linux/drivers/net/ethernet/intel/e1000e/mac.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
   3
   4#include "e1000.h"
   5
   6/**
   7 *  e1000e_get_bus_info_pcie - Get PCIe bus information
   8 *  @hw: pointer to the HW structure
   9 *
  10 *  Determines and stores the system bus information for a particular
  11 *  network interface.  The following bus information is determined and stored:
  12 *  bus speed, bus width, type (PCIe), and PCIe function.
  13 **/
  14s32 e1000e_get_bus_info_pcie(struct e1000_hw *hw)
  15{
  16        struct e1000_mac_info *mac = &hw->mac;
  17        struct e1000_bus_info *bus = &hw->bus;
  18        struct e1000_adapter *adapter = hw->adapter;
  19        u16 pcie_link_status, cap_offset;
  20
  21        cap_offset = adapter->pdev->pcie_cap;
  22        if (!cap_offset) {
  23                bus->width = e1000_bus_width_unknown;
  24        } else {
  25                pci_read_config_word(adapter->pdev,
  26                                     cap_offset + PCIE_LINK_STATUS,
  27                                     &pcie_link_status);
  28                bus->width = (enum e1000_bus_width)((pcie_link_status &
  29                                                     PCIE_LINK_WIDTH_MASK) >>
  30                                                    PCIE_LINK_WIDTH_SHIFT);
  31        }
  32
  33        mac->ops.set_lan_id(hw);
  34
  35        return 0;
  36}
  37
  38/**
  39 *  e1000_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
  40 *
  41 *  @hw: pointer to the HW structure
  42 *
  43 *  Determines the LAN function id by reading memory-mapped registers
  44 *  and swaps the port value if requested.
  45 **/
  46void e1000_set_lan_id_multi_port_pcie(struct e1000_hw *hw)
  47{
  48        struct e1000_bus_info *bus = &hw->bus;
  49        u32 reg;
  50
  51        /* The status register reports the correct function number
  52         * for the device regardless of function swap state.
  53         */
  54        reg = er32(STATUS);
  55        bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
  56}
  57
  58/**
  59 *  e1000_set_lan_id_single_port - Set LAN id for a single port device
  60 *  @hw: pointer to the HW structure
  61 *
  62 *  Sets the LAN function id to zero for a single port device.
  63 **/
  64void e1000_set_lan_id_single_port(struct e1000_hw *hw)
  65{
  66        struct e1000_bus_info *bus = &hw->bus;
  67
  68        bus->func = 0;
  69}
  70
  71/**
  72 *  e1000_clear_vfta_generic - Clear VLAN filter table
  73 *  @hw: pointer to the HW structure
  74 *
  75 *  Clears the register array which contains the VLAN filter table by
  76 *  setting all the values to 0.
  77 **/
  78void e1000_clear_vfta_generic(struct e1000_hw *hw)
  79{
  80        u32 offset;
  81
  82        for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
  83                E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, 0);
  84                e1e_flush();
  85        }
  86}
  87
  88/**
  89 *  e1000_write_vfta_generic - Write value to VLAN filter table
  90 *  @hw: pointer to the HW structure
  91 *  @offset: register offset in VLAN filter table
  92 *  @value: register value written to VLAN filter table
  93 *
  94 *  Writes value at the given offset in the register array which stores
  95 *  the VLAN filter table.
  96 **/
  97void e1000_write_vfta_generic(struct e1000_hw *hw, u32 offset, u32 value)
  98{
  99        E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, value);
 100        e1e_flush();
 101}
 102
 103/**
 104 *  e1000e_init_rx_addrs - Initialize receive address's
 105 *  @hw: pointer to the HW structure
 106 *  @rar_count: receive address registers
 107 *
 108 *  Setup the receive address registers by setting the base receive address
 109 *  register to the devices MAC address and clearing all the other receive
 110 *  address registers to 0.
 111 **/
 112void e1000e_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
 113{
 114        u32 i;
 115        u8 mac_addr[ETH_ALEN] = { 0 };
 116
 117        /* Setup the receive address */
 118        e_dbg("Programming MAC Address into RAR[0]\n");
 119
 120        hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
 121
 122        /* Zero out the other (rar_entry_count - 1) receive addresses */
 123        e_dbg("Clearing RAR[1-%u]\n", rar_count - 1);
 124        for (i = 1; i < rar_count; i++)
 125                hw->mac.ops.rar_set(hw, mac_addr, i);
 126}
 127
 128/**
 129 *  e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
 130 *  @hw: pointer to the HW structure
 131 *
 132 *  Checks the nvm for an alternate MAC address.  An alternate MAC address
 133 *  can be setup by pre-boot software and must be treated like a permanent
 134 *  address and must override the actual permanent MAC address. If an
 135 *  alternate MAC address is found it is programmed into RAR0, replacing
 136 *  the permanent address that was installed into RAR0 by the Si on reset.
 137 *  This function will return SUCCESS unless it encounters an error while
 138 *  reading the EEPROM.
 139 **/
 140s32 e1000_check_alt_mac_addr_generic(struct e1000_hw *hw)
 141{
 142        u32 i;
 143        s32 ret_val;
 144        u16 offset, nvm_alt_mac_addr_offset, nvm_data;
 145        u8 alt_mac_addr[ETH_ALEN];
 146
 147        ret_val = e1000_read_nvm(hw, NVM_COMPAT, 1, &nvm_data);
 148        if (ret_val)
 149                return ret_val;
 150
 151        /* not supported on 82573 */
 152        if (hw->mac.type == e1000_82573)
 153                return 0;
 154
 155        ret_val = e1000_read_nvm(hw, NVM_ALT_MAC_ADDR_PTR, 1,
 156                                 &nvm_alt_mac_addr_offset);
 157        if (ret_val) {
 158                e_dbg("NVM Read Error\n");
 159                return ret_val;
 160        }
 161
 162        if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
 163            (nvm_alt_mac_addr_offset == 0x0000))
 164                /* There is no Alternate MAC Address */
 165                return 0;
 166
 167        if (hw->bus.func == E1000_FUNC_1)
 168                nvm_alt_mac_addr_offset += E1000_ALT_MAC_ADDRESS_OFFSET_LAN1;
 169        for (i = 0; i < ETH_ALEN; i += 2) {
 170                offset = nvm_alt_mac_addr_offset + (i >> 1);
 171                ret_val = e1000_read_nvm(hw, offset, 1, &nvm_data);
 172                if (ret_val) {
 173                        e_dbg("NVM Read Error\n");
 174                        return ret_val;
 175                }
 176
 177                alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
 178                alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
 179        }
 180
 181        /* if multicast bit is set, the alternate address will not be used */
 182        if (is_multicast_ether_addr(alt_mac_addr)) {
 183                e_dbg("Ignoring Alternate Mac Address with MC bit set\n");
 184                return 0;
 185        }
 186
 187        /* We have a valid alternate MAC address, and we want to treat it the
 188         * same as the normal permanent MAC address stored by the HW into the
 189         * RAR. Do this by mapping this address into RAR0.
 190         */
 191        hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
 192
 193        return 0;
 194}
 195
 196u32 e1000e_rar_get_count_generic(struct e1000_hw *hw)
 197{
 198        return hw->mac.rar_entry_count;
 199}
 200
 201/**
 202 *  e1000e_rar_set_generic - Set receive address register
 203 *  @hw: pointer to the HW structure
 204 *  @addr: pointer to the receive address
 205 *  @index: receive address array register
 206 *
 207 *  Sets the receive address array register at index to the address passed
 208 *  in by addr.
 209 **/
 210int e1000e_rar_set_generic(struct e1000_hw *hw, u8 *addr, u32 index)
 211{
 212        u32 rar_low, rar_high;
 213
 214        /* HW expects these in little endian so we reverse the byte order
 215         * from network order (big endian) to little endian
 216         */
 217        rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
 218                   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
 219
 220        rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
 221
 222        /* If MAC address zero, no need to set the AV bit */
 223        if (rar_low || rar_high)
 224                rar_high |= E1000_RAH_AV;
 225
 226        /* Some bridges will combine consecutive 32-bit writes into
 227         * a single burst write, which will malfunction on some parts.
 228         * The flushes avoid this.
 229         */
 230        ew32(RAL(index), rar_low);
 231        e1e_flush();
 232        ew32(RAH(index), rar_high);
 233        e1e_flush();
 234
 235        return 0;
 236}
 237
 238/**
 239 *  e1000_hash_mc_addr - Generate a multicast hash value
 240 *  @hw: pointer to the HW structure
 241 *  @mc_addr: pointer to a multicast address
 242 *
 243 *  Generates a multicast address hash value which is used to determine
 244 *  the multicast filter table array address and new table value.
 245 **/
 246static u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
 247{
 248        u32 hash_value, hash_mask;
 249        u8 bit_shift = 0;
 250
 251        /* Register count multiplied by bits per register */
 252        hash_mask = (hw->mac.mta_reg_count * 32) - 1;
 253
 254        /* For a mc_filter_type of 0, bit_shift is the number of left-shifts
 255         * where 0xFF would still fall within the hash mask.
 256         */
 257        while (hash_mask >> bit_shift != 0xFF)
 258                bit_shift++;
 259
 260        /* The portion of the address that is used for the hash table
 261         * is determined by the mc_filter_type setting.
 262         * The algorithm is such that there is a total of 8 bits of shifting.
 263         * The bit_shift for a mc_filter_type of 0 represents the number of
 264         * left-shifts where the MSB of mc_addr[5] would still fall within
 265         * the hash_mask.  Case 0 does this exactly.  Since there are a total
 266         * of 8 bits of shifting, then mc_addr[4] will shift right the
 267         * remaining number of bits. Thus 8 - bit_shift.  The rest of the
 268         * cases are a variation of this algorithm...essentially raising the
 269         * number of bits to shift mc_addr[5] left, while still keeping the
 270         * 8-bit shifting total.
 271         *
 272         * For example, given the following Destination MAC Address and an
 273         * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
 274         * we can see that the bit_shift for case 0 is 4.  These are the hash
 275         * values resulting from each mc_filter_type...
 276         * [0] [1] [2] [3] [4] [5]
 277         * 01  AA  00  12  34  56
 278         * LSB           MSB
 279         *
 280         * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
 281         * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
 282         * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
 283         * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
 284         */
 285        switch (hw->mac.mc_filter_type) {
 286        default:
 287        case 0:
 288                break;
 289        case 1:
 290                bit_shift += 1;
 291                break;
 292        case 2:
 293                bit_shift += 2;
 294                break;
 295        case 3:
 296                bit_shift += 4;
 297                break;
 298        }
 299
 300        hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
 301                                   (((u16)mc_addr[5]) << bit_shift)));
 302
 303        return hash_value;
 304}
 305
 306/**
 307 *  e1000e_update_mc_addr_list_generic - Update Multicast addresses
 308 *  @hw: pointer to the HW structure
 309 *  @mc_addr_list: array of multicast addresses to program
 310 *  @mc_addr_count: number of multicast addresses to program
 311 *
 312 *  Updates entire Multicast Table Array.
 313 *  The caller must have a packed mc_addr_list of multicast addresses.
 314 **/
 315void e1000e_update_mc_addr_list_generic(struct e1000_hw *hw,
 316                                        u8 *mc_addr_list, u32 mc_addr_count)
 317{
 318        u32 hash_value, hash_bit, hash_reg;
 319        int i;
 320
 321        /* clear mta_shadow */
 322        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
 323
 324        /* update mta_shadow from mc_addr_list */
 325        for (i = 0; (u32)i < mc_addr_count; i++) {
 326                hash_value = e1000_hash_mc_addr(hw, mc_addr_list);
 327
 328                hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
 329                hash_bit = hash_value & 0x1F;
 330
 331                hw->mac.mta_shadow[hash_reg] |= BIT(hash_bit);
 332                mc_addr_list += (ETH_ALEN);
 333        }
 334
 335        /* replace the entire MTA table */
 336        for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
 337                E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, hw->mac.mta_shadow[i]);
 338        e1e_flush();
 339}
 340
 341/**
 342 *  e1000e_clear_hw_cntrs_base - Clear base hardware counters
 343 *  @hw: pointer to the HW structure
 344 *
 345 *  Clears the base hardware counters by reading the counter registers.
 346 **/
 347void e1000e_clear_hw_cntrs_base(struct e1000_hw *hw)
 348{
 349        er32(CRCERRS);
 350        er32(SYMERRS);
 351        er32(MPC);
 352        er32(SCC);
 353        er32(ECOL);
 354        er32(MCC);
 355        er32(LATECOL);
 356        er32(COLC);
 357        er32(DC);
 358        er32(SEC);
 359        er32(RLEC);
 360        er32(XONRXC);
 361        er32(XONTXC);
 362        er32(XOFFRXC);
 363        er32(XOFFTXC);
 364        er32(FCRUC);
 365        er32(GPRC);
 366        er32(BPRC);
 367        er32(MPRC);
 368        er32(GPTC);
 369        er32(GORCL);
 370        er32(GORCH);
 371        er32(GOTCL);
 372        er32(GOTCH);
 373        er32(RNBC);
 374        er32(RUC);
 375        er32(RFC);
 376        er32(ROC);
 377        er32(RJC);
 378        er32(TORL);
 379        er32(TORH);
 380        er32(TOTL);
 381        er32(TOTH);
 382        er32(TPR);
 383        er32(TPT);
 384        er32(MPTC);
 385        er32(BPTC);
 386}
 387
 388/**
 389 *  e1000e_check_for_copper_link - Check for link (Copper)
 390 *  @hw: pointer to the HW structure
 391 *
 392 *  Checks to see of the link status of the hardware has changed.  If a
 393 *  change in link status has been detected, then we read the PHY registers
 394 *  to get the current speed/duplex if link exists.
 395 **/
 396s32 e1000e_check_for_copper_link(struct e1000_hw *hw)
 397{
 398        struct e1000_mac_info *mac = &hw->mac;
 399        s32 ret_val;
 400        bool link;
 401
 402        /* We only want to go out to the PHY registers to see if Auto-Neg
 403         * has completed and/or if our link status has changed.  The
 404         * get_link_status flag is set upon receiving a Link Status
 405         * Change or Rx Sequence Error interrupt.
 406         */
 407        if (!mac->get_link_status)
 408                return 0;
 409        mac->get_link_status = false;
 410
 411        /* First we want to see if the MII Status Register reports
 412         * link.  If so, then we want to get the current speed/duplex
 413         * of the PHY.
 414         */
 415        ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
 416        if (ret_val || !link)
 417                goto out;
 418
 419        /* Check if there was DownShift, must be checked
 420         * immediately after link-up
 421         */
 422        e1000e_check_downshift(hw);
 423
 424        /* If we are forcing speed/duplex, then we simply return since
 425         * we have already determined whether we have link or not.
 426         */
 427        if (!mac->autoneg)
 428                return -E1000_ERR_CONFIG;
 429
 430        /* Auto-Neg is enabled.  Auto Speed Detection takes care
 431         * of MAC speed/duplex configuration.  So we only need to
 432         * configure Collision Distance in the MAC.
 433         */
 434        mac->ops.config_collision_dist(hw);
 435
 436        /* Configure Flow Control now that Auto-Neg has completed.
 437         * First, we need to restore the desired flow control
 438         * settings because we may have had to re-autoneg with a
 439         * different link partner.
 440         */
 441        ret_val = e1000e_config_fc_after_link_up(hw);
 442        if (ret_val)
 443                e_dbg("Error configuring flow control\n");
 444
 445        return ret_val;
 446
 447out:
 448        mac->get_link_status = true;
 449        return ret_val;
 450}
 451
 452/**
 453 *  e1000e_check_for_fiber_link - Check for link (Fiber)
 454 *  @hw: pointer to the HW structure
 455 *
 456 *  Checks for link up on the hardware.  If link is not up and we have
 457 *  a signal, then we need to force link up.
 458 **/
 459s32 e1000e_check_for_fiber_link(struct e1000_hw *hw)
 460{
 461        struct e1000_mac_info *mac = &hw->mac;
 462        u32 rxcw;
 463        u32 ctrl;
 464        u32 status;
 465        s32 ret_val;
 466
 467        ctrl = er32(CTRL);
 468        status = er32(STATUS);
 469        rxcw = er32(RXCW);
 470
 471        /* If we don't have link (auto-negotiation failed or link partner
 472         * cannot auto-negotiate), the cable is plugged in (we have signal),
 473         * and our link partner is not trying to auto-negotiate with us (we
 474         * are receiving idles or data), we need to force link up. We also
 475         * need to give auto-negotiation time to complete, in case the cable
 476         * was just plugged in. The autoneg_failed flag does this.
 477         */
 478        /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 479        if ((ctrl & E1000_CTRL_SWDPIN1) && !(status & E1000_STATUS_LU) &&
 480            !(rxcw & E1000_RXCW_C)) {
 481                if (!mac->autoneg_failed) {
 482                        mac->autoneg_failed = true;
 483                        return 0;
 484                }
 485                e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 486
 487                /* Disable auto-negotiation in the TXCW register */
 488                ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 489
 490                /* Force link-up and also force full-duplex. */
 491                ctrl = er32(CTRL);
 492                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 493                ew32(CTRL, ctrl);
 494
 495                /* Configure Flow Control after forcing link up. */
 496                ret_val = e1000e_config_fc_after_link_up(hw);
 497                if (ret_val) {
 498                        e_dbg("Error configuring flow control\n");
 499                        return ret_val;
 500                }
 501        } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 502                /* If we are forcing link and we are receiving /C/ ordered
 503                 * sets, re-enable auto-negotiation in the TXCW register
 504                 * and disable forced link in the Device Control register
 505                 * in an attempt to auto-negotiate with our link partner.
 506                 */
 507                e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 508                ew32(TXCW, mac->txcw);
 509                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 510
 511                mac->serdes_has_link = true;
 512        }
 513
 514        return 0;
 515}
 516
 517/**
 518 *  e1000e_check_for_serdes_link - Check for link (Serdes)
 519 *  @hw: pointer to the HW structure
 520 *
 521 *  Checks for link up on the hardware.  If link is not up and we have
 522 *  a signal, then we need to force link up.
 523 **/
 524s32 e1000e_check_for_serdes_link(struct e1000_hw *hw)
 525{
 526        struct e1000_mac_info *mac = &hw->mac;
 527        u32 rxcw;
 528        u32 ctrl;
 529        u32 status;
 530        s32 ret_val;
 531
 532        ctrl = er32(CTRL);
 533        status = er32(STATUS);
 534        rxcw = er32(RXCW);
 535
 536        /* If we don't have link (auto-negotiation failed or link partner
 537         * cannot auto-negotiate), and our link partner is not trying to
 538         * auto-negotiate with us (we are receiving idles or data),
 539         * we need to force link up. We also need to give auto-negotiation
 540         * time to complete.
 541         */
 542        /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
 543        if (!(status & E1000_STATUS_LU) && !(rxcw & E1000_RXCW_C)) {
 544                if (!mac->autoneg_failed) {
 545                        mac->autoneg_failed = true;
 546                        return 0;
 547                }
 548                e_dbg("NOT Rx'ing /C/, disable AutoNeg and force link.\n");
 549
 550                /* Disable auto-negotiation in the TXCW register */
 551                ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
 552
 553                /* Force link-up and also force full-duplex. */
 554                ctrl = er32(CTRL);
 555                ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
 556                ew32(CTRL, ctrl);
 557
 558                /* Configure Flow Control after forcing link up. */
 559                ret_val = e1000e_config_fc_after_link_up(hw);
 560                if (ret_val) {
 561                        e_dbg("Error configuring flow control\n");
 562                        return ret_val;
 563                }
 564        } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
 565                /* If we are forcing link and we are receiving /C/ ordered
 566                 * sets, re-enable auto-negotiation in the TXCW register
 567                 * and disable forced link in the Device Control register
 568                 * in an attempt to auto-negotiate with our link partner.
 569                 */
 570                e_dbg("Rx'ing /C/, enable AutoNeg and stop forcing link.\n");
 571                ew32(TXCW, mac->txcw);
 572                ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
 573
 574                mac->serdes_has_link = true;
 575        } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
 576                /* If we force link for non-auto-negotiation switch, check
 577                 * link status based on MAC synchronization for internal
 578                 * serdes media type.
 579                 */
 580                /* SYNCH bit and IV bit are sticky. */
 581                usleep_range(10, 20);
 582                rxcw = er32(RXCW);
 583                if (rxcw & E1000_RXCW_SYNCH) {
 584                        if (!(rxcw & E1000_RXCW_IV)) {
 585                                mac->serdes_has_link = true;
 586                                e_dbg("SERDES: Link up - forced.\n");
 587                        }
 588                } else {
 589                        mac->serdes_has_link = false;
 590                        e_dbg("SERDES: Link down - force failed.\n");
 591                }
 592        }
 593
 594        if (E1000_TXCW_ANE & er32(TXCW)) {
 595                status = er32(STATUS);
 596                if (status & E1000_STATUS_LU) {
 597                        /* SYNCH bit and IV bit are sticky, so reread rxcw. */
 598                        usleep_range(10, 20);
 599                        rxcw = er32(RXCW);
 600                        if (rxcw & E1000_RXCW_SYNCH) {
 601                                if (!(rxcw & E1000_RXCW_IV)) {
 602                                        mac->serdes_has_link = true;
 603                                        e_dbg("SERDES: Link up - autoneg completed successfully.\n");
 604                                } else {
 605                                        mac->serdes_has_link = false;
 606                                        e_dbg("SERDES: Link down - invalid codewords detected in autoneg.\n");
 607                                }
 608                        } else {
 609                                mac->serdes_has_link = false;
 610                                e_dbg("SERDES: Link down - no sync.\n");
 611                        }
 612                } else {
 613                        mac->serdes_has_link = false;
 614                        e_dbg("SERDES: Link down - autoneg failed\n");
 615                }
 616        }
 617
 618        return 0;
 619}
 620
 621/**
 622 *  e1000_set_default_fc_generic - Set flow control default values
 623 *  @hw: pointer to the HW structure
 624 *
 625 *  Read the EEPROM for the default values for flow control and store the
 626 *  values.
 627 **/
 628static s32 e1000_set_default_fc_generic(struct e1000_hw *hw)
 629{
 630        s32 ret_val;
 631        u16 nvm_data;
 632
 633        /* Read and store word 0x0F of the EEPROM. This word contains bits
 634         * that determine the hardware's default PAUSE (flow control) mode,
 635         * a bit that determines whether the HW defaults to enabling or
 636         * disabling auto-negotiation, and the direction of the
 637         * SW defined pins. If there is no SW over-ride of the flow
 638         * control setting, then the variable hw->fc will
 639         * be initialized based on a value in the EEPROM.
 640         */
 641        ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
 642
 643        if (ret_val) {
 644                e_dbg("NVM Read Error\n");
 645                return ret_val;
 646        }
 647
 648        if (!(nvm_data & NVM_WORD0F_PAUSE_MASK))
 649                hw->fc.requested_mode = e1000_fc_none;
 650        else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == NVM_WORD0F_ASM_DIR)
 651                hw->fc.requested_mode = e1000_fc_tx_pause;
 652        else
 653                hw->fc.requested_mode = e1000_fc_full;
 654
 655        return 0;
 656}
 657
 658/**
 659 *  e1000e_setup_link_generic - Setup flow control and link settings
 660 *  @hw: pointer to the HW structure
 661 *
 662 *  Determines which flow control settings to use, then configures flow
 663 *  control.  Calls the appropriate media-specific link configuration
 664 *  function.  Assuming the adapter has a valid link partner, a valid link
 665 *  should be established.  Assumes the hardware has previously been reset
 666 *  and the transmitter and receiver are not enabled.
 667 **/
 668s32 e1000e_setup_link_generic(struct e1000_hw *hw)
 669{
 670        s32 ret_val;
 671
 672        /* In the case of the phy reset being blocked, we already have a link.
 673         * We do not need to set it up again.
 674         */
 675        if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
 676                return 0;
 677
 678        /* If requested flow control is set to default, set flow control
 679         * based on the EEPROM flow control settings.
 680         */
 681        if (hw->fc.requested_mode == e1000_fc_default) {
 682                ret_val = e1000_set_default_fc_generic(hw);
 683                if (ret_val)
 684                        return ret_val;
 685        }
 686
 687        /* Save off the requested flow control mode for use later.  Depending
 688         * on the link partner's capabilities, we may or may not use this mode.
 689         */
 690        hw->fc.current_mode = hw->fc.requested_mode;
 691
 692        e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
 693
 694        /* Call the necessary media_type subroutine to configure the link. */
 695        ret_val = hw->mac.ops.setup_physical_interface(hw);
 696        if (ret_val)
 697                return ret_val;
 698
 699        /* Initialize the flow control address, type, and PAUSE timer
 700         * registers to their default values.  This is done even if flow
 701         * control is disabled, because it does not hurt anything to
 702         * initialize these registers.
 703         */
 704        e_dbg("Initializing the Flow Control address, type and timer regs\n");
 705        ew32(FCT, FLOW_CONTROL_TYPE);
 706        ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
 707        ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
 708
 709        ew32(FCTTV, hw->fc.pause_time);
 710
 711        return e1000e_set_fc_watermarks(hw);
 712}
 713
 714/**
 715 *  e1000_commit_fc_settings_generic - Configure flow control
 716 *  @hw: pointer to the HW structure
 717 *
 718 *  Write the flow control settings to the Transmit Config Word Register (TXCW)
 719 *  base on the flow control settings in e1000_mac_info.
 720 **/
 721static s32 e1000_commit_fc_settings_generic(struct e1000_hw *hw)
 722{
 723        struct e1000_mac_info *mac = &hw->mac;
 724        u32 txcw;
 725
 726        /* Check for a software override of the flow control settings, and
 727         * setup the device accordingly.  If auto-negotiation is enabled, then
 728         * software will have to set the "PAUSE" bits to the correct value in
 729         * the Transmit Config Word Register (TXCW) and re-start auto-
 730         * negotiation.  However, if auto-negotiation is disabled, then
 731         * software will have to manually configure the two flow control enable
 732         * bits in the CTRL register.
 733         *
 734         * The possible values of the "fc" parameter are:
 735         *      0:  Flow control is completely disabled
 736         *      1:  Rx flow control is enabled (we can receive pause frames,
 737         *          but not send pause frames).
 738         *      2:  Tx flow control is enabled (we can send pause frames but we
 739         *          do not support receiving pause frames).
 740         *      3:  Both Rx and Tx flow control (symmetric) are enabled.
 741         */
 742        switch (hw->fc.current_mode) {
 743        case e1000_fc_none:
 744                /* Flow control completely disabled by a software over-ride. */
 745                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
 746                break;
 747        case e1000_fc_rx_pause:
 748                /* Rx Flow control is enabled and Tx Flow control is disabled
 749                 * by a software over-ride. Since there really isn't a way to
 750                 * advertise that we are capable of Rx Pause ONLY, we will
 751                 * advertise that we support both symmetric and asymmetric Rx
 752                 * PAUSE.  Later, we will disable the adapter's ability to send
 753                 * PAUSE frames.
 754                 */
 755                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 756                break;
 757        case e1000_fc_tx_pause:
 758                /* Tx Flow control is enabled, and Rx Flow control is disabled,
 759                 * by a software over-ride.
 760                 */
 761                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
 762                break;
 763        case e1000_fc_full:
 764                /* Flow control (both Rx and Tx) is enabled by a software
 765                 * over-ride.
 766                 */
 767                txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
 768                break;
 769        default:
 770                e_dbg("Flow control param set incorrectly\n");
 771                return -E1000_ERR_CONFIG;
 772        }
 773
 774        ew32(TXCW, txcw);
 775        mac->txcw = txcw;
 776
 777        return 0;
 778}
 779
 780/**
 781 *  e1000_poll_fiber_serdes_link_generic - Poll for link up
 782 *  @hw: pointer to the HW structure
 783 *
 784 *  Polls for link up by reading the status register, if link fails to come
 785 *  up with auto-negotiation, then the link is forced if a signal is detected.
 786 **/
 787static s32 e1000_poll_fiber_serdes_link_generic(struct e1000_hw *hw)
 788{
 789        struct e1000_mac_info *mac = &hw->mac;
 790        u32 i, status;
 791        s32 ret_val;
 792
 793        /* If we have a signal (the cable is plugged in, or assumed true for
 794         * serdes media) then poll for a "Link-Up" indication in the Device
 795         * Status Register.  Time-out if a link isn't seen in 500 milliseconds
 796         * seconds (Auto-negotiation should complete in less than 500
 797         * milliseconds even if the other end is doing it in SW).
 798         */
 799        for (i = 0; i < FIBER_LINK_UP_LIMIT; i++) {
 800                usleep_range(10000, 11000);
 801                status = er32(STATUS);
 802                if (status & E1000_STATUS_LU)
 803                        break;
 804        }
 805        if (i == FIBER_LINK_UP_LIMIT) {
 806                e_dbg("Never got a valid link from auto-neg!!!\n");
 807                mac->autoneg_failed = true;
 808                /* AutoNeg failed to achieve a link, so we'll call
 809                 * mac->check_for_link. This routine will force the
 810                 * link up if we detect a signal. This will allow us to
 811                 * communicate with non-autonegotiating link partners.
 812                 */
 813                ret_val = mac->ops.check_for_link(hw);
 814                if (ret_val) {
 815                        e_dbg("Error while checking for link\n");
 816                        return ret_val;
 817                }
 818                mac->autoneg_failed = false;
 819        } else {
 820                mac->autoneg_failed = false;
 821                e_dbg("Valid Link Found\n");
 822        }
 823
 824        return 0;
 825}
 826
 827/**
 828 *  e1000e_setup_fiber_serdes_link - Setup link for fiber/serdes
 829 *  @hw: pointer to the HW structure
 830 *
 831 *  Configures collision distance and flow control for fiber and serdes
 832 *  links.  Upon successful setup, poll for link.
 833 **/
 834s32 e1000e_setup_fiber_serdes_link(struct e1000_hw *hw)
 835{
 836        u32 ctrl;
 837        s32 ret_val;
 838
 839        ctrl = er32(CTRL);
 840
 841        /* Take the link out of reset */
 842        ctrl &= ~E1000_CTRL_LRST;
 843
 844        hw->mac.ops.config_collision_dist(hw);
 845
 846        ret_val = e1000_commit_fc_settings_generic(hw);
 847        if (ret_val)
 848                return ret_val;
 849
 850        /* Since auto-negotiation is enabled, take the link out of reset (the
 851         * link will be in reset, because we previously reset the chip). This
 852         * will restart auto-negotiation.  If auto-negotiation is successful
 853         * then the link-up status bit will be set and the flow control enable
 854         * bits (RFCE and TFCE) will be set according to their negotiated value.
 855         */
 856        e_dbg("Auto-negotiation enabled\n");
 857
 858        ew32(CTRL, ctrl);
 859        e1e_flush();
 860        usleep_range(1000, 2000);
 861
 862        /* For these adapters, the SW definable pin 1 is set when the optics
 863         * detect a signal.  If we have a signal, then poll for a "Link-Up"
 864         * indication.
 865         */
 866        if (hw->phy.media_type == e1000_media_type_internal_serdes ||
 867            (er32(CTRL) & E1000_CTRL_SWDPIN1)) {
 868                ret_val = e1000_poll_fiber_serdes_link_generic(hw);
 869        } else {
 870                e_dbg("No signal detected\n");
 871        }
 872
 873        return ret_val;
 874}
 875
 876/**
 877 *  e1000e_config_collision_dist_generic - Configure collision distance
 878 *  @hw: pointer to the HW structure
 879 *
 880 *  Configures the collision distance to the default value and is used
 881 *  during link setup.
 882 **/
 883void e1000e_config_collision_dist_generic(struct e1000_hw *hw)
 884{
 885        u32 tctl;
 886
 887        tctl = er32(TCTL);
 888
 889        tctl &= ~E1000_TCTL_COLD;
 890        tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
 891
 892        ew32(TCTL, tctl);
 893        e1e_flush();
 894}
 895
 896/**
 897 *  e1000e_set_fc_watermarks - Set flow control high/low watermarks
 898 *  @hw: pointer to the HW structure
 899 *
 900 *  Sets the flow control high/low threshold (watermark) registers.  If
 901 *  flow control XON frame transmission is enabled, then set XON frame
 902 *  transmission as well.
 903 **/
 904s32 e1000e_set_fc_watermarks(struct e1000_hw *hw)
 905{
 906        u32 fcrtl = 0, fcrth = 0;
 907
 908        /* Set the flow control receive threshold registers.  Normally,
 909         * these registers will be set to a default threshold that may be
 910         * adjusted later by the driver's runtime code.  However, if the
 911         * ability to transmit pause frames is not enabled, then these
 912         * registers will be set to 0.
 913         */
 914        if (hw->fc.current_mode & e1000_fc_tx_pause) {
 915                /* We need to set up the Receive Threshold high and low water
 916                 * marks as well as (optionally) enabling the transmission of
 917                 * XON frames.
 918                 */
 919                fcrtl = hw->fc.low_water;
 920                if (hw->fc.send_xon)
 921                        fcrtl |= E1000_FCRTL_XONE;
 922
 923                fcrth = hw->fc.high_water;
 924        }
 925        ew32(FCRTL, fcrtl);
 926        ew32(FCRTH, fcrth);
 927
 928        return 0;
 929}
 930
 931/**
 932 *  e1000e_force_mac_fc - Force the MAC's flow control settings
 933 *  @hw: pointer to the HW structure
 934 *
 935 *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
 936 *  device control register to reflect the adapter settings.  TFCE and RFCE
 937 *  need to be explicitly set by software when a copper PHY is used because
 938 *  autonegotiation is managed by the PHY rather than the MAC.  Software must
 939 *  also configure these bits when link is forced on a fiber connection.
 940 **/
 941s32 e1000e_force_mac_fc(struct e1000_hw *hw)
 942{
 943        u32 ctrl;
 944
 945        ctrl = er32(CTRL);
 946
 947        /* Because we didn't get link via the internal auto-negotiation
 948         * mechanism (we either forced link or we got link via PHY
 949         * auto-neg), we have to manually enable/disable transmit an
 950         * receive flow control.
 951         *
 952         * The "Case" statement below enables/disable flow control
 953         * according to the "hw->fc.current_mode" parameter.
 954         *
 955         * The possible values of the "fc" parameter are:
 956         *      0:  Flow control is completely disabled
 957         *      1:  Rx flow control is enabled (we can receive pause
 958         *          frames but not send pause frames).
 959         *      2:  Tx flow control is enabled (we can send pause frames
 960         *          frames but we do not receive pause frames).
 961         *      3:  Both Rx and Tx flow control (symmetric) is enabled.
 962         *  other:  No other values should be possible at this point.
 963         */
 964        e_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
 965
 966        switch (hw->fc.current_mode) {
 967        case e1000_fc_none:
 968                ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
 969                break;
 970        case e1000_fc_rx_pause:
 971                ctrl &= (~E1000_CTRL_TFCE);
 972                ctrl |= E1000_CTRL_RFCE;
 973                break;
 974        case e1000_fc_tx_pause:
 975                ctrl &= (~E1000_CTRL_RFCE);
 976                ctrl |= E1000_CTRL_TFCE;
 977                break;
 978        case e1000_fc_full:
 979                ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
 980                break;
 981        default:
 982                e_dbg("Flow control param set incorrectly\n");
 983                return -E1000_ERR_CONFIG;
 984        }
 985
 986        ew32(CTRL, ctrl);
 987
 988        return 0;
 989}
 990
 991/**
 992 *  e1000e_config_fc_after_link_up - Configures flow control after link
 993 *  @hw: pointer to the HW structure
 994 *
 995 *  Checks the status of auto-negotiation after link up to ensure that the
 996 *  speed and duplex were not forced.  If the link needed to be forced, then
 997 *  flow control needs to be forced also.  If auto-negotiation is enabled
 998 *  and did not fail, then we configure flow control based on our link
 999 *  partner.
1000 **/
1001s32 e1000e_config_fc_after_link_up(struct e1000_hw *hw)
1002{
1003        struct e1000_mac_info *mac = &hw->mac;
1004        s32 ret_val = 0;
1005        u32 pcs_status_reg, pcs_adv_reg, pcs_lp_ability_reg, pcs_ctrl_reg;
1006        u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
1007        u16 speed, duplex;
1008
1009        /* Check for the case where we have fiber media and auto-neg failed
1010         * so we had to force link.  In this case, we need to force the
1011         * configuration of the MAC to match the "fc" parameter.
1012         */
1013        if (mac->autoneg_failed) {
1014                if (hw->phy.media_type == e1000_media_type_fiber ||
1015                    hw->phy.media_type == e1000_media_type_internal_serdes)
1016                        ret_val = e1000e_force_mac_fc(hw);
1017        } else {
1018                if (hw->phy.media_type == e1000_media_type_copper)
1019                        ret_val = e1000e_force_mac_fc(hw);
1020        }
1021
1022        if (ret_val) {
1023                e_dbg("Error forcing flow control settings\n");
1024                return ret_val;
1025        }
1026
1027        /* Check for the case where we have copper media and auto-neg is
1028         * enabled.  In this case, we need to check and see if Auto-Neg
1029         * has completed, and if so, how the PHY and link partner has
1030         * flow control configured.
1031         */
1032        if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
1033                /* Read the MII Status Register and check to see if AutoNeg
1034                 * has completed.  We read this twice because this reg has
1035                 * some "sticky" (latched) bits.
1036                 */
1037                ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1038                if (ret_val)
1039                        return ret_val;
1040                ret_val = e1e_rphy(hw, MII_BMSR, &mii_status_reg);
1041                if (ret_val)
1042                        return ret_val;
1043
1044                if (!(mii_status_reg & BMSR_ANEGCOMPLETE)) {
1045                        e_dbg("Copper PHY and Auto Neg has not completed.\n");
1046                        return ret_val;
1047                }
1048
1049                /* The AutoNeg process has completed, so we now need to
1050                 * read both the Auto Negotiation Advertisement
1051                 * Register (Address 4) and the Auto_Negotiation Base
1052                 * Page Ability Register (Address 5) to determine how
1053                 * flow control was negotiated.
1054                 */
1055                ret_val = e1e_rphy(hw, MII_ADVERTISE, &mii_nway_adv_reg);
1056                if (ret_val)
1057                        return ret_val;
1058                ret_val = e1e_rphy(hw, MII_LPA, &mii_nway_lp_ability_reg);
1059                if (ret_val)
1060                        return ret_val;
1061
1062                /* Two bits in the Auto Negotiation Advertisement Register
1063                 * (Address 4) and two bits in the Auto Negotiation Base
1064                 * Page Ability Register (Address 5) determine flow control
1065                 * for both the PHY and the link partner.  The following
1066                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1067                 * 1999, describes these PAUSE resolution bits and how flow
1068                 * control is determined based upon these settings.
1069                 * NOTE:  DC = Don't Care
1070                 *
1071                 *   LOCAL DEVICE  |   LINK PARTNER
1072                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1073                 *-------|---------|-------|---------|--------------------
1074                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1075                 *   0   |    1    |   0   |   DC    | e1000_fc_none
1076                 *   0   |    1    |   1   |    0    | e1000_fc_none
1077                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1078                 *   1   |    0    |   0   |   DC    | e1000_fc_none
1079                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1080                 *   1   |    1    |   0   |    0    | e1000_fc_none
1081                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1082                 *
1083                 * Are both PAUSE bits set to 1?  If so, this implies
1084                 * Symmetric Flow Control is enabled at both ends.  The
1085                 * ASM_DIR bits are irrelevant per the spec.
1086                 *
1087                 * For Symmetric Flow Control:
1088                 *
1089                 *   LOCAL DEVICE  |   LINK PARTNER
1090                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1091                 *-------|---------|-------|---------|--------------------
1092                 *   1   |   DC    |   1   |   DC    | E1000_fc_full
1093                 *
1094                 */
1095                if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1096                    (mii_nway_lp_ability_reg & LPA_PAUSE_CAP)) {
1097                        /* Now we need to check if the user selected Rx ONLY
1098                         * of pause frames.  In this case, we had to advertise
1099                         * FULL flow control because we could not advertise Rx
1100                         * ONLY. Hence, we must now check to see if we need to
1101                         * turn OFF the TRANSMISSION of PAUSE frames.
1102                         */
1103                        if (hw->fc.requested_mode == e1000_fc_full) {
1104                                hw->fc.current_mode = e1000_fc_full;
1105                                e_dbg("Flow Control = FULL.\n");
1106                        } else {
1107                                hw->fc.current_mode = e1000_fc_rx_pause;
1108                                e_dbg("Flow Control = Rx PAUSE frames only.\n");
1109                        }
1110                }
1111                /* For receiving PAUSE frames ONLY.
1112                 *
1113                 *   LOCAL DEVICE  |   LINK PARTNER
1114                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1115                 *-------|---------|-------|---------|--------------------
1116                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1117                 */
1118                else if (!(mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1119                         (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1120                         (mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1121                         (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1122                        hw->fc.current_mode = e1000_fc_tx_pause;
1123                        e_dbg("Flow Control = Tx PAUSE frames only.\n");
1124                }
1125                /* For transmitting PAUSE frames ONLY.
1126                 *
1127                 *   LOCAL DEVICE  |   LINK PARTNER
1128                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1129                 *-------|---------|-------|---------|--------------------
1130                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1131                 */
1132                else if ((mii_nway_adv_reg & ADVERTISE_PAUSE_CAP) &&
1133                         (mii_nway_adv_reg & ADVERTISE_PAUSE_ASYM) &&
1134                         !(mii_nway_lp_ability_reg & LPA_PAUSE_CAP) &&
1135                         (mii_nway_lp_ability_reg & LPA_PAUSE_ASYM)) {
1136                        hw->fc.current_mode = e1000_fc_rx_pause;
1137                        e_dbg("Flow Control = Rx PAUSE frames only.\n");
1138                } else {
1139                        /* Per the IEEE spec, at this point flow control
1140                         * should be disabled.
1141                         */
1142                        hw->fc.current_mode = e1000_fc_none;
1143                        e_dbg("Flow Control = NONE.\n");
1144                }
1145
1146                /* Now we need to do one last check...  If we auto-
1147                 * negotiated to HALF DUPLEX, flow control should not be
1148                 * enabled per IEEE 802.3 spec.
1149                 */
1150                ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
1151                if (ret_val) {
1152                        e_dbg("Error getting link speed and duplex\n");
1153                        return ret_val;
1154                }
1155
1156                if (duplex == HALF_DUPLEX)
1157                        hw->fc.current_mode = e1000_fc_none;
1158
1159                /* Now we call a subroutine to actually force the MAC
1160                 * controller to use the correct flow control settings.
1161                 */
1162                ret_val = e1000e_force_mac_fc(hw);
1163                if (ret_val) {
1164                        e_dbg("Error forcing flow control settings\n");
1165                        return ret_val;
1166                }
1167        }
1168
1169        /* Check for the case where we have SerDes media and auto-neg is
1170         * enabled.  In this case, we need to check and see if Auto-Neg
1171         * has completed, and if so, how the PHY and link partner has
1172         * flow control configured.
1173         */
1174        if ((hw->phy.media_type == e1000_media_type_internal_serdes) &&
1175            mac->autoneg) {
1176                /* Read the PCS_LSTS and check to see if AutoNeg
1177                 * has completed.
1178                 */
1179                pcs_status_reg = er32(PCS_LSTAT);
1180
1181                if (!(pcs_status_reg & E1000_PCS_LSTS_AN_COMPLETE)) {
1182                        e_dbg("PCS Auto Neg has not completed.\n");
1183                        return ret_val;
1184                }
1185
1186                /* The AutoNeg process has completed, so we now need to
1187                 * read both the Auto Negotiation Advertisement
1188                 * Register (PCS_ANADV) and the Auto_Negotiation Base
1189                 * Page Ability Register (PCS_LPAB) to determine how
1190                 * flow control was negotiated.
1191                 */
1192                pcs_adv_reg = er32(PCS_ANADV);
1193                pcs_lp_ability_reg = er32(PCS_LPAB);
1194
1195                /* Two bits in the Auto Negotiation Advertisement Register
1196                 * (PCS_ANADV) and two bits in the Auto Negotiation Base
1197                 * Page Ability Register (PCS_LPAB) determine flow control
1198                 * for both the PHY and the link partner.  The following
1199                 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1200                 * 1999, describes these PAUSE resolution bits and how flow
1201                 * control is determined based upon these settings.
1202                 * NOTE:  DC = Don't Care
1203                 *
1204                 *   LOCAL DEVICE  |   LINK PARTNER
1205                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1206                 *-------|---------|-------|---------|--------------------
1207                 *   0   |    0    |  DC   |   DC    | e1000_fc_none
1208                 *   0   |    1    |   0   |   DC    | e1000_fc_none
1209                 *   0   |    1    |   1   |    0    | e1000_fc_none
1210                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1211                 *   1   |    0    |   0   |   DC    | e1000_fc_none
1212                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1213                 *   1   |    1    |   0   |    0    | e1000_fc_none
1214                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1215                 *
1216                 * Are both PAUSE bits set to 1?  If so, this implies
1217                 * Symmetric Flow Control is enabled at both ends.  The
1218                 * ASM_DIR bits are irrelevant per the spec.
1219                 *
1220                 * For Symmetric Flow Control:
1221                 *
1222                 *   LOCAL DEVICE  |   LINK PARTNER
1223                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1224                 *-------|---------|-------|---------|--------------------
1225                 *   1   |   DC    |   1   |   DC    | e1000_fc_full
1226                 *
1227                 */
1228                if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1229                    (pcs_lp_ability_reg & E1000_TXCW_PAUSE)) {
1230                        /* Now we need to check if the user selected Rx ONLY
1231                         * of pause frames.  In this case, we had to advertise
1232                         * FULL flow control because we could not advertise Rx
1233                         * ONLY. Hence, we must now check to see if we need to
1234                         * turn OFF the TRANSMISSION of PAUSE frames.
1235                         */
1236                        if (hw->fc.requested_mode == e1000_fc_full) {
1237                                hw->fc.current_mode = e1000_fc_full;
1238                                e_dbg("Flow Control = FULL.\n");
1239                        } else {
1240                                hw->fc.current_mode = e1000_fc_rx_pause;
1241                                e_dbg("Flow Control = Rx PAUSE frames only.\n");
1242                        }
1243                }
1244                /* For receiving PAUSE frames ONLY.
1245                 *
1246                 *   LOCAL DEVICE  |   LINK PARTNER
1247                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1248                 *-------|---------|-------|---------|--------------------
1249                 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause
1250                 */
1251                else if (!(pcs_adv_reg & E1000_TXCW_PAUSE) &&
1252                         (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1253                         (pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1254                         (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1255                        hw->fc.current_mode = e1000_fc_tx_pause;
1256                        e_dbg("Flow Control = Tx PAUSE frames only.\n");
1257                }
1258                /* For transmitting PAUSE frames ONLY.
1259                 *
1260                 *   LOCAL DEVICE  |   LINK PARTNER
1261                 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1262                 *-------|---------|-------|---------|--------------------
1263                 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause
1264                 */
1265                else if ((pcs_adv_reg & E1000_TXCW_PAUSE) &&
1266                         (pcs_adv_reg & E1000_TXCW_ASM_DIR) &&
1267                         !(pcs_lp_ability_reg & E1000_TXCW_PAUSE) &&
1268                         (pcs_lp_ability_reg & E1000_TXCW_ASM_DIR)) {
1269                        hw->fc.current_mode = e1000_fc_rx_pause;
1270                        e_dbg("Flow Control = Rx PAUSE frames only.\n");
1271                } else {
1272                        /* Per the IEEE spec, at this point flow control
1273                         * should be disabled.
1274                         */
1275                        hw->fc.current_mode = e1000_fc_none;
1276                        e_dbg("Flow Control = NONE.\n");
1277                }
1278
1279                /* Now we call a subroutine to actually force the MAC
1280                 * controller to use the correct flow control settings.
1281                 */
1282                pcs_ctrl_reg = er32(PCS_LCTL);
1283                pcs_ctrl_reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1284                ew32(PCS_LCTL, pcs_ctrl_reg);
1285
1286                ret_val = e1000e_force_mac_fc(hw);
1287                if (ret_val) {
1288                        e_dbg("Error forcing flow control settings\n");
1289                        return ret_val;
1290                }
1291        }
1292
1293        return 0;
1294}
1295
1296/**
1297 *  e1000e_get_speed_and_duplex_copper - Retrieve current speed/duplex
1298 *  @hw: pointer to the HW structure
1299 *  @speed: stores the current speed
1300 *  @duplex: stores the current duplex
1301 *
1302 *  Read the status register for the current speed/duplex and store the current
1303 *  speed and duplex for copper connections.
1304 **/
1305s32 e1000e_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
1306                                       u16 *duplex)
1307{
1308        u32 status;
1309
1310        status = er32(STATUS);
1311        if (status & E1000_STATUS_SPEED_1000)
1312                *speed = SPEED_1000;
1313        else if (status & E1000_STATUS_SPEED_100)
1314                *speed = SPEED_100;
1315        else
1316                *speed = SPEED_10;
1317
1318        if (status & E1000_STATUS_FD)
1319                *duplex = FULL_DUPLEX;
1320        else
1321                *duplex = HALF_DUPLEX;
1322
1323        e_dbg("%u Mbps, %s Duplex\n",
1324              *speed == SPEED_1000 ? 1000 : *speed == SPEED_100 ? 100 : 10,
1325              *duplex == FULL_DUPLEX ? "Full" : "Half");
1326
1327        return 0;
1328}
1329
1330/**
1331 *  e1000e_get_speed_and_duplex_fiber_serdes - Retrieve current speed/duplex
1332 *  @hw: pointer to the HW structure
1333 *  @speed: stores the current speed
1334 *  @duplex: stores the current duplex
1335 *
1336 *  Sets the speed and duplex to gigabit full duplex (the only possible option)
1337 *  for fiber/serdes links.
1338 **/
1339s32 e1000e_get_speed_and_duplex_fiber_serdes(struct e1000_hw __always_unused
1340                                             *hw, u16 *speed, u16 *duplex)
1341{
1342        *speed = SPEED_1000;
1343        *duplex = FULL_DUPLEX;
1344
1345        return 0;
1346}
1347
1348/**
1349 *  e1000e_get_hw_semaphore - Acquire hardware semaphore
1350 *  @hw: pointer to the HW structure
1351 *
1352 *  Acquire the HW semaphore to access the PHY or NVM
1353 **/
1354s32 e1000e_get_hw_semaphore(struct e1000_hw *hw)
1355{
1356        u32 swsm;
1357        s32 timeout = hw->nvm.word_size + 1;
1358        s32 i = 0;
1359
1360        /* Get the SW semaphore */
1361        while (i < timeout) {
1362                swsm = er32(SWSM);
1363                if (!(swsm & E1000_SWSM_SMBI))
1364                        break;
1365
1366                udelay(100);
1367                i++;
1368        }
1369
1370        if (i == timeout) {
1371                e_dbg("Driver can't access device - SMBI bit is set.\n");
1372                return -E1000_ERR_NVM;
1373        }
1374
1375        /* Get the FW semaphore. */
1376        for (i = 0; i < timeout; i++) {
1377                swsm = er32(SWSM);
1378                ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
1379
1380                /* Semaphore acquired if bit latched */
1381                if (er32(SWSM) & E1000_SWSM_SWESMBI)
1382                        break;
1383
1384                udelay(100);
1385        }
1386
1387        if (i == timeout) {
1388                /* Release semaphores */
1389                e1000e_put_hw_semaphore(hw);
1390                e_dbg("Driver can't access the NVM\n");
1391                return -E1000_ERR_NVM;
1392        }
1393
1394        return 0;
1395}
1396
1397/**
1398 *  e1000e_put_hw_semaphore - Release hardware semaphore
1399 *  @hw: pointer to the HW structure
1400 *
1401 *  Release hardware semaphore used to access the PHY or NVM
1402 **/
1403void e1000e_put_hw_semaphore(struct e1000_hw *hw)
1404{
1405        u32 swsm;
1406
1407        swsm = er32(SWSM);
1408        swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1409        ew32(SWSM, swsm);
1410}
1411
1412/**
1413 *  e1000e_get_auto_rd_done - Check for auto read completion
1414 *  @hw: pointer to the HW structure
1415 *
1416 *  Check EEPROM for Auto Read done bit.
1417 **/
1418s32 e1000e_get_auto_rd_done(struct e1000_hw *hw)
1419{
1420        s32 i = 0;
1421
1422        while (i < AUTO_READ_DONE_TIMEOUT) {
1423                if (er32(EECD) & E1000_EECD_AUTO_RD)
1424                        break;
1425                usleep_range(1000, 2000);
1426                i++;
1427        }
1428
1429        if (i == AUTO_READ_DONE_TIMEOUT) {
1430                e_dbg("Auto read by HW from NVM has not completed.\n");
1431                return -E1000_ERR_RESET;
1432        }
1433
1434        return 0;
1435}
1436
1437/**
1438 *  e1000e_valid_led_default - Verify a valid default LED config
1439 *  @hw: pointer to the HW structure
1440 *  @data: pointer to the NVM (EEPROM)
1441 *
1442 *  Read the EEPROM for the current default LED configuration.  If the
1443 *  LED configuration is not valid, set to a valid LED configuration.
1444 **/
1445s32 e1000e_valid_led_default(struct e1000_hw *hw, u16 *data)
1446{
1447        s32 ret_val;
1448
1449        ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1450        if (ret_val) {
1451                e_dbg("NVM Read Error\n");
1452                return ret_val;
1453        }
1454
1455        if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
1456                *data = ID_LED_DEFAULT;
1457
1458        return 0;
1459}
1460
1461/**
1462 *  e1000e_id_led_init_generic -
1463 *  @hw: pointer to the HW structure
1464 *
1465 **/
1466s32 e1000e_id_led_init_generic(struct e1000_hw *hw)
1467{
1468        struct e1000_mac_info *mac = &hw->mac;
1469        s32 ret_val;
1470        const u32 ledctl_mask = 0x000000FF;
1471        const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1472        const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1473        u16 data, i, temp;
1474        const u16 led_mask = 0x0F;
1475
1476        ret_val = hw->nvm.ops.valid_led_default(hw, &data);
1477        if (ret_val)
1478                return ret_val;
1479
1480        mac->ledctl_default = er32(LEDCTL);
1481        mac->ledctl_mode1 = mac->ledctl_default;
1482        mac->ledctl_mode2 = mac->ledctl_default;
1483
1484        for (i = 0; i < 4; i++) {
1485                temp = (data >> (i << 2)) & led_mask;
1486                switch (temp) {
1487                case ID_LED_ON1_DEF2:
1488                case ID_LED_ON1_ON2:
1489                case ID_LED_ON1_OFF2:
1490                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1491                        mac->ledctl_mode1 |= ledctl_on << (i << 3);
1492                        break;
1493                case ID_LED_OFF1_DEF2:
1494                case ID_LED_OFF1_ON2:
1495                case ID_LED_OFF1_OFF2:
1496                        mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1497                        mac->ledctl_mode1 |= ledctl_off << (i << 3);
1498                        break;
1499                default:
1500                        /* Do nothing */
1501                        break;
1502                }
1503                switch (temp) {
1504                case ID_LED_DEF1_ON2:
1505                case ID_LED_ON1_ON2:
1506                case ID_LED_OFF1_ON2:
1507                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1508                        mac->ledctl_mode2 |= ledctl_on << (i << 3);
1509                        break;
1510                case ID_LED_DEF1_OFF2:
1511                case ID_LED_ON1_OFF2:
1512                case ID_LED_OFF1_OFF2:
1513                        mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1514                        mac->ledctl_mode2 |= ledctl_off << (i << 3);
1515                        break;
1516                default:
1517                        /* Do nothing */
1518                        break;
1519                }
1520        }
1521
1522        return 0;
1523}
1524
1525/**
1526 *  e1000e_setup_led_generic - Configures SW controllable LED
1527 *  @hw: pointer to the HW structure
1528 *
1529 *  This prepares the SW controllable LED for use and saves the current state
1530 *  of the LED so it can be later restored.
1531 **/
1532s32 e1000e_setup_led_generic(struct e1000_hw *hw)
1533{
1534        u32 ledctl;
1535
1536        if (hw->mac.ops.setup_led != e1000e_setup_led_generic)
1537                return -E1000_ERR_CONFIG;
1538
1539        if (hw->phy.media_type == e1000_media_type_fiber) {
1540                ledctl = er32(LEDCTL);
1541                hw->mac.ledctl_default = ledctl;
1542                /* Turn off LED0 */
1543                ledctl &= ~(E1000_LEDCTL_LED0_IVRT | E1000_LEDCTL_LED0_BLINK |
1544                            E1000_LEDCTL_LED0_MODE_MASK);
1545                ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
1546                           E1000_LEDCTL_LED0_MODE_SHIFT);
1547                ew32(LEDCTL, ledctl);
1548        } else if (hw->phy.media_type == e1000_media_type_copper) {
1549                ew32(LEDCTL, hw->mac.ledctl_mode1);
1550        }
1551
1552        return 0;
1553}
1554
1555/**
1556 *  e1000e_cleanup_led_generic - Set LED config to default operation
1557 *  @hw: pointer to the HW structure
1558 *
1559 *  Remove the current LED configuration and set the LED configuration
1560 *  to the default value, saved from the EEPROM.
1561 **/
1562s32 e1000e_cleanup_led_generic(struct e1000_hw *hw)
1563{
1564        ew32(LEDCTL, hw->mac.ledctl_default);
1565        return 0;
1566}
1567
1568/**
1569 *  e1000e_blink_led_generic - Blink LED
1570 *  @hw: pointer to the HW structure
1571 *
1572 *  Blink the LEDs which are set to be on.
1573 **/
1574s32 e1000e_blink_led_generic(struct e1000_hw *hw)
1575{
1576        u32 ledctl_blink = 0;
1577        u32 i;
1578
1579        if (hw->phy.media_type == e1000_media_type_fiber) {
1580                /* always blink LED0 for PCI-E fiber */
1581                ledctl_blink = E1000_LEDCTL_LED0_BLINK |
1582                    (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT);
1583        } else {
1584                /* Set the blink bit for each LED that's "on" (0x0E)
1585                 * (or "off" if inverted) in ledctl_mode2.  The blink
1586                 * logic in hardware only works when mode is set to "on"
1587                 * so it must be changed accordingly when the mode is
1588                 * "off" and inverted.
1589                 */
1590                ledctl_blink = hw->mac.ledctl_mode2;
1591                for (i = 0; i < 32; i += 8) {
1592                        u32 mode = (hw->mac.ledctl_mode2 >> i) &
1593                            E1000_LEDCTL_LED0_MODE_MASK;
1594                        u32 led_default = hw->mac.ledctl_default >> i;
1595
1596                        if ((!(led_default & E1000_LEDCTL_LED0_IVRT) &&
1597                             (mode == E1000_LEDCTL_MODE_LED_ON)) ||
1598                            ((led_default & E1000_LEDCTL_LED0_IVRT) &&
1599                             (mode == E1000_LEDCTL_MODE_LED_OFF))) {
1600                                ledctl_blink &=
1601                                    ~(E1000_LEDCTL_LED0_MODE_MASK << i);
1602                                ledctl_blink |= (E1000_LEDCTL_LED0_BLINK |
1603                                                 E1000_LEDCTL_MODE_LED_ON) << i;
1604                        }
1605                }
1606        }
1607
1608        ew32(LEDCTL, ledctl_blink);
1609
1610        return 0;
1611}
1612
1613/**
1614 *  e1000e_led_on_generic - Turn LED on
1615 *  @hw: pointer to the HW structure
1616 *
1617 *  Turn LED on.
1618 **/
1619s32 e1000e_led_on_generic(struct e1000_hw *hw)
1620{
1621        u32 ctrl;
1622
1623        switch (hw->phy.media_type) {
1624        case e1000_media_type_fiber:
1625                ctrl = er32(CTRL);
1626                ctrl &= ~E1000_CTRL_SWDPIN0;
1627                ctrl |= E1000_CTRL_SWDPIO0;
1628                ew32(CTRL, ctrl);
1629                break;
1630        case e1000_media_type_copper:
1631                ew32(LEDCTL, hw->mac.ledctl_mode2);
1632                break;
1633        default:
1634                break;
1635        }
1636
1637        return 0;
1638}
1639
1640/**
1641 *  e1000e_led_off_generic - Turn LED off
1642 *  @hw: pointer to the HW structure
1643 *
1644 *  Turn LED off.
1645 **/
1646s32 e1000e_led_off_generic(struct e1000_hw *hw)
1647{
1648        u32 ctrl;
1649
1650        switch (hw->phy.media_type) {
1651        case e1000_media_type_fiber:
1652                ctrl = er32(CTRL);
1653                ctrl |= E1000_CTRL_SWDPIN0;
1654                ctrl |= E1000_CTRL_SWDPIO0;
1655                ew32(CTRL, ctrl);
1656                break;
1657        case e1000_media_type_copper:
1658                ew32(LEDCTL, hw->mac.ledctl_mode1);
1659                break;
1660        default:
1661                break;
1662        }
1663
1664        return 0;
1665}
1666
1667/**
1668 *  e1000e_set_pcie_no_snoop - Set PCI-express capabilities
1669 *  @hw: pointer to the HW structure
1670 *  @no_snoop: bitmap of snoop events
1671 *
1672 *  Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1673 **/
1674void e1000e_set_pcie_no_snoop(struct e1000_hw *hw, u32 no_snoop)
1675{
1676        u32 gcr;
1677
1678        if (no_snoop) {
1679                gcr = er32(GCR);
1680                gcr &= ~(PCIE_NO_SNOOP_ALL);
1681                gcr |= no_snoop;
1682                ew32(GCR, gcr);
1683        }
1684}
1685
1686/**
1687 *  e1000e_disable_pcie_master - Disables PCI-express master access
1688 *  @hw: pointer to the HW structure
1689 *
1690 *  Returns 0 if successful, else returns -10
1691 *  (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1692 *  the master requests to be disabled.
1693 *
1694 *  Disables PCI-Express master access and verifies there are no pending
1695 *  requests.
1696 **/
1697s32 e1000e_disable_pcie_master(struct e1000_hw *hw)
1698{
1699        u32 ctrl;
1700        s32 timeout = MASTER_DISABLE_TIMEOUT;
1701
1702        ctrl = er32(CTRL);
1703        ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1704        ew32(CTRL, ctrl);
1705
1706        while (timeout) {
1707                if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE))
1708                        break;
1709                usleep_range(100, 200);
1710                timeout--;
1711        }
1712
1713        if (!timeout) {
1714                e_dbg("Master requests are pending.\n");
1715                return -E1000_ERR_MASTER_REQUESTS_PENDING;
1716        }
1717
1718        return 0;
1719}
1720
1721/**
1722 *  e1000e_reset_adaptive - Reset Adaptive Interframe Spacing
1723 *  @hw: pointer to the HW structure
1724 *
1725 *  Reset the Adaptive Interframe Spacing throttle to default values.
1726 **/
1727void e1000e_reset_adaptive(struct e1000_hw *hw)
1728{
1729        struct e1000_mac_info *mac = &hw->mac;
1730
1731        if (!mac->adaptive_ifs) {
1732                e_dbg("Not in Adaptive IFS mode!\n");
1733                return;
1734        }
1735
1736        mac->current_ifs_val = 0;
1737        mac->ifs_min_val = IFS_MIN;
1738        mac->ifs_max_val = IFS_MAX;
1739        mac->ifs_step_size = IFS_STEP;
1740        mac->ifs_ratio = IFS_RATIO;
1741
1742        mac->in_ifs_mode = false;
1743        ew32(AIT, 0);
1744}
1745
1746/**
1747 *  e1000e_update_adaptive - Update Adaptive Interframe Spacing
1748 *  @hw: pointer to the HW structure
1749 *
1750 *  Update the Adaptive Interframe Spacing Throttle value based on the
1751 *  time between transmitted packets and time between collisions.
1752 **/
1753void e1000e_update_adaptive(struct e1000_hw *hw)
1754{
1755        struct e1000_mac_info *mac = &hw->mac;
1756
1757        if (!mac->adaptive_ifs) {
1758                e_dbg("Not in Adaptive IFS mode!\n");
1759                return;
1760        }
1761
1762        if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1763                if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1764                        mac->in_ifs_mode = true;
1765                        if (mac->current_ifs_val < mac->ifs_max_val) {
1766                                if (!mac->current_ifs_val)
1767                                        mac->current_ifs_val = mac->ifs_min_val;
1768                                else
1769                                        mac->current_ifs_val +=
1770                                            mac->ifs_step_size;
1771                                ew32(AIT, mac->current_ifs_val);
1772                        }
1773                }
1774        } else {
1775                if (mac->in_ifs_mode &&
1776                    (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1777                        mac->current_ifs_val = 0;
1778                        mac->in_ifs_mode = false;
1779                        ew32(AIT, 0);
1780                }
1781        }
1782}
1783