linux/drivers/mmc/core/core.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/drivers/mmc/core/core.c
   4 *
   5 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   6 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   7 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   8 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   9 */
  10#include <linux/module.h>
  11#include <linux/init.h>
  12#include <linux/interrupt.h>
  13#include <linux/completion.h>
  14#include <linux/device.h>
  15#include <linux/delay.h>
  16#include <linux/pagemap.h>
  17#include <linux/err.h>
  18#include <linux/leds.h>
  19#include <linux/scatterlist.h>
  20#include <linux/log2.h>
  21#include <linux/pm_runtime.h>
  22#include <linux/pm_wakeup.h>
  23#include <linux/suspend.h>
  24#include <linux/fault-inject.h>
  25#include <linux/random.h>
  26#include <linux/slab.h>
  27#include <linux/of.h>
  28
  29#include <linux/mmc/card.h>
  30#include <linux/mmc/host.h>
  31#include <linux/mmc/mmc.h>
  32#include <linux/mmc/sd.h>
  33#include <linux/mmc/slot-gpio.h>
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/mmc.h>
  37
  38#include "core.h"
  39#include "card.h"
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43#include "pwrseq.h"
  44
  45#include "mmc_ops.h"
  46#include "sd_ops.h"
  47#include "sdio_ops.h"
  48
  49/* The max erase timeout, used when host->max_busy_timeout isn't specified */
  50#define MMC_ERASE_TIMEOUT_MS    (60 * 1000) /* 60 s */
  51#define SD_DISCARD_TIMEOUT_MS   (250)
  52
  53static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  54
  55/*
  56 * Enabling software CRCs on the data blocks can be a significant (30%)
  57 * performance cost, and for other reasons may not always be desired.
  58 * So we allow it it to be disabled.
  59 */
  60bool use_spi_crc = 1;
  61module_param(use_spi_crc, bool, 0);
  62
  63static int mmc_schedule_delayed_work(struct delayed_work *work,
  64                                     unsigned long delay)
  65{
  66        /*
  67         * We use the system_freezable_wq, because of two reasons.
  68         * First, it allows several works (not the same work item) to be
  69         * executed simultaneously. Second, the queue becomes frozen when
  70         * userspace becomes frozen during system PM.
  71         */
  72        return queue_delayed_work(system_freezable_wq, work, delay);
  73}
  74
  75#ifdef CONFIG_FAIL_MMC_REQUEST
  76
  77/*
  78 * Internal function. Inject random data errors.
  79 * If mmc_data is NULL no errors are injected.
  80 */
  81static void mmc_should_fail_request(struct mmc_host *host,
  82                                    struct mmc_request *mrq)
  83{
  84        struct mmc_command *cmd = mrq->cmd;
  85        struct mmc_data *data = mrq->data;
  86        static const int data_errors[] = {
  87                -ETIMEDOUT,
  88                -EILSEQ,
  89                -EIO,
  90        };
  91
  92        if (!data)
  93                return;
  94
  95        if ((cmd && cmd->error) || data->error ||
  96            !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
  97                return;
  98
  99        data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 100        data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 101}
 102
 103#else /* CONFIG_FAIL_MMC_REQUEST */
 104
 105static inline void mmc_should_fail_request(struct mmc_host *host,
 106                                           struct mmc_request *mrq)
 107{
 108}
 109
 110#endif /* CONFIG_FAIL_MMC_REQUEST */
 111
 112static inline void mmc_complete_cmd(struct mmc_request *mrq)
 113{
 114        if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
 115                complete_all(&mrq->cmd_completion);
 116}
 117
 118void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
 119{
 120        if (!mrq->cap_cmd_during_tfr)
 121                return;
 122
 123        mmc_complete_cmd(mrq);
 124
 125        pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
 126                 mmc_hostname(host), mrq->cmd->opcode);
 127}
 128EXPORT_SYMBOL(mmc_command_done);
 129
 130/**
 131 *      mmc_request_done - finish processing an MMC request
 132 *      @host: MMC host which completed request
 133 *      @mrq: MMC request which request
 134 *
 135 *      MMC drivers should call this function when they have completed
 136 *      their processing of a request.
 137 */
 138void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 139{
 140        struct mmc_command *cmd = mrq->cmd;
 141        int err = cmd->error;
 142
 143        /* Flag re-tuning needed on CRC errors */
 144        if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 145            cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
 146            !host->retune_crc_disable &&
 147            (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 148            (mrq->data && mrq->data->error == -EILSEQ) ||
 149            (mrq->stop && mrq->stop->error == -EILSEQ)))
 150                mmc_retune_needed(host);
 151
 152        if (err && cmd->retries && mmc_host_is_spi(host)) {
 153                if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 154                        cmd->retries = 0;
 155        }
 156
 157        if (host->ongoing_mrq == mrq)
 158                host->ongoing_mrq = NULL;
 159
 160        mmc_complete_cmd(mrq);
 161
 162        trace_mmc_request_done(host, mrq);
 163
 164        /*
 165         * We list various conditions for the command to be considered
 166         * properly done:
 167         *
 168         * - There was no error, OK fine then
 169         * - We are not doing some kind of retry
 170         * - The card was removed (...so just complete everything no matter
 171         *   if there are errors or retries)
 172         */
 173        if (!err || !cmd->retries || mmc_card_removed(host->card)) {
 174                mmc_should_fail_request(host, mrq);
 175
 176                if (!host->ongoing_mrq)
 177                        led_trigger_event(host->led, LED_OFF);
 178
 179                if (mrq->sbc) {
 180                        pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 181                                mmc_hostname(host), mrq->sbc->opcode,
 182                                mrq->sbc->error,
 183                                mrq->sbc->resp[0], mrq->sbc->resp[1],
 184                                mrq->sbc->resp[2], mrq->sbc->resp[3]);
 185                }
 186
 187                pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 188                        mmc_hostname(host), cmd->opcode, err,
 189                        cmd->resp[0], cmd->resp[1],
 190                        cmd->resp[2], cmd->resp[3]);
 191
 192                if (mrq->data) {
 193                        pr_debug("%s:     %d bytes transferred: %d\n",
 194                                mmc_hostname(host),
 195                                mrq->data->bytes_xfered, mrq->data->error);
 196                }
 197
 198                if (mrq->stop) {
 199                        pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 200                                mmc_hostname(host), mrq->stop->opcode,
 201                                mrq->stop->error,
 202                                mrq->stop->resp[0], mrq->stop->resp[1],
 203                                mrq->stop->resp[2], mrq->stop->resp[3]);
 204                }
 205        }
 206        /*
 207         * Request starter must handle retries - see
 208         * mmc_wait_for_req_done().
 209         */
 210        if (mrq->done)
 211                mrq->done(mrq);
 212}
 213
 214EXPORT_SYMBOL(mmc_request_done);
 215
 216static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 217{
 218        int err;
 219
 220        /* Assumes host controller has been runtime resumed by mmc_claim_host */
 221        err = mmc_retune(host);
 222        if (err) {
 223                mrq->cmd->error = err;
 224                mmc_request_done(host, mrq);
 225                return;
 226        }
 227
 228        /*
 229         * For sdio rw commands we must wait for card busy otherwise some
 230         * sdio devices won't work properly.
 231         * And bypass I/O abort, reset and bus suspend operations.
 232         */
 233        if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
 234            host->ops->card_busy) {
 235                int tries = 500; /* Wait aprox 500ms at maximum */
 236
 237                while (host->ops->card_busy(host) && --tries)
 238                        mmc_delay(1);
 239
 240                if (tries == 0) {
 241                        mrq->cmd->error = -EBUSY;
 242                        mmc_request_done(host, mrq);
 243                        return;
 244                }
 245        }
 246
 247        if (mrq->cap_cmd_during_tfr) {
 248                host->ongoing_mrq = mrq;
 249                /*
 250                 * Retry path could come through here without having waiting on
 251                 * cmd_completion, so ensure it is reinitialised.
 252                 */
 253                reinit_completion(&mrq->cmd_completion);
 254        }
 255
 256        trace_mmc_request_start(host, mrq);
 257
 258        if (host->cqe_on)
 259                host->cqe_ops->cqe_off(host);
 260
 261        host->ops->request(host, mrq);
 262}
 263
 264static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
 265                             bool cqe)
 266{
 267        if (mrq->sbc) {
 268                pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 269                         mmc_hostname(host), mrq->sbc->opcode,
 270                         mrq->sbc->arg, mrq->sbc->flags);
 271        }
 272
 273        if (mrq->cmd) {
 274                pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
 275                         mmc_hostname(host), cqe ? "CQE direct " : "",
 276                         mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
 277        } else if (cqe) {
 278                pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
 279                         mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
 280        }
 281
 282        if (mrq->data) {
 283                pr_debug("%s:     blksz %d blocks %d flags %08x "
 284                        "tsac %d ms nsac %d\n",
 285                        mmc_hostname(host), mrq->data->blksz,
 286                        mrq->data->blocks, mrq->data->flags,
 287                        mrq->data->timeout_ns / 1000000,
 288                        mrq->data->timeout_clks);
 289        }
 290
 291        if (mrq->stop) {
 292                pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 293                         mmc_hostname(host), mrq->stop->opcode,
 294                         mrq->stop->arg, mrq->stop->flags);
 295        }
 296}
 297
 298static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
 299{
 300        unsigned int i, sz = 0;
 301        struct scatterlist *sg;
 302
 303        if (mrq->cmd) {
 304                mrq->cmd->error = 0;
 305                mrq->cmd->mrq = mrq;
 306                mrq->cmd->data = mrq->data;
 307        }
 308        if (mrq->sbc) {
 309                mrq->sbc->error = 0;
 310                mrq->sbc->mrq = mrq;
 311        }
 312        if (mrq->data) {
 313                if (mrq->data->blksz > host->max_blk_size ||
 314                    mrq->data->blocks > host->max_blk_count ||
 315                    mrq->data->blocks * mrq->data->blksz > host->max_req_size)
 316                        return -EINVAL;
 317
 318                for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 319                        sz += sg->length;
 320                if (sz != mrq->data->blocks * mrq->data->blksz)
 321                        return -EINVAL;
 322
 323                mrq->data->error = 0;
 324                mrq->data->mrq = mrq;
 325                if (mrq->stop) {
 326                        mrq->data->stop = mrq->stop;
 327                        mrq->stop->error = 0;
 328                        mrq->stop->mrq = mrq;
 329                }
 330        }
 331
 332        return 0;
 333}
 334
 335int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 336{
 337        int err;
 338
 339        init_completion(&mrq->cmd_completion);
 340
 341        mmc_retune_hold(host);
 342
 343        if (mmc_card_removed(host->card))
 344                return -ENOMEDIUM;
 345
 346        mmc_mrq_pr_debug(host, mrq, false);
 347
 348        WARN_ON(!host->claimed);
 349
 350        err = mmc_mrq_prep(host, mrq);
 351        if (err)
 352                return err;
 353
 354        led_trigger_event(host->led, LED_FULL);
 355        __mmc_start_request(host, mrq);
 356
 357        return 0;
 358}
 359EXPORT_SYMBOL(mmc_start_request);
 360
 361static void mmc_wait_done(struct mmc_request *mrq)
 362{
 363        complete(&mrq->completion);
 364}
 365
 366static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
 367{
 368        struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
 369
 370        /*
 371         * If there is an ongoing transfer, wait for the command line to become
 372         * available.
 373         */
 374        if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
 375                wait_for_completion(&ongoing_mrq->cmd_completion);
 376}
 377
 378static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 379{
 380        int err;
 381
 382        mmc_wait_ongoing_tfr_cmd(host);
 383
 384        init_completion(&mrq->completion);
 385        mrq->done = mmc_wait_done;
 386
 387        err = mmc_start_request(host, mrq);
 388        if (err) {
 389                mrq->cmd->error = err;
 390                mmc_complete_cmd(mrq);
 391                complete(&mrq->completion);
 392        }
 393
 394        return err;
 395}
 396
 397void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
 398{
 399        struct mmc_command *cmd;
 400
 401        while (1) {
 402                wait_for_completion(&mrq->completion);
 403
 404                cmd = mrq->cmd;
 405
 406                if (!cmd->error || !cmd->retries ||
 407                    mmc_card_removed(host->card))
 408                        break;
 409
 410                mmc_retune_recheck(host);
 411
 412                pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 413                         mmc_hostname(host), cmd->opcode, cmd->error);
 414                cmd->retries--;
 415                cmd->error = 0;
 416                __mmc_start_request(host, mrq);
 417        }
 418
 419        mmc_retune_release(host);
 420}
 421EXPORT_SYMBOL(mmc_wait_for_req_done);
 422
 423/*
 424 * mmc_cqe_start_req - Start a CQE request.
 425 * @host: MMC host to start the request
 426 * @mrq: request to start
 427 *
 428 * Start the request, re-tuning if needed and it is possible. Returns an error
 429 * code if the request fails to start or -EBUSY if CQE is busy.
 430 */
 431int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
 432{
 433        int err;
 434
 435        /*
 436         * CQE cannot process re-tuning commands. Caller must hold retuning
 437         * while CQE is in use.  Re-tuning can happen here only when CQE has no
 438         * active requests i.e. this is the first.  Note, re-tuning will call
 439         * ->cqe_off().
 440         */
 441        err = mmc_retune(host);
 442        if (err)
 443                goto out_err;
 444
 445        mrq->host = host;
 446
 447        mmc_mrq_pr_debug(host, mrq, true);
 448
 449        err = mmc_mrq_prep(host, mrq);
 450        if (err)
 451                goto out_err;
 452
 453        err = host->cqe_ops->cqe_request(host, mrq);
 454        if (err)
 455                goto out_err;
 456
 457        trace_mmc_request_start(host, mrq);
 458
 459        return 0;
 460
 461out_err:
 462        if (mrq->cmd) {
 463                pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
 464                         mmc_hostname(host), mrq->cmd->opcode, err);
 465        } else {
 466                pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
 467                         mmc_hostname(host), mrq->tag, err);
 468        }
 469        return err;
 470}
 471EXPORT_SYMBOL(mmc_cqe_start_req);
 472
 473/**
 474 *      mmc_cqe_request_done - CQE has finished processing an MMC request
 475 *      @host: MMC host which completed request
 476 *      @mrq: MMC request which completed
 477 *
 478 *      CQE drivers should call this function when they have completed
 479 *      their processing of a request.
 480 */
 481void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
 482{
 483        mmc_should_fail_request(host, mrq);
 484
 485        /* Flag re-tuning needed on CRC errors */
 486        if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
 487            (mrq->data && mrq->data->error == -EILSEQ))
 488                mmc_retune_needed(host);
 489
 490        trace_mmc_request_done(host, mrq);
 491
 492        if (mrq->cmd) {
 493                pr_debug("%s: CQE req done (direct CMD%u): %d\n",
 494                         mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
 495        } else {
 496                pr_debug("%s: CQE transfer done tag %d\n",
 497                         mmc_hostname(host), mrq->tag);
 498        }
 499
 500        if (mrq->data) {
 501                pr_debug("%s:     %d bytes transferred: %d\n",
 502                         mmc_hostname(host),
 503                         mrq->data->bytes_xfered, mrq->data->error);
 504        }
 505
 506        mrq->done(mrq);
 507}
 508EXPORT_SYMBOL(mmc_cqe_request_done);
 509
 510/**
 511 *      mmc_cqe_post_req - CQE post process of a completed MMC request
 512 *      @host: MMC host
 513 *      @mrq: MMC request to be processed
 514 */
 515void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
 516{
 517        if (host->cqe_ops->cqe_post_req)
 518                host->cqe_ops->cqe_post_req(host, mrq);
 519}
 520EXPORT_SYMBOL(mmc_cqe_post_req);
 521
 522/* Arbitrary 1 second timeout */
 523#define MMC_CQE_RECOVERY_TIMEOUT        1000
 524
 525/*
 526 * mmc_cqe_recovery - Recover from CQE errors.
 527 * @host: MMC host to recover
 528 *
 529 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
 530 * in eMMC, and discarding the queue in CQE. CQE must call
 531 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
 532 * fails to discard its queue.
 533 */
 534int mmc_cqe_recovery(struct mmc_host *host)
 535{
 536        struct mmc_command cmd;
 537        int err;
 538
 539        mmc_retune_hold_now(host);
 540
 541        /*
 542         * Recovery is expected seldom, if at all, but it reduces performance,
 543         * so make sure it is not completely silent.
 544         */
 545        pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
 546
 547        host->cqe_ops->cqe_recovery_start(host);
 548
 549        memset(&cmd, 0, sizeof(cmd));
 550        cmd.opcode       = MMC_STOP_TRANSMISSION,
 551        cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC,
 552        cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 553        cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 554        mmc_wait_for_cmd(host, &cmd, 0);
 555
 556        memset(&cmd, 0, sizeof(cmd));
 557        cmd.opcode       = MMC_CMDQ_TASK_MGMT;
 558        cmd.arg          = 1; /* Discard entire queue */
 559        cmd.flags        = MMC_RSP_R1B | MMC_CMD_AC;
 560        cmd.flags       &= ~MMC_RSP_CRC; /* Ignore CRC */
 561        cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
 562        err = mmc_wait_for_cmd(host, &cmd, 0);
 563
 564        host->cqe_ops->cqe_recovery_finish(host);
 565
 566        mmc_retune_release(host);
 567
 568        return err;
 569}
 570EXPORT_SYMBOL(mmc_cqe_recovery);
 571
 572/**
 573 *      mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
 574 *      @host: MMC host
 575 *      @mrq: MMC request
 576 *
 577 *      mmc_is_req_done() is used with requests that have
 578 *      mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
 579 *      starting a request and before waiting for it to complete. That is,
 580 *      either in between calls to mmc_start_req(), or after mmc_wait_for_req()
 581 *      and before mmc_wait_for_req_done(). If it is called at other times the
 582 *      result is not meaningful.
 583 */
 584bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
 585{
 586        return completion_done(&mrq->completion);
 587}
 588EXPORT_SYMBOL(mmc_is_req_done);
 589
 590/**
 591 *      mmc_wait_for_req - start a request and wait for completion
 592 *      @host: MMC host to start command
 593 *      @mrq: MMC request to start
 594 *
 595 *      Start a new MMC custom command request for a host, and wait
 596 *      for the command to complete. In the case of 'cap_cmd_during_tfr'
 597 *      requests, the transfer is ongoing and the caller can issue further
 598 *      commands that do not use the data lines, and then wait by calling
 599 *      mmc_wait_for_req_done().
 600 *      Does not attempt to parse the response.
 601 */
 602void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 603{
 604        __mmc_start_req(host, mrq);
 605
 606        if (!mrq->cap_cmd_during_tfr)
 607                mmc_wait_for_req_done(host, mrq);
 608}
 609EXPORT_SYMBOL(mmc_wait_for_req);
 610
 611/**
 612 *      mmc_wait_for_cmd - start a command and wait for completion
 613 *      @host: MMC host to start command
 614 *      @cmd: MMC command to start
 615 *      @retries: maximum number of retries
 616 *
 617 *      Start a new MMC command for a host, and wait for the command
 618 *      to complete.  Return any error that occurred while the command
 619 *      was executing.  Do not attempt to parse the response.
 620 */
 621int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 622{
 623        struct mmc_request mrq = {};
 624
 625        WARN_ON(!host->claimed);
 626
 627        memset(cmd->resp, 0, sizeof(cmd->resp));
 628        cmd->retries = retries;
 629
 630        mrq.cmd = cmd;
 631        cmd->data = NULL;
 632
 633        mmc_wait_for_req(host, &mrq);
 634
 635        return cmd->error;
 636}
 637
 638EXPORT_SYMBOL(mmc_wait_for_cmd);
 639
 640/**
 641 *      mmc_set_data_timeout - set the timeout for a data command
 642 *      @data: data phase for command
 643 *      @card: the MMC card associated with the data transfer
 644 *
 645 *      Computes the data timeout parameters according to the
 646 *      correct algorithm given the card type.
 647 */
 648void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 649{
 650        unsigned int mult;
 651
 652        /*
 653         * SDIO cards only define an upper 1 s limit on access.
 654         */
 655        if (mmc_card_sdio(card)) {
 656                data->timeout_ns = 1000000000;
 657                data->timeout_clks = 0;
 658                return;
 659        }
 660
 661        /*
 662         * SD cards use a 100 multiplier rather than 10
 663         */
 664        mult = mmc_card_sd(card) ? 100 : 10;
 665
 666        /*
 667         * Scale up the multiplier (and therefore the timeout) by
 668         * the r2w factor for writes.
 669         */
 670        if (data->flags & MMC_DATA_WRITE)
 671                mult <<= card->csd.r2w_factor;
 672
 673        data->timeout_ns = card->csd.taac_ns * mult;
 674        data->timeout_clks = card->csd.taac_clks * mult;
 675
 676        /*
 677         * SD cards also have an upper limit on the timeout.
 678         */
 679        if (mmc_card_sd(card)) {
 680                unsigned int timeout_us, limit_us;
 681
 682                timeout_us = data->timeout_ns / 1000;
 683                if (card->host->ios.clock)
 684                        timeout_us += data->timeout_clks * 1000 /
 685                                (card->host->ios.clock / 1000);
 686
 687                if (data->flags & MMC_DATA_WRITE)
 688                        /*
 689                         * The MMC spec "It is strongly recommended
 690                         * for hosts to implement more than 500ms
 691                         * timeout value even if the card indicates
 692                         * the 250ms maximum busy length."  Even the
 693                         * previous value of 300ms is known to be
 694                         * insufficient for some cards.
 695                         */
 696                        limit_us = 3000000;
 697                else
 698                        limit_us = 100000;
 699
 700                /*
 701                 * SDHC cards always use these fixed values.
 702                 */
 703                if (timeout_us > limit_us) {
 704                        data->timeout_ns = limit_us * 1000;
 705                        data->timeout_clks = 0;
 706                }
 707
 708                /* assign limit value if invalid */
 709                if (timeout_us == 0)
 710                        data->timeout_ns = limit_us * 1000;
 711        }
 712
 713        /*
 714         * Some cards require longer data read timeout than indicated in CSD.
 715         * Address this by setting the read timeout to a "reasonably high"
 716         * value. For the cards tested, 600ms has proven enough. If necessary,
 717         * this value can be increased if other problematic cards require this.
 718         */
 719        if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 720                data->timeout_ns = 600000000;
 721                data->timeout_clks = 0;
 722        }
 723
 724        /*
 725         * Some cards need very high timeouts if driven in SPI mode.
 726         * The worst observed timeout was 900ms after writing a
 727         * continuous stream of data until the internal logic
 728         * overflowed.
 729         */
 730        if (mmc_host_is_spi(card->host)) {
 731                if (data->flags & MMC_DATA_WRITE) {
 732                        if (data->timeout_ns < 1000000000)
 733                                data->timeout_ns = 1000000000;  /* 1s */
 734                } else {
 735                        if (data->timeout_ns < 100000000)
 736                                data->timeout_ns =  100000000;  /* 100ms */
 737                }
 738        }
 739}
 740EXPORT_SYMBOL(mmc_set_data_timeout);
 741
 742/*
 743 * Allow claiming an already claimed host if the context is the same or there is
 744 * no context but the task is the same.
 745 */
 746static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
 747                                   struct task_struct *task)
 748{
 749        return host->claimer == ctx ||
 750               (!ctx && task && host->claimer->task == task);
 751}
 752
 753static inline void mmc_ctx_set_claimer(struct mmc_host *host,
 754                                       struct mmc_ctx *ctx,
 755                                       struct task_struct *task)
 756{
 757        if (!host->claimer) {
 758                if (ctx)
 759                        host->claimer = ctx;
 760                else
 761                        host->claimer = &host->default_ctx;
 762        }
 763        if (task)
 764                host->claimer->task = task;
 765}
 766
 767/**
 768 *      __mmc_claim_host - exclusively claim a host
 769 *      @host: mmc host to claim
 770 *      @ctx: context that claims the host or NULL in which case the default
 771 *      context will be used
 772 *      @abort: whether or not the operation should be aborted
 773 *
 774 *      Claim a host for a set of operations.  If @abort is non null and
 775 *      dereference a non-zero value then this will return prematurely with
 776 *      that non-zero value without acquiring the lock.  Returns zero
 777 *      with the lock held otherwise.
 778 */
 779int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
 780                     atomic_t *abort)
 781{
 782        struct task_struct *task = ctx ? NULL : current;
 783        DECLARE_WAITQUEUE(wait, current);
 784        unsigned long flags;
 785        int stop;
 786        bool pm = false;
 787
 788        might_sleep();
 789
 790        add_wait_queue(&host->wq, &wait);
 791        spin_lock_irqsave(&host->lock, flags);
 792        while (1) {
 793                set_current_state(TASK_UNINTERRUPTIBLE);
 794                stop = abort ? atomic_read(abort) : 0;
 795                if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
 796                        break;
 797                spin_unlock_irqrestore(&host->lock, flags);
 798                schedule();
 799                spin_lock_irqsave(&host->lock, flags);
 800        }
 801        set_current_state(TASK_RUNNING);
 802        if (!stop) {
 803                host->claimed = 1;
 804                mmc_ctx_set_claimer(host, ctx, task);
 805                host->claim_cnt += 1;
 806                if (host->claim_cnt == 1)
 807                        pm = true;
 808        } else
 809                wake_up(&host->wq);
 810        spin_unlock_irqrestore(&host->lock, flags);
 811        remove_wait_queue(&host->wq, &wait);
 812
 813        if (pm)
 814                pm_runtime_get_sync(mmc_dev(host));
 815
 816        return stop;
 817}
 818EXPORT_SYMBOL(__mmc_claim_host);
 819
 820/**
 821 *      mmc_release_host - release a host
 822 *      @host: mmc host to release
 823 *
 824 *      Release a MMC host, allowing others to claim the host
 825 *      for their operations.
 826 */
 827void mmc_release_host(struct mmc_host *host)
 828{
 829        unsigned long flags;
 830
 831        WARN_ON(!host->claimed);
 832
 833        spin_lock_irqsave(&host->lock, flags);
 834        if (--host->claim_cnt) {
 835                /* Release for nested claim */
 836                spin_unlock_irqrestore(&host->lock, flags);
 837        } else {
 838                host->claimed = 0;
 839                host->claimer->task = NULL;
 840                host->claimer = NULL;
 841                spin_unlock_irqrestore(&host->lock, flags);
 842                wake_up(&host->wq);
 843                pm_runtime_mark_last_busy(mmc_dev(host));
 844                if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
 845                        pm_runtime_put_sync_suspend(mmc_dev(host));
 846                else
 847                        pm_runtime_put_autosuspend(mmc_dev(host));
 848        }
 849}
 850EXPORT_SYMBOL(mmc_release_host);
 851
 852/*
 853 * This is a helper function, which fetches a runtime pm reference for the
 854 * card device and also claims the host.
 855 */
 856void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
 857{
 858        pm_runtime_get_sync(&card->dev);
 859        __mmc_claim_host(card->host, ctx, NULL);
 860}
 861EXPORT_SYMBOL(mmc_get_card);
 862
 863/*
 864 * This is a helper function, which releases the host and drops the runtime
 865 * pm reference for the card device.
 866 */
 867void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
 868{
 869        struct mmc_host *host = card->host;
 870
 871        WARN_ON(ctx && host->claimer != ctx);
 872
 873        mmc_release_host(host);
 874        pm_runtime_mark_last_busy(&card->dev);
 875        pm_runtime_put_autosuspend(&card->dev);
 876}
 877EXPORT_SYMBOL(mmc_put_card);
 878
 879/*
 880 * Internal function that does the actual ios call to the host driver,
 881 * optionally printing some debug output.
 882 */
 883static inline void mmc_set_ios(struct mmc_host *host)
 884{
 885        struct mmc_ios *ios = &host->ios;
 886
 887        pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 888                "width %u timing %u\n",
 889                 mmc_hostname(host), ios->clock, ios->bus_mode,
 890                 ios->power_mode, ios->chip_select, ios->vdd,
 891                 1 << ios->bus_width, ios->timing);
 892
 893        host->ops->set_ios(host, ios);
 894}
 895
 896/*
 897 * Control chip select pin on a host.
 898 */
 899void mmc_set_chip_select(struct mmc_host *host, int mode)
 900{
 901        host->ios.chip_select = mode;
 902        mmc_set_ios(host);
 903}
 904
 905/*
 906 * Sets the host clock to the highest possible frequency that
 907 * is below "hz".
 908 */
 909void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 910{
 911        WARN_ON(hz && hz < host->f_min);
 912
 913        if (hz > host->f_max)
 914                hz = host->f_max;
 915
 916        host->ios.clock = hz;
 917        mmc_set_ios(host);
 918}
 919
 920int mmc_execute_tuning(struct mmc_card *card)
 921{
 922        struct mmc_host *host = card->host;
 923        u32 opcode;
 924        int err;
 925
 926        if (!host->ops->execute_tuning)
 927                return 0;
 928
 929        if (host->cqe_on)
 930                host->cqe_ops->cqe_off(host);
 931
 932        if (mmc_card_mmc(card))
 933                opcode = MMC_SEND_TUNING_BLOCK_HS200;
 934        else
 935                opcode = MMC_SEND_TUNING_BLOCK;
 936
 937        err = host->ops->execute_tuning(host, opcode);
 938
 939        if (err)
 940                pr_err("%s: tuning execution failed: %d\n",
 941                        mmc_hostname(host), err);
 942        else
 943                mmc_retune_enable(host);
 944
 945        return err;
 946}
 947
 948/*
 949 * Change the bus mode (open drain/push-pull) of a host.
 950 */
 951void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 952{
 953        host->ios.bus_mode = mode;
 954        mmc_set_ios(host);
 955}
 956
 957/*
 958 * Change data bus width of a host.
 959 */
 960void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 961{
 962        host->ios.bus_width = width;
 963        mmc_set_ios(host);
 964}
 965
 966/*
 967 * Set initial state after a power cycle or a hw_reset.
 968 */
 969void mmc_set_initial_state(struct mmc_host *host)
 970{
 971        if (host->cqe_on)
 972                host->cqe_ops->cqe_off(host);
 973
 974        mmc_retune_disable(host);
 975
 976        if (mmc_host_is_spi(host))
 977                host->ios.chip_select = MMC_CS_HIGH;
 978        else
 979                host->ios.chip_select = MMC_CS_DONTCARE;
 980        host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
 981        host->ios.bus_width = MMC_BUS_WIDTH_1;
 982        host->ios.timing = MMC_TIMING_LEGACY;
 983        host->ios.drv_type = 0;
 984        host->ios.enhanced_strobe = false;
 985
 986        /*
 987         * Make sure we are in non-enhanced strobe mode before we
 988         * actually enable it in ext_csd.
 989         */
 990        if ((host->caps2 & MMC_CAP2_HS400_ES) &&
 991             host->ops->hs400_enhanced_strobe)
 992                host->ops->hs400_enhanced_strobe(host, &host->ios);
 993
 994        mmc_set_ios(host);
 995}
 996
 997/**
 998 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 999 * @vdd:        voltage (mV)
1000 * @low_bits:   prefer low bits in boundary cases
1001 *
1002 * This function returns the OCR bit number according to the provided @vdd
1003 * value. If conversion is not possible a negative errno value returned.
1004 *
1005 * Depending on the @low_bits flag the function prefers low or high OCR bits
1006 * on boundary voltages. For example,
1007 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1008 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1009 *
1010 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1011 */
1012static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1013{
1014        const int max_bit = ilog2(MMC_VDD_35_36);
1015        int bit;
1016
1017        if (vdd < 1650 || vdd > 3600)
1018                return -EINVAL;
1019
1020        if (vdd >= 1650 && vdd <= 1950)
1021                return ilog2(MMC_VDD_165_195);
1022
1023        if (low_bits)
1024                vdd -= 1;
1025
1026        /* Base 2000 mV, step 100 mV, bit's base 8. */
1027        bit = (vdd - 2000) / 100 + 8;
1028        if (bit > max_bit)
1029                return max_bit;
1030        return bit;
1031}
1032
1033/**
1034 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1035 * @vdd_min:    minimum voltage value (mV)
1036 * @vdd_max:    maximum voltage value (mV)
1037 *
1038 * This function returns the OCR mask bits according to the provided @vdd_min
1039 * and @vdd_max values. If conversion is not possible the function returns 0.
1040 *
1041 * Notes wrt boundary cases:
1042 * This function sets the OCR bits for all boundary voltages, for example
1043 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1044 * MMC_VDD_34_35 mask.
1045 */
1046u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1047{
1048        u32 mask = 0;
1049
1050        if (vdd_max < vdd_min)
1051                return 0;
1052
1053        /* Prefer high bits for the boundary vdd_max values. */
1054        vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1055        if (vdd_max < 0)
1056                return 0;
1057
1058        /* Prefer low bits for the boundary vdd_min values. */
1059        vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1060        if (vdd_min < 0)
1061                return 0;
1062
1063        /* Fill the mask, from max bit to min bit. */
1064        while (vdd_max >= vdd_min)
1065                mask |= 1 << vdd_max--;
1066
1067        return mask;
1068}
1069
1070static int mmc_of_get_func_num(struct device_node *node)
1071{
1072        u32 reg;
1073        int ret;
1074
1075        ret = of_property_read_u32(node, "reg", &reg);
1076        if (ret < 0)
1077                return ret;
1078
1079        return reg;
1080}
1081
1082struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1083                unsigned func_num)
1084{
1085        struct device_node *node;
1086
1087        if (!host->parent || !host->parent->of_node)
1088                return NULL;
1089
1090        for_each_child_of_node(host->parent->of_node, node) {
1091                if (mmc_of_get_func_num(node) == func_num)
1092                        return node;
1093        }
1094
1095        return NULL;
1096}
1097
1098/*
1099 * Mask off any voltages we don't support and select
1100 * the lowest voltage
1101 */
1102u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1103{
1104        int bit;
1105
1106        /*
1107         * Sanity check the voltages that the card claims to
1108         * support.
1109         */
1110        if (ocr & 0x7F) {
1111                dev_warn(mmc_dev(host),
1112                "card claims to support voltages below defined range\n");
1113                ocr &= ~0x7F;
1114        }
1115
1116        ocr &= host->ocr_avail;
1117        if (!ocr) {
1118                dev_warn(mmc_dev(host), "no support for card's volts\n");
1119                return 0;
1120        }
1121
1122        if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1123                bit = ffs(ocr) - 1;
1124                ocr &= 3 << bit;
1125                mmc_power_cycle(host, ocr);
1126        } else {
1127                bit = fls(ocr) - 1;
1128                ocr &= 3 << bit;
1129                if (bit != host->ios.vdd)
1130                        dev_warn(mmc_dev(host), "exceeding card's volts\n");
1131        }
1132
1133        return ocr;
1134}
1135
1136int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1137{
1138        int err = 0;
1139        int old_signal_voltage = host->ios.signal_voltage;
1140
1141        host->ios.signal_voltage = signal_voltage;
1142        if (host->ops->start_signal_voltage_switch)
1143                err = host->ops->start_signal_voltage_switch(host, &host->ios);
1144
1145        if (err)
1146                host->ios.signal_voltage = old_signal_voltage;
1147
1148        return err;
1149
1150}
1151
1152void mmc_set_initial_signal_voltage(struct mmc_host *host)
1153{
1154        /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1155        if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1156                dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1157        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1158                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1159        else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1160                dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1161}
1162
1163int mmc_host_set_uhs_voltage(struct mmc_host *host)
1164{
1165        u32 clock;
1166
1167        /*
1168         * During a signal voltage level switch, the clock must be gated
1169         * for 5 ms according to the SD spec
1170         */
1171        clock = host->ios.clock;
1172        host->ios.clock = 0;
1173        mmc_set_ios(host);
1174
1175        if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1176                return -EAGAIN;
1177
1178        /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1179        mmc_delay(10);
1180        host->ios.clock = clock;
1181        mmc_set_ios(host);
1182
1183        return 0;
1184}
1185
1186int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1187{
1188        struct mmc_command cmd = {};
1189        int err = 0;
1190
1191        /*
1192         * If we cannot switch voltages, return failure so the caller
1193         * can continue without UHS mode
1194         */
1195        if (!host->ops->start_signal_voltage_switch)
1196                return -EPERM;
1197        if (!host->ops->card_busy)
1198                pr_warn("%s: cannot verify signal voltage switch\n",
1199                        mmc_hostname(host));
1200
1201        cmd.opcode = SD_SWITCH_VOLTAGE;
1202        cmd.arg = 0;
1203        cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1204
1205        err = mmc_wait_for_cmd(host, &cmd, 0);
1206        if (err)
1207                return err;
1208
1209        if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1210                return -EIO;
1211
1212        /*
1213         * The card should drive cmd and dat[0:3] low immediately
1214         * after the response of cmd11, but wait 1 ms to be sure
1215         */
1216        mmc_delay(1);
1217        if (host->ops->card_busy && !host->ops->card_busy(host)) {
1218                err = -EAGAIN;
1219                goto power_cycle;
1220        }
1221
1222        if (mmc_host_set_uhs_voltage(host)) {
1223                /*
1224                 * Voltages may not have been switched, but we've already
1225                 * sent CMD11, so a power cycle is required anyway
1226                 */
1227                err = -EAGAIN;
1228                goto power_cycle;
1229        }
1230
1231        /* Wait for at least 1 ms according to spec */
1232        mmc_delay(1);
1233
1234        /*
1235         * Failure to switch is indicated by the card holding
1236         * dat[0:3] low
1237         */
1238        if (host->ops->card_busy && host->ops->card_busy(host))
1239                err = -EAGAIN;
1240
1241power_cycle:
1242        if (err) {
1243                pr_debug("%s: Signal voltage switch failed, "
1244                        "power cycling card\n", mmc_hostname(host));
1245                mmc_power_cycle(host, ocr);
1246        }
1247
1248        return err;
1249}
1250
1251/*
1252 * Select timing parameters for host.
1253 */
1254void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1255{
1256        host->ios.timing = timing;
1257        mmc_set_ios(host);
1258}
1259
1260/*
1261 * Select appropriate driver type for host.
1262 */
1263void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1264{
1265        host->ios.drv_type = drv_type;
1266        mmc_set_ios(host);
1267}
1268
1269int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1270                              int card_drv_type, int *drv_type)
1271{
1272        struct mmc_host *host = card->host;
1273        int host_drv_type = SD_DRIVER_TYPE_B;
1274
1275        *drv_type = 0;
1276
1277        if (!host->ops->select_drive_strength)
1278                return 0;
1279
1280        /* Use SD definition of driver strength for hosts */
1281        if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1282                host_drv_type |= SD_DRIVER_TYPE_A;
1283
1284        if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1285                host_drv_type |= SD_DRIVER_TYPE_C;
1286
1287        if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1288                host_drv_type |= SD_DRIVER_TYPE_D;
1289
1290        /*
1291         * The drive strength that the hardware can support
1292         * depends on the board design.  Pass the appropriate
1293         * information and let the hardware specific code
1294         * return what is possible given the options
1295         */
1296        return host->ops->select_drive_strength(card, max_dtr,
1297                                                host_drv_type,
1298                                                card_drv_type,
1299                                                drv_type);
1300}
1301
1302/*
1303 * Apply power to the MMC stack.  This is a two-stage process.
1304 * First, we enable power to the card without the clock running.
1305 * We then wait a bit for the power to stabilise.  Finally,
1306 * enable the bus drivers and clock to the card.
1307 *
1308 * We must _NOT_ enable the clock prior to power stablising.
1309 *
1310 * If a host does all the power sequencing itself, ignore the
1311 * initial MMC_POWER_UP stage.
1312 */
1313void mmc_power_up(struct mmc_host *host, u32 ocr)
1314{
1315        if (host->ios.power_mode == MMC_POWER_ON)
1316                return;
1317
1318        mmc_pwrseq_pre_power_on(host);
1319
1320        host->ios.vdd = fls(ocr) - 1;
1321        host->ios.power_mode = MMC_POWER_UP;
1322        /* Set initial state and call mmc_set_ios */
1323        mmc_set_initial_state(host);
1324
1325        mmc_set_initial_signal_voltage(host);
1326
1327        /*
1328         * This delay should be sufficient to allow the power supply
1329         * to reach the minimum voltage.
1330         */
1331        mmc_delay(host->ios.power_delay_ms);
1332
1333        mmc_pwrseq_post_power_on(host);
1334
1335        host->ios.clock = host->f_init;
1336
1337        host->ios.power_mode = MMC_POWER_ON;
1338        mmc_set_ios(host);
1339
1340        /*
1341         * This delay must be at least 74 clock sizes, or 1 ms, or the
1342         * time required to reach a stable voltage.
1343         */
1344        mmc_delay(host->ios.power_delay_ms);
1345}
1346
1347void mmc_power_off(struct mmc_host *host)
1348{
1349        if (host->ios.power_mode == MMC_POWER_OFF)
1350                return;
1351
1352        mmc_pwrseq_power_off(host);
1353
1354        host->ios.clock = 0;
1355        host->ios.vdd = 0;
1356
1357        host->ios.power_mode = MMC_POWER_OFF;
1358        /* Set initial state and call mmc_set_ios */
1359        mmc_set_initial_state(host);
1360
1361        /*
1362         * Some configurations, such as the 802.11 SDIO card in the OLPC
1363         * XO-1.5, require a short delay after poweroff before the card
1364         * can be successfully turned on again.
1365         */
1366        mmc_delay(1);
1367}
1368
1369void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1370{
1371        mmc_power_off(host);
1372        /* Wait at least 1 ms according to SD spec */
1373        mmc_delay(1);
1374        mmc_power_up(host, ocr);
1375}
1376
1377/*
1378 * Cleanup when the last reference to the bus operator is dropped.
1379 */
1380static void __mmc_release_bus(struct mmc_host *host)
1381{
1382        WARN_ON(!host->bus_dead);
1383
1384        host->bus_ops = NULL;
1385}
1386
1387/*
1388 * Increase reference count of bus operator
1389 */
1390static inline void mmc_bus_get(struct mmc_host *host)
1391{
1392        unsigned long flags;
1393
1394        spin_lock_irqsave(&host->lock, flags);
1395        host->bus_refs++;
1396        spin_unlock_irqrestore(&host->lock, flags);
1397}
1398
1399/*
1400 * Decrease reference count of bus operator and free it if
1401 * it is the last reference.
1402 */
1403static inline void mmc_bus_put(struct mmc_host *host)
1404{
1405        unsigned long flags;
1406
1407        spin_lock_irqsave(&host->lock, flags);
1408        host->bus_refs--;
1409        if ((host->bus_refs == 0) && host->bus_ops)
1410                __mmc_release_bus(host);
1411        spin_unlock_irqrestore(&host->lock, flags);
1412}
1413
1414/*
1415 * Assign a mmc bus handler to a host. Only one bus handler may control a
1416 * host at any given time.
1417 */
1418void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1419{
1420        unsigned long flags;
1421
1422        WARN_ON(!host->claimed);
1423
1424        spin_lock_irqsave(&host->lock, flags);
1425
1426        WARN_ON(host->bus_ops);
1427        WARN_ON(host->bus_refs);
1428
1429        host->bus_ops = ops;
1430        host->bus_refs = 1;
1431        host->bus_dead = 0;
1432
1433        spin_unlock_irqrestore(&host->lock, flags);
1434}
1435
1436/*
1437 * Remove the current bus handler from a host.
1438 */
1439void mmc_detach_bus(struct mmc_host *host)
1440{
1441        unsigned long flags;
1442
1443        WARN_ON(!host->claimed);
1444        WARN_ON(!host->bus_ops);
1445
1446        spin_lock_irqsave(&host->lock, flags);
1447
1448        host->bus_dead = 1;
1449
1450        spin_unlock_irqrestore(&host->lock, flags);
1451
1452        mmc_bus_put(host);
1453}
1454
1455void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1456{
1457        /*
1458         * Prevent system sleep for 5s to allow user space to consume the
1459         * corresponding uevent. This is especially useful, when CD irq is used
1460         * as a system wakeup, but doesn't hurt in other cases.
1461         */
1462        if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1463                __pm_wakeup_event(host->ws, 5000);
1464
1465        host->detect_change = 1;
1466        mmc_schedule_delayed_work(&host->detect, delay);
1467}
1468
1469/**
1470 *      mmc_detect_change - process change of state on a MMC socket
1471 *      @host: host which changed state.
1472 *      @delay: optional delay to wait before detection (jiffies)
1473 *
1474 *      MMC drivers should call this when they detect a card has been
1475 *      inserted or removed. The MMC layer will confirm that any
1476 *      present card is still functional, and initialize any newly
1477 *      inserted.
1478 */
1479void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1480{
1481        _mmc_detect_change(host, delay, true);
1482}
1483EXPORT_SYMBOL(mmc_detect_change);
1484
1485void mmc_init_erase(struct mmc_card *card)
1486{
1487        unsigned int sz;
1488
1489        if (is_power_of_2(card->erase_size))
1490                card->erase_shift = ffs(card->erase_size) - 1;
1491        else
1492                card->erase_shift = 0;
1493
1494        /*
1495         * It is possible to erase an arbitrarily large area of an SD or MMC
1496         * card.  That is not desirable because it can take a long time
1497         * (minutes) potentially delaying more important I/O, and also the
1498         * timeout calculations become increasingly hugely over-estimated.
1499         * Consequently, 'pref_erase' is defined as a guide to limit erases
1500         * to that size and alignment.
1501         *
1502         * For SD cards that define Allocation Unit size, limit erases to one
1503         * Allocation Unit at a time.
1504         * For MMC, have a stab at ai good value and for modern cards it will
1505         * end up being 4MiB. Note that if the value is too small, it can end
1506         * up taking longer to erase. Also note, erase_size is already set to
1507         * High Capacity Erase Size if available when this function is called.
1508         */
1509        if (mmc_card_sd(card) && card->ssr.au) {
1510                card->pref_erase = card->ssr.au;
1511                card->erase_shift = ffs(card->ssr.au) - 1;
1512        } else if (card->erase_size) {
1513                sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1514                if (sz < 128)
1515                        card->pref_erase = 512 * 1024 / 512;
1516                else if (sz < 512)
1517                        card->pref_erase = 1024 * 1024 / 512;
1518                else if (sz < 1024)
1519                        card->pref_erase = 2 * 1024 * 1024 / 512;
1520                else
1521                        card->pref_erase = 4 * 1024 * 1024 / 512;
1522                if (card->pref_erase < card->erase_size)
1523                        card->pref_erase = card->erase_size;
1524                else {
1525                        sz = card->pref_erase % card->erase_size;
1526                        if (sz)
1527                                card->pref_erase += card->erase_size - sz;
1528                }
1529        } else
1530                card->pref_erase = 0;
1531}
1532
1533static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1534                                          unsigned int arg, unsigned int qty)
1535{
1536        unsigned int erase_timeout;
1537
1538        if (arg == MMC_DISCARD_ARG ||
1539            (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1540                erase_timeout = card->ext_csd.trim_timeout;
1541        } else if (card->ext_csd.erase_group_def & 1) {
1542                /* High Capacity Erase Group Size uses HC timeouts */
1543                if (arg == MMC_TRIM_ARG)
1544                        erase_timeout = card->ext_csd.trim_timeout;
1545                else
1546                        erase_timeout = card->ext_csd.hc_erase_timeout;
1547        } else {
1548                /* CSD Erase Group Size uses write timeout */
1549                unsigned int mult = (10 << card->csd.r2w_factor);
1550                unsigned int timeout_clks = card->csd.taac_clks * mult;
1551                unsigned int timeout_us;
1552
1553                /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1554                if (card->csd.taac_ns < 1000000)
1555                        timeout_us = (card->csd.taac_ns * mult) / 1000;
1556                else
1557                        timeout_us = (card->csd.taac_ns / 1000) * mult;
1558
1559                /*
1560                 * ios.clock is only a target.  The real clock rate might be
1561                 * less but not that much less, so fudge it by multiplying by 2.
1562                 */
1563                timeout_clks <<= 1;
1564                timeout_us += (timeout_clks * 1000) /
1565                              (card->host->ios.clock / 1000);
1566
1567                erase_timeout = timeout_us / 1000;
1568
1569                /*
1570                 * Theoretically, the calculation could underflow so round up
1571                 * to 1ms in that case.
1572                 */
1573                if (!erase_timeout)
1574                        erase_timeout = 1;
1575        }
1576
1577        /* Multiplier for secure operations */
1578        if (arg & MMC_SECURE_ARGS) {
1579                if (arg == MMC_SECURE_ERASE_ARG)
1580                        erase_timeout *= card->ext_csd.sec_erase_mult;
1581                else
1582                        erase_timeout *= card->ext_csd.sec_trim_mult;
1583        }
1584
1585        erase_timeout *= qty;
1586
1587        /*
1588         * Ensure at least a 1 second timeout for SPI as per
1589         * 'mmc_set_data_timeout()'
1590         */
1591        if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1592                erase_timeout = 1000;
1593
1594        return erase_timeout;
1595}
1596
1597static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1598                                         unsigned int arg,
1599                                         unsigned int qty)
1600{
1601        unsigned int erase_timeout;
1602
1603        /* for DISCARD none of the below calculation applies.
1604         * the busy timeout is 250msec per discard command.
1605         */
1606        if (arg == SD_DISCARD_ARG)
1607                return SD_DISCARD_TIMEOUT_MS;
1608
1609        if (card->ssr.erase_timeout) {
1610                /* Erase timeout specified in SD Status Register (SSR) */
1611                erase_timeout = card->ssr.erase_timeout * qty +
1612                                card->ssr.erase_offset;
1613        } else {
1614                /*
1615                 * Erase timeout not specified in SD Status Register (SSR) so
1616                 * use 250ms per write block.
1617                 */
1618                erase_timeout = 250 * qty;
1619        }
1620
1621        /* Must not be less than 1 second */
1622        if (erase_timeout < 1000)
1623                erase_timeout = 1000;
1624
1625        return erase_timeout;
1626}
1627
1628static unsigned int mmc_erase_timeout(struct mmc_card *card,
1629                                      unsigned int arg,
1630                                      unsigned int qty)
1631{
1632        if (mmc_card_sd(card))
1633                return mmc_sd_erase_timeout(card, arg, qty);
1634        else
1635                return mmc_mmc_erase_timeout(card, arg, qty);
1636}
1637
1638static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1639                        unsigned int to, unsigned int arg)
1640{
1641        struct mmc_command cmd = {};
1642        unsigned int qty = 0, busy_timeout = 0;
1643        bool use_r1b_resp = false;
1644        int err;
1645
1646        mmc_retune_hold(card->host);
1647
1648        /*
1649         * qty is used to calculate the erase timeout which depends on how many
1650         * erase groups (or allocation units in SD terminology) are affected.
1651         * We count erasing part of an erase group as one erase group.
1652         * For SD, the allocation units are always a power of 2.  For MMC, the
1653         * erase group size is almost certainly also power of 2, but it does not
1654         * seem to insist on that in the JEDEC standard, so we fall back to
1655         * division in that case.  SD may not specify an allocation unit size,
1656         * in which case the timeout is based on the number of write blocks.
1657         *
1658         * Note that the timeout for secure trim 2 will only be correct if the
1659         * number of erase groups specified is the same as the total of all
1660         * preceding secure trim 1 commands.  Since the power may have been
1661         * lost since the secure trim 1 commands occurred, it is generally
1662         * impossible to calculate the secure trim 2 timeout correctly.
1663         */
1664        if (card->erase_shift)
1665                qty += ((to >> card->erase_shift) -
1666                        (from >> card->erase_shift)) + 1;
1667        else if (mmc_card_sd(card))
1668                qty += to - from + 1;
1669        else
1670                qty += ((to / card->erase_size) -
1671                        (from / card->erase_size)) + 1;
1672
1673        if (!mmc_card_blockaddr(card)) {
1674                from <<= 9;
1675                to <<= 9;
1676        }
1677
1678        if (mmc_card_sd(card))
1679                cmd.opcode = SD_ERASE_WR_BLK_START;
1680        else
1681                cmd.opcode = MMC_ERASE_GROUP_START;
1682        cmd.arg = from;
1683        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1684        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1685        if (err) {
1686                pr_err("mmc_erase: group start error %d, "
1687                       "status %#x\n", err, cmd.resp[0]);
1688                err = -EIO;
1689                goto out;
1690        }
1691
1692        memset(&cmd, 0, sizeof(struct mmc_command));
1693        if (mmc_card_sd(card))
1694                cmd.opcode = SD_ERASE_WR_BLK_END;
1695        else
1696                cmd.opcode = MMC_ERASE_GROUP_END;
1697        cmd.arg = to;
1698        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1699        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1700        if (err) {
1701                pr_err("mmc_erase: group end error %d, status %#x\n",
1702                       err, cmd.resp[0]);
1703                err = -EIO;
1704                goto out;
1705        }
1706
1707        memset(&cmd, 0, sizeof(struct mmc_command));
1708        cmd.opcode = MMC_ERASE;
1709        cmd.arg = arg;
1710        busy_timeout = mmc_erase_timeout(card, arg, qty);
1711        /*
1712         * If the host controller supports busy signalling and the timeout for
1713         * the erase operation does not exceed the max_busy_timeout, we should
1714         * use R1B response. Or we need to prevent the host from doing hw busy
1715         * detection, which is done by converting to a R1 response instead.
1716         * Note, some hosts requires R1B, which also means they are on their own
1717         * when it comes to deal with the busy timeout.
1718         */
1719        if (!(card->host->caps & MMC_CAP_NEED_RSP_BUSY) &&
1720            card->host->max_busy_timeout &&
1721            busy_timeout > card->host->max_busy_timeout) {
1722                cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1723        } else {
1724                cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1725                cmd.busy_timeout = busy_timeout;
1726                use_r1b_resp = true;
1727        }
1728
1729        err = mmc_wait_for_cmd(card->host, &cmd, 0);
1730        if (err) {
1731                pr_err("mmc_erase: erase error %d, status %#x\n",
1732                       err, cmd.resp[0]);
1733                err = -EIO;
1734                goto out;
1735        }
1736
1737        if (mmc_host_is_spi(card->host))
1738                goto out;
1739
1740        /*
1741         * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1742         * shall be avoided.
1743         */
1744        if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1745                goto out;
1746
1747        /* Let's poll to find out when the erase operation completes. */
1748        err = mmc_poll_for_busy(card, busy_timeout, MMC_BUSY_ERASE);
1749
1750out:
1751        mmc_retune_release(card->host);
1752        return err;
1753}
1754
1755static unsigned int mmc_align_erase_size(struct mmc_card *card,
1756                                         unsigned int *from,
1757                                         unsigned int *to,
1758                                         unsigned int nr)
1759{
1760        unsigned int from_new = *from, nr_new = nr, rem;
1761
1762        /*
1763         * When the 'card->erase_size' is power of 2, we can use round_up/down()
1764         * to align the erase size efficiently.
1765         */
1766        if (is_power_of_2(card->erase_size)) {
1767                unsigned int temp = from_new;
1768
1769                from_new = round_up(temp, card->erase_size);
1770                rem = from_new - temp;
1771
1772                if (nr_new > rem)
1773                        nr_new -= rem;
1774                else
1775                        return 0;
1776
1777                nr_new = round_down(nr_new, card->erase_size);
1778        } else {
1779                rem = from_new % card->erase_size;
1780                if (rem) {
1781                        rem = card->erase_size - rem;
1782                        from_new += rem;
1783                        if (nr_new > rem)
1784                                nr_new -= rem;
1785                        else
1786                                return 0;
1787                }
1788
1789                rem = nr_new % card->erase_size;
1790                if (rem)
1791                        nr_new -= rem;
1792        }
1793
1794        if (nr_new == 0)
1795                return 0;
1796
1797        *to = from_new + nr_new;
1798        *from = from_new;
1799
1800        return nr_new;
1801}
1802
1803/**
1804 * mmc_erase - erase sectors.
1805 * @card: card to erase
1806 * @from: first sector to erase
1807 * @nr: number of sectors to erase
1808 * @arg: erase command argument
1809 *
1810 * Caller must claim host before calling this function.
1811 */
1812int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1813              unsigned int arg)
1814{
1815        unsigned int rem, to = from + nr;
1816        int err;
1817
1818        if (!(card->csd.cmdclass & CCC_ERASE))
1819                return -EOPNOTSUPP;
1820
1821        if (!card->erase_size)
1822                return -EOPNOTSUPP;
1823
1824        if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1825                return -EOPNOTSUPP;
1826
1827        if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1828            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1829                return -EOPNOTSUPP;
1830
1831        if (mmc_card_mmc(card) && (arg & MMC_TRIM_ARGS) &&
1832            !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1833                return -EOPNOTSUPP;
1834
1835        if (arg == MMC_SECURE_ERASE_ARG) {
1836                if (from % card->erase_size || nr % card->erase_size)
1837                        return -EINVAL;
1838        }
1839
1840        if (arg == MMC_ERASE_ARG)
1841                nr = mmc_align_erase_size(card, &from, &to, nr);
1842
1843        if (nr == 0)
1844                return 0;
1845
1846        if (to <= from)
1847                return -EINVAL;
1848
1849        /* 'from' and 'to' are inclusive */
1850        to -= 1;
1851
1852        /*
1853         * Special case where only one erase-group fits in the timeout budget:
1854         * If the region crosses an erase-group boundary on this particular
1855         * case, we will be trimming more than one erase-group which, does not
1856         * fit in the timeout budget of the controller, so we need to split it
1857         * and call mmc_do_erase() twice if necessary. This special case is
1858         * identified by the card->eg_boundary flag.
1859         */
1860        rem = card->erase_size - (from % card->erase_size);
1861        if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
1862                err = mmc_do_erase(card, from, from + rem - 1, arg);
1863                from += rem;
1864                if ((err) || (to <= from))
1865                        return err;
1866        }
1867
1868        return mmc_do_erase(card, from, to, arg);
1869}
1870EXPORT_SYMBOL(mmc_erase);
1871
1872int mmc_can_erase(struct mmc_card *card)
1873{
1874        if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1875                return 1;
1876        return 0;
1877}
1878EXPORT_SYMBOL(mmc_can_erase);
1879
1880int mmc_can_trim(struct mmc_card *card)
1881{
1882        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1883            (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1884                return 1;
1885        return 0;
1886}
1887EXPORT_SYMBOL(mmc_can_trim);
1888
1889int mmc_can_discard(struct mmc_card *card)
1890{
1891        /*
1892         * As there's no way to detect the discard support bit at v4.5
1893         * use the s/w feature support filed.
1894         */
1895        if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1896                return 1;
1897        return 0;
1898}
1899EXPORT_SYMBOL(mmc_can_discard);
1900
1901int mmc_can_sanitize(struct mmc_card *card)
1902{
1903        if (!mmc_can_trim(card) && !mmc_can_erase(card))
1904                return 0;
1905        if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1906                return 1;
1907        return 0;
1908}
1909
1910int mmc_can_secure_erase_trim(struct mmc_card *card)
1911{
1912        if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1913            !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1914                return 1;
1915        return 0;
1916}
1917EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1918
1919int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1920                            unsigned int nr)
1921{
1922        if (!card->erase_size)
1923                return 0;
1924        if (from % card->erase_size || nr % card->erase_size)
1925                return 0;
1926        return 1;
1927}
1928EXPORT_SYMBOL(mmc_erase_group_aligned);
1929
1930static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1931                                            unsigned int arg)
1932{
1933        struct mmc_host *host = card->host;
1934        unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1935        unsigned int last_timeout = 0;
1936        unsigned int max_busy_timeout = host->max_busy_timeout ?
1937                        host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1938
1939        if (card->erase_shift) {
1940                max_qty = UINT_MAX >> card->erase_shift;
1941                min_qty = card->pref_erase >> card->erase_shift;
1942        } else if (mmc_card_sd(card)) {
1943                max_qty = UINT_MAX;
1944                min_qty = card->pref_erase;
1945        } else {
1946                max_qty = UINT_MAX / card->erase_size;
1947                min_qty = card->pref_erase / card->erase_size;
1948        }
1949
1950        /*
1951         * We should not only use 'host->max_busy_timeout' as the limitation
1952         * when deciding the max discard sectors. We should set a balance value
1953         * to improve the erase speed, and it can not get too long timeout at
1954         * the same time.
1955         *
1956         * Here we set 'card->pref_erase' as the minimal discard sectors no
1957         * matter what size of 'host->max_busy_timeout', but if the
1958         * 'host->max_busy_timeout' is large enough for more discard sectors,
1959         * then we can continue to increase the max discard sectors until we
1960         * get a balance value. In cases when the 'host->max_busy_timeout'
1961         * isn't specified, use the default max erase timeout.
1962         */
1963        do {
1964                y = 0;
1965                for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1966                        timeout = mmc_erase_timeout(card, arg, qty + x);
1967
1968                        if (qty + x > min_qty && timeout > max_busy_timeout)
1969                                break;
1970
1971                        if (timeout < last_timeout)
1972                                break;
1973                        last_timeout = timeout;
1974                        y = x;
1975                }
1976                qty += y;
1977        } while (y);
1978
1979        if (!qty)
1980                return 0;
1981
1982        /*
1983         * When specifying a sector range to trim, chances are we might cross
1984         * an erase-group boundary even if the amount of sectors is less than
1985         * one erase-group.
1986         * If we can only fit one erase-group in the controller timeout budget,
1987         * we have to care that erase-group boundaries are not crossed by a
1988         * single trim operation. We flag that special case with "eg_boundary".
1989         * In all other cases we can just decrement qty and pretend that we
1990         * always touch (qty + 1) erase-groups as a simple optimization.
1991         */
1992        if (qty == 1)
1993                card->eg_boundary = 1;
1994        else
1995                qty--;
1996
1997        /* Convert qty to sectors */
1998        if (card->erase_shift)
1999                max_discard = qty << card->erase_shift;
2000        else if (mmc_card_sd(card))
2001                max_discard = qty + 1;
2002        else
2003                max_discard = qty * card->erase_size;
2004
2005        return max_discard;
2006}
2007
2008unsigned int mmc_calc_max_discard(struct mmc_card *card)
2009{
2010        struct mmc_host *host = card->host;
2011        unsigned int max_discard, max_trim;
2012
2013        /*
2014         * Without erase_group_def set, MMC erase timeout depends on clock
2015         * frequence which can change.  In that case, the best choice is
2016         * just the preferred erase size.
2017         */
2018        if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2019                return card->pref_erase;
2020
2021        max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2022        if (mmc_can_trim(card)) {
2023                max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2024                if (max_trim < max_discard || max_discard == 0)
2025                        max_discard = max_trim;
2026        } else if (max_discard < card->erase_size) {
2027                max_discard = 0;
2028        }
2029        pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2030                mmc_hostname(host), max_discard, host->max_busy_timeout ?
2031                host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2032        return max_discard;
2033}
2034EXPORT_SYMBOL(mmc_calc_max_discard);
2035
2036bool mmc_card_is_blockaddr(struct mmc_card *card)
2037{
2038        return card ? mmc_card_blockaddr(card) : false;
2039}
2040EXPORT_SYMBOL(mmc_card_is_blockaddr);
2041
2042int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2043{
2044        struct mmc_command cmd = {};
2045
2046        if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2047            mmc_card_hs400(card) || mmc_card_hs400es(card))
2048                return 0;
2049
2050        cmd.opcode = MMC_SET_BLOCKLEN;
2051        cmd.arg = blocklen;
2052        cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2053        return mmc_wait_for_cmd(card->host, &cmd, 5);
2054}
2055EXPORT_SYMBOL(mmc_set_blocklen);
2056
2057static void mmc_hw_reset_for_init(struct mmc_host *host)
2058{
2059        mmc_pwrseq_reset(host);
2060
2061        if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2062                return;
2063        host->ops->hw_reset(host);
2064}
2065
2066/**
2067 * mmc_hw_reset - reset the card in hardware
2068 * @host: MMC host to which the card is attached
2069 *
2070 * Hard reset the card. This function is only for upper layers, like the
2071 * block layer or card drivers. You cannot use it in host drivers (struct
2072 * mmc_card might be gone then).
2073 *
2074 * Return: 0 on success, -errno on failure
2075 */
2076int mmc_hw_reset(struct mmc_host *host)
2077{
2078        int ret;
2079
2080        if (!host->card)
2081                return -EINVAL;
2082
2083        mmc_bus_get(host);
2084        if (!host->bus_ops || host->bus_dead || !host->bus_ops->hw_reset) {
2085                mmc_bus_put(host);
2086                return -EOPNOTSUPP;
2087        }
2088
2089        ret = host->bus_ops->hw_reset(host);
2090        mmc_bus_put(host);
2091
2092        if (ret < 0)
2093                pr_warn("%s: tried to HW reset card, got error %d\n",
2094                        mmc_hostname(host), ret);
2095
2096        return ret;
2097}
2098EXPORT_SYMBOL(mmc_hw_reset);
2099
2100int mmc_sw_reset(struct mmc_host *host)
2101{
2102        int ret;
2103
2104        if (!host->card)
2105                return -EINVAL;
2106
2107        mmc_bus_get(host);
2108        if (!host->bus_ops || host->bus_dead || !host->bus_ops->sw_reset) {
2109                mmc_bus_put(host);
2110                return -EOPNOTSUPP;
2111        }
2112
2113        ret = host->bus_ops->sw_reset(host);
2114        mmc_bus_put(host);
2115
2116        if (ret)
2117                pr_warn("%s: tried to SW reset card, got error %d\n",
2118                        mmc_hostname(host), ret);
2119
2120        return ret;
2121}
2122EXPORT_SYMBOL(mmc_sw_reset);
2123
2124static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2125{
2126        host->f_init = freq;
2127
2128        pr_debug("%s: %s: trying to init card at %u Hz\n",
2129                mmc_hostname(host), __func__, host->f_init);
2130
2131        mmc_power_up(host, host->ocr_avail);
2132
2133        /*
2134         * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2135         * do a hardware reset if possible.
2136         */
2137        mmc_hw_reset_for_init(host);
2138
2139        /*
2140         * sdio_reset sends CMD52 to reset card.  Since we do not know
2141         * if the card is being re-initialized, just send it.  CMD52
2142         * should be ignored by SD/eMMC cards.
2143         * Skip it if we already know that we do not support SDIO commands
2144         */
2145        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2146                sdio_reset(host);
2147
2148        mmc_go_idle(host);
2149
2150        if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2151                if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2152                        goto out;
2153                if (mmc_card_sd_express(host))
2154                        return 0;
2155        }
2156
2157        /* Order's important: probe SDIO, then SD, then MMC */
2158        if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2159                if (!mmc_attach_sdio(host))
2160                        return 0;
2161
2162        if (!(host->caps2 & MMC_CAP2_NO_SD))
2163                if (!mmc_attach_sd(host))
2164                        return 0;
2165
2166        if (!(host->caps2 & MMC_CAP2_NO_MMC))
2167                if (!mmc_attach_mmc(host))
2168                        return 0;
2169
2170out:
2171        mmc_power_off(host);
2172        return -EIO;
2173}
2174
2175int _mmc_detect_card_removed(struct mmc_host *host)
2176{
2177        int ret;
2178
2179        if (!host->card || mmc_card_removed(host->card))
2180                return 1;
2181
2182        ret = host->bus_ops->alive(host);
2183
2184        /*
2185         * Card detect status and alive check may be out of sync if card is
2186         * removed slowly, when card detect switch changes while card/slot
2187         * pads are still contacted in hardware (refer to "SD Card Mechanical
2188         * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2189         * detect work 200ms later for this case.
2190         */
2191        if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2192                mmc_detect_change(host, msecs_to_jiffies(200));
2193                pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2194        }
2195
2196        if (ret) {
2197                mmc_card_set_removed(host->card);
2198                pr_debug("%s: card remove detected\n", mmc_hostname(host));
2199        }
2200
2201        return ret;
2202}
2203
2204int mmc_detect_card_removed(struct mmc_host *host)
2205{
2206        struct mmc_card *card = host->card;
2207        int ret;
2208
2209        WARN_ON(!host->claimed);
2210
2211        if (!card)
2212                return 1;
2213
2214        if (!mmc_card_is_removable(host))
2215                return 0;
2216
2217        ret = mmc_card_removed(card);
2218        /*
2219         * The card will be considered unchanged unless we have been asked to
2220         * detect a change or host requires polling to provide card detection.
2221         */
2222        if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2223                return ret;
2224
2225        host->detect_change = 0;
2226        if (!ret) {
2227                ret = _mmc_detect_card_removed(host);
2228                if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2229                        /*
2230                         * Schedule a detect work as soon as possible to let a
2231                         * rescan handle the card removal.
2232                         */
2233                        cancel_delayed_work(&host->detect);
2234                        _mmc_detect_change(host, 0, false);
2235                }
2236        }
2237
2238        return ret;
2239}
2240EXPORT_SYMBOL(mmc_detect_card_removed);
2241
2242void mmc_rescan(struct work_struct *work)
2243{
2244        struct mmc_host *host =
2245                container_of(work, struct mmc_host, detect.work);
2246        int i;
2247
2248        if (host->rescan_disable)
2249                return;
2250
2251        /* If there is a non-removable card registered, only scan once */
2252        if (!mmc_card_is_removable(host) && host->rescan_entered)
2253                return;
2254        host->rescan_entered = 1;
2255
2256        if (host->trigger_card_event && host->ops->card_event) {
2257                mmc_claim_host(host);
2258                host->ops->card_event(host);
2259                mmc_release_host(host);
2260                host->trigger_card_event = false;
2261        }
2262
2263        mmc_bus_get(host);
2264
2265        /* Verify a registered card to be functional, else remove it. */
2266        if (host->bus_ops && !host->bus_dead)
2267                host->bus_ops->detect(host);
2268
2269        host->detect_change = 0;
2270
2271        /*
2272         * Let mmc_bus_put() free the bus/bus_ops if we've found that
2273         * the card is no longer present.
2274         */
2275        mmc_bus_put(host);
2276        mmc_bus_get(host);
2277
2278        /* if there still is a card present, stop here */
2279        if (host->bus_ops != NULL) {
2280                mmc_bus_put(host);
2281                goto out;
2282        }
2283
2284        /*
2285         * Only we can add a new handler, so it's safe to
2286         * release the lock here.
2287         */
2288        mmc_bus_put(host);
2289
2290        mmc_claim_host(host);
2291        if (mmc_card_is_removable(host) && host->ops->get_cd &&
2292                        host->ops->get_cd(host) == 0) {
2293                mmc_power_off(host);
2294                mmc_release_host(host);
2295                goto out;
2296        }
2297
2298        /* If an SD express card is present, then leave it as is. */
2299        if (mmc_card_sd_express(host)) {
2300                mmc_release_host(host);
2301                goto out;
2302        }
2303
2304        for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2305                unsigned int freq = freqs[i];
2306                if (freq > host->f_max) {
2307                        if (i + 1 < ARRAY_SIZE(freqs))
2308                                continue;
2309                        freq = host->f_max;
2310                }
2311                if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2312                        break;
2313                if (freqs[i] <= host->f_min)
2314                        break;
2315        }
2316        mmc_release_host(host);
2317
2318 out:
2319        if (host->caps & MMC_CAP_NEEDS_POLL)
2320                mmc_schedule_delayed_work(&host->detect, HZ);
2321}
2322
2323void mmc_start_host(struct mmc_host *host)
2324{
2325        host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2326        host->rescan_disable = 0;
2327
2328        if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2329                mmc_claim_host(host);
2330                mmc_power_up(host, host->ocr_avail);
2331                mmc_release_host(host);
2332        }
2333
2334        mmc_gpiod_request_cd_irq(host);
2335        _mmc_detect_change(host, 0, false);
2336}
2337
2338void mmc_stop_host(struct mmc_host *host)
2339{
2340        if (host->slot.cd_irq >= 0) {
2341                mmc_gpio_set_cd_wake(host, false);
2342                disable_irq(host->slot.cd_irq);
2343        }
2344
2345        host->rescan_disable = 1;
2346        cancel_delayed_work_sync(&host->detect);
2347
2348        /* clear pm flags now and let card drivers set them as needed */
2349        host->pm_flags = 0;
2350
2351        mmc_bus_get(host);
2352        if (host->bus_ops && !host->bus_dead) {
2353                /* Calling bus_ops->remove() with a claimed host can deadlock */
2354                host->bus_ops->remove(host);
2355                mmc_claim_host(host);
2356                mmc_detach_bus(host);
2357                mmc_power_off(host);
2358                mmc_release_host(host);
2359                mmc_bus_put(host);
2360                return;
2361        }
2362        mmc_bus_put(host);
2363
2364        mmc_claim_host(host);
2365        mmc_power_off(host);
2366        mmc_release_host(host);
2367}
2368
2369#ifdef CONFIG_PM_SLEEP
2370/* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372   to sync the card.
2373*/
2374static int mmc_pm_notify(struct notifier_block *notify_block,
2375                        unsigned long mode, void *unused)
2376{
2377        struct mmc_host *host = container_of(
2378                notify_block, struct mmc_host, pm_notify);
2379        unsigned long flags;
2380        int err = 0;
2381
2382        switch (mode) {
2383        case PM_HIBERNATION_PREPARE:
2384        case PM_SUSPEND_PREPARE:
2385        case PM_RESTORE_PREPARE:
2386                spin_lock_irqsave(&host->lock, flags);
2387                host->rescan_disable = 1;
2388                spin_unlock_irqrestore(&host->lock, flags);
2389                cancel_delayed_work_sync(&host->detect);
2390
2391                if (!host->bus_ops)
2392                        break;
2393
2394                /* Validate prerequisites for suspend */
2395                if (host->bus_ops->pre_suspend)
2396                        err = host->bus_ops->pre_suspend(host);
2397                if (!err)
2398                        break;
2399
2400                if (!mmc_card_is_removable(host)) {
2401                        dev_warn(mmc_dev(host),
2402                                 "pre_suspend failed for non-removable host: "
2403                                 "%d\n", err);
2404                        /* Avoid removing non-removable hosts */
2405                        break;
2406                }
2407
2408                /* Calling bus_ops->remove() with a claimed host can deadlock */
2409                host->bus_ops->remove(host);
2410                mmc_claim_host(host);
2411                mmc_detach_bus(host);
2412                mmc_power_off(host);
2413                mmc_release_host(host);
2414                host->pm_flags = 0;
2415                break;
2416
2417        case PM_POST_SUSPEND:
2418        case PM_POST_HIBERNATION:
2419        case PM_POST_RESTORE:
2420
2421                spin_lock_irqsave(&host->lock, flags);
2422                host->rescan_disable = 0;
2423                spin_unlock_irqrestore(&host->lock, flags);
2424                _mmc_detect_change(host, 0, false);
2425
2426        }
2427
2428        return 0;
2429}
2430
2431void mmc_register_pm_notifier(struct mmc_host *host)
2432{
2433        host->pm_notify.notifier_call = mmc_pm_notify;
2434        register_pm_notifier(&host->pm_notify);
2435}
2436
2437void mmc_unregister_pm_notifier(struct mmc_host *host)
2438{
2439        unregister_pm_notifier(&host->pm_notify);
2440}
2441#endif
2442
2443static int __init mmc_init(void)
2444{
2445        int ret;
2446
2447        ret = mmc_register_bus();
2448        if (ret)
2449                return ret;
2450
2451        ret = mmc_register_host_class();
2452        if (ret)
2453                goto unregister_bus;
2454
2455        ret = sdio_register_bus();
2456        if (ret)
2457                goto unregister_host_class;
2458
2459        return 0;
2460
2461unregister_host_class:
2462        mmc_unregister_host_class();
2463unregister_bus:
2464        mmc_unregister_bus();
2465        return ret;
2466}
2467
2468static void __exit mmc_exit(void)
2469{
2470        sdio_unregister_bus();
2471        mmc_unregister_host_class();
2472        mmc_unregister_bus();
2473}
2474
2475subsys_initcall(mmc_init);
2476module_exit(mmc_exit);
2477
2478MODULE_LICENSE("GPL");
2479