linux/drivers/net/ethernet/intel/ice/ice_txrx.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* The driver transmit and receive code */
   5
   6#include <linux/prefetch.h>
   7#include <linux/mm.h>
   8#include <linux/bpf_trace.h>
   9#include <net/xdp.h>
  10#include "ice_txrx_lib.h"
  11#include "ice_lib.h"
  12#include "ice.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_xsk.h"
  15
  16#define ICE_RX_HDR_SIZE         256
  17
  18#define FDIR_DESC_RXDID 0x40
  19#define ICE_FDIR_CLEAN_DELAY 10
  20
  21/**
  22 * ice_prgm_fdir_fltr - Program a Flow Director filter
  23 * @vsi: VSI to send dummy packet
  24 * @fdir_desc: flow director descriptor
  25 * @raw_packet: allocated buffer for flow director
  26 */
  27int
  28ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
  29                   u8 *raw_packet)
  30{
  31        struct ice_tx_buf *tx_buf, *first;
  32        struct ice_fltr_desc *f_desc;
  33        struct ice_tx_desc *tx_desc;
  34        struct ice_ring *tx_ring;
  35        struct device *dev;
  36        dma_addr_t dma;
  37        u32 td_cmd;
  38        u16 i;
  39
  40        /* VSI and Tx ring */
  41        if (!vsi)
  42                return -ENOENT;
  43        tx_ring = vsi->tx_rings[0];
  44        if (!tx_ring || !tx_ring->desc)
  45                return -ENOENT;
  46        dev = tx_ring->dev;
  47
  48        /* we are using two descriptors to add/del a filter and we can wait */
  49        for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
  50                if (!i)
  51                        return -EAGAIN;
  52                msleep_interruptible(1);
  53        }
  54
  55        dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
  56                             DMA_TO_DEVICE);
  57
  58        if (dma_mapping_error(dev, dma))
  59                return -EINVAL;
  60
  61        /* grab the next descriptor */
  62        i = tx_ring->next_to_use;
  63        first = &tx_ring->tx_buf[i];
  64        f_desc = ICE_TX_FDIRDESC(tx_ring, i);
  65        memcpy(f_desc, fdir_desc, sizeof(*f_desc));
  66
  67        i++;
  68        i = (i < tx_ring->count) ? i : 0;
  69        tx_desc = ICE_TX_DESC(tx_ring, i);
  70        tx_buf = &tx_ring->tx_buf[i];
  71
  72        i++;
  73        tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  74
  75        memset(tx_buf, 0, sizeof(*tx_buf));
  76        dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
  77        dma_unmap_addr_set(tx_buf, dma, dma);
  78
  79        tx_desc->buf_addr = cpu_to_le64(dma);
  80        td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
  81                 ICE_TX_DESC_CMD_RE;
  82
  83        tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
  84        tx_buf->raw_buf = raw_packet;
  85
  86        tx_desc->cmd_type_offset_bsz =
  87                ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
  88
  89        /* Force memory write to complete before letting h/w know
  90         * there are new descriptors to fetch.
  91         */
  92        wmb();
  93
  94        /* mark the data descriptor to be watched */
  95        first->next_to_watch = tx_desc;
  96
  97        writel(tx_ring->next_to_use, tx_ring->tail);
  98
  99        return 0;
 100}
 101
 102/**
 103 * ice_unmap_and_free_tx_buf - Release a Tx buffer
 104 * @ring: the ring that owns the buffer
 105 * @tx_buf: the buffer to free
 106 */
 107static void
 108ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
 109{
 110        if (tx_buf->skb) {
 111                if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
 112                        devm_kfree(ring->dev, tx_buf->raw_buf);
 113                else if (ice_ring_is_xdp(ring))
 114                        page_frag_free(tx_buf->raw_buf);
 115                else
 116                        dev_kfree_skb_any(tx_buf->skb);
 117                if (dma_unmap_len(tx_buf, len))
 118                        dma_unmap_single(ring->dev,
 119                                         dma_unmap_addr(tx_buf, dma),
 120                                         dma_unmap_len(tx_buf, len),
 121                                         DMA_TO_DEVICE);
 122        } else if (dma_unmap_len(tx_buf, len)) {
 123                dma_unmap_page(ring->dev,
 124                               dma_unmap_addr(tx_buf, dma),
 125                               dma_unmap_len(tx_buf, len),
 126                               DMA_TO_DEVICE);
 127        }
 128
 129        tx_buf->next_to_watch = NULL;
 130        tx_buf->skb = NULL;
 131        dma_unmap_len_set(tx_buf, len, 0);
 132        /* tx_buf must be completely set up in the transmit path */
 133}
 134
 135static struct netdev_queue *txring_txq(const struct ice_ring *ring)
 136{
 137        return netdev_get_tx_queue(ring->netdev, ring->q_index);
 138}
 139
 140/**
 141 * ice_clean_tx_ring - Free any empty Tx buffers
 142 * @tx_ring: ring to be cleaned
 143 */
 144void ice_clean_tx_ring(struct ice_ring *tx_ring)
 145{
 146        u16 i;
 147
 148        if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 149                ice_xsk_clean_xdp_ring(tx_ring);
 150                goto tx_skip_free;
 151        }
 152
 153        /* ring already cleared, nothing to do */
 154        if (!tx_ring->tx_buf)
 155                return;
 156
 157        /* Free all the Tx ring sk_buffs */
 158        for (i = 0; i < tx_ring->count; i++)
 159                ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
 160
 161tx_skip_free:
 162        memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
 163
 164        /* Zero out the descriptor ring */
 165        memset(tx_ring->desc, 0, tx_ring->size);
 166
 167        tx_ring->next_to_use = 0;
 168        tx_ring->next_to_clean = 0;
 169
 170        if (!tx_ring->netdev)
 171                return;
 172
 173        /* cleanup Tx queue statistics */
 174        netdev_tx_reset_queue(txring_txq(tx_ring));
 175}
 176
 177/**
 178 * ice_free_tx_ring - Free Tx resources per queue
 179 * @tx_ring: Tx descriptor ring for a specific queue
 180 *
 181 * Free all transmit software resources
 182 */
 183void ice_free_tx_ring(struct ice_ring *tx_ring)
 184{
 185        ice_clean_tx_ring(tx_ring);
 186        devm_kfree(tx_ring->dev, tx_ring->tx_buf);
 187        tx_ring->tx_buf = NULL;
 188
 189        if (tx_ring->desc) {
 190                dmam_free_coherent(tx_ring->dev, tx_ring->size,
 191                                   tx_ring->desc, tx_ring->dma);
 192                tx_ring->desc = NULL;
 193        }
 194}
 195
 196/**
 197 * ice_clean_tx_irq - Reclaim resources after transmit completes
 198 * @tx_ring: Tx ring to clean
 199 * @napi_budget: Used to determine if we are in netpoll
 200 *
 201 * Returns true if there's any budget left (e.g. the clean is finished)
 202 */
 203static bool ice_clean_tx_irq(struct ice_ring *tx_ring, int napi_budget)
 204{
 205        unsigned int total_bytes = 0, total_pkts = 0;
 206        unsigned int budget = ICE_DFLT_IRQ_WORK;
 207        struct ice_vsi *vsi = tx_ring->vsi;
 208        s16 i = tx_ring->next_to_clean;
 209        struct ice_tx_desc *tx_desc;
 210        struct ice_tx_buf *tx_buf;
 211
 212        tx_buf = &tx_ring->tx_buf[i];
 213        tx_desc = ICE_TX_DESC(tx_ring, i);
 214        i -= tx_ring->count;
 215
 216        prefetch(&vsi->state);
 217
 218        do {
 219                struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
 220
 221                /* if next_to_watch is not set then there is no work pending */
 222                if (!eop_desc)
 223                        break;
 224
 225                smp_rmb();      /* prevent any other reads prior to eop_desc */
 226
 227                /* if the descriptor isn't done, no work yet to do */
 228                if (!(eop_desc->cmd_type_offset_bsz &
 229                      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
 230                        break;
 231
 232                /* clear next_to_watch to prevent false hangs */
 233                tx_buf->next_to_watch = NULL;
 234
 235                /* update the statistics for this packet */
 236                total_bytes += tx_buf->bytecount;
 237                total_pkts += tx_buf->gso_segs;
 238
 239                if (ice_ring_is_xdp(tx_ring))
 240                        page_frag_free(tx_buf->raw_buf);
 241                else
 242                        /* free the skb */
 243                        napi_consume_skb(tx_buf->skb, napi_budget);
 244
 245                /* unmap skb header data */
 246                dma_unmap_single(tx_ring->dev,
 247                                 dma_unmap_addr(tx_buf, dma),
 248                                 dma_unmap_len(tx_buf, len),
 249                                 DMA_TO_DEVICE);
 250
 251                /* clear tx_buf data */
 252                tx_buf->skb = NULL;
 253                dma_unmap_len_set(tx_buf, len, 0);
 254
 255                /* unmap remaining buffers */
 256                while (tx_desc != eop_desc) {
 257                        tx_buf++;
 258                        tx_desc++;
 259                        i++;
 260                        if (unlikely(!i)) {
 261                                i -= tx_ring->count;
 262                                tx_buf = tx_ring->tx_buf;
 263                                tx_desc = ICE_TX_DESC(tx_ring, 0);
 264                        }
 265
 266                        /* unmap any remaining paged data */
 267                        if (dma_unmap_len(tx_buf, len)) {
 268                                dma_unmap_page(tx_ring->dev,
 269                                               dma_unmap_addr(tx_buf, dma),
 270                                               dma_unmap_len(tx_buf, len),
 271                                               DMA_TO_DEVICE);
 272                                dma_unmap_len_set(tx_buf, len, 0);
 273                        }
 274                }
 275
 276                /* move us one more past the eop_desc for start of next pkt */
 277                tx_buf++;
 278                tx_desc++;
 279                i++;
 280                if (unlikely(!i)) {
 281                        i -= tx_ring->count;
 282                        tx_buf = tx_ring->tx_buf;
 283                        tx_desc = ICE_TX_DESC(tx_ring, 0);
 284                }
 285
 286                prefetch(tx_desc);
 287
 288                /* update budget accounting */
 289                budget--;
 290        } while (likely(budget));
 291
 292        i += tx_ring->count;
 293        tx_ring->next_to_clean = i;
 294
 295        ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
 296
 297        if (ice_ring_is_xdp(tx_ring))
 298                return !!budget;
 299
 300        netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts,
 301                                  total_bytes);
 302
 303#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 304        if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
 305                     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 306                /* Make sure that anybody stopping the queue after this
 307                 * sees the new next_to_clean.
 308                 */
 309                smp_mb();
 310                if (__netif_subqueue_stopped(tx_ring->netdev,
 311                                             tx_ring->q_index) &&
 312                    !test_bit(__ICE_DOWN, vsi->state)) {
 313                        netif_wake_subqueue(tx_ring->netdev,
 314                                            tx_ring->q_index);
 315                        ++tx_ring->tx_stats.restart_q;
 316                }
 317        }
 318
 319        return !!budget;
 320}
 321
 322/**
 323 * ice_setup_tx_ring - Allocate the Tx descriptors
 324 * @tx_ring: the Tx ring to set up
 325 *
 326 * Return 0 on success, negative on error
 327 */
 328int ice_setup_tx_ring(struct ice_ring *tx_ring)
 329{
 330        struct device *dev = tx_ring->dev;
 331
 332        if (!dev)
 333                return -ENOMEM;
 334
 335        /* warn if we are about to overwrite the pointer */
 336        WARN_ON(tx_ring->tx_buf);
 337        tx_ring->tx_buf =
 338                devm_kzalloc(dev, sizeof(*tx_ring->tx_buf) * tx_ring->count,
 339                             GFP_KERNEL);
 340        if (!tx_ring->tx_buf)
 341                return -ENOMEM;
 342
 343        /* round up to nearest page */
 344        tx_ring->size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
 345                              PAGE_SIZE);
 346        tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
 347                                            GFP_KERNEL);
 348        if (!tx_ring->desc) {
 349                dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
 350                        tx_ring->size);
 351                goto err;
 352        }
 353
 354        tx_ring->next_to_use = 0;
 355        tx_ring->next_to_clean = 0;
 356        tx_ring->tx_stats.prev_pkt = -1;
 357        return 0;
 358
 359err:
 360        devm_kfree(dev, tx_ring->tx_buf);
 361        tx_ring->tx_buf = NULL;
 362        return -ENOMEM;
 363}
 364
 365/**
 366 * ice_clean_rx_ring - Free Rx buffers
 367 * @rx_ring: ring to be cleaned
 368 */
 369void ice_clean_rx_ring(struct ice_ring *rx_ring)
 370{
 371        struct device *dev = rx_ring->dev;
 372        u16 i;
 373
 374        /* ring already cleared, nothing to do */
 375        if (!rx_ring->rx_buf)
 376                return;
 377
 378        if (rx_ring->xsk_pool) {
 379                ice_xsk_clean_rx_ring(rx_ring);
 380                goto rx_skip_free;
 381        }
 382
 383        /* Free all the Rx ring sk_buffs */
 384        for (i = 0; i < rx_ring->count; i++) {
 385                struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
 386
 387                if (rx_buf->skb) {
 388                        dev_kfree_skb(rx_buf->skb);
 389                        rx_buf->skb = NULL;
 390                }
 391                if (!rx_buf->page)
 392                        continue;
 393
 394                /* Invalidate cache lines that may have been written to by
 395                 * device so that we avoid corrupting memory.
 396                 */
 397                dma_sync_single_range_for_cpu(dev, rx_buf->dma,
 398                                              rx_buf->page_offset,
 399                                              rx_ring->rx_buf_len,
 400                                              DMA_FROM_DEVICE);
 401
 402                /* free resources associated with mapping */
 403                dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
 404                                     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 405                __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
 406
 407                rx_buf->page = NULL;
 408                rx_buf->page_offset = 0;
 409        }
 410
 411rx_skip_free:
 412        memset(rx_ring->rx_buf, 0, sizeof(*rx_ring->rx_buf) * rx_ring->count);
 413
 414        /* Zero out the descriptor ring */
 415        memset(rx_ring->desc, 0, rx_ring->size);
 416
 417        rx_ring->next_to_alloc = 0;
 418        rx_ring->next_to_clean = 0;
 419        rx_ring->next_to_use = 0;
 420}
 421
 422/**
 423 * ice_free_rx_ring - Free Rx resources
 424 * @rx_ring: ring to clean the resources from
 425 *
 426 * Free all receive software resources
 427 */
 428void ice_free_rx_ring(struct ice_ring *rx_ring)
 429{
 430        ice_clean_rx_ring(rx_ring);
 431        if (rx_ring->vsi->type == ICE_VSI_PF)
 432                if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 433                        xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 434        rx_ring->xdp_prog = NULL;
 435        devm_kfree(rx_ring->dev, rx_ring->rx_buf);
 436        rx_ring->rx_buf = NULL;
 437
 438        if (rx_ring->desc) {
 439                dmam_free_coherent(rx_ring->dev, rx_ring->size,
 440                                   rx_ring->desc, rx_ring->dma);
 441                rx_ring->desc = NULL;
 442        }
 443}
 444
 445/**
 446 * ice_setup_rx_ring - Allocate the Rx descriptors
 447 * @rx_ring: the Rx ring to set up
 448 *
 449 * Return 0 on success, negative on error
 450 */
 451int ice_setup_rx_ring(struct ice_ring *rx_ring)
 452{
 453        struct device *dev = rx_ring->dev;
 454
 455        if (!dev)
 456                return -ENOMEM;
 457
 458        /* warn if we are about to overwrite the pointer */
 459        WARN_ON(rx_ring->rx_buf);
 460        rx_ring->rx_buf =
 461                devm_kzalloc(dev, sizeof(*rx_ring->rx_buf) * rx_ring->count,
 462                             GFP_KERNEL);
 463        if (!rx_ring->rx_buf)
 464                return -ENOMEM;
 465
 466        /* round up to nearest page */
 467        rx_ring->size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
 468                              PAGE_SIZE);
 469        rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
 470                                            GFP_KERNEL);
 471        if (!rx_ring->desc) {
 472                dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
 473                        rx_ring->size);
 474                goto err;
 475        }
 476
 477        rx_ring->next_to_use = 0;
 478        rx_ring->next_to_clean = 0;
 479
 480        if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 481                WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
 482
 483        if (rx_ring->vsi->type == ICE_VSI_PF &&
 484            !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 485                if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 486                                     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
 487                        goto err;
 488        return 0;
 489
 490err:
 491        devm_kfree(dev, rx_ring->rx_buf);
 492        rx_ring->rx_buf = NULL;
 493        return -ENOMEM;
 494}
 495
 496/**
 497 * ice_rx_offset - Return expected offset into page to access data
 498 * @rx_ring: Ring we are requesting offset of
 499 *
 500 * Returns the offset value for ring into the data buffer.
 501 */
 502static unsigned int ice_rx_offset(struct ice_ring *rx_ring)
 503{
 504        if (ice_ring_uses_build_skb(rx_ring))
 505                return ICE_SKB_PAD;
 506        else if (ice_is_xdp_ena_vsi(rx_ring->vsi))
 507                return XDP_PACKET_HEADROOM;
 508
 509        return 0;
 510}
 511
 512static unsigned int
 513ice_rx_frame_truesize(struct ice_ring *rx_ring, unsigned int __maybe_unused size)
 514{
 515        unsigned int truesize;
 516
 517#if (PAGE_SIZE < 8192)
 518        truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 519#else
 520        truesize = ice_rx_offset(rx_ring) ?
 521                SKB_DATA_ALIGN(ice_rx_offset(rx_ring) + size) +
 522                SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 523                SKB_DATA_ALIGN(size);
 524#endif
 525        return truesize;
 526}
 527
 528/**
 529 * ice_run_xdp - Executes an XDP program on initialized xdp_buff
 530 * @rx_ring: Rx ring
 531 * @xdp: xdp_buff used as input to the XDP program
 532 * @xdp_prog: XDP program to run
 533 *
 534 * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
 535 */
 536static int
 537ice_run_xdp(struct ice_ring *rx_ring, struct xdp_buff *xdp,
 538            struct bpf_prog *xdp_prog)
 539{
 540        int err, result = ICE_XDP_PASS;
 541        struct ice_ring *xdp_ring;
 542        u32 act;
 543
 544        act = bpf_prog_run_xdp(xdp_prog, xdp);
 545        switch (act) {
 546        case XDP_PASS:
 547                break;
 548        case XDP_TX:
 549                xdp_ring = rx_ring->vsi->xdp_rings[smp_processor_id()];
 550                result = ice_xmit_xdp_buff(xdp, xdp_ring);
 551                break;
 552        case XDP_REDIRECT:
 553                err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
 554                result = !err ? ICE_XDP_REDIR : ICE_XDP_CONSUMED;
 555                break;
 556        default:
 557                bpf_warn_invalid_xdp_action(act);
 558                fallthrough;
 559        case XDP_ABORTED:
 560                trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 561                fallthrough;
 562        case XDP_DROP:
 563                result = ICE_XDP_CONSUMED;
 564                break;
 565        }
 566
 567        return result;
 568}
 569
 570/**
 571 * ice_xdp_xmit - submit packets to XDP ring for transmission
 572 * @dev: netdev
 573 * @n: number of XDP frames to be transmitted
 574 * @frames: XDP frames to be transmitted
 575 * @flags: transmit flags
 576 *
 577 * Returns number of frames successfully sent. Frames that fail are
 578 * free'ed via XDP return API.
 579 * For error cases, a negative errno code is returned and no-frames
 580 * are transmitted (caller must handle freeing frames).
 581 */
 582int
 583ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
 584             u32 flags)
 585{
 586        struct ice_netdev_priv *np = netdev_priv(dev);
 587        unsigned int queue_index = smp_processor_id();
 588        struct ice_vsi *vsi = np->vsi;
 589        struct ice_ring *xdp_ring;
 590        int drops = 0, i;
 591
 592        if (test_bit(__ICE_DOWN, vsi->state))
 593                return -ENETDOWN;
 594
 595        if (!ice_is_xdp_ena_vsi(vsi) || queue_index >= vsi->num_xdp_txq)
 596                return -ENXIO;
 597
 598        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 599                return -EINVAL;
 600
 601        xdp_ring = vsi->xdp_rings[queue_index];
 602        for (i = 0; i < n; i++) {
 603                struct xdp_frame *xdpf = frames[i];
 604                int err;
 605
 606                err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
 607                if (err != ICE_XDP_TX) {
 608                        xdp_return_frame_rx_napi(xdpf);
 609                        drops++;
 610                }
 611        }
 612
 613        if (unlikely(flags & XDP_XMIT_FLUSH))
 614                ice_xdp_ring_update_tail(xdp_ring);
 615
 616        return n - drops;
 617}
 618
 619/**
 620 * ice_alloc_mapped_page - recycle or make a new page
 621 * @rx_ring: ring to use
 622 * @bi: rx_buf struct to modify
 623 *
 624 * Returns true if the page was successfully allocated or
 625 * reused.
 626 */
 627static bool
 628ice_alloc_mapped_page(struct ice_ring *rx_ring, struct ice_rx_buf *bi)
 629{
 630        struct page *page = bi->page;
 631        dma_addr_t dma;
 632
 633        /* since we are recycling buffers we should seldom need to alloc */
 634        if (likely(page))
 635                return true;
 636
 637        /* alloc new page for storage */
 638        page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
 639        if (unlikely(!page)) {
 640                rx_ring->rx_stats.alloc_page_failed++;
 641                return false;
 642        }
 643
 644        /* map page for use */
 645        dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
 646                                 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
 647
 648        /* if mapping failed free memory back to system since
 649         * there isn't much point in holding memory we can't use
 650         */
 651        if (dma_mapping_error(rx_ring->dev, dma)) {
 652                __free_pages(page, ice_rx_pg_order(rx_ring));
 653                rx_ring->rx_stats.alloc_page_failed++;
 654                return false;
 655        }
 656
 657        bi->dma = dma;
 658        bi->page = page;
 659        bi->page_offset = ice_rx_offset(rx_ring);
 660        page_ref_add(page, USHRT_MAX - 1);
 661        bi->pagecnt_bias = USHRT_MAX;
 662
 663        return true;
 664}
 665
 666/**
 667 * ice_alloc_rx_bufs - Replace used receive buffers
 668 * @rx_ring: ring to place buffers on
 669 * @cleaned_count: number of buffers to replace
 670 *
 671 * Returns false if all allocations were successful, true if any fail. Returning
 672 * true signals to the caller that we didn't replace cleaned_count buffers and
 673 * there is more work to do.
 674 *
 675 * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
 676 * buffers. Then bump tail at most one time. Grouping like this lets us avoid
 677 * multiple tail writes per call.
 678 */
 679bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
 680{
 681        union ice_32b_rx_flex_desc *rx_desc;
 682        u16 ntu = rx_ring->next_to_use;
 683        struct ice_rx_buf *bi;
 684
 685        /* do nothing if no valid netdev defined */
 686        if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
 687            !cleaned_count)
 688                return false;
 689
 690        /* get the Rx descriptor and buffer based on next_to_use */
 691        rx_desc = ICE_RX_DESC(rx_ring, ntu);
 692        bi = &rx_ring->rx_buf[ntu];
 693
 694        do {
 695                /* if we fail here, we have work remaining */
 696                if (!ice_alloc_mapped_page(rx_ring, bi))
 697                        break;
 698
 699                /* sync the buffer for use by the device */
 700                dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 701                                                 bi->page_offset,
 702                                                 rx_ring->rx_buf_len,
 703                                                 DMA_FROM_DEVICE);
 704
 705                /* Refresh the desc even if buffer_addrs didn't change
 706                 * because each write-back erases this info.
 707                 */
 708                rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 709
 710                rx_desc++;
 711                bi++;
 712                ntu++;
 713                if (unlikely(ntu == rx_ring->count)) {
 714                        rx_desc = ICE_RX_DESC(rx_ring, 0);
 715                        bi = rx_ring->rx_buf;
 716                        ntu = 0;
 717                }
 718
 719                /* clear the status bits for the next_to_use descriptor */
 720                rx_desc->wb.status_error0 = 0;
 721
 722                cleaned_count--;
 723        } while (cleaned_count);
 724
 725        if (rx_ring->next_to_use != ntu)
 726                ice_release_rx_desc(rx_ring, ntu);
 727
 728        return !!cleaned_count;
 729}
 730
 731/**
 732 * ice_page_is_reserved - check if reuse is possible
 733 * @page: page struct to check
 734 */
 735static bool ice_page_is_reserved(struct page *page)
 736{
 737        return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
 738}
 739
 740/**
 741 * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
 742 * @rx_buf: Rx buffer to adjust
 743 * @size: Size of adjustment
 744 *
 745 * Update the offset within page so that Rx buf will be ready to be reused.
 746 * For systems with PAGE_SIZE < 8192 this function will flip the page offset
 747 * so the second half of page assigned to Rx buffer will be used, otherwise
 748 * the offset is moved by "size" bytes
 749 */
 750static void
 751ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
 752{
 753#if (PAGE_SIZE < 8192)
 754        /* flip page offset to other buffer */
 755        rx_buf->page_offset ^= size;
 756#else
 757        /* move offset up to the next cache line */
 758        rx_buf->page_offset += size;
 759#endif
 760}
 761
 762/**
 763 * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
 764 * @rx_buf: buffer containing the page
 765 * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
 766 *
 767 * If page is reusable, we have a green light for calling ice_reuse_rx_page,
 768 * which will assign the current buffer to the buffer that next_to_alloc is
 769 * pointing to; otherwise, the DMA mapping needs to be destroyed and
 770 * page freed
 771 */
 772static bool
 773ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
 774{
 775        unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
 776        struct page *page = rx_buf->page;
 777
 778        /* avoid re-using remote pages */
 779        if (unlikely(ice_page_is_reserved(page)))
 780                return false;
 781
 782#if (PAGE_SIZE < 8192)
 783        /* if we are only owner of page we can reuse it */
 784        if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
 785                return false;
 786#else
 787#define ICE_LAST_OFFSET \
 788        (SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
 789        if (rx_buf->page_offset > ICE_LAST_OFFSET)
 790                return false;
 791#endif /* PAGE_SIZE < 8192) */
 792
 793        /* If we have drained the page fragment pool we need to update
 794         * the pagecnt_bias and page count so that we fully restock the
 795         * number of references the driver holds.
 796         */
 797        if (unlikely(pagecnt_bias == 1)) {
 798                page_ref_add(page, USHRT_MAX - 1);
 799                rx_buf->pagecnt_bias = USHRT_MAX;
 800        }
 801
 802        return true;
 803}
 804
 805/**
 806 * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
 807 * @rx_ring: Rx descriptor ring to transact packets on
 808 * @rx_buf: buffer containing page to add
 809 * @skb: sk_buff to place the data into
 810 * @size: packet length from rx_desc
 811 *
 812 * This function will add the data contained in rx_buf->page to the skb.
 813 * It will just attach the page as a frag to the skb.
 814 * The function will then update the page offset.
 815 */
 816static void
 817ice_add_rx_frag(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 818                struct sk_buff *skb, unsigned int size)
 819{
 820#if (PAGE_SIZE >= 8192)
 821        unsigned int truesize = SKB_DATA_ALIGN(size + ice_rx_offset(rx_ring));
 822#else
 823        unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 824#endif
 825
 826        if (!size)
 827                return;
 828        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
 829                        rx_buf->page_offset, size, truesize);
 830
 831        /* page is being used so we must update the page offset */
 832        ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 833}
 834
 835/**
 836 * ice_reuse_rx_page - page flip buffer and store it back on the ring
 837 * @rx_ring: Rx descriptor ring to store buffers on
 838 * @old_buf: donor buffer to have page reused
 839 *
 840 * Synchronizes page for reuse by the adapter
 841 */
 842static void
 843ice_reuse_rx_page(struct ice_ring *rx_ring, struct ice_rx_buf *old_buf)
 844{
 845        u16 nta = rx_ring->next_to_alloc;
 846        struct ice_rx_buf *new_buf;
 847
 848        new_buf = &rx_ring->rx_buf[nta];
 849
 850        /* update, and store next to alloc */
 851        nta++;
 852        rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 853
 854        /* Transfer page from old buffer to new buffer.
 855         * Move each member individually to avoid possible store
 856         * forwarding stalls and unnecessary copy of skb.
 857         */
 858        new_buf->dma = old_buf->dma;
 859        new_buf->page = old_buf->page;
 860        new_buf->page_offset = old_buf->page_offset;
 861        new_buf->pagecnt_bias = old_buf->pagecnt_bias;
 862}
 863
 864/**
 865 * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
 866 * @rx_ring: Rx descriptor ring to transact packets on
 867 * @skb: skb to be used
 868 * @size: size of buffer to add to skb
 869 * @rx_buf_pgcnt: rx_buf page refcount
 870 *
 871 * This function will pull an Rx buffer from the ring and synchronize it
 872 * for use by the CPU.
 873 */
 874static struct ice_rx_buf *
 875ice_get_rx_buf(struct ice_ring *rx_ring, struct sk_buff **skb,
 876               const unsigned int size, int *rx_buf_pgcnt)
 877{
 878        struct ice_rx_buf *rx_buf;
 879
 880        rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
 881        *rx_buf_pgcnt =
 882#if (PAGE_SIZE < 8192)
 883                page_count(rx_buf->page);
 884#else
 885                0;
 886#endif
 887        prefetchw(rx_buf->page);
 888        *skb = rx_buf->skb;
 889
 890        if (!size)
 891                return rx_buf;
 892        /* we are reusing so sync this buffer for CPU use */
 893        dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
 894                                      rx_buf->page_offset, size,
 895                                      DMA_FROM_DEVICE);
 896
 897        /* We have pulled a buffer for use, so decrement pagecnt_bias */
 898        rx_buf->pagecnt_bias--;
 899
 900        return rx_buf;
 901}
 902
 903/**
 904 * ice_build_skb - Build skb around an existing buffer
 905 * @rx_ring: Rx descriptor ring to transact packets on
 906 * @rx_buf: Rx buffer to pull data from
 907 * @xdp: xdp_buff pointing to the data
 908 *
 909 * This function builds an skb around an existing Rx buffer, taking care
 910 * to set up the skb correctly and avoid any memcpy overhead.
 911 */
 912static struct sk_buff *
 913ice_build_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 914              struct xdp_buff *xdp)
 915{
 916        u8 metasize = xdp->data - xdp->data_meta;
 917#if (PAGE_SIZE < 8192)
 918        unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 919#else
 920        unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 921                                SKB_DATA_ALIGN(xdp->data_end -
 922                                               xdp->data_hard_start);
 923#endif
 924        struct sk_buff *skb;
 925
 926        /* Prefetch first cache line of first page. If xdp->data_meta
 927         * is unused, this points exactly as xdp->data, otherwise we
 928         * likely have a consumer accessing first few bytes of meta
 929         * data, and then actual data.
 930         */
 931        net_prefetch(xdp->data_meta);
 932        /* build an skb around the page buffer */
 933        skb = build_skb(xdp->data_hard_start, truesize);
 934        if (unlikely(!skb))
 935                return NULL;
 936
 937        /* must to record Rx queue, otherwise OS features such as
 938         * symmetric queue won't work
 939         */
 940        skb_record_rx_queue(skb, rx_ring->q_index);
 941
 942        /* update pointers within the skb to store the data */
 943        skb_reserve(skb, xdp->data - xdp->data_hard_start);
 944        __skb_put(skb, xdp->data_end - xdp->data);
 945        if (metasize)
 946                skb_metadata_set(skb, metasize);
 947
 948        /* buffer is used by skb, update page_offset */
 949        ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
 950
 951        return skb;
 952}
 953
 954/**
 955 * ice_construct_skb - Allocate skb and populate it
 956 * @rx_ring: Rx descriptor ring to transact packets on
 957 * @rx_buf: Rx buffer to pull data from
 958 * @xdp: xdp_buff pointing to the data
 959 *
 960 * This function allocates an skb. It then populates it with the page
 961 * data from the current receive descriptor, taking care to set up the
 962 * skb correctly.
 963 */
 964static struct sk_buff *
 965ice_construct_skb(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
 966                  struct xdp_buff *xdp)
 967{
 968        unsigned int size = xdp->data_end - xdp->data;
 969        unsigned int headlen;
 970        struct sk_buff *skb;
 971
 972        /* prefetch first cache line of first page */
 973        net_prefetch(xdp->data);
 974
 975        /* allocate a skb to store the frags */
 976        skb = __napi_alloc_skb(&rx_ring->q_vector->napi, ICE_RX_HDR_SIZE,
 977                               GFP_ATOMIC | __GFP_NOWARN);
 978        if (unlikely(!skb))
 979                return NULL;
 980
 981        skb_record_rx_queue(skb, rx_ring->q_index);
 982        /* Determine available headroom for copy */
 983        headlen = size;
 984        if (headlen > ICE_RX_HDR_SIZE)
 985                headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
 986
 987        /* align pull length to size of long to optimize memcpy performance */
 988        memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen,
 989                                                         sizeof(long)));
 990
 991        /* if we exhaust the linear part then add what is left as a frag */
 992        size -= headlen;
 993        if (size) {
 994#if (PAGE_SIZE >= 8192)
 995                unsigned int truesize = SKB_DATA_ALIGN(size);
 996#else
 997                unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
 998#endif
 999                skb_add_rx_frag(skb, 0, rx_buf->page,
1000                                rx_buf->page_offset + headlen, size, truesize);
1001                /* buffer is used by skb, update page_offset */
1002                ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1003        } else {
1004                /* buffer is unused, reset bias back to rx_buf; data was copied
1005                 * onto skb's linear part so there's no need for adjusting
1006                 * page offset and we can reuse this buffer as-is
1007                 */
1008                rx_buf->pagecnt_bias++;
1009        }
1010
1011        return skb;
1012}
1013
1014/**
1015 * ice_put_rx_buf - Clean up used buffer and either recycle or free
1016 * @rx_ring: Rx descriptor ring to transact packets on
1017 * @rx_buf: Rx buffer to pull data from
1018 * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1019 *
1020 * This function will update next_to_clean and then clean up the contents
1021 * of the rx_buf. It will either recycle the buffer or unmap it and free
1022 * the associated resources.
1023 */
1024static void
1025ice_put_rx_buf(struct ice_ring *rx_ring, struct ice_rx_buf *rx_buf,
1026               int rx_buf_pgcnt)
1027{
1028        u16 ntc = rx_ring->next_to_clean + 1;
1029
1030        /* fetch, update, and store next to clean */
1031        ntc = (ntc < rx_ring->count) ? ntc : 0;
1032        rx_ring->next_to_clean = ntc;
1033
1034        if (!rx_buf)
1035                return;
1036
1037        if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1038                /* hand second half of page back to the ring */
1039                ice_reuse_rx_page(rx_ring, rx_buf);
1040        } else {
1041                /* we are not reusing the buffer so unmap it */
1042                dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1043                                     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1044                                     ICE_RX_DMA_ATTR);
1045                __page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1046        }
1047
1048        /* clear contents of buffer_info */
1049        rx_buf->page = NULL;
1050        rx_buf->skb = NULL;
1051}
1052
1053/**
1054 * ice_is_non_eop - process handling of non-EOP buffers
1055 * @rx_ring: Rx ring being processed
1056 * @rx_desc: Rx descriptor for current buffer
1057 * @skb: Current socket buffer containing buffer in progress
1058 *
1059 * If the buffer is an EOP buffer, this function exits returning false,
1060 * otherwise return true indicating that this is in fact a non-EOP buffer.
1061 */
1062static bool
1063ice_is_non_eop(struct ice_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc,
1064               struct sk_buff *skb)
1065{
1066        /* if we are the last buffer then there is nothing else to do */
1067#define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1068        if (likely(ice_test_staterr(rx_desc, ICE_RXD_EOF)))
1069                return false;
1070
1071        /* place skb in next buffer to be received */
1072        rx_ring->rx_buf[rx_ring->next_to_clean].skb = skb;
1073        rx_ring->rx_stats.non_eop_descs++;
1074
1075        return true;
1076}
1077
1078/**
1079 * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1080 * @rx_ring: Rx descriptor ring to transact packets on
1081 * @budget: Total limit on number of packets to process
1082 *
1083 * This function provides a "bounce buffer" approach to Rx interrupt
1084 * processing. The advantage to this is that on systems that have
1085 * expensive overhead for IOMMU access this provides a means of avoiding
1086 * it by maintaining the mapping of the page to the system.
1087 *
1088 * Returns amount of work completed
1089 */
1090int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget)
1091{
1092        unsigned int total_rx_bytes = 0, total_rx_pkts = 0;
1093        u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1094        unsigned int xdp_res, xdp_xmit = 0;
1095        struct bpf_prog *xdp_prog = NULL;
1096        struct xdp_buff xdp;
1097        bool failure;
1098
1099        xdp.rxq = &rx_ring->xdp_rxq;
1100        /* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1101#if (PAGE_SIZE < 8192)
1102        xdp.frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1103#endif
1104
1105        /* start the loop to process Rx packets bounded by 'budget' */
1106        while (likely(total_rx_pkts < (unsigned int)budget)) {
1107                union ice_32b_rx_flex_desc *rx_desc;
1108                struct ice_rx_buf *rx_buf;
1109                struct sk_buff *skb;
1110                unsigned int size;
1111                u16 stat_err_bits;
1112                int rx_buf_pgcnt;
1113                u16 vlan_tag = 0;
1114                u8 rx_ptype;
1115
1116                /* get the Rx desc from Rx ring based on 'next_to_clean' */
1117                rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1118
1119                /* status_error_len will always be zero for unused descriptors
1120                 * because it's cleared in cleanup, and overlaps with hdr_addr
1121                 * which is always zero because packet split isn't used, if the
1122                 * hardware wrote DD then it will be non-zero
1123                 */
1124                stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1125                if (!ice_test_staterr(rx_desc, stat_err_bits))
1126                        break;
1127
1128                /* This memory barrier is needed to keep us from reading
1129                 * any other fields out of the rx_desc until we know the
1130                 * DD bit is set.
1131                 */
1132                dma_rmb();
1133
1134                if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1135                        ice_put_rx_buf(rx_ring, NULL, 0);
1136                        cleaned_count++;
1137                        continue;
1138                }
1139
1140                size = le16_to_cpu(rx_desc->wb.pkt_len) &
1141                        ICE_RX_FLX_DESC_PKT_LEN_M;
1142
1143                /* retrieve a buffer from the ring */
1144                rx_buf = ice_get_rx_buf(rx_ring, &skb, size, &rx_buf_pgcnt);
1145
1146                if (!size) {
1147                        xdp.data = NULL;
1148                        xdp.data_end = NULL;
1149                        xdp.data_hard_start = NULL;
1150                        xdp.data_meta = NULL;
1151                        goto construct_skb;
1152                }
1153
1154                xdp.data = page_address(rx_buf->page) + rx_buf->page_offset;
1155                xdp.data_hard_start = xdp.data - ice_rx_offset(rx_ring);
1156                xdp.data_meta = xdp.data;
1157                xdp.data_end = xdp.data + size;
1158#if (PAGE_SIZE > 4096)
1159                /* At larger PAGE_SIZE, frame_sz depend on len size */
1160                xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1161#endif
1162
1163                rcu_read_lock();
1164                xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1165                if (!xdp_prog) {
1166                        rcu_read_unlock();
1167                        goto construct_skb;
1168                }
1169
1170                xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog);
1171                rcu_read_unlock();
1172                if (!xdp_res)
1173                        goto construct_skb;
1174                if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1175                        xdp_xmit |= xdp_res;
1176                        ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1177                } else {
1178                        rx_buf->pagecnt_bias++;
1179                }
1180                total_rx_bytes += size;
1181                total_rx_pkts++;
1182
1183                cleaned_count++;
1184                ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1185                continue;
1186construct_skb:
1187                if (skb) {
1188                        ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1189                } else if (likely(xdp.data)) {
1190                        if (ice_ring_uses_build_skb(rx_ring))
1191                                skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1192                        else
1193                                skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1194                }
1195                /* exit if we failed to retrieve a buffer */
1196                if (!skb) {
1197                        rx_ring->rx_stats.alloc_buf_failed++;
1198                        if (rx_buf)
1199                                rx_buf->pagecnt_bias++;
1200                        break;
1201                }
1202
1203                ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1204                cleaned_count++;
1205
1206                /* skip if it is NOP desc */
1207                if (ice_is_non_eop(rx_ring, rx_desc, skb))
1208                        continue;
1209
1210                stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1211                if (unlikely(ice_test_staterr(rx_desc, stat_err_bits))) {
1212                        dev_kfree_skb_any(skb);
1213                        continue;
1214                }
1215
1216                stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_L2TAG1P_S);
1217                if (ice_test_staterr(rx_desc, stat_err_bits))
1218                        vlan_tag = le16_to_cpu(rx_desc->wb.l2tag1);
1219
1220                /* pad the skb if needed, to make a valid ethernet frame */
1221                if (eth_skb_pad(skb)) {
1222                        skb = NULL;
1223                        continue;
1224                }
1225
1226                /* probably a little skewed due to removing CRC */
1227                total_rx_bytes += skb->len;
1228
1229                /* populate checksum, VLAN, and protocol */
1230                rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1231                        ICE_RX_FLEX_DESC_PTYPE_M;
1232
1233                ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1234
1235                /* send completed skb up the stack */
1236                ice_receive_skb(rx_ring, skb, vlan_tag);
1237
1238                /* update budget accounting */
1239                total_rx_pkts++;
1240        }
1241
1242        /* return up to cleaned_count buffers to hardware */
1243        failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1244
1245        if (xdp_prog)
1246                ice_finalize_xdp_rx(rx_ring, xdp_xmit);
1247
1248        ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1249
1250        /* guarantee a trip back through this routine if there was a failure */
1251        return failure ? budget : (int)total_rx_pkts;
1252}
1253
1254/**
1255 * ice_adjust_itr_by_size_and_speed - Adjust ITR based on current traffic
1256 * @port_info: port_info structure containing the current link speed
1257 * @avg_pkt_size: average size of Tx or Rx packets based on clean routine
1258 * @itr: ITR value to update
1259 *
1260 * Calculate how big of an increment should be applied to the ITR value passed
1261 * in based on wmem_default, SKB overhead, ethernet overhead, and the current
1262 * link speed.
1263 *
1264 * The following is a calculation derived from:
1265 *  wmem_default / (size + overhead) = desired_pkts_per_int
1266 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1267 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1268 *
1269 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1270 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1271 * formula down to:
1272 *
1273 *       wmem_default * bits_per_byte * usecs_per_sec   pkt_size + 24
1274 * ITR = -------------------------------------------- * --------------
1275 *                           rate                       pkt_size + 640
1276 */
1277static unsigned int
1278ice_adjust_itr_by_size_and_speed(struct ice_port_info *port_info,
1279                                 unsigned int avg_pkt_size,
1280                                 unsigned int itr)
1281{
1282        switch (port_info->phy.link_info.link_speed) {
1283        case ICE_AQ_LINK_SPEED_100GB:
1284                itr += DIV_ROUND_UP(17 * (avg_pkt_size + 24),
1285                                    avg_pkt_size + 640);
1286                break;
1287        case ICE_AQ_LINK_SPEED_50GB:
1288                itr += DIV_ROUND_UP(34 * (avg_pkt_size + 24),
1289                                    avg_pkt_size + 640);
1290                break;
1291        case ICE_AQ_LINK_SPEED_40GB:
1292                itr += DIV_ROUND_UP(43 * (avg_pkt_size + 24),
1293                                    avg_pkt_size + 640);
1294                break;
1295        case ICE_AQ_LINK_SPEED_25GB:
1296                itr += DIV_ROUND_UP(68 * (avg_pkt_size + 24),
1297                                    avg_pkt_size + 640);
1298                break;
1299        case ICE_AQ_LINK_SPEED_20GB:
1300                itr += DIV_ROUND_UP(85 * (avg_pkt_size + 24),
1301                                    avg_pkt_size + 640);
1302                break;
1303        case ICE_AQ_LINK_SPEED_10GB:
1304        default:
1305                itr += DIV_ROUND_UP(170 * (avg_pkt_size + 24),
1306                                    avg_pkt_size + 640);
1307                break;
1308        }
1309
1310        if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1311                itr &= ICE_ITR_ADAPTIVE_LATENCY;
1312                itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1313        }
1314
1315        return itr;
1316}
1317
1318/**
1319 * ice_update_itr - update the adaptive ITR value based on statistics
1320 * @q_vector: structure containing interrupt and ring information
1321 * @rc: structure containing ring performance data
1322 *
1323 * Stores a new ITR value based on packets and byte
1324 * counts during the last interrupt.  The advantage of per interrupt
1325 * computation is faster updates and more accurate ITR for the current
1326 * traffic pattern.  Constants in this function were computed
1327 * based on theoretical maximum wire speed and thresholds were set based
1328 * on testing data as well as attempting to minimize response time
1329 * while increasing bulk throughput.
1330 */
1331static void
1332ice_update_itr(struct ice_q_vector *q_vector, struct ice_ring_container *rc)
1333{
1334        unsigned long next_update = jiffies;
1335        unsigned int packets, bytes, itr;
1336        bool container_is_rx;
1337
1338        if (!rc->ring || !ITR_IS_DYNAMIC(rc->itr_setting))
1339                return;
1340
1341        /* If itr_countdown is set it means we programmed an ITR within
1342         * the last 4 interrupt cycles. This has a side effect of us
1343         * potentially firing an early interrupt. In order to work around
1344         * this we need to throw out any data received for a few
1345         * interrupts following the update.
1346         */
1347        if (q_vector->itr_countdown) {
1348                itr = rc->target_itr;
1349                goto clear_counts;
1350        }
1351
1352        container_is_rx = (&q_vector->rx == rc);
1353        /* For Rx we want to push the delay up and default to low latency.
1354         * for Tx we want to pull the delay down and default to high latency.
1355         */
1356        itr = container_is_rx ?
1357                ICE_ITR_ADAPTIVE_MIN_USECS | ICE_ITR_ADAPTIVE_LATENCY :
1358                ICE_ITR_ADAPTIVE_MAX_USECS | ICE_ITR_ADAPTIVE_LATENCY;
1359
1360        /* If we didn't update within up to 1 - 2 jiffies we can assume
1361         * that either packets are coming in so slow there hasn't been
1362         * any work, or that there is so much work that NAPI is dealing
1363         * with interrupt moderation and we don't need to do anything.
1364         */
1365        if (time_after(next_update, rc->next_update))
1366                goto clear_counts;
1367
1368        prefetch(q_vector->vsi->port_info);
1369
1370        packets = rc->total_pkts;
1371        bytes = rc->total_bytes;
1372
1373        if (container_is_rx) {
1374                /* If Rx there are 1 to 4 packets and bytes are less than
1375                 * 9000 assume insufficient data to use bulk rate limiting
1376                 * approach unless Tx is already in bulk rate limiting. We
1377                 * are likely latency driven.
1378                 */
1379                if (packets && packets < 4 && bytes < 9000 &&
1380                    (q_vector->tx.target_itr & ICE_ITR_ADAPTIVE_LATENCY)) {
1381                        itr = ICE_ITR_ADAPTIVE_LATENCY;
1382                        goto adjust_by_size_and_speed;
1383                }
1384        } else if (packets < 4) {
1385                /* If we have Tx and Rx ITR maxed and Tx ITR is running in
1386                 * bulk mode and we are receiving 4 or fewer packets just
1387                 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1388                 * that the Rx can relax.
1389                 */
1390                if (rc->target_itr == ICE_ITR_ADAPTIVE_MAX_USECS &&
1391                    (q_vector->rx.target_itr & ICE_ITR_MASK) ==
1392                    ICE_ITR_ADAPTIVE_MAX_USECS)
1393                        goto clear_counts;
1394        } else if (packets > 32) {
1395                /* If we have processed over 32 packets in a single interrupt
1396                 * for Tx assume we need to switch over to "bulk" mode.
1397                 */
1398                rc->target_itr &= ~ICE_ITR_ADAPTIVE_LATENCY;
1399        }
1400
1401        /* We have no packets to actually measure against. This means
1402         * either one of the other queues on this vector is active or
1403         * we are a Tx queue doing TSO with too high of an interrupt rate.
1404         *
1405         * Between 4 and 56 we can assume that our current interrupt delay
1406         * is only slightly too low. As such we should increase it by a small
1407         * fixed amount.
1408         */
1409        if (packets < 56) {
1410                itr = rc->target_itr + ICE_ITR_ADAPTIVE_MIN_INC;
1411                if ((itr & ICE_ITR_MASK) > ICE_ITR_ADAPTIVE_MAX_USECS) {
1412                        itr &= ICE_ITR_ADAPTIVE_LATENCY;
1413                        itr += ICE_ITR_ADAPTIVE_MAX_USECS;
1414                }
1415                goto clear_counts;
1416        }
1417
1418        if (packets <= 256) {
1419                itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1420                itr &= ICE_ITR_MASK;
1421
1422                /* Between 56 and 112 is our "goldilocks" zone where we are
1423                 * working out "just right". Just report that our current
1424                 * ITR is good for us.
1425                 */
1426                if (packets <= 112)
1427                        goto clear_counts;
1428
1429                /* If packet count is 128 or greater we are likely looking
1430                 * at a slight overrun of the delay we want. Try halving
1431                 * our delay to see if that will cut the number of packets
1432                 * in half per interrupt.
1433                 */
1434                itr >>= 1;
1435                itr &= ICE_ITR_MASK;
1436                if (itr < ICE_ITR_ADAPTIVE_MIN_USECS)
1437                        itr = ICE_ITR_ADAPTIVE_MIN_USECS;
1438
1439                goto clear_counts;
1440        }
1441
1442        /* The paths below assume we are dealing with a bulk ITR since
1443         * number of packets is greater than 256. We are just going to have
1444         * to compute a value and try to bring the count under control,
1445         * though for smaller packet sizes there isn't much we can do as
1446         * NAPI polling will likely be kicking in sooner rather than later.
1447         */
1448        itr = ICE_ITR_ADAPTIVE_BULK;
1449
1450adjust_by_size_and_speed:
1451
1452        /* based on checks above packets cannot be 0 so division is safe */
1453        itr = ice_adjust_itr_by_size_and_speed(q_vector->vsi->port_info,
1454                                               bytes / packets, itr);
1455
1456clear_counts:
1457        /* write back value */
1458        rc->target_itr = itr;
1459
1460        /* next update should occur within next jiffy */
1461        rc->next_update = next_update + 1;
1462
1463        rc->total_bytes = 0;
1464        rc->total_pkts = 0;
1465}
1466
1467/**
1468 * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1469 * @itr_idx: interrupt throttling index
1470 * @itr: interrupt throttling value in usecs
1471 */
1472static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1473{
1474        /* The ITR value is reported in microseconds, and the register value is
1475         * recorded in 2 microsecond units. For this reason we only need to
1476         * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1477         * granularity as a shift instead of division. The mask makes sure the
1478         * ITR value is never odd so we don't accidentally write into the field
1479         * prior to the ITR field.
1480         */
1481        itr &= ICE_ITR_MASK;
1482
1483        return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1484                (itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1485                (itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1486}
1487
1488/* The act of updating the ITR will cause it to immediately trigger. In order
1489 * to prevent this from throwing off adaptive update statistics we defer the
1490 * update so that it can only happen so often. So after either Tx or Rx are
1491 * updated we make the adaptive scheme wait until either the ITR completely
1492 * expires via the next_update expiration or we have been through at least
1493 * 3 interrupts.
1494 */
1495#define ITR_COUNTDOWN_START 3
1496
1497/**
1498 * ice_update_ena_itr - Update ITR and re-enable MSIX interrupt
1499 * @q_vector: q_vector for which ITR is being updated and interrupt enabled
1500 */
1501static void ice_update_ena_itr(struct ice_q_vector *q_vector)
1502{
1503        struct ice_ring_container *tx = &q_vector->tx;
1504        struct ice_ring_container *rx = &q_vector->rx;
1505        struct ice_vsi *vsi = q_vector->vsi;
1506        u32 itr_val;
1507
1508        /* when exiting WB_ON_ITR lets set a low ITR value and trigger
1509         * interrupts to expire right away in case we have more work ready to go
1510         * already
1511         */
1512        if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE) {
1513                itr_val = ice_buildreg_itr(rx->itr_idx, ICE_WB_ON_ITR_USECS);
1514                wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1515                /* set target back to last user set value */
1516                rx->target_itr = rx->itr_setting;
1517                /* set current to what we just wrote and dynamic if needed */
1518                rx->current_itr = ICE_WB_ON_ITR_USECS |
1519                        (rx->itr_setting & ICE_ITR_DYNAMIC);
1520                /* allow normal interrupt flow to start */
1521                q_vector->itr_countdown = 0;
1522                return;
1523        }
1524
1525        /* This will do nothing if dynamic updates are not enabled */
1526        ice_update_itr(q_vector, tx);
1527        ice_update_itr(q_vector, rx);
1528
1529        /* This block of logic allows us to get away with only updating
1530         * one ITR value with each interrupt. The idea is to perform a
1531         * pseudo-lazy update with the following criteria.
1532         *
1533         * 1. Rx is given higher priority than Tx if both are in same state
1534         * 2. If we must reduce an ITR that is given highest priority.
1535         * 3. We then give priority to increasing ITR based on amount.
1536         */
1537        if (rx->target_itr < rx->current_itr) {
1538                /* Rx ITR needs to be reduced, this is highest priority */
1539                itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1540                rx->current_itr = rx->target_itr;
1541                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1542        } else if ((tx->target_itr < tx->current_itr) ||
1543                   ((rx->target_itr - rx->current_itr) <
1544                    (tx->target_itr - tx->current_itr))) {
1545                /* Tx ITR needs to be reduced, this is second priority
1546                 * Tx ITR needs to be increased more than Rx, fourth priority
1547                 */
1548                itr_val = ice_buildreg_itr(tx->itr_idx, tx->target_itr);
1549                tx->current_itr = tx->target_itr;
1550                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1551        } else if (rx->current_itr != rx->target_itr) {
1552                /* Rx ITR needs to be increased, third priority */
1553                itr_val = ice_buildreg_itr(rx->itr_idx, rx->target_itr);
1554                rx->current_itr = rx->target_itr;
1555                q_vector->itr_countdown = ITR_COUNTDOWN_START;
1556        } else {
1557                /* Still have to re-enable the interrupts */
1558                itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1559                if (q_vector->itr_countdown)
1560                        q_vector->itr_countdown--;
1561        }
1562
1563        if (!test_bit(__ICE_DOWN, q_vector->vsi->state))
1564                wr32(&q_vector->vsi->back->hw,
1565                     GLINT_DYN_CTL(q_vector->reg_idx),
1566                     itr_val);
1567}
1568
1569/**
1570 * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1571 * @q_vector: q_vector to set WB_ON_ITR on
1572 *
1573 * We need to tell hardware to write-back completed descriptors even when
1574 * interrupts are disabled. Descriptors will be written back on cache line
1575 * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1576 * descriptors may not be written back if they don't fill a cache line until the
1577 * next interrupt.
1578 *
1579 * This sets the write-back frequency to 2 microseconds as that is the minimum
1580 * value that's not 0 due to ITR granularity. Also, set the INTENA_MSK bit to
1581 * make sure hardware knows we aren't meddling with the INTENA_M bit.
1582 */
1583static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1584{
1585        struct ice_vsi *vsi = q_vector->vsi;
1586
1587        /* already in WB_ON_ITR mode no need to change it */
1588        if (q_vector->itr_countdown == ICE_IN_WB_ON_ITR_MODE)
1589                return;
1590
1591        if (q_vector->num_ring_rx)
1592                wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1593                     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1594                                                 ICE_RX_ITR));
1595
1596        if (q_vector->num_ring_tx)
1597                wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1598                     ICE_GLINT_DYN_CTL_WB_ON_ITR(ICE_WB_ON_ITR_USECS,
1599                                                 ICE_TX_ITR));
1600
1601        q_vector->itr_countdown = ICE_IN_WB_ON_ITR_MODE;
1602}
1603
1604/**
1605 * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1606 * @napi: napi struct with our devices info in it
1607 * @budget: amount of work driver is allowed to do this pass, in packets
1608 *
1609 * This function will clean all queues associated with a q_vector.
1610 *
1611 * Returns the amount of work done
1612 */
1613int ice_napi_poll(struct napi_struct *napi, int budget)
1614{
1615        struct ice_q_vector *q_vector =
1616                                container_of(napi, struct ice_q_vector, napi);
1617        bool clean_complete = true;
1618        struct ice_ring *ring;
1619        int budget_per_ring;
1620        int work_done = 0;
1621
1622        /* Since the actual Tx work is minimal, we can give the Tx a larger
1623         * budget and be more aggressive about cleaning up the Tx descriptors.
1624         */
1625        ice_for_each_ring(ring, q_vector->tx) {
1626                bool wd = ring->xsk_pool ?
1627                          ice_clean_tx_irq_zc(ring, budget) :
1628                          ice_clean_tx_irq(ring, budget);
1629
1630                if (!wd)
1631                        clean_complete = false;
1632        }
1633
1634        /* Handle case where we are called by netpoll with a budget of 0 */
1635        if (unlikely(budget <= 0))
1636                return budget;
1637
1638        /* normally we have 1 Rx ring per q_vector */
1639        if (unlikely(q_vector->num_ring_rx > 1))
1640                /* We attempt to distribute budget to each Rx queue fairly, but
1641                 * don't allow the budget to go below 1 because that would exit
1642                 * polling early.
1643                 */
1644                budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1645        else
1646                /* Max of 1 Rx ring in this q_vector so give it the budget */
1647                budget_per_ring = budget;
1648
1649        ice_for_each_ring(ring, q_vector->rx) {
1650                int cleaned;
1651
1652                /* A dedicated path for zero-copy allows making a single
1653                 * comparison in the irq context instead of many inside the
1654                 * ice_clean_rx_irq function and makes the codebase cleaner.
1655                 */
1656                cleaned = ring->xsk_pool ?
1657                          ice_clean_rx_irq_zc(ring, budget_per_ring) :
1658                          ice_clean_rx_irq(ring, budget_per_ring);
1659                work_done += cleaned;
1660                /* if we clean as many as budgeted, we must not be done */
1661                if (cleaned >= budget_per_ring)
1662                        clean_complete = false;
1663        }
1664
1665        /* If work not completed, return budget and polling will return */
1666        if (!clean_complete)
1667                return budget;
1668
1669        /* Exit the polling mode, but don't re-enable interrupts if stack might
1670         * poll us due to busy-polling
1671         */
1672        if (likely(napi_complete_done(napi, work_done)))
1673                ice_update_ena_itr(q_vector);
1674        else
1675                ice_set_wb_on_itr(q_vector);
1676
1677        return min_t(int, work_done, budget - 1);
1678}
1679
1680/**
1681 * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1682 * @tx_ring: the ring to be checked
1683 * @size: the size buffer we want to assure is available
1684 *
1685 * Returns -EBUSY if a stop is needed, else 0
1686 */
1687static int __ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1688{
1689        netif_stop_subqueue(tx_ring->netdev, tx_ring->q_index);
1690        /* Memory barrier before checking head and tail */
1691        smp_mb();
1692
1693        /* Check again in a case another CPU has just made room available. */
1694        if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1695                return -EBUSY;
1696
1697        /* A reprieve! - use start_subqueue because it doesn't call schedule */
1698        netif_start_subqueue(tx_ring->netdev, tx_ring->q_index);
1699        ++tx_ring->tx_stats.restart_q;
1700        return 0;
1701}
1702
1703/**
1704 * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1705 * @tx_ring: the ring to be checked
1706 * @size:    the size buffer we want to assure is available
1707 *
1708 * Returns 0 if stop is not needed
1709 */
1710static int ice_maybe_stop_tx(struct ice_ring *tx_ring, unsigned int size)
1711{
1712        if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1713                return 0;
1714
1715        return __ice_maybe_stop_tx(tx_ring, size);
1716}
1717
1718/**
1719 * ice_tx_map - Build the Tx descriptor
1720 * @tx_ring: ring to send buffer on
1721 * @first: first buffer info buffer to use
1722 * @off: pointer to struct that holds offload parameters
1723 *
1724 * This function loops over the skb data pointed to by *first
1725 * and gets a physical address for each memory location and programs
1726 * it and the length into the transmit descriptor.
1727 */
1728static void
1729ice_tx_map(struct ice_ring *tx_ring, struct ice_tx_buf *first,
1730           struct ice_tx_offload_params *off)
1731{
1732        u64 td_offset, td_tag, td_cmd;
1733        u16 i = tx_ring->next_to_use;
1734        unsigned int data_len, size;
1735        struct ice_tx_desc *tx_desc;
1736        struct ice_tx_buf *tx_buf;
1737        struct sk_buff *skb;
1738        skb_frag_t *frag;
1739        dma_addr_t dma;
1740
1741        td_tag = off->td_l2tag1;
1742        td_cmd = off->td_cmd;
1743        td_offset = off->td_offset;
1744        skb = first->skb;
1745
1746        data_len = skb->data_len;
1747        size = skb_headlen(skb);
1748
1749        tx_desc = ICE_TX_DESC(tx_ring, i);
1750
1751        if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1752                td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1753                td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1754                          ICE_TX_FLAGS_VLAN_S;
1755        }
1756
1757        dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1758
1759        tx_buf = first;
1760
1761        for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1762                unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1763
1764                if (dma_mapping_error(tx_ring->dev, dma))
1765                        goto dma_error;
1766
1767                /* record length, and DMA address */
1768                dma_unmap_len_set(tx_buf, len, size);
1769                dma_unmap_addr_set(tx_buf, dma, dma);
1770
1771                /* align size to end of page */
1772                max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1773                tx_desc->buf_addr = cpu_to_le64(dma);
1774
1775                /* account for data chunks larger than the hardware
1776                 * can handle
1777                 */
1778                while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1779                        tx_desc->cmd_type_offset_bsz =
1780                                ice_build_ctob(td_cmd, td_offset, max_data,
1781                                               td_tag);
1782
1783                        tx_desc++;
1784                        i++;
1785
1786                        if (i == tx_ring->count) {
1787                                tx_desc = ICE_TX_DESC(tx_ring, 0);
1788                                i = 0;
1789                        }
1790
1791                        dma += max_data;
1792                        size -= max_data;
1793
1794                        max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1795                        tx_desc->buf_addr = cpu_to_le64(dma);
1796                }
1797
1798                if (likely(!data_len))
1799                        break;
1800
1801                tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1802                                                              size, td_tag);
1803
1804                tx_desc++;
1805                i++;
1806
1807                if (i == tx_ring->count) {
1808                        tx_desc = ICE_TX_DESC(tx_ring, 0);
1809                        i = 0;
1810                }
1811
1812                size = skb_frag_size(frag);
1813                data_len -= size;
1814
1815                dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1816                                       DMA_TO_DEVICE);
1817
1818                tx_buf = &tx_ring->tx_buf[i];
1819        }
1820
1821        /* record bytecount for BQL */
1822        netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1823
1824        /* record SW timestamp if HW timestamp is not available */
1825        skb_tx_timestamp(first->skb);
1826
1827        i++;
1828        if (i == tx_ring->count)
1829                i = 0;
1830
1831        /* write last descriptor with RS and EOP bits */
1832        td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1833        tx_desc->cmd_type_offset_bsz =
1834                        ice_build_ctob(td_cmd, td_offset, size, td_tag);
1835
1836        /* Force memory writes to complete before letting h/w know there
1837         * are new descriptors to fetch.
1838         *
1839         * We also use this memory barrier to make certain all of the
1840         * status bits have been updated before next_to_watch is written.
1841         */
1842        wmb();
1843
1844        /* set next_to_watch value indicating a packet is present */
1845        first->next_to_watch = tx_desc;
1846
1847        tx_ring->next_to_use = i;
1848
1849        ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1850
1851        /* notify HW of packet */
1852        if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
1853                writel(i, tx_ring->tail);
1854
1855        return;
1856
1857dma_error:
1858        /* clear DMA mappings for failed tx_buf map */
1859        for (;;) {
1860                tx_buf = &tx_ring->tx_buf[i];
1861                ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1862                if (tx_buf == first)
1863                        break;
1864                if (i == 0)
1865                        i = tx_ring->count;
1866                i--;
1867        }
1868
1869        tx_ring->next_to_use = i;
1870}
1871
1872/**
1873 * ice_tx_csum - Enable Tx checksum offloads
1874 * @first: pointer to the first descriptor
1875 * @off: pointer to struct that holds offload parameters
1876 *
1877 * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1878 */
1879static
1880int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1881{
1882        u32 l4_len = 0, l3_len = 0, l2_len = 0;
1883        struct sk_buff *skb = first->skb;
1884        union {
1885                struct iphdr *v4;
1886                struct ipv6hdr *v6;
1887                unsigned char *hdr;
1888        } ip;
1889        union {
1890                struct tcphdr *tcp;
1891                unsigned char *hdr;
1892        } l4;
1893        __be16 frag_off, protocol;
1894        unsigned char *exthdr;
1895        u32 offset, cmd = 0;
1896        u8 l4_proto = 0;
1897
1898        if (skb->ip_summed != CHECKSUM_PARTIAL)
1899                return 0;
1900
1901        ip.hdr = skb_network_header(skb);
1902        l4.hdr = skb_transport_header(skb);
1903
1904        /* compute outer L2 header size */
1905        l2_len = ip.hdr - skb->data;
1906        offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1907
1908        protocol = vlan_get_protocol(skb);
1909
1910        if (protocol == htons(ETH_P_IP))
1911                first->tx_flags |= ICE_TX_FLAGS_IPV4;
1912        else if (protocol == htons(ETH_P_IPV6))
1913                first->tx_flags |= ICE_TX_FLAGS_IPV6;
1914
1915        if (skb->encapsulation) {
1916                bool gso_ena = false;
1917                u32 tunnel = 0;
1918
1919                /* define outer network header type */
1920                if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1921                        tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1922                                  ICE_TX_CTX_EIPT_IPV4 :
1923                                  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1924                        l4_proto = ip.v4->protocol;
1925                } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1926                        int ret;
1927
1928                        tunnel |= ICE_TX_CTX_EIPT_IPV6;
1929                        exthdr = ip.hdr + sizeof(*ip.v6);
1930                        l4_proto = ip.v6->nexthdr;
1931                        ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1932                                               &l4_proto, &frag_off);
1933                        if (ret < 0)
1934                                return -1;
1935                }
1936
1937                /* define outer transport */
1938                switch (l4_proto) {
1939                case IPPROTO_UDP:
1940                        tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1941                        first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1942                        break;
1943                case IPPROTO_GRE:
1944                        tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1945                        first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1946                        break;
1947                case IPPROTO_IPIP:
1948                case IPPROTO_IPV6:
1949                        first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1950                        l4.hdr = skb_inner_network_header(skb);
1951                        break;
1952                default:
1953                        if (first->tx_flags & ICE_TX_FLAGS_TSO)
1954                                return -1;
1955
1956                        skb_checksum_help(skb);
1957                        return 0;
1958                }
1959
1960                /* compute outer L3 header size */
1961                tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1962                          ICE_TXD_CTX_QW0_EIPLEN_S;
1963
1964                /* switch IP header pointer from outer to inner header */
1965                ip.hdr = skb_inner_network_header(skb);
1966
1967                /* compute tunnel header size */
1968                tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1969                           ICE_TXD_CTX_QW0_NATLEN_S;
1970
1971                gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1972                /* indicate if we need to offload outer UDP header */
1973                if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1974                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1975                        tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1976
1977                /* record tunnel offload values */
1978                off->cd_tunnel_params |= tunnel;
1979
1980                /* set DTYP=1 to indicate that it's an Tx context descriptor
1981                 * in IPsec tunnel mode with Tx offloads in Quad word 1
1982                 */
1983                off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1984
1985                /* switch L4 header pointer from outer to inner */
1986                l4.hdr = skb_inner_transport_header(skb);
1987                l4_proto = 0;
1988
1989                /* reset type as we transition from outer to inner headers */
1990                first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1991                if (ip.v4->version == 4)
1992                        first->tx_flags |= ICE_TX_FLAGS_IPV4;
1993                if (ip.v6->version == 6)
1994                        first->tx_flags |= ICE_TX_FLAGS_IPV6;
1995        }
1996
1997        /* Enable IP checksum offloads */
1998        if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1999                l4_proto = ip.v4->protocol;
2000                /* the stack computes the IP header already, the only time we
2001                 * need the hardware to recompute it is in the case of TSO.
2002                 */
2003                if (first->tx_flags & ICE_TX_FLAGS_TSO)
2004                        cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
2005                else
2006                        cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
2007
2008        } else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
2009                cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
2010                exthdr = ip.hdr + sizeof(*ip.v6);
2011                l4_proto = ip.v6->nexthdr;
2012                if (l4.hdr != exthdr)
2013                        ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
2014                                         &frag_off);
2015        } else {
2016                return -1;
2017        }
2018
2019        /* compute inner L3 header size */
2020        l3_len = l4.hdr - ip.hdr;
2021        offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
2022
2023        /* Enable L4 checksum offloads */
2024        switch (l4_proto) {
2025        case IPPROTO_TCP:
2026                /* enable checksum offloads */
2027                cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
2028                l4_len = l4.tcp->doff;
2029                offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2030                break;
2031        case IPPROTO_UDP:
2032                /* enable UDP checksum offload */
2033                cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
2034                l4_len = (sizeof(struct udphdr) >> 2);
2035                offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2036                break;
2037        case IPPROTO_SCTP:
2038                /* enable SCTP checksum offload */
2039                cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
2040                l4_len = sizeof(struct sctphdr) >> 2;
2041                offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
2042                break;
2043
2044        default:
2045                if (first->tx_flags & ICE_TX_FLAGS_TSO)
2046                        return -1;
2047                skb_checksum_help(skb);
2048                return 0;
2049        }
2050
2051        off->td_cmd |= cmd;
2052        off->td_offset |= offset;
2053        return 1;
2054}
2055
2056/**
2057 * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
2058 * @tx_ring: ring to send buffer on
2059 * @first: pointer to struct ice_tx_buf
2060 *
2061 * Checks the skb and set up correspondingly several generic transmit flags
2062 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2063 */
2064static void
2065ice_tx_prepare_vlan_flags(struct ice_ring *tx_ring, struct ice_tx_buf *first)
2066{
2067        struct sk_buff *skb = first->skb;
2068
2069        /* nothing left to do, software offloaded VLAN */
2070        if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
2071                return;
2072
2073        /* currently, we always assume 802.1Q for VLAN insertion as VLAN
2074         * insertion for 802.1AD is not supported
2075         */
2076        if (skb_vlan_tag_present(skb)) {
2077                first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
2078                first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
2079        }
2080
2081        ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
2082}
2083
2084/**
2085 * ice_tso - computes mss and TSO length to prepare for TSO
2086 * @first: pointer to struct ice_tx_buf
2087 * @off: pointer to struct that holds offload parameters
2088 *
2089 * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
2090 */
2091static
2092int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2093{
2094        struct sk_buff *skb = first->skb;
2095        union {
2096                struct iphdr *v4;
2097                struct ipv6hdr *v6;
2098                unsigned char *hdr;
2099        } ip;
2100        union {
2101                struct tcphdr *tcp;
2102                struct udphdr *udp;
2103                unsigned char *hdr;
2104        } l4;
2105        u64 cd_mss, cd_tso_len;
2106        u32 paylen;
2107        u8 l4_start;
2108        int err;
2109
2110        if (skb->ip_summed != CHECKSUM_PARTIAL)
2111                return 0;
2112
2113        if (!skb_is_gso(skb))
2114                return 0;
2115
2116        err = skb_cow_head(skb, 0);
2117        if (err < 0)
2118                return err;
2119
2120        /* cppcheck-suppress unreadVariable */
2121        ip.hdr = skb_network_header(skb);
2122        l4.hdr = skb_transport_header(skb);
2123
2124        /* initialize outer IP header fields */
2125        if (ip.v4->version == 4) {
2126                ip.v4->tot_len = 0;
2127                ip.v4->check = 0;
2128        } else {
2129                ip.v6->payload_len = 0;
2130        }
2131
2132        if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2133                                         SKB_GSO_GRE_CSUM |
2134                                         SKB_GSO_IPXIP4 |
2135                                         SKB_GSO_IPXIP6 |
2136                                         SKB_GSO_UDP_TUNNEL |
2137                                         SKB_GSO_UDP_TUNNEL_CSUM)) {
2138                if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2139                    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2140                        l4.udp->len = 0;
2141
2142                        /* determine offset of outer transport header */
2143                        l4_start = (u8)(l4.hdr - skb->data);
2144
2145                        /* remove payload length from outer checksum */
2146                        paylen = skb->len - l4_start;
2147                        csum_replace_by_diff(&l4.udp->check,
2148                                             (__force __wsum)htonl(paylen));
2149                }
2150
2151                /* reset pointers to inner headers */
2152
2153                /* cppcheck-suppress unreadVariable */
2154                ip.hdr = skb_inner_network_header(skb);
2155                l4.hdr = skb_inner_transport_header(skb);
2156
2157                /* initialize inner IP header fields */
2158                if (ip.v4->version == 4) {
2159                        ip.v4->tot_len = 0;
2160                        ip.v4->check = 0;
2161                } else {
2162                        ip.v6->payload_len = 0;
2163                }
2164        }
2165
2166        /* determine offset of transport header */
2167        l4_start = (u8)(l4.hdr - skb->data);
2168
2169        /* remove payload length from checksum */
2170        paylen = skb->len - l4_start;
2171
2172        if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2173                csum_replace_by_diff(&l4.udp->check,
2174                                     (__force __wsum)htonl(paylen));
2175                /* compute length of UDP segmentation header */
2176                off->header_len = (u8)sizeof(l4.udp) + l4_start;
2177        } else {
2178                csum_replace_by_diff(&l4.tcp->check,
2179                                     (__force __wsum)htonl(paylen));
2180                /* compute length of TCP segmentation header */
2181                off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2182        }
2183
2184        /* update gso_segs and bytecount */
2185        first->gso_segs = skb_shinfo(skb)->gso_segs;
2186        first->bytecount += (first->gso_segs - 1) * off->header_len;
2187
2188        cd_tso_len = skb->len - off->header_len;
2189        cd_mss = skb_shinfo(skb)->gso_size;
2190
2191        /* record cdesc_qw1 with TSO parameters */
2192        off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2193                             (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2194                             (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2195                             (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2196        first->tx_flags |= ICE_TX_FLAGS_TSO;
2197        return 1;
2198}
2199
2200/**
2201 * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2202 * @size: transmit request size in bytes
2203 *
2204 * Due to hardware alignment restrictions (4K alignment), we need to
2205 * assume that we can have no more than 12K of data per descriptor, even
2206 * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2207 * Thus, we need to divide by 12K. But division is slow! Instead,
2208 * we decompose the operation into shifts and one relatively cheap
2209 * multiply operation.
2210 *
2211 * To divide by 12K, we first divide by 4K, then divide by 3:
2212 *     To divide by 4K, shift right by 12 bits
2213 *     To divide by 3, multiply by 85, then divide by 256
2214 *     (Divide by 256 is done by shifting right by 8 bits)
2215 * Finally, we add one to round up. Because 256 isn't an exact multiple of
2216 * 3, we'll underestimate near each multiple of 12K. This is actually more
2217 * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2218 * segment. For our purposes this is accurate out to 1M which is orders of
2219 * magnitude greater than our largest possible GSO size.
2220 *
2221 * This would then be implemented as:
2222 *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2223 *
2224 * Since multiplication and division are commutative, we can reorder
2225 * operations into:
2226 *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2227 */
2228static unsigned int ice_txd_use_count(unsigned int size)
2229{
2230        return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2231}
2232
2233/**
2234 * ice_xmit_desc_count - calculate number of Tx descriptors needed
2235 * @skb: send buffer
2236 *
2237 * Returns number of data descriptors needed for this skb.
2238 */
2239static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2240{
2241        const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2242        unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2243        unsigned int count = 0, size = skb_headlen(skb);
2244
2245        for (;;) {
2246                count += ice_txd_use_count(size);
2247
2248                if (!nr_frags--)
2249                        break;
2250
2251                size = skb_frag_size(frag++);
2252        }
2253
2254        return count;
2255}
2256
2257/**
2258 * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2259 * @skb: send buffer
2260 *
2261 * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2262 * and so we need to figure out the cases where we need to linearize the skb.
2263 *
2264 * For TSO we need to count the TSO header and segment payload separately.
2265 * As such we need to check cases where we have 7 fragments or more as we
2266 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2267 * the segment payload in the first descriptor, and another 7 for the
2268 * fragments.
2269 */
2270static bool __ice_chk_linearize(struct sk_buff *skb)
2271{
2272        const skb_frag_t *frag, *stale;
2273        int nr_frags, sum;
2274
2275        /* no need to check if number of frags is less than 7 */
2276        nr_frags = skb_shinfo(skb)->nr_frags;
2277        if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2278                return false;
2279
2280        /* We need to walk through the list and validate that each group
2281         * of 6 fragments totals at least gso_size.
2282         */
2283        nr_frags -= ICE_MAX_BUF_TXD - 2;
2284        frag = &skb_shinfo(skb)->frags[0];
2285
2286        /* Initialize size to the negative value of gso_size minus 1. We
2287         * use this as the worst case scenario in which the frag ahead
2288         * of us only provides one byte which is why we are limited to 6
2289         * descriptors for a single transmit as the header and previous
2290         * fragment are already consuming 2 descriptors.
2291         */
2292        sum = 1 - skb_shinfo(skb)->gso_size;
2293
2294        /* Add size of frags 0 through 4 to create our initial sum */
2295        sum += skb_frag_size(frag++);
2296        sum += skb_frag_size(frag++);
2297        sum += skb_frag_size(frag++);
2298        sum += skb_frag_size(frag++);
2299        sum += skb_frag_size(frag++);
2300
2301        /* Walk through fragments adding latest fragment, testing it, and
2302         * then removing stale fragments from the sum.
2303         */
2304        for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2305                int stale_size = skb_frag_size(stale);
2306
2307                sum += skb_frag_size(frag++);
2308
2309                /* The stale fragment may present us with a smaller
2310                 * descriptor than the actual fragment size. To account
2311                 * for that we need to remove all the data on the front and
2312                 * figure out what the remainder would be in the last
2313                 * descriptor associated with the fragment.
2314                 */
2315                if (stale_size > ICE_MAX_DATA_PER_TXD) {
2316                        int align_pad = -(skb_frag_off(stale)) &
2317                                        (ICE_MAX_READ_REQ_SIZE - 1);
2318
2319                        sum -= align_pad;
2320                        stale_size -= align_pad;
2321
2322                        do {
2323                                sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2324                                stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2325                        } while (stale_size > ICE_MAX_DATA_PER_TXD);
2326                }
2327
2328                /* if sum is negative we failed to make sufficient progress */
2329                if (sum < 0)
2330                        return true;
2331
2332                if (!nr_frags--)
2333                        break;
2334
2335                sum -= stale_size;
2336        }
2337
2338        return false;
2339}
2340
2341/**
2342 * ice_chk_linearize - Check if there are more than 8 fragments per packet
2343 * @skb:      send buffer
2344 * @count:    number of buffers used
2345 *
2346 * Note: Our HW can't scatter-gather more than 8 fragments to build
2347 * a packet on the wire and so we need to figure out the cases where we
2348 * need to linearize the skb.
2349 */
2350static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2351{
2352        /* Both TSO and single send will work if count is less than 8 */
2353        if (likely(count < ICE_MAX_BUF_TXD))
2354                return false;
2355
2356        if (skb_is_gso(skb))
2357                return __ice_chk_linearize(skb);
2358
2359        /* we can support up to 8 data buffers for a single send */
2360        return count != ICE_MAX_BUF_TXD;
2361}
2362
2363/**
2364 * ice_xmit_frame_ring - Sends buffer on Tx ring
2365 * @skb: send buffer
2366 * @tx_ring: ring to send buffer on
2367 *
2368 * Returns NETDEV_TX_OK if sent, else an error code
2369 */
2370static netdev_tx_t
2371ice_xmit_frame_ring(struct sk_buff *skb, struct ice_ring *tx_ring)
2372{
2373        struct ice_tx_offload_params offload = { 0 };
2374        struct ice_vsi *vsi = tx_ring->vsi;
2375        struct ice_tx_buf *first;
2376        unsigned int count;
2377        int tso, csum;
2378
2379        count = ice_xmit_desc_count(skb);
2380        if (ice_chk_linearize(skb, count)) {
2381                if (__skb_linearize(skb))
2382                        goto out_drop;
2383                count = ice_txd_use_count(skb->len);
2384                tx_ring->tx_stats.tx_linearize++;
2385        }
2386
2387        /* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2388         *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2389         *       + 4 desc gap to avoid the cache line where head is,
2390         *       + 1 desc for context descriptor,
2391         * otherwise try next time
2392         */
2393        if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2394                              ICE_DESCS_FOR_CTX_DESC)) {
2395                tx_ring->tx_stats.tx_busy++;
2396                return NETDEV_TX_BUSY;
2397        }
2398
2399        offload.tx_ring = tx_ring;
2400
2401        /* record the location of the first descriptor for this packet */
2402        first = &tx_ring->tx_buf[tx_ring->next_to_use];
2403        first->skb = skb;
2404        first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2405        first->gso_segs = 1;
2406        first->tx_flags = 0;
2407
2408        /* prepare the VLAN tagging flags for Tx */
2409        ice_tx_prepare_vlan_flags(tx_ring, first);
2410
2411        /* set up TSO offload */
2412        tso = ice_tso(first, &offload);
2413        if (tso < 0)
2414                goto out_drop;
2415
2416        /* always set up Tx checksum offload */
2417        csum = ice_tx_csum(first, &offload);
2418        if (csum < 0)
2419                goto out_drop;
2420
2421        /* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2422        if (unlikely(skb->priority == TC_PRIO_CONTROL &&
2423                     vsi->type == ICE_VSI_PF &&
2424                     vsi->port_info->is_sw_lldp))
2425                offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2426                                        ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2427                                        ICE_TXD_CTX_QW1_CMD_S);
2428
2429        if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2430                struct ice_tx_ctx_desc *cdesc;
2431                u16 i = tx_ring->next_to_use;
2432
2433                /* grab the next descriptor */
2434                cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2435                i++;
2436                tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2437
2438                /* setup context descriptor */
2439                cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2440                cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2441                cdesc->rsvd = cpu_to_le16(0);
2442                cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2443        }
2444
2445        ice_tx_map(tx_ring, first, &offload);
2446        return NETDEV_TX_OK;
2447
2448out_drop:
2449        dev_kfree_skb_any(skb);
2450        return NETDEV_TX_OK;
2451}
2452
2453/**
2454 * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2455 * @skb: send buffer
2456 * @netdev: network interface device structure
2457 *
2458 * Returns NETDEV_TX_OK if sent, else an error code
2459 */
2460netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2461{
2462        struct ice_netdev_priv *np = netdev_priv(netdev);
2463        struct ice_vsi *vsi = np->vsi;
2464        struct ice_ring *tx_ring;
2465
2466        tx_ring = vsi->tx_rings[skb->queue_mapping];
2467
2468        /* hardware can't handle really short frames, hardware padding works
2469         * beyond this point
2470         */
2471        if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2472                return NETDEV_TX_OK;
2473
2474        return ice_xmit_frame_ring(skb, tx_ring);
2475}
2476
2477/**
2478 * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2479 * @tx_ring: tx_ring to clean
2480 */
2481void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring)
2482{
2483        struct ice_vsi *vsi = tx_ring->vsi;
2484        s16 i = tx_ring->next_to_clean;
2485        int budget = ICE_DFLT_IRQ_WORK;
2486        struct ice_tx_desc *tx_desc;
2487        struct ice_tx_buf *tx_buf;
2488
2489        tx_buf = &tx_ring->tx_buf[i];
2490        tx_desc = ICE_TX_DESC(tx_ring, i);
2491        i -= tx_ring->count;
2492
2493        do {
2494                struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2495
2496                /* if next_to_watch is not set then there is no pending work */
2497                if (!eop_desc)
2498                        break;
2499
2500                /* prevent any other reads prior to eop_desc */
2501                smp_rmb();
2502
2503                /* if the descriptor isn't done, no work to do */
2504                if (!(eop_desc->cmd_type_offset_bsz &
2505                      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2506                        break;
2507
2508                /* clear next_to_watch to prevent false hangs */
2509                tx_buf->next_to_watch = NULL;
2510                tx_desc->buf_addr = 0;
2511                tx_desc->cmd_type_offset_bsz = 0;
2512
2513                /* move past filter desc */
2514                tx_buf++;
2515                tx_desc++;
2516                i++;
2517                if (unlikely(!i)) {
2518                        i -= tx_ring->count;
2519                        tx_buf = tx_ring->tx_buf;
2520                        tx_desc = ICE_TX_DESC(tx_ring, 0);
2521                }
2522
2523                /* unmap the data header */
2524                if (dma_unmap_len(tx_buf, len))
2525                        dma_unmap_single(tx_ring->dev,
2526                                         dma_unmap_addr(tx_buf, dma),
2527                                         dma_unmap_len(tx_buf, len),
2528                                         DMA_TO_DEVICE);
2529                if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2530                        devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2531
2532                /* clear next_to_watch to prevent false hangs */
2533                tx_buf->raw_buf = NULL;
2534                tx_buf->tx_flags = 0;
2535                tx_buf->next_to_watch = NULL;
2536                dma_unmap_len_set(tx_buf, len, 0);
2537                tx_desc->buf_addr = 0;
2538                tx_desc->cmd_type_offset_bsz = 0;
2539
2540                /* move past eop_desc for start of next FD desc */
2541                tx_buf++;
2542                tx_desc++;
2543                i++;
2544                if (unlikely(!i)) {
2545                        i -= tx_ring->count;
2546                        tx_buf = tx_ring->tx_buf;
2547                        tx_desc = ICE_TX_DESC(tx_ring, 0);
2548                }
2549
2550                budget--;
2551        } while (likely(budget));
2552
2553        i += tx_ring->count;
2554        tx_ring->next_to_clean = i;
2555
2556        /* re-enable interrupt if needed */
2557        ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2558}
2559