->reshape_progress.
4440         */
4441        if (mddev->reshape_backwards) {
4442                /* 'next' is the earliest device address that we might
4443                 * write to for this chunk in the new layout
4444                 */
4445                next = first_dev_address(conf->reshape_progress - 1,
4446                                         &conf->geo);
4447
4448                /* 'safe' is the last device address that we might read from
4449                 * in the old layout after a restart
4450                 */
4451                safe = last_dev_address(conf->reshape_safe - 1,
4452                                        &conf->prev);
4453
4454                if (next + conf->offset_diff < safe)
4455                        need_flush = 1;
4456
4457                last = conf->reshape_progress - 1;
4458                sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4459                                               & conf->prev.chunk_mask);
4460                if (sector_nr + RESYNC_SECTORS < last)
4461                        sector_nr = last + 1 - RESYNC_SECTORS;
4462        } else {
4463                /* 'next' is after the last device address that we
4464                 * might write to for this chunk in the new layout
4465                 */
4466                next = last_dev_address(conf->reshape_progress, &conf->geo);
4467
4468                /* 'safe' is the earliest device address that we might
4469                 * read from in the old layout after a restart
4470                 */
4471                safe = first_dev_address(conf->reshape_safe, &conf->prev);
4472
4473                /* Need to update metadata if 'next' might be beyond 'safe'
4474                 * as that would possibly corrupt data
4475                 */
4476                if (next > safe + conf->offset_diff)
4477                        need_flush = 1;
4478
4479                sector_nr = conf->reshape_progress;
4480                last  = sector_nr | (conf->geo.chunk_mask
4481                                     & conf->prev.chunk_mask);
4482
4483                if (sector_nr + RESYNC_SECTORS <= last)
4484                        last = sector_nr + RESYNC_SECTORS - 1;
4485        }
4486
4487        if (need_flush ||
4488            time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4489                /* Need to update reshape_position in metadata */
4490                wait_barrier(conf);
4491                mddev->reshape_position = conf->reshape_progress;
4492                if (mddev->reshape_backwards)
4493                        mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4494                                - conf->reshape_progress;
4495                else
4496                        mddev->curr_resync_completed = conf->reshape_progress;
4497                conf->reshape_checkpoint = jiffies;
4498                set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4499                md_wakeup_thread(mddev->thread);
4500                wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4501                           test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4502                if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4503                        allow_barrier(conf);
4504                        return sectors_done;
4505                }
4506                conf->reshape_safe = mddev->reshape_position;
4507                allow_barrier(conf);
4508        }
4509
4510        raise_barrier(conf, 0);
4511read_more:
4512        /* Now schedule reads for blocks from sector_nr to last */
4513        r10_bio = raid10_alloc_init_r10buf(conf);
4514        r10_bio->state = 0;
4515        raise_barrier(conf, 1);
4516        atomic_set(&r10_bio->remaining, 0);
4517        r10_bio->mddev = mddev;
4518        r10_bio->sector = sector_nr;
4519        set_bit(R10BIO_IsReshape, &r10_bio->state);
4520        r10_bio->sectors = last - sector_nr + 1;
4521        rdev = read_balance(conf, r10_bio, &max_sectors);
4522        BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4523
4524        if (!rdev) {
4525                /* Cannot read from here, so need to record bad blocks
4526                 * on all the target devices.
4527                 */
4528                // FIXME
4529                mempool_free(r10_bio, &conf->r10buf_pool);
4530                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4531                return sectors_done;
4532        }
4533
4534        read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4535
4536        bio_set_dev(read_bio, rdev->bdev);
4537        read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4538                               + rdev->data_offset);
4539        read_bio->bi_private = r10_bio;
4540        read_bio->bi_end_io = end_reshape_read;
4541        bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4542        read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4543        read_bio->bi_status = 0;
4544        read_bio->bi_vcnt = 0;
4545        read_bio->bi_iter.bi_size = 0;
4546        r10_bio->master_bio = read_bio;
4547        r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4548
4549        /*
4550         * Broadcast RESYNC message to other nodes, so all nodes would not
4551         * write to the region to avoid conflict.
4552        */
4553        if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4554                struct mdp_superblock_1 *sb = NULL;
4555                int sb_reshape_pos = 0;
4556
4557                conf->cluster_sync_low = sector_nr;
4558                conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4559                sb = page_address(rdev->sb_page);
4560                if (sb) {
4561                        sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4562                        /*
4563                         * Set cluster_sync_low again if next address for array
4564                         * reshape is less than cluster_sync_low. Since we can't
4565                         * update cluster_sync_low until it has finished reshape.
4566                         */
4567                        if (sb_reshape_pos < conf->cluster_sync_low)
4568                                conf->cluster_sync_low = sb_reshape_pos;
4569                }
4570
4571                md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4572                                                          conf->cluster_sync_high);
4573        }
4574
4575        /* Now find the locations in the new layout */
4576        __raid10_find_phys(&conf->geo, r10_bio);
4577
4578        blist = read_bio;
4579        read_bio->bi_next = NULL;
4580
4581        rcu_read_lock();
4582        for (s = 0; s < conf->copies*2; s++) {
4583                struct bio *b;
4584                int d = r10_bio->devs[s/2].devnum;
4585                struct md_rdev *rdev2;
4586                if (s&1) {
4587                        rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4588                        b = r10_bio->devs[s/2].repl_bio;
4589                } else {
4590                        rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4591                        b = r10_bio->devs[s/2].bio;
4592                }
4593                if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4594                        continue;
4595
4596                bio_set_dev(b, rdev2->bdev);
4597                b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4598                        rdev2->new_data_offset;
4599                b->bi_end_io = end_reshape_write;
4600                bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4601                b->bi_next = blist;
4602                blist = b;
4603        }
4604
4605        /* Now add as many pages as possible to all of these bios. */
4606
4607        nr_sectors = 0;
4608        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4609        for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4610                struct page *page = pages[s / (PAGE_SIZE >> 9)];
4611                int len = (max_sectors - s) << 9;
4612                if (len > PAGE_SIZE)
4613                        len = PAGE_SIZE;
4614                for (bio = blist; bio ; bio = bio->bi_next) {
4615                        /*
4616                         * won't fail because the vec table is big enough
4617                         * to hold all these pages
4618                         */
4619                        bio_add_page(bio, page, len, 0);
4620                }
4621                sector_nr += len >> 9;
4622                nr_sectors += len >> 9;
4623        }
4624        rcu_read_unlock();
4625        r10_bio->sectors = nr_sectors;
4626
4627        /* Now submit the read */
4628        md_sync_acct_bio(read_bio, r10_bio->sectors);
4629        atomic_inc(&r10_bio->remaining);
4630        read_bio->bi_next = NULL;
4631        submit_bio_noacct(read_bio);
4632        sectors_done += nr_sectors;
4633        if (sector_nr <= last)
4634                goto read_more;
4635
4636        lower_barrier(conf);
4637
4638        /* Now that we have done the whole section we can
4639         * update reshape_progress
4640         */
4641        if (mddev->reshape_backwards)
4642                conf->reshape_progress -= sectors_done;
4643        else
4644                conf->reshape_progress += sectors_done;
4645
4646        return sectors_done;
4647}
4648
4649static void end_reshape_request(struct r10bio *r10_bio);
4650static int handle_reshape_read_error(struct mddev *mddev,
4651                                     struct r10bio *r10_bio);
4652static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4653{
4654        /* Reshape read completed.  Hopefully we have a block
4655         * to write out.
4656         * If we got a read error then we do sync 1-page reads from
4657         * elsewhere until we find the data - or give up.
4658         */
4659        struct r10conf *conf = mddev->private;
4660        int s;
4661
4662        if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4663                if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4664                        /* Reshape has been aborted */
4665                        md_done_sync(mddev, r10_bio->sectors, 0);
4666                        return;
4667                }
4668
4669        /* We definitely have the data in the pages, schedule the
4670         * writes.
4671         */
4672        atomic_set(&r10_bio->remaining, 1);
4673        for (s = 0; s < conf->copies*2; s++) {
4674                struct bio *b;
4675                int d = r10_bio->devs[s/2].devnum;
4676                struct md_rdev *rdev;
4677                rcu_read_lock();
4678                if (s&1) {
4679                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4680                        b = r10_bio->devs[s/2].repl_bio;
4681                } else {
4682                        rdev = rcu_dereference(conf->mirrors[d].rdev);
4683                        b = r10_bio->devs[s/2].bio;
4684                }
4685                if (!rdev || test_bit(Faulty, &rdev->flags)) {
4686                        rcu_read_unlock();
4687                        continue;
4688                }
4689                atomic_inc(&rdev->nr_pending);
4690                rcu_read_unlock();
4691                md_sync_acct_bio(b, r10_bio->sectors);
4692                atomic_inc(&r10_bio->remaining);
4693                b->bi_next = NULL;
4694                submit_bio_noacct(b);
4695        }
4696        end_reshape_request(r10_bio);
4697}
4698
4699static void end_reshape(struct r10conf *conf)
4700{
4701        if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4702                return;
4703
4704        spin_lock_irq(&conf->device_lock);
4705        conf->prev = conf->geo;
4706        md_finish_reshape(conf->mddev);
4707        smp_wmb();
4708        conf->reshape_progress = MaxSector;
4709        conf->reshape_safe = MaxSector;
4710        spin_unlock_irq(&conf->device_lock);
4711
4712        if (conf->mddev->queue)
4713                raid10_set_io_opt(conf);
4714        conf->fullsync = 0;
4715}
4716
4717static void raid10_update_reshape_pos(struct mddev *mddev)
4718{
4719        struct r10conf *conf = mddev->private;
4720        sector_t lo, hi;
4721
4722        md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4723        if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4724            || mddev->reshape_position == MaxSector)
4725                conf->reshape_progress = mddev->reshape_position;
4726        else
4727                WARN_ON_ONCE(1);
4728}
4729
4730static int handle_reshape_read_error(struct mddev *mddev,
4731                                     struct r10bio *r10_bio)
4732{
4733        /* Use sync reads to get the blocks from somewhere else */
4734        int sectors = r10_bio->sectors;
4735        struct r10conf *conf = mddev->private;
4736        struct r10bio *r10b;
4737        int slot = 0;
4738        int idx = 0;
4739        struct page **pages;
4740
4741        r10b = kmalloc(struct_size(r10b, devs, conf->copies), GFP_NOIO);
4742        if (!r10b) {
4743                set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4744                return -ENOMEM;
4745        }
4746
4747        /* reshape IOs share pages from .devs[0].bio */
4748        pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4749
4750        r10b->sector = r10_bio->sector;
4751        __raid10_find_phys(&conf->prev, r10b);
4752
4753        while (sectors) {
4754                int s = sectors;
4755                int success = 0;
4756                int first_slot = slot;
4757
4758                if (s > (PAGE_SIZE >> 9))
4759                        s = PAGE_SIZE >> 9;
4760
4761                rcu_read_lock();
4762                while (!success) {
4763                        int d = r10b->devs[slot].devnum;
4764                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4765                        sector_t addr;
4766                        if (rdev == NULL ||
4767                            test_bit(Faulty, &rdev->flags) ||
4768                            !test_bit(In_sync, &rdev->flags))
4769                                goto failed;
4770
4771                        addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4772                        atomic_inc(&rdev->nr_pending);
4773                        rcu_read_unlock();
4774                        success = sync_page_io(rdev,
4775                                               addr,
4776                                               s << 9,
4777                                               pages[idx],
4778                                               REQ_OP_READ, 0, false);
4779                        rdev_dec_pending(rdev, mddev);
4780                        rcu_read_lock();
4781                        if (success)
4782                                break;
4783                failed:
4784                        slot++;
4785                        if (slot >= conf->copies)
4786                                slot = 0;
4787                        if (slot == first_slot)
4788                                break;
4789                }
4790                rcu_read_unlock();
4791                if (!success) {
4792                        /* couldn't read this block, must give up */
4793                        set_bit(MD_RECOVERY_INTR,
4794                                &mddev->recovery);
4795                        kfree(r10b);
4796                        return -EIO;
4797                }
4798                sectors -= s;
4799                idx++;
4800        }
4801        kfree(r10b);
4802        return 0;
4803}
4804
4805static void end_reshape_write(struct bio *bio)
4806{
4807        struct r10bio *r10_bio = get_resync_r10bio(bio);
4808        struct mddev *mddev = r10_bio->mddev;
4809        struct r10conf *conf = mddev->private;
4810        int d;
4811        int slot;
4812        int repl;
4813        struct md_rdev *rdev = NULL;
4814
4815        d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4816        if (repl)
4817                rdev = conf->mirrors[d].replacement;
4818        if (!rdev) {
4819                smp_mb();
4820                rdev = conf->mirrors[d].rdev;
4821        }
4822
4823        if (bio->bi_status) {
4824                /* FIXME should record badblock */
4825                md_error(mddev, rdev);
4826        }
4827
4828        rdev_dec_pending(rdev, mddev);
4829        end_reshape_request(r10_bio);
4830}
4831
4832static void end_reshape_request(struct r10bio *r10_bio)
4833{
4834        if (!atomic_dec_and_test(&r10_bio->remaining))
4835                return;
4836        md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4837        bio_put(r10_bio->master_bio);
4838        put_buf(r10_bio);
4839}
4840
4841static void raid10_finish_reshape(struct mddev *mddev)
4842{
4843        struct r10conf *conf = mddev->private;
4844
4845        if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4846                return;
4847
4848        if (mddev->delta_disks > 0) {
4849                if (mddev->recovery_cp > mddev->resync_max_sectors) {
4850                        mddev->recovery_cp = mddev->resync_max_sectors;
4851                        set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4852                }
4853                mddev->resync_max_sectors = mddev->array_sectors;
4854        } else {
4855                int d;
4856                rcu_read_lock();
4857                for (d = conf->geo.raid_disks ;
4858                     d < conf->geo.raid_disks - mddev->delta_disks;
4859                     d++) {
4860                        struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4861                        if (rdev)
4862                                clear_bit(In_sync, &rdev->flags);
4863                        rdev = rcu_dereference(conf->mirrors[d].replacement);
4864                        if (rdev)
4865                                clear_bit(In_sync, &rdev->flags);
4866                }
4867                rcu_read_unlock();
4868        }
4869        mddev->layout = mddev->new_layout;
4870        mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4871        mddev->reshape_position = MaxSector;
4872        mddev->delta_disks = 0;
4873        mddev->reshape_backwards = 0;
4874}
4875
4876static struct md_personality raid10_personality =
4877{
4878        .name           = "raid10",
4879        .level          = 10,
4880        .owner          = THIS_MODULE,
4881        .make_request   = raid10_make_request,
4882        .run            = raid10_run,
4883        .free           = raid10_free,
4884        .status         = raid10_status,
4885        .error_handler  = raid10_error,
4886        .hot_add_disk   = raid10_add_disk,
4887        .hot_remove_disk= raid10_remove_disk,
4888        .spare_active   = raid10_spare_active,
4889        .sync_request   = raid10_sync_request,
4890        .quiesce        = raid10_quiesce,
4891        .size           = raid10_size,
4892        .resize         = raid10_resize,
4893        .takeover       = raid10_takeover,
4894        .check_reshape  = raid10_check_reshape,
4895        .start_reshape  = raid10_start_reshape,
4896        .finish_reshape = raid10_finish_reshape,
4897        .update_reshape_pos = raid10_update_reshape_pos,
4898};
4899
4900static int __init raid_init(void)
4901{
4902        return register_md_personality(&raid10_personality);
4903}
4904
4905static void raid_exit(void)
4906{
4907        unregister_md_personality(&raid10_personality);
4908}
4909
4910module_init(raid_init);
4911module_exit(raid_exit);
4912MODULE_LICENSE("GPL");
4913MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4914MODULE_ALIAS("md-personality-9"); /* RAID10 */
4915MODULE_ALIAS("md-raid10");
4916MODULE_ALIAS("md-level-10");
4917
4918module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4919