linux/drivers/net/ethernet/marvell/mvneta.c
<<
>>
Prefs
   1/*
   2 * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
   3 *
   4 * Copyright (C) 2012 Marvell
   5 *
   6 * Rami Rosen <rosenr@marvell.com>
   7 * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
   8 *
   9 * This file is licensed under the terms of the GNU General Public
  10 * License version 2. This program is licensed "as is" without any
  11 * warranty of any kind, whether express or implied.
  12 */
  13
  14#include <linux/clk.h>
  15#include <linux/cpu.h>
  16#include <linux/etherdevice.h>
  17#include <linux/if_vlan.h>
  18#include <linux/inetdevice.h>
  19#include <linux/interrupt.h>
  20#include <linux/io.h>
  21#include <linux/kernel.h>
  22#include <linux/mbus.h>
  23#include <linux/module.h>
  24#include <linux/netdevice.h>
  25#include <linux/of.h>
  26#include <linux/of_address.h>
  27#include <linux/of_irq.h>
  28#include <linux/of_mdio.h>
  29#include <linux/of_net.h>
  30#include <linux/phy/phy.h>
  31#include <linux/phy.h>
  32#include <linux/phylink.h>
  33#include <linux/platform_device.h>
  34#include <linux/skbuff.h>
  35#include <net/hwbm.h>
  36#include "mvneta_bm.h"
  37#include <net/ip.h>
  38#include <net/ipv6.h>
  39#include <net/tso.h>
  40#include <net/page_pool.h>
  41#include <linux/bpf_trace.h>
  42
  43/* Registers */
  44#define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
  45#define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
  46#define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT     4
  47#define      MVNETA_RXQ_SHORT_POOL_ID_MASK      0x30
  48#define      MVNETA_RXQ_LONG_POOL_ID_SHIFT      6
  49#define      MVNETA_RXQ_LONG_POOL_ID_MASK       0xc0
  50#define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
  51#define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
  52#define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
  53#define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
  54#define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
  55#define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
  56#define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
  57#define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
  58#define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
  59#define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
  60#define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
  61#define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
  62#define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
  63#define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)    (0x1700 + ((pool) << 2))
  64#define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT   3
  65#define      MVNETA_PORT_POOL_BUFFER_SZ_MASK    0xfff8
  66#define MVNETA_PORT_RX_RESET                    0x1cc0
  67#define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
  68#define MVNETA_PHY_ADDR                         0x2000
  69#define      MVNETA_PHY_ADDR_MASK               0x1f
  70#define MVNETA_MBUS_RETRY                       0x2010
  71#define MVNETA_UNIT_INTR_CAUSE                  0x2080
  72#define MVNETA_UNIT_CONTROL                     0x20B0
  73#define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
  74#define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
  75#define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
  76#define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
  77#define MVNETA_BASE_ADDR_ENABLE                 0x2290
  78#define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
  79#define MVNETA_PORT_CONFIG                      0x2400
  80#define      MVNETA_UNI_PROMISC_MODE            BIT(0)
  81#define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
  82#define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
  83#define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
  84#define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
  85#define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
  86#define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
  87#define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
  88#define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
  89                                                 MVNETA_DEF_RXQ_ARP(q)   | \
  90                                                 MVNETA_DEF_RXQ_TCP(q)   | \
  91                                                 MVNETA_DEF_RXQ_UDP(q)   | \
  92                                                 MVNETA_DEF_RXQ_BPDU(q)  | \
  93                                                 MVNETA_TX_UNSET_ERR_SUM | \
  94                                                 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
  95#define MVNETA_PORT_CONFIG_EXTEND                0x2404
  96#define MVNETA_MAC_ADDR_LOW                      0x2414
  97#define MVNETA_MAC_ADDR_HIGH                     0x2418
  98#define MVNETA_SDMA_CONFIG                       0x241c
  99#define      MVNETA_SDMA_BRST_SIZE_16            4
 100#define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
 101#define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
 102#define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
 103#define      MVNETA_DESC_SWAP                    BIT(6)
 104#define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
 105#define MVNETA_PORT_STATUS                       0x2444
 106#define      MVNETA_TX_IN_PRGRS                  BIT(1)
 107#define      MVNETA_TX_FIFO_EMPTY                BIT(8)
 108#define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
 109/* Only exists on Armada XP and Armada 370 */
 110#define MVNETA_SERDES_CFG                        0x24A0
 111#define      MVNETA_SGMII_SERDES_PROTO           0x0cc7
 112#define      MVNETA_QSGMII_SERDES_PROTO          0x0667
 113#define      MVNETA_HSGMII_SERDES_PROTO          0x1107
 114#define MVNETA_TYPE_PRIO                         0x24bc
 115#define      MVNETA_FORCE_UNI                    BIT(21)
 116#define MVNETA_TXQ_CMD_1                         0x24e4
 117#define MVNETA_TXQ_CMD                           0x2448
 118#define      MVNETA_TXQ_DISABLE_SHIFT            8
 119#define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
 120#define MVNETA_RX_DISCARD_FRAME_COUNT            0x2484
 121#define MVNETA_OVERRUN_FRAME_COUNT               0x2488
 122#define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
 123#define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
 124#define MVNETA_ACC_MODE                          0x2500
 125#define MVNETA_BM_ADDRESS                        0x2504
 126#define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
 127#define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
 128#define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
 129#define      MVNETA_CPU_RXQ_ACCESS(rxq)          BIT(rxq)
 130#define      MVNETA_CPU_TXQ_ACCESS(txq)          BIT(txq + 8)
 131#define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
 132
 133/* Exception Interrupt Port/Queue Cause register
 134 *
 135 * Their behavior depend of the mapping done using the PCPX2Q
 136 * registers. For a given CPU if the bit associated to a queue is not
 137 * set, then for the register a read from this CPU will always return
 138 * 0 and a write won't do anything
 139 */
 140
 141#define MVNETA_INTR_NEW_CAUSE                    0x25a0
 142#define MVNETA_INTR_NEW_MASK                     0x25a4
 143
 144/* bits  0..7  = TXQ SENT, one bit per queue.
 145 * bits  8..15 = RXQ OCCUP, one bit per queue.
 146 * bits 16..23 = RXQ FREE, one bit per queue.
 147 * bit  29 = OLD_REG_SUM, see old reg ?
 148 * bit  30 = TX_ERR_SUM, one bit for 4 ports
 149 * bit  31 = MISC_SUM,   one bit for 4 ports
 150 */
 151#define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
 152#define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
 153#define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
 154#define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
 155#define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
 156
 157#define MVNETA_INTR_OLD_CAUSE                    0x25a8
 158#define MVNETA_INTR_OLD_MASK                     0x25ac
 159
 160/* Data Path Port/Queue Cause Register */
 161#define MVNETA_INTR_MISC_CAUSE                   0x25b0
 162#define MVNETA_INTR_MISC_MASK                    0x25b4
 163
 164#define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
 165#define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
 166#define      MVNETA_CAUSE_PTP                    BIT(4)
 167
 168#define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
 169#define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
 170#define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
 171#define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
 172#define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
 173#define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
 174#define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
 175#define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
 176
 177#define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
 178#define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
 179#define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
 180
 181#define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
 182#define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
 183#define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
 184
 185#define MVNETA_INTR_ENABLE                       0x25b8
 186#define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
 187#define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
 188
 189#define MVNETA_RXQ_CMD                           0x2680
 190#define      MVNETA_RXQ_DISABLE_SHIFT            8
 191#define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
 192#define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
 193#define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
 194#define MVNETA_GMAC_CTRL_0                       0x2c00
 195#define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
 196#define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
 197#define      MVNETA_GMAC0_PORT_1000BASE_X        BIT(1)
 198#define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
 199#define MVNETA_GMAC_CTRL_2                       0x2c08
 200#define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
 201#define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
 202#define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
 203#define      MVNETA_GMAC2_PORT_RESET             BIT(6)
 204#define MVNETA_GMAC_STATUS                       0x2c10
 205#define      MVNETA_GMAC_LINK_UP                 BIT(0)
 206#define      MVNETA_GMAC_SPEED_1000              BIT(1)
 207#define      MVNETA_GMAC_SPEED_100               BIT(2)
 208#define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
 209#define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
 210#define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
 211#define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
 212#define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
 213#define      MVNETA_GMAC_AN_COMPLETE             BIT(11)
 214#define      MVNETA_GMAC_SYNC_OK                 BIT(14)
 215#define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
 216#define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
 217#define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
 218#define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
 219#define      MVNETA_GMAC_AN_BYPASS_ENABLE        BIT(3)
 220#define      MVNETA_GMAC_INBAND_RESTART_AN       BIT(4)
 221#define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
 222#define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
 223#define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
 224#define      MVNETA_GMAC_CONFIG_FLOW_CTRL        BIT(8)
 225#define      MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL    BIT(9)
 226#define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
 227#define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
 228#define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
 229#define MVNETA_GMAC_CTRL_4                       0x2c90
 230#define      MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE  BIT(1)
 231#define MVNETA_MIB_COUNTERS_BASE                 0x3000
 232#define      MVNETA_MIB_LATE_COLLISION           0x7c
 233#define MVNETA_DA_FILT_SPEC_MCAST                0x3400
 234#define MVNETA_DA_FILT_OTH_MCAST                 0x3500
 235#define MVNETA_DA_FILT_UCAST_BASE                0x3600
 236#define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
 237#define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
 238#define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
 239#define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
 240#define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
 241#define      MVNETA_TXQ_DEC_SENT_SHIFT           16
 242#define      MVNETA_TXQ_DEC_SENT_MASK            0xff
 243#define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
 244#define      MVNETA_TXQ_SENT_DESC_SHIFT          16
 245#define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
 246#define MVNETA_PORT_TX_RESET                     0x3cf0
 247#define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
 248#define MVNETA_TX_MTU                            0x3e0c
 249#define MVNETA_TX_TOKEN_SIZE                     0x3e14
 250#define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
 251#define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
 252#define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
 253
 254#define MVNETA_LPI_CTRL_0                        0x2cc0
 255#define MVNETA_LPI_CTRL_1                        0x2cc4
 256#define      MVNETA_LPI_REQUEST_ENABLE           BIT(0)
 257#define MVNETA_LPI_CTRL_2                        0x2cc8
 258#define MVNETA_LPI_STATUS                        0x2ccc
 259
 260#define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK      0xff
 261
 262/* Descriptor ring Macros */
 263#define MVNETA_QUEUE_NEXT_DESC(q, index)        \
 264        (((index) < (q)->last_desc) ? ((index) + 1) : 0)
 265
 266/* Various constants */
 267
 268/* Coalescing */
 269#define MVNETA_TXDONE_COAL_PKTS         0       /* interrupt per packet */
 270#define MVNETA_RX_COAL_PKTS             32
 271#define MVNETA_RX_COAL_USEC             100
 272
 273/* The two bytes Marvell header. Either contains a special value used
 274 * by Marvell switches when a specific hardware mode is enabled (not
 275 * supported by this driver) or is filled automatically by zeroes on
 276 * the RX side. Those two bytes being at the front of the Ethernet
 277 * header, they allow to have the IP header aligned on a 4 bytes
 278 * boundary automatically: the hardware skips those two bytes on its
 279 * own.
 280 */
 281#define MVNETA_MH_SIZE                  2
 282
 283#define MVNETA_VLAN_TAG_LEN             4
 284
 285#define MVNETA_TX_CSUM_DEF_SIZE         1600
 286#define MVNETA_TX_CSUM_MAX_SIZE         9800
 287#define MVNETA_ACC_MODE_EXT1            1
 288#define MVNETA_ACC_MODE_EXT2            2
 289
 290#define MVNETA_MAX_DECODE_WIN           6
 291
 292/* Timeout constants */
 293#define MVNETA_TX_DISABLE_TIMEOUT_MSEC  1000
 294#define MVNETA_RX_DISABLE_TIMEOUT_MSEC  1000
 295#define MVNETA_TX_FIFO_EMPTY_TIMEOUT    10000
 296
 297#define MVNETA_TX_MTU_MAX               0x3ffff
 298
 299/* The RSS lookup table actually has 256 entries but we do not use
 300 * them yet
 301 */
 302#define MVNETA_RSS_LU_TABLE_SIZE        1
 303
 304/* Max number of Rx descriptors */
 305#define MVNETA_MAX_RXD 512
 306
 307/* Max number of Tx descriptors */
 308#define MVNETA_MAX_TXD 1024
 309
 310/* Max number of allowed TCP segments for software TSO */
 311#define MVNETA_MAX_TSO_SEGS 100
 312
 313#define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
 314
 315/* descriptor aligned size */
 316#define MVNETA_DESC_ALIGNED_SIZE        32
 317
 318/* Number of bytes to be taken into account by HW when putting incoming data
 319 * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
 320 * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
 321 */
 322#define MVNETA_RX_PKT_OFFSET_CORRECTION         64
 323
 324#define MVNETA_RX_PKT_SIZE(mtu) \
 325        ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
 326              ETH_HLEN + ETH_FCS_LEN,                        \
 327              cache_line_size())
 328
 329/* Driver assumes that the last 3 bits are 0 */
 330#define MVNETA_SKB_HEADROOM     ALIGN(max(NET_SKB_PAD, XDP_PACKET_HEADROOM), 8)
 331#define MVNETA_SKB_PAD  (SKB_DATA_ALIGN(sizeof(struct skb_shared_info) + \
 332                         MVNETA_SKB_HEADROOM))
 333#define MVNETA_MAX_RX_BUF_SIZE  (PAGE_SIZE - MVNETA_SKB_PAD)
 334
 335#define IS_TSO_HEADER(txq, addr) \
 336        ((addr >= txq->tso_hdrs_phys) && \
 337         (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
 338
 339#define MVNETA_RX_GET_BM_POOL_ID(rxd) \
 340        (((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
 341
 342enum {
 343        ETHTOOL_STAT_EEE_WAKEUP,
 344        ETHTOOL_STAT_SKB_ALLOC_ERR,
 345        ETHTOOL_STAT_REFILL_ERR,
 346        ETHTOOL_XDP_REDIRECT,
 347        ETHTOOL_XDP_PASS,
 348        ETHTOOL_XDP_DROP,
 349        ETHTOOL_XDP_TX,
 350        ETHTOOL_XDP_TX_ERR,
 351        ETHTOOL_XDP_XMIT,
 352        ETHTOOL_XDP_XMIT_ERR,
 353        ETHTOOL_MAX_STATS,
 354};
 355
 356struct mvneta_statistic {
 357        unsigned short offset;
 358        unsigned short type;
 359        const char name[ETH_GSTRING_LEN];
 360};
 361
 362#define T_REG_32        32
 363#define T_REG_64        64
 364#define T_SW            1
 365
 366#define MVNETA_XDP_PASS         0
 367#define MVNETA_XDP_DROPPED      BIT(0)
 368#define MVNETA_XDP_TX           BIT(1)
 369#define MVNETA_XDP_REDIR        BIT(2)
 370
 371static const struct mvneta_statistic mvneta_statistics[] = {
 372        { 0x3000, T_REG_64, "good_octets_received", },
 373        { 0x3010, T_REG_32, "good_frames_received", },
 374        { 0x3008, T_REG_32, "bad_octets_received", },
 375        { 0x3014, T_REG_32, "bad_frames_received", },
 376        { 0x3018, T_REG_32, "broadcast_frames_received", },
 377        { 0x301c, T_REG_32, "multicast_frames_received", },
 378        { 0x3050, T_REG_32, "unrec_mac_control_received", },
 379        { 0x3058, T_REG_32, "good_fc_received", },
 380        { 0x305c, T_REG_32, "bad_fc_received", },
 381        { 0x3060, T_REG_32, "undersize_received", },
 382        { 0x3064, T_REG_32, "fragments_received", },
 383        { 0x3068, T_REG_32, "oversize_received", },
 384        { 0x306c, T_REG_32, "jabber_received", },
 385        { 0x3070, T_REG_32, "mac_receive_error", },
 386        { 0x3074, T_REG_32, "bad_crc_event", },
 387        { 0x3078, T_REG_32, "collision", },
 388        { 0x307c, T_REG_32, "late_collision", },
 389        { 0x2484, T_REG_32, "rx_discard", },
 390        { 0x2488, T_REG_32, "rx_overrun", },
 391        { 0x3020, T_REG_32, "frames_64_octets", },
 392        { 0x3024, T_REG_32, "frames_65_to_127_octets", },
 393        { 0x3028, T_REG_32, "frames_128_to_255_octets", },
 394        { 0x302c, T_REG_32, "frames_256_to_511_octets", },
 395        { 0x3030, T_REG_32, "frames_512_to_1023_octets", },
 396        { 0x3034, T_REG_32, "frames_1024_to_max_octets", },
 397        { 0x3038, T_REG_64, "good_octets_sent", },
 398        { 0x3040, T_REG_32, "good_frames_sent", },
 399        { 0x3044, T_REG_32, "excessive_collision", },
 400        { 0x3048, T_REG_32, "multicast_frames_sent", },
 401        { 0x304c, T_REG_32, "broadcast_frames_sent", },
 402        { 0x3054, T_REG_32, "fc_sent", },
 403        { 0x300c, T_REG_32, "internal_mac_transmit_err", },
 404        { ETHTOOL_STAT_EEE_WAKEUP, T_SW, "eee_wakeup_errors", },
 405        { ETHTOOL_STAT_SKB_ALLOC_ERR, T_SW, "skb_alloc_errors", },
 406        { ETHTOOL_STAT_REFILL_ERR, T_SW, "refill_errors", },
 407        { ETHTOOL_XDP_REDIRECT, T_SW, "rx_xdp_redirect", },
 408        { ETHTOOL_XDP_PASS, T_SW, "rx_xdp_pass", },
 409        { ETHTOOL_XDP_DROP, T_SW, "rx_xdp_drop", },
 410        { ETHTOOL_XDP_TX, T_SW, "rx_xdp_tx", },
 411        { ETHTOOL_XDP_TX_ERR, T_SW, "rx_xdp_tx_errors", },
 412        { ETHTOOL_XDP_XMIT, T_SW, "tx_xdp_xmit", },
 413        { ETHTOOL_XDP_XMIT_ERR, T_SW, "tx_xdp_xmit_errors", },
 414};
 415
 416struct mvneta_stats {
 417        u64     rx_packets;
 418        u64     rx_bytes;
 419        u64     tx_packets;
 420        u64     tx_bytes;
 421        /* xdp */
 422        u64     xdp_redirect;
 423        u64     xdp_pass;
 424        u64     xdp_drop;
 425        u64     xdp_xmit;
 426        u64     xdp_xmit_err;
 427        u64     xdp_tx;
 428        u64     xdp_tx_err;
 429};
 430
 431struct mvneta_ethtool_stats {
 432        struct mvneta_stats ps;
 433        u64     skb_alloc_error;
 434        u64     refill_error;
 435};
 436
 437struct mvneta_pcpu_stats {
 438        struct u64_stats_sync syncp;
 439
 440        struct mvneta_ethtool_stats es;
 441        u64     rx_dropped;
 442        u64     rx_errors;
 443};
 444
 445struct mvneta_pcpu_port {
 446        /* Pointer to the shared port */
 447        struct mvneta_port      *pp;
 448
 449        /* Pointer to the CPU-local NAPI struct */
 450        struct napi_struct      napi;
 451
 452        /* Cause of the previous interrupt */
 453        u32                     cause_rx_tx;
 454};
 455
 456enum {
 457        __MVNETA_DOWN,
 458};
 459
 460struct mvneta_port {
 461        u8 id;
 462        struct mvneta_pcpu_port __percpu        *ports;
 463        struct mvneta_pcpu_stats __percpu       *stats;
 464
 465        unsigned long state;
 466
 467        int pkt_size;
 468        void __iomem *base;
 469        struct mvneta_rx_queue *rxqs;
 470        struct mvneta_tx_queue *txqs;
 471        struct net_device *dev;
 472        struct hlist_node node_online;
 473        struct hlist_node node_dead;
 474        int rxq_def;
 475        /* Protect the access to the percpu interrupt registers,
 476         * ensuring that the configuration remains coherent.
 477         */
 478        spinlock_t lock;
 479        bool is_stopped;
 480
 481        u32 cause_rx_tx;
 482        struct napi_struct napi;
 483
 484        struct bpf_prog *xdp_prog;
 485
 486        /* Core clock */
 487        struct clk *clk;
 488        /* AXI clock */
 489        struct clk *clk_bus;
 490        u8 mcast_count[256];
 491        u16 tx_ring_size;
 492        u16 rx_ring_size;
 493
 494        phy_interface_t phy_interface;
 495        struct device_node *dn;
 496        unsigned int tx_csum_limit;
 497        struct phylink *phylink;
 498        struct phylink_config phylink_config;
 499        struct phy *comphy;
 500
 501        struct mvneta_bm *bm_priv;
 502        struct mvneta_bm_pool *pool_long;
 503        struct mvneta_bm_pool *pool_short;
 504        int bm_win_id;
 505
 506        bool eee_enabled;
 507        bool eee_active;
 508        bool tx_lpi_enabled;
 509
 510        u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
 511
 512        u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
 513
 514        /* Flags for special SoC configurations */
 515        bool neta_armada3700;
 516        u16 rx_offset_correction;
 517        const struct mbus_dram_target_info *dram_target_info;
 518};
 519
 520/* The mvneta_tx_desc and mvneta_rx_desc structures describe the
 521 * layout of the transmit and reception DMA descriptors, and their
 522 * layout is therefore defined by the hardware design
 523 */
 524
 525#define MVNETA_TX_L3_OFF_SHIFT  0
 526#define MVNETA_TX_IP_HLEN_SHIFT 8
 527#define MVNETA_TX_L4_UDP        BIT(16)
 528#define MVNETA_TX_L3_IP6        BIT(17)
 529#define MVNETA_TXD_IP_CSUM      BIT(18)
 530#define MVNETA_TXD_Z_PAD        BIT(19)
 531#define MVNETA_TXD_L_DESC       BIT(20)
 532#define MVNETA_TXD_F_DESC       BIT(21)
 533#define MVNETA_TXD_FLZ_DESC     (MVNETA_TXD_Z_PAD  | \
 534                                 MVNETA_TXD_L_DESC | \
 535                                 MVNETA_TXD_F_DESC)
 536#define MVNETA_TX_L4_CSUM_FULL  BIT(30)
 537#define MVNETA_TX_L4_CSUM_NOT   BIT(31)
 538
 539#define MVNETA_RXD_ERR_CRC              0x0
 540#define MVNETA_RXD_BM_POOL_SHIFT        13
 541#define MVNETA_RXD_BM_POOL_MASK         (BIT(13) | BIT(14))
 542#define MVNETA_RXD_ERR_SUMMARY          BIT(16)
 543#define MVNETA_RXD_ERR_OVERRUN          BIT(17)
 544#define MVNETA_RXD_ERR_LEN              BIT(18)
 545#define MVNETA_RXD_ERR_RESOURCE         (BIT(17) | BIT(18))
 546#define MVNETA_RXD_ERR_CODE_MASK        (BIT(17) | BIT(18))
 547#define MVNETA_RXD_L3_IP4               BIT(25)
 548#define MVNETA_RXD_LAST_DESC            BIT(26)
 549#define MVNETA_RXD_FIRST_DESC           BIT(27)
 550#define MVNETA_RXD_FIRST_LAST_DESC      (MVNETA_RXD_FIRST_DESC | \
 551                                         MVNETA_RXD_LAST_DESC)
 552#define MVNETA_RXD_L4_CSUM_OK           BIT(30)
 553
 554#if defined(__LITTLE_ENDIAN)
 555struct mvneta_tx_desc {
 556        u32  command;           /* Options used by HW for packet transmitting.*/
 557        u16  reserved1;         /* csum_l4 (for future use)             */
 558        u16  data_size;         /* Data size of transmitted packet in bytes */
 559        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 560        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 561        u32  reserved3[4];      /* Reserved - (for future use)          */
 562};
 563
 564struct mvneta_rx_desc {
 565        u32  status;            /* Info about received packet           */
 566        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 567        u16  data_size;         /* Size of received packet in bytes     */
 568
 569        u32  buf_phys_addr;     /* Physical address of the buffer       */
 570        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 571
 572        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 573        u16  reserved3;         /* prefetch_cmd, for future use         */
 574        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 575
 576        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 577        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 578};
 579#else
 580struct mvneta_tx_desc {
 581        u16  data_size;         /* Data size of transmitted packet in bytes */
 582        u16  reserved1;         /* csum_l4 (for future use)             */
 583        u32  command;           /* Options used by HW for packet transmitting.*/
 584        u32  reserved2;         /* hw_cmd - (for future use, PMT)       */
 585        u32  buf_phys_addr;     /* Physical addr of transmitted buffer  */
 586        u32  reserved3[4];      /* Reserved - (for future use)          */
 587};
 588
 589struct mvneta_rx_desc {
 590        u16  data_size;         /* Size of received packet in bytes     */
 591        u16  reserved1;         /* pnc_info - (for future use, PnC)     */
 592        u32  status;            /* Info about received packet           */
 593
 594        u32  reserved2;         /* pnc_flow_id  (for future use, PnC)   */
 595        u32  buf_phys_addr;     /* Physical address of the buffer       */
 596
 597        u16  reserved4;         /* csum_l4 - (for future use, PnC)      */
 598        u16  reserved3;         /* prefetch_cmd, for future use         */
 599        u32  buf_cookie;        /* cookie for access to RX buffer in rx path */
 600
 601        u32  reserved5;         /* pnc_extra PnC (for future use, PnC)  */
 602        u32  reserved6;         /* hw_cmd (for future use, PnC and HWF) */
 603};
 604#endif
 605
 606enum mvneta_tx_buf_type {
 607        MVNETA_TYPE_SKB,
 608        MVNETA_TYPE_XDP_TX,
 609        MVNETA_TYPE_XDP_NDO,
 610};
 611
 612struct mvneta_tx_buf {
 613        enum mvneta_tx_buf_type type;
 614        union {
 615                struct xdp_frame *xdpf;
 616                struct sk_buff *skb;
 617        };
 618};
 619
 620struct mvneta_tx_queue {
 621        /* Number of this TX queue, in the range 0-7 */
 622        u8 id;
 623
 624        /* Number of TX DMA descriptors in the descriptor ring */
 625        int size;
 626
 627        /* Number of currently used TX DMA descriptor in the
 628         * descriptor ring
 629         */
 630        int count;
 631        int pending;
 632        int tx_stop_threshold;
 633        int tx_wake_threshold;
 634
 635        /* Array of transmitted buffers */
 636        struct mvneta_tx_buf *buf;
 637
 638        /* Index of last TX DMA descriptor that was inserted */
 639        int txq_put_index;
 640
 641        /* Index of the TX DMA descriptor to be cleaned up */
 642        int txq_get_index;
 643
 644        u32 done_pkts_coal;
 645
 646        /* Virtual address of the TX DMA descriptors array */
 647        struct mvneta_tx_desc *descs;
 648
 649        /* DMA address of the TX DMA descriptors array */
 650        dma_addr_t descs_phys;
 651
 652        /* Index of the last TX DMA descriptor */
 653        int last_desc;
 654
 655        /* Index of the next TX DMA descriptor to process */
 656        int next_desc_to_proc;
 657
 658        /* DMA buffers for TSO headers */
 659        char *tso_hdrs;
 660
 661        /* DMA address of TSO headers */
 662        dma_addr_t tso_hdrs_phys;
 663
 664        /* Affinity mask for CPUs*/
 665        cpumask_t affinity_mask;
 666};
 667
 668struct mvneta_rx_queue {
 669        /* rx queue number, in the range 0-7 */
 670        u8 id;
 671
 672        /* num of rx descriptors in the rx descriptor ring */
 673        int size;
 674
 675        u32 pkts_coal;
 676        u32 time_coal;
 677
 678        /* page_pool */
 679        struct page_pool *page_pool;
 680        struct xdp_rxq_info xdp_rxq;
 681
 682        /* Virtual address of the RX buffer */
 683        void  **buf_virt_addr;
 684
 685        /* Virtual address of the RX DMA descriptors array */
 686        struct mvneta_rx_desc *descs;
 687
 688        /* DMA address of the RX DMA descriptors array */
 689        dma_addr_t descs_phys;
 690
 691        /* Index of the last RX DMA descriptor */
 692        int last_desc;
 693
 694        /* Index of the next RX DMA descriptor to process */
 695        int next_desc_to_proc;
 696
 697        /* Index of first RX DMA descriptor to refill */
 698        int first_to_refill;
 699        u32 refill_num;
 700};
 701
 702static enum cpuhp_state online_hpstate;
 703/* The hardware supports eight (8) rx queues, but we are only allowing
 704 * the first one to be used. Therefore, let's just allocate one queue.
 705 */
 706static int rxq_number = 8;
 707static int txq_number = 8;
 708
 709static int rxq_def;
 710
 711static int rx_copybreak __read_mostly = 256;
 712
 713/* HW BM need that each port be identify by a unique ID */
 714static int global_port_id;
 715
 716#define MVNETA_DRIVER_NAME "mvneta"
 717#define MVNETA_DRIVER_VERSION "1.0"
 718
 719/* Utility/helper methods */
 720
 721/* Write helper method */
 722static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
 723{
 724        writel(data, pp->base + offset);
 725}
 726
 727/* Read helper method */
 728static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
 729{
 730        return readl(pp->base + offset);
 731}
 732
 733/* Increment txq get counter */
 734static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
 735{
 736        txq->txq_get_index++;
 737        if (txq->txq_get_index == txq->size)
 738                txq->txq_get_index = 0;
 739}
 740
 741/* Increment txq put counter */
 742static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
 743{
 744        txq->txq_put_index++;
 745        if (txq->txq_put_index == txq->size)
 746                txq->txq_put_index = 0;
 747}
 748
 749
 750/* Clear all MIB counters */
 751static void mvneta_mib_counters_clear(struct mvneta_port *pp)
 752{
 753        int i;
 754
 755        /* Perform dummy reads from MIB counters */
 756        for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
 757                mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
 758        mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
 759        mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
 760}
 761
 762/* Get System Network Statistics */
 763static void
 764mvneta_get_stats64(struct net_device *dev,
 765                   struct rtnl_link_stats64 *stats)
 766{
 767        struct mvneta_port *pp = netdev_priv(dev);
 768        unsigned int start;
 769        int cpu;
 770
 771        for_each_possible_cpu(cpu) {
 772                struct mvneta_pcpu_stats *cpu_stats;
 773                u64 rx_packets;
 774                u64 rx_bytes;
 775                u64 rx_dropped;
 776                u64 rx_errors;
 777                u64 tx_packets;
 778                u64 tx_bytes;
 779
 780                cpu_stats = per_cpu_ptr(pp->stats, cpu);
 781                do {
 782                        start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
 783                        rx_packets = cpu_stats->es.ps.rx_packets;
 784                        rx_bytes   = cpu_stats->es.ps.rx_bytes;
 785                        rx_dropped = cpu_stats->rx_dropped;
 786                        rx_errors  = cpu_stats->rx_errors;
 787                        tx_packets = cpu_stats->es.ps.tx_packets;
 788                        tx_bytes   = cpu_stats->es.ps.tx_bytes;
 789                } while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
 790
 791                stats->rx_packets += rx_packets;
 792                stats->rx_bytes   += rx_bytes;
 793                stats->rx_dropped += rx_dropped;
 794                stats->rx_errors  += rx_errors;
 795                stats->tx_packets += tx_packets;
 796                stats->tx_bytes   += tx_bytes;
 797        }
 798
 799        stats->tx_dropped       = dev->stats.tx_dropped;
 800}
 801
 802/* Rx descriptors helper methods */
 803
 804/* Checks whether the RX descriptor having this status is both the first
 805 * and the last descriptor for the RX packet. Each RX packet is currently
 806 * received through a single RX descriptor, so not having each RX
 807 * descriptor with its first and last bits set is an error
 808 */
 809static int mvneta_rxq_desc_is_first_last(u32 status)
 810{
 811        return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
 812                MVNETA_RXD_FIRST_LAST_DESC;
 813}
 814
 815/* Add number of descriptors ready to receive new packets */
 816static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
 817                                          struct mvneta_rx_queue *rxq,
 818                                          int ndescs)
 819{
 820        /* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
 821         * be added at once
 822         */
 823        while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
 824                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 825                            (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
 826                             MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 827                ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
 828        }
 829
 830        mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
 831                    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
 832}
 833
 834/* Get number of RX descriptors occupied by received packets */
 835static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
 836                                        struct mvneta_rx_queue *rxq)
 837{
 838        u32 val;
 839
 840        val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
 841        return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
 842}
 843
 844/* Update num of rx desc called upon return from rx path or
 845 * from mvneta_rxq_drop_pkts().
 846 */
 847static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
 848                                       struct mvneta_rx_queue *rxq,
 849                                       int rx_done, int rx_filled)
 850{
 851        u32 val;
 852
 853        if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
 854                val = rx_done |
 855                  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
 856                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 857                return;
 858        }
 859
 860        /* Only 255 descriptors can be added at once */
 861        while ((rx_done > 0) || (rx_filled > 0)) {
 862                if (rx_done <= 0xff) {
 863                        val = rx_done;
 864                        rx_done = 0;
 865                } else {
 866                        val = 0xff;
 867                        rx_done -= 0xff;
 868                }
 869                if (rx_filled <= 0xff) {
 870                        val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 871                        rx_filled = 0;
 872                } else {
 873                        val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
 874                        rx_filled -= 0xff;
 875                }
 876                mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
 877        }
 878}
 879
 880/* Get pointer to next RX descriptor to be processed by SW */
 881static struct mvneta_rx_desc *
 882mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
 883{
 884        int rx_desc = rxq->next_desc_to_proc;
 885
 886        rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
 887        prefetch(rxq->descs + rxq->next_desc_to_proc);
 888        return rxq->descs + rx_desc;
 889}
 890
 891/* Change maximum receive size of the port. */
 892static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
 893{
 894        u32 val;
 895
 896        val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
 897        val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
 898        val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
 899                MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
 900        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
 901}
 902
 903
 904/* Set rx queue offset */
 905static void mvneta_rxq_offset_set(struct mvneta_port *pp,
 906                                  struct mvneta_rx_queue *rxq,
 907                                  int offset)
 908{
 909        u32 val;
 910
 911        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 912        val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
 913
 914        /* Offset is in */
 915        val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
 916        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 917}
 918
 919
 920/* Tx descriptors helper methods */
 921
 922/* Update HW with number of TX descriptors to be sent */
 923static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
 924                                     struct mvneta_tx_queue *txq,
 925                                     int pend_desc)
 926{
 927        u32 val;
 928
 929        pend_desc += txq->pending;
 930
 931        /* Only 255 Tx descriptors can be added at once */
 932        do {
 933                val = min(pend_desc, 255);
 934                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
 935                pend_desc -= val;
 936        } while (pend_desc > 0);
 937        txq->pending = 0;
 938}
 939
 940/* Get pointer to next TX descriptor to be processed (send) by HW */
 941static struct mvneta_tx_desc *
 942mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
 943{
 944        int tx_desc = txq->next_desc_to_proc;
 945
 946        txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
 947        return txq->descs + tx_desc;
 948}
 949
 950/* Release the last allocated TX descriptor. Useful to handle DMA
 951 * mapping failures in the TX path.
 952 */
 953static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
 954{
 955        if (txq->next_desc_to_proc == 0)
 956                txq->next_desc_to_proc = txq->last_desc - 1;
 957        else
 958                txq->next_desc_to_proc--;
 959}
 960
 961/* Set rxq buf size */
 962static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
 963                                    struct mvneta_rx_queue *rxq,
 964                                    int buf_size)
 965{
 966        u32 val;
 967
 968        val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
 969
 970        val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
 971        val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
 972
 973        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
 974}
 975
 976/* Disable buffer management (BM) */
 977static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
 978                                  struct mvneta_rx_queue *rxq)
 979{
 980        u32 val;
 981
 982        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 983        val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
 984        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 985}
 986
 987/* Enable buffer management (BM) */
 988static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
 989                                 struct mvneta_rx_queue *rxq)
 990{
 991        u32 val;
 992
 993        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
 994        val |= MVNETA_RXQ_HW_BUF_ALLOC;
 995        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
 996}
 997
 998/* Notify HW about port's assignment of pool for bigger packets */
 999static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
1000                                     struct mvneta_rx_queue *rxq)
1001{
1002        u32 val;
1003
1004        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1005        val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
1006        val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
1007
1008        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1009}
1010
1011/* Notify HW about port's assignment of pool for smaller packets */
1012static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
1013                                      struct mvneta_rx_queue *rxq)
1014{
1015        u32 val;
1016
1017        val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
1018        val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
1019        val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
1020
1021        mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
1022}
1023
1024/* Set port's receive buffer size for assigned BM pool */
1025static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
1026                                              int buf_size,
1027                                              u8 pool_id)
1028{
1029        u32 val;
1030
1031        if (!IS_ALIGNED(buf_size, 8)) {
1032                dev_warn(pp->dev->dev.parent,
1033                         "illegal buf_size value %d, round to %d\n",
1034                         buf_size, ALIGN(buf_size, 8));
1035                buf_size = ALIGN(buf_size, 8);
1036        }
1037
1038        val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
1039        val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
1040        mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
1041}
1042
1043/* Configure MBUS window in order to enable access BM internal SRAM */
1044static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
1045                                  u8 target, u8 attr)
1046{
1047        u32 win_enable, win_protect;
1048        int i;
1049
1050        win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
1051
1052        if (pp->bm_win_id < 0) {
1053                /* Find first not occupied window */
1054                for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
1055                        if (win_enable & (1 << i)) {
1056                                pp->bm_win_id = i;
1057                                break;
1058                        }
1059                }
1060                if (i == MVNETA_MAX_DECODE_WIN)
1061                        return -ENOMEM;
1062        } else {
1063                i = pp->bm_win_id;
1064        }
1065
1066        mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
1067        mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
1068
1069        if (i < 4)
1070                mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
1071
1072        mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
1073                    (attr << 8) | target);
1074
1075        mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
1076
1077        win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
1078        win_protect |= 3 << (2 * i);
1079        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
1080
1081        win_enable &= ~(1 << i);
1082        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
1083
1084        return 0;
1085}
1086
1087static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
1088{
1089        u32 wsize;
1090        u8 target, attr;
1091        int err;
1092
1093        /* Get BM window information */
1094        err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
1095                                         &target, &attr);
1096        if (err < 0)
1097                return err;
1098
1099        pp->bm_win_id = -1;
1100
1101        /* Open NETA -> BM window */
1102        err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
1103                                     target, attr);
1104        if (err < 0) {
1105                netdev_info(pp->dev, "fail to configure mbus window to BM\n");
1106                return err;
1107        }
1108        return 0;
1109}
1110
1111/* Assign and initialize pools for port. In case of fail
1112 * buffer manager will remain disabled for current port.
1113 */
1114static int mvneta_bm_port_init(struct platform_device *pdev,
1115                               struct mvneta_port *pp)
1116{
1117        struct device_node *dn = pdev->dev.of_node;
1118        u32 long_pool_id, short_pool_id;
1119
1120        if (!pp->neta_armada3700) {
1121                int ret;
1122
1123                ret = mvneta_bm_port_mbus_init(pp);
1124                if (ret)
1125                        return ret;
1126        }
1127
1128        if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1129                netdev_info(pp->dev, "missing long pool id\n");
1130                return -EINVAL;
1131        }
1132
1133        /* Create port's long pool depending on mtu */
1134        pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1135                                           MVNETA_BM_LONG, pp->id,
1136                                           MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1137        if (!pp->pool_long) {
1138                netdev_info(pp->dev, "fail to obtain long pool for port\n");
1139                return -ENOMEM;
1140        }
1141
1142        pp->pool_long->port_map |= 1 << pp->id;
1143
1144        mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1145                                   pp->pool_long->id);
1146
1147        /* If short pool id is not defined, assume using single pool */
1148        if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1149                short_pool_id = long_pool_id;
1150
1151        /* Create port's short pool */
1152        pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1153                                            MVNETA_BM_SHORT, pp->id,
1154                                            MVNETA_BM_SHORT_PKT_SIZE);
1155        if (!pp->pool_short) {
1156                netdev_info(pp->dev, "fail to obtain short pool for port\n");
1157                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1158                return -ENOMEM;
1159        }
1160
1161        if (short_pool_id != long_pool_id) {
1162                pp->pool_short->port_map |= 1 << pp->id;
1163                mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1164                                           pp->pool_short->id);
1165        }
1166
1167        return 0;
1168}
1169
1170/* Update settings of a pool for bigger packets */
1171static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1172{
1173        struct mvneta_bm_pool *bm_pool = pp->pool_long;
1174        struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1175        int num;
1176
1177        /* Release all buffers from long pool */
1178        mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1179        if (hwbm_pool->buf_num) {
1180                WARN(1, "cannot free all buffers in pool %d\n",
1181                     bm_pool->id);
1182                goto bm_mtu_err;
1183        }
1184
1185        bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1186        bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1187        hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1188                        SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1189
1190        /* Fill entire long pool */
1191        num = hwbm_pool_add(hwbm_pool, hwbm_pool->size);
1192        if (num != hwbm_pool->size) {
1193                WARN(1, "pool %d: %d of %d allocated\n",
1194                     bm_pool->id, num, hwbm_pool->size);
1195                goto bm_mtu_err;
1196        }
1197        mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1198
1199        return;
1200
1201bm_mtu_err:
1202        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1203        mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1204
1205        pp->bm_priv = NULL;
1206        pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
1207        mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1208        netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1209}
1210
1211/* Start the Ethernet port RX and TX activity */
1212static void mvneta_port_up(struct mvneta_port *pp)
1213{
1214        int queue;
1215        u32 q_map;
1216
1217        /* Enable all initialized TXs. */
1218        q_map = 0;
1219        for (queue = 0; queue < txq_number; queue++) {
1220                struct mvneta_tx_queue *txq = &pp->txqs[queue];
1221                if (txq->descs)
1222                        q_map |= (1 << queue);
1223        }
1224        mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1225
1226        q_map = 0;
1227        /* Enable all initialized RXQs. */
1228        for (queue = 0; queue < rxq_number; queue++) {
1229                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1230
1231                if (rxq->descs)
1232                        q_map |= (1 << queue);
1233        }
1234        mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1235}
1236
1237/* Stop the Ethernet port activity */
1238static void mvneta_port_down(struct mvneta_port *pp)
1239{
1240        u32 val;
1241        int count;
1242
1243        /* Stop Rx port activity. Check port Rx activity. */
1244        val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1245
1246        /* Issue stop command for active channels only */
1247        if (val != 0)
1248                mvreg_write(pp, MVNETA_RXQ_CMD,
1249                            val << MVNETA_RXQ_DISABLE_SHIFT);
1250
1251        /* Wait for all Rx activity to terminate. */
1252        count = 0;
1253        do {
1254                if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1255                        netdev_warn(pp->dev,
1256                                    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1257                                    val);
1258                        break;
1259                }
1260                mdelay(1);
1261
1262                val = mvreg_read(pp, MVNETA_RXQ_CMD);
1263        } while (val & MVNETA_RXQ_ENABLE_MASK);
1264
1265        /* Stop Tx port activity. Check port Tx activity. Issue stop
1266         * command for active channels only
1267         */
1268        val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1269
1270        if (val != 0)
1271                mvreg_write(pp, MVNETA_TXQ_CMD,
1272                            (val << MVNETA_TXQ_DISABLE_SHIFT));
1273
1274        /* Wait for all Tx activity to terminate. */
1275        count = 0;
1276        do {
1277                if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1278                        netdev_warn(pp->dev,
1279                                    "TIMEOUT for TX stopped status=0x%08x\n",
1280                                    val);
1281                        break;
1282                }
1283                mdelay(1);
1284
1285                /* Check TX Command reg that all Txqs are stopped */
1286                val = mvreg_read(pp, MVNETA_TXQ_CMD);
1287
1288        } while (val & MVNETA_TXQ_ENABLE_MASK);
1289
1290        /* Double check to verify that TX FIFO is empty */
1291        count = 0;
1292        do {
1293                if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1294                        netdev_warn(pp->dev,
1295                                    "TX FIFO empty timeout status=0x%08x\n",
1296                                    val);
1297                        break;
1298                }
1299                mdelay(1);
1300
1301                val = mvreg_read(pp, MVNETA_PORT_STATUS);
1302        } while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1303                 (val & MVNETA_TX_IN_PRGRS));
1304
1305        udelay(200);
1306}
1307
1308/* Enable the port by setting the port enable bit of the MAC control register */
1309static void mvneta_port_enable(struct mvneta_port *pp)
1310{
1311        u32 val;
1312
1313        /* Enable port */
1314        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1315        val |= MVNETA_GMAC0_PORT_ENABLE;
1316        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1317}
1318
1319/* Disable the port and wait for about 200 usec before retuning */
1320static void mvneta_port_disable(struct mvneta_port *pp)
1321{
1322        u32 val;
1323
1324        /* Reset the Enable bit in the Serial Control Register */
1325        val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1326        val &= ~MVNETA_GMAC0_PORT_ENABLE;
1327        mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1328
1329        udelay(200);
1330}
1331
1332/* Multicast tables methods */
1333
1334/* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1335static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1336{
1337        int offset;
1338        u32 val;
1339
1340        if (queue == -1) {
1341                val = 0;
1342        } else {
1343                val = 0x1 | (queue << 1);
1344                val |= (val << 24) | (val << 16) | (val << 8);
1345        }
1346
1347        for (offset = 0; offset <= 0xc; offset += 4)
1348                mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1349}
1350
1351/* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1352static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1353{
1354        int offset;
1355        u32 val;
1356
1357        if (queue == -1) {
1358                val = 0;
1359        } else {
1360                val = 0x1 | (queue << 1);
1361                val |= (val << 24) | (val << 16) | (val << 8);
1362        }
1363
1364        for (offset = 0; offset <= 0xfc; offset += 4)
1365                mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1366
1367}
1368
1369/* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1370static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1371{
1372        int offset;
1373        u32 val;
1374
1375        if (queue == -1) {
1376                memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1377                val = 0;
1378        } else {
1379                memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1380                val = 0x1 | (queue << 1);
1381                val |= (val << 24) | (val << 16) | (val << 8);
1382        }
1383
1384        for (offset = 0; offset <= 0xfc; offset += 4)
1385                mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1386}
1387
1388static void mvneta_percpu_unmask_interrupt(void *arg)
1389{
1390        struct mvneta_port *pp = arg;
1391
1392        /* All the queue are unmasked, but actually only the ones
1393         * mapped to this CPU will be unmasked
1394         */
1395        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1396                    MVNETA_RX_INTR_MASK_ALL |
1397                    MVNETA_TX_INTR_MASK_ALL |
1398                    MVNETA_MISCINTR_INTR_MASK);
1399}
1400
1401static void mvneta_percpu_mask_interrupt(void *arg)
1402{
1403        struct mvneta_port *pp = arg;
1404
1405        /* All the queue are masked, but actually only the ones
1406         * mapped to this CPU will be masked
1407         */
1408        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1409        mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1410        mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1411}
1412
1413static void mvneta_percpu_clear_intr_cause(void *arg)
1414{
1415        struct mvneta_port *pp = arg;
1416
1417        /* All the queue are cleared, but actually only the ones
1418         * mapped to this CPU will be cleared
1419         */
1420        mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1421        mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1422        mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1423}
1424
1425/* This method sets defaults to the NETA port:
1426 *      Clears interrupt Cause and Mask registers.
1427 *      Clears all MAC tables.
1428 *      Sets defaults to all registers.
1429 *      Resets RX and TX descriptor rings.
1430 *      Resets PHY.
1431 * This method can be called after mvneta_port_down() to return the port
1432 *      settings to defaults.
1433 */
1434static void mvneta_defaults_set(struct mvneta_port *pp)
1435{
1436        int cpu;
1437        int queue;
1438        u32 val;
1439        int max_cpu = num_present_cpus();
1440
1441        /* Clear all Cause registers */
1442        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1443
1444        /* Mask all interrupts */
1445        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1446        mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1447
1448        /* Enable MBUS Retry bit16 */
1449        mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1450
1451        /* Set CPU queue access map. CPUs are assigned to the RX and
1452         * TX queues modulo their number. If there is only one TX
1453         * queue then it is assigned to the CPU associated to the
1454         * default RX queue.
1455         */
1456        for_each_present_cpu(cpu) {
1457                int rxq_map = 0, txq_map = 0;
1458                int rxq, txq;
1459                if (!pp->neta_armada3700) {
1460                        for (rxq = 0; rxq < rxq_number; rxq++)
1461                                if ((rxq % max_cpu) == cpu)
1462                                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1463
1464                        for (txq = 0; txq < txq_number; txq++)
1465                                if ((txq % max_cpu) == cpu)
1466                                        txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1467
1468                        /* With only one TX queue we configure a special case
1469                         * which will allow to get all the irq on a single
1470                         * CPU
1471                         */
1472                        if (txq_number == 1)
1473                                txq_map = (cpu == pp->rxq_def) ?
1474                                        MVNETA_CPU_TXQ_ACCESS(1) : 0;
1475
1476                } else {
1477                        txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1478                        rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1479                }
1480
1481                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1482        }
1483
1484        /* Reset RX and TX DMAs */
1485        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1486        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1487
1488        /* Disable Legacy WRR, Disable EJP, Release from reset */
1489        mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1490        for (queue = 0; queue < txq_number; queue++) {
1491                mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1492                mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1493        }
1494
1495        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1496        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1497
1498        /* Set Port Acceleration Mode */
1499        if (pp->bm_priv)
1500                /* HW buffer management + legacy parser */
1501                val = MVNETA_ACC_MODE_EXT2;
1502        else
1503                /* SW buffer management + legacy parser */
1504                val = MVNETA_ACC_MODE_EXT1;
1505        mvreg_write(pp, MVNETA_ACC_MODE, val);
1506
1507        if (pp->bm_priv)
1508                mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1509
1510        /* Update val of portCfg register accordingly with all RxQueue types */
1511        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1512        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1513
1514        val = 0;
1515        mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1516        mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1517
1518        /* Build PORT_SDMA_CONFIG_REG */
1519        val = 0;
1520
1521        /* Default burst size */
1522        val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1523        val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1524        val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1525
1526#if defined(__BIG_ENDIAN)
1527        val |= MVNETA_DESC_SWAP;
1528#endif
1529
1530        /* Assign port SDMA configuration */
1531        mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1532
1533        /* Disable PHY polling in hardware, since we're using the
1534         * kernel phylib to do this.
1535         */
1536        val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1537        val &= ~MVNETA_PHY_POLLING_ENABLE;
1538        mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1539
1540        mvneta_set_ucast_table(pp, -1);
1541        mvneta_set_special_mcast_table(pp, -1);
1542        mvneta_set_other_mcast_table(pp, -1);
1543
1544        /* Set port interrupt enable register - default enable all */
1545        mvreg_write(pp, MVNETA_INTR_ENABLE,
1546                    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1547                     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1548
1549        mvneta_mib_counters_clear(pp);
1550}
1551
1552/* Set max sizes for tx queues */
1553static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1554
1555{
1556        u32 val, size, mtu;
1557        int queue;
1558
1559        mtu = max_tx_size * 8;
1560        if (mtu > MVNETA_TX_MTU_MAX)
1561                mtu = MVNETA_TX_MTU_MAX;
1562
1563        /* Set MTU */
1564        val = mvreg_read(pp, MVNETA_TX_MTU);
1565        val &= ~MVNETA_TX_MTU_MAX;
1566        val |= mtu;
1567        mvreg_write(pp, MVNETA_TX_MTU, val);
1568
1569        /* TX token size and all TXQs token size must be larger that MTU */
1570        val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1571
1572        size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1573        if (size < mtu) {
1574                size = mtu;
1575                val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1576                val |= size;
1577                mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1578        }
1579        for (queue = 0; queue < txq_number; queue++) {
1580                val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1581
1582                size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1583                if (size < mtu) {
1584                        size = mtu;
1585                        val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1586                        val |= size;
1587                        mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1588                }
1589        }
1590}
1591
1592/* Set unicast address */
1593static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1594                                  int queue)
1595{
1596        unsigned int unicast_reg;
1597        unsigned int tbl_offset;
1598        unsigned int reg_offset;
1599
1600        /* Locate the Unicast table entry */
1601        last_nibble = (0xf & last_nibble);
1602
1603        /* offset from unicast tbl base */
1604        tbl_offset = (last_nibble / 4) * 4;
1605
1606        /* offset within the above reg  */
1607        reg_offset = last_nibble % 4;
1608
1609        unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1610
1611        if (queue == -1) {
1612                /* Clear accepts frame bit at specified unicast DA tbl entry */
1613                unicast_reg &= ~(0xff << (8 * reg_offset));
1614        } else {
1615                unicast_reg &= ~(0xff << (8 * reg_offset));
1616                unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1617        }
1618
1619        mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1620}
1621
1622/* Set mac address */
1623static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1624                                int queue)
1625{
1626        unsigned int mac_h;
1627        unsigned int mac_l;
1628
1629        if (queue != -1) {
1630                mac_l = (addr[4] << 8) | (addr[5]);
1631                mac_h = (addr[0] << 24) | (addr[1] << 16) |
1632                        (addr[2] << 8) | (addr[3] << 0);
1633
1634                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1635                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1636        }
1637
1638        /* Accept frames of this address */
1639        mvneta_set_ucast_addr(pp, addr[5], queue);
1640}
1641
1642/* Set the number of packets that will be received before RX interrupt
1643 * will be generated by HW.
1644 */
1645static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1646                                    struct mvneta_rx_queue *rxq, u32 value)
1647{
1648        mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1649                    value | MVNETA_RXQ_NON_OCCUPIED(0));
1650}
1651
1652/* Set the time delay in usec before RX interrupt will be generated by
1653 * HW.
1654 */
1655static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1656                                    struct mvneta_rx_queue *rxq, u32 value)
1657{
1658        u32 val;
1659        unsigned long clk_rate;
1660
1661        clk_rate = clk_get_rate(pp->clk);
1662        val = (clk_rate / 1000000) * value;
1663
1664        mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1665}
1666
1667/* Set threshold for TX_DONE pkts coalescing */
1668static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1669                                         struct mvneta_tx_queue *txq, u32 value)
1670{
1671        u32 val;
1672
1673        val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1674
1675        val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1676        val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1677
1678        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1679}
1680
1681/* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1682static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1683                                u32 phys_addr, void *virt_addr,
1684                                struct mvneta_rx_queue *rxq)
1685{
1686        int i;
1687
1688        rx_desc->buf_phys_addr = phys_addr;
1689        i = rx_desc - rxq->descs;
1690        rxq->buf_virt_addr[i] = virt_addr;
1691}
1692
1693/* Decrement sent descriptors counter */
1694static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1695                                     struct mvneta_tx_queue *txq,
1696                                     int sent_desc)
1697{
1698        u32 val;
1699
1700        /* Only 255 TX descriptors can be updated at once */
1701        while (sent_desc > 0xff) {
1702                val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1703                mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1704                sent_desc = sent_desc - 0xff;
1705        }
1706
1707        val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1708        mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1709}
1710
1711/* Get number of TX descriptors already sent by HW */
1712static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1713                                        struct mvneta_tx_queue *txq)
1714{
1715        u32 val;
1716        int sent_desc;
1717
1718        val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1719        sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1720                MVNETA_TXQ_SENT_DESC_SHIFT;
1721
1722        return sent_desc;
1723}
1724
1725/* Get number of sent descriptors and decrement counter.
1726 *  The number of sent descriptors is returned.
1727 */
1728static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1729                                     struct mvneta_tx_queue *txq)
1730{
1731        int sent_desc;
1732
1733        /* Get number of sent descriptors */
1734        sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1735
1736        /* Decrement sent descriptors counter */
1737        if (sent_desc)
1738                mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1739
1740        return sent_desc;
1741}
1742
1743/* Set TXQ descriptors fields relevant for CSUM calculation */
1744static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1745                                int ip_hdr_len, int l4_proto)
1746{
1747        u32 command;
1748
1749        /* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1750         * G_L4_chk, L4_type; required only for checksum
1751         * calculation
1752         */
1753        command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1754        command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1755
1756        if (l3_proto == htons(ETH_P_IP))
1757                command |= MVNETA_TXD_IP_CSUM;
1758        else
1759                command |= MVNETA_TX_L3_IP6;
1760
1761        if (l4_proto == IPPROTO_TCP)
1762                command |=  MVNETA_TX_L4_CSUM_FULL;
1763        else if (l4_proto == IPPROTO_UDP)
1764                command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1765        else
1766                command |= MVNETA_TX_L4_CSUM_NOT;
1767
1768        return command;
1769}
1770
1771
1772/* Display more error info */
1773static void mvneta_rx_error(struct mvneta_port *pp,
1774                            struct mvneta_rx_desc *rx_desc)
1775{
1776        struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1777        u32 status = rx_desc->status;
1778
1779        /* update per-cpu counter */
1780        u64_stats_update_begin(&stats->syncp);
1781        stats->rx_errors++;
1782        u64_stats_update_end(&stats->syncp);
1783
1784        switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1785        case MVNETA_RXD_ERR_CRC:
1786                netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1787                           status, rx_desc->data_size);
1788                break;
1789        case MVNETA_RXD_ERR_OVERRUN:
1790                netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1791                           status, rx_desc->data_size);
1792                break;
1793        case MVNETA_RXD_ERR_LEN:
1794                netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1795                           status, rx_desc->data_size);
1796                break;
1797        case MVNETA_RXD_ERR_RESOURCE:
1798                netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1799                           status, rx_desc->data_size);
1800                break;
1801        }
1802}
1803
1804/* Handle RX checksum offload based on the descriptor's status */
1805static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1806                           struct sk_buff *skb)
1807{
1808        if ((pp->dev->features & NETIF_F_RXCSUM) &&
1809            (status & MVNETA_RXD_L3_IP4) &&
1810            (status & MVNETA_RXD_L4_CSUM_OK)) {
1811                skb->csum = 0;
1812                skb->ip_summed = CHECKSUM_UNNECESSARY;
1813                return;
1814        }
1815
1816        skb->ip_summed = CHECKSUM_NONE;
1817}
1818
1819/* Return tx queue pointer (find last set bit) according to <cause> returned
1820 * form tx_done reg. <cause> must not be null. The return value is always a
1821 * valid queue for matching the first one found in <cause>.
1822 */
1823static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1824                                                     u32 cause)
1825{
1826        int queue = fls(cause) - 1;
1827
1828        return &pp->txqs[queue];
1829}
1830
1831/* Free tx queue skbuffs */
1832static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1833                                 struct mvneta_tx_queue *txq, int num,
1834                                 struct netdev_queue *nq, bool napi)
1835{
1836        unsigned int bytes_compl = 0, pkts_compl = 0;
1837        struct xdp_frame_bulk bq;
1838        int i;
1839
1840        xdp_frame_bulk_init(&bq);
1841
1842        rcu_read_lock(); /* need for xdp_return_frame_bulk */
1843
1844        for (i = 0; i < num; i++) {
1845                struct mvneta_tx_buf *buf = &txq->buf[txq->txq_get_index];
1846                struct mvneta_tx_desc *tx_desc = txq->descs +
1847                        txq->txq_get_index;
1848
1849                mvneta_txq_inc_get(txq);
1850
1851                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr) &&
1852                    buf->type != MVNETA_TYPE_XDP_TX)
1853                        dma_unmap_single(pp->dev->dev.parent,
1854                                         tx_desc->buf_phys_addr,
1855                                         tx_desc->data_size, DMA_TO_DEVICE);
1856                if (buf->type == MVNETA_TYPE_SKB && buf->skb) {
1857                        bytes_compl += buf->skb->len;
1858                        pkts_compl++;
1859                        dev_kfree_skb_any(buf->skb);
1860                } else if (buf->type == MVNETA_TYPE_XDP_TX ||
1861                           buf->type == MVNETA_TYPE_XDP_NDO) {
1862                        if (napi && buf->type == MVNETA_TYPE_XDP_TX)
1863                                xdp_return_frame_rx_napi(buf->xdpf);
1864                        else
1865                                xdp_return_frame_bulk(buf->xdpf, &bq);
1866                }
1867        }
1868        xdp_flush_frame_bulk(&bq);
1869
1870        rcu_read_unlock();
1871
1872        netdev_tx_completed_queue(nq, pkts_compl, bytes_compl);
1873}
1874
1875/* Handle end of transmission */
1876static void mvneta_txq_done(struct mvneta_port *pp,
1877                           struct mvneta_tx_queue *txq)
1878{
1879        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1880        int tx_done;
1881
1882        tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1883        if (!tx_done)
1884                return;
1885
1886        mvneta_txq_bufs_free(pp, txq, tx_done, nq, true);
1887
1888        txq->count -= tx_done;
1889
1890        if (netif_tx_queue_stopped(nq)) {
1891                if (txq->count <= txq->tx_wake_threshold)
1892                        netif_tx_wake_queue(nq);
1893        }
1894}
1895
1896/* Refill processing for SW buffer management */
1897/* Allocate page per descriptor */
1898static int mvneta_rx_refill(struct mvneta_port *pp,
1899                            struct mvneta_rx_desc *rx_desc,
1900                            struct mvneta_rx_queue *rxq,
1901                            gfp_t gfp_mask)
1902{
1903        dma_addr_t phys_addr;
1904        struct page *page;
1905
1906        page = page_pool_alloc_pages(rxq->page_pool,
1907                                     gfp_mask | __GFP_NOWARN);
1908        if (!page)
1909                return -ENOMEM;
1910
1911        phys_addr = page_pool_get_dma_addr(page) + pp->rx_offset_correction;
1912        mvneta_rx_desc_fill(rx_desc, phys_addr, page, rxq);
1913
1914        return 0;
1915}
1916
1917/* Handle tx checksum */
1918static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1919{
1920        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1921                int ip_hdr_len = 0;
1922                __be16 l3_proto = vlan_get_protocol(skb);
1923                u8 l4_proto;
1924
1925                if (l3_proto == htons(ETH_P_IP)) {
1926                        struct iphdr *ip4h = ip_hdr(skb);
1927
1928                        /* Calculate IPv4 checksum and L4 checksum */
1929                        ip_hdr_len = ip4h->ihl;
1930                        l4_proto = ip4h->protocol;
1931                } else if (l3_proto == htons(ETH_P_IPV6)) {
1932                        struct ipv6hdr *ip6h = ipv6_hdr(skb);
1933
1934                        /* Read l4_protocol from one of IPv6 extra headers */
1935                        if (skb_network_header_len(skb) > 0)
1936                                ip_hdr_len = (skb_network_header_len(skb) >> 2);
1937                        l4_proto = ip6h->nexthdr;
1938                } else
1939                        return MVNETA_TX_L4_CSUM_NOT;
1940
1941                return mvneta_txq_desc_csum(skb_network_offset(skb),
1942                                            l3_proto, ip_hdr_len, l4_proto);
1943        }
1944
1945        return MVNETA_TX_L4_CSUM_NOT;
1946}
1947
1948/* Drop packets received by the RXQ and free buffers */
1949static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1950                                 struct mvneta_rx_queue *rxq)
1951{
1952        int rx_done, i;
1953
1954        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1955        if (rx_done)
1956                mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1957
1958        if (pp->bm_priv) {
1959                for (i = 0; i < rx_done; i++) {
1960                        struct mvneta_rx_desc *rx_desc =
1961                                                  mvneta_rxq_next_desc_get(rxq);
1962                        u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1963                        struct mvneta_bm_pool *bm_pool;
1964
1965                        bm_pool = &pp->bm_priv->bm_pools[pool_id];
1966                        /* Return dropped buffer to the pool */
1967                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1968                                              rx_desc->buf_phys_addr);
1969                }
1970                return;
1971        }
1972
1973        for (i = 0; i < rxq->size; i++) {
1974                struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1975                void *data = rxq->buf_virt_addr[i];
1976                if (!data || !(rx_desc->buf_phys_addr))
1977                        continue;
1978
1979                page_pool_put_full_page(rxq->page_pool, data, false);
1980        }
1981        if (xdp_rxq_info_is_reg(&rxq->xdp_rxq))
1982                xdp_rxq_info_unreg(&rxq->xdp_rxq);
1983        page_pool_destroy(rxq->page_pool);
1984        rxq->page_pool = NULL;
1985}
1986
1987static void
1988mvneta_update_stats(struct mvneta_port *pp,
1989                    struct mvneta_stats *ps)
1990{
1991        struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
1992
1993        u64_stats_update_begin(&stats->syncp);
1994        stats->es.ps.rx_packets += ps->rx_packets;
1995        stats->es.ps.rx_bytes += ps->rx_bytes;
1996        /* xdp */
1997        stats->es.ps.xdp_redirect += ps->xdp_redirect;
1998        stats->es.ps.xdp_pass += ps->xdp_pass;
1999        stats->es.ps.xdp_drop += ps->xdp_drop;
2000        u64_stats_update_end(&stats->syncp);
2001}
2002
2003static inline
2004int mvneta_rx_refill_queue(struct mvneta_port *pp, struct mvneta_rx_queue *rxq)
2005{
2006        struct mvneta_rx_desc *rx_desc;
2007        int curr_desc = rxq->first_to_refill;
2008        int i;
2009
2010        for (i = 0; (i < rxq->refill_num) && (i < 64); i++) {
2011                rx_desc = rxq->descs + curr_desc;
2012                if (!(rx_desc->buf_phys_addr)) {
2013                        if (mvneta_rx_refill(pp, rx_desc, rxq, GFP_ATOMIC)) {
2014                                struct mvneta_pcpu_stats *stats;
2015
2016                                pr_err("Can't refill queue %d. Done %d from %d\n",
2017                                       rxq->id, i, rxq->refill_num);
2018
2019                                stats = this_cpu_ptr(pp->stats);
2020                                u64_stats_update_begin(&stats->syncp);
2021                                stats->es.refill_error++;
2022                                u64_stats_update_end(&stats->syncp);
2023                                break;
2024                        }
2025                }
2026                curr_desc = MVNETA_QUEUE_NEXT_DESC(rxq, curr_desc);
2027        }
2028        rxq->refill_num -= i;
2029        rxq->first_to_refill = curr_desc;
2030
2031        return i;
2032}
2033
2034static void
2035mvneta_xdp_put_buff(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2036                    struct xdp_buff *xdp, struct skb_shared_info *sinfo,
2037                    int sync_len)
2038{
2039        int i;
2040
2041        for (i = 0; i < sinfo->nr_frags; i++)
2042                page_pool_put_full_page(rxq->page_pool,
2043                                        skb_frag_page(&sinfo->frags[i]), true);
2044        page_pool_put_page(rxq->page_pool, virt_to_head_page(xdp->data),
2045                           sync_len, true);
2046}
2047
2048static int
2049mvneta_xdp_submit_frame(struct mvneta_port *pp, struct mvneta_tx_queue *txq,
2050                        struct xdp_frame *xdpf, bool dma_map)
2051{
2052        struct mvneta_tx_desc *tx_desc;
2053        struct mvneta_tx_buf *buf;
2054        dma_addr_t dma_addr;
2055
2056        if (txq->count >= txq->tx_stop_threshold)
2057                return MVNETA_XDP_DROPPED;
2058
2059        tx_desc = mvneta_txq_next_desc_get(txq);
2060
2061        buf = &txq->buf[txq->txq_put_index];
2062        if (dma_map) {
2063                /* ndo_xdp_xmit */
2064                dma_addr = dma_map_single(pp->dev->dev.parent, xdpf->data,
2065                                          xdpf->len, DMA_TO_DEVICE);
2066                if (dma_mapping_error(pp->dev->dev.parent, dma_addr)) {
2067                        mvneta_txq_desc_put(txq);
2068                        return MVNETA_XDP_DROPPED;
2069                }
2070                buf->type = MVNETA_TYPE_XDP_NDO;
2071        } else {
2072                struct page *page = virt_to_page(xdpf->data);
2073
2074                dma_addr = page_pool_get_dma_addr(page) +
2075                           sizeof(*xdpf) + xdpf->headroom;
2076                dma_sync_single_for_device(pp->dev->dev.parent, dma_addr,
2077                                           xdpf->len, DMA_BIDIRECTIONAL);
2078                buf->type = MVNETA_TYPE_XDP_TX;
2079        }
2080        buf->xdpf = xdpf;
2081
2082        tx_desc->command = MVNETA_TXD_FLZ_DESC;
2083        tx_desc->buf_phys_addr = dma_addr;
2084        tx_desc->data_size = xdpf->len;
2085
2086        mvneta_txq_inc_put(txq);
2087        txq->pending++;
2088        txq->count++;
2089
2090        return MVNETA_XDP_TX;
2091}
2092
2093static int
2094mvneta_xdp_xmit_back(struct mvneta_port *pp, struct xdp_buff *xdp)
2095{
2096        struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2097        struct mvneta_tx_queue *txq;
2098        struct netdev_queue *nq;
2099        struct xdp_frame *xdpf;
2100        int cpu;
2101        u32 ret;
2102
2103        xdpf = xdp_convert_buff_to_frame(xdp);
2104        if (unlikely(!xdpf))
2105                return MVNETA_XDP_DROPPED;
2106
2107        cpu = smp_processor_id();
2108        txq = &pp->txqs[cpu % txq_number];
2109        nq = netdev_get_tx_queue(pp->dev, txq->id);
2110
2111        __netif_tx_lock(nq, cpu);
2112        ret = mvneta_xdp_submit_frame(pp, txq, xdpf, false);
2113        if (ret == MVNETA_XDP_TX) {
2114                u64_stats_update_begin(&stats->syncp);
2115                stats->es.ps.tx_bytes += xdpf->len;
2116                stats->es.ps.tx_packets++;
2117                stats->es.ps.xdp_tx++;
2118                u64_stats_update_end(&stats->syncp);
2119
2120                mvneta_txq_pend_desc_add(pp, txq, 0);
2121        } else {
2122                u64_stats_update_begin(&stats->syncp);
2123                stats->es.ps.xdp_tx_err++;
2124                u64_stats_update_end(&stats->syncp);
2125        }
2126        __netif_tx_unlock(nq);
2127
2128        return ret;
2129}
2130
2131static int
2132mvneta_xdp_xmit(struct net_device *dev, int num_frame,
2133                struct xdp_frame **frames, u32 flags)
2134{
2135        struct mvneta_port *pp = netdev_priv(dev);
2136        struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2137        int i, nxmit_byte = 0, nxmit = num_frame;
2138        int cpu = smp_processor_id();
2139        struct mvneta_tx_queue *txq;
2140        struct netdev_queue *nq;
2141        u32 ret;
2142
2143        if (unlikely(test_bit(__MVNETA_DOWN, &pp->state)))
2144                return -ENETDOWN;
2145
2146        if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2147                return -EINVAL;
2148
2149        txq = &pp->txqs[cpu % txq_number];
2150        nq = netdev_get_tx_queue(pp->dev, txq->id);
2151
2152        __netif_tx_lock(nq, cpu);
2153        for (i = 0; i < num_frame; i++) {
2154                ret = mvneta_xdp_submit_frame(pp, txq, frames[i], true);
2155                if (ret == MVNETA_XDP_TX) {
2156                        nxmit_byte += frames[i]->len;
2157                } else {
2158                        xdp_return_frame_rx_napi(frames[i]);
2159                        nxmit--;
2160                }
2161        }
2162
2163        if (unlikely(flags & XDP_XMIT_FLUSH))
2164                mvneta_txq_pend_desc_add(pp, txq, 0);
2165        __netif_tx_unlock(nq);
2166
2167        u64_stats_update_begin(&stats->syncp);
2168        stats->es.ps.tx_bytes += nxmit_byte;
2169        stats->es.ps.tx_packets += nxmit;
2170        stats->es.ps.xdp_xmit += nxmit;
2171        stats->es.ps.xdp_xmit_err += num_frame - nxmit;
2172        u64_stats_update_end(&stats->syncp);
2173
2174        return nxmit;
2175}
2176
2177static int
2178mvneta_run_xdp(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2179               struct bpf_prog *prog, struct xdp_buff *xdp,
2180               u32 frame_sz, struct mvneta_stats *stats)
2181{
2182        struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2183        unsigned int len, data_len, sync;
2184        u32 ret, act;
2185
2186        len = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2187        data_len = xdp->data_end - xdp->data;
2188        act = bpf_prog_run_xdp(prog, xdp);
2189
2190        /* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
2191        sync = xdp->data_end - xdp->data_hard_start - pp->rx_offset_correction;
2192        sync = max(sync, len);
2193
2194        switch (act) {
2195        case XDP_PASS:
2196                stats->xdp_pass++;
2197                return MVNETA_XDP_PASS;
2198        case XDP_REDIRECT: {
2199                int err;
2200
2201                err = xdp_do_redirect(pp->dev, xdp, prog);
2202                if (unlikely(err)) {
2203                        mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2204                        ret = MVNETA_XDP_DROPPED;
2205                } else {
2206                        ret = MVNETA_XDP_REDIR;
2207                        stats->xdp_redirect++;
2208                }
2209                break;
2210        }
2211        case XDP_TX:
2212                ret = mvneta_xdp_xmit_back(pp, xdp);
2213                if (ret != MVNETA_XDP_TX)
2214                        mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2215                break;
2216        default:
2217                bpf_warn_invalid_xdp_action(act);
2218                fallthrough;
2219        case XDP_ABORTED:
2220                trace_xdp_exception(pp->dev, prog, act);
2221                fallthrough;
2222        case XDP_DROP:
2223                mvneta_xdp_put_buff(pp, rxq, xdp, sinfo, sync);
2224                ret = MVNETA_XDP_DROPPED;
2225                stats->xdp_drop++;
2226                break;
2227        }
2228
2229        stats->rx_bytes += frame_sz + xdp->data_end - xdp->data - data_len;
2230        stats->rx_packets++;
2231
2232        return ret;
2233}
2234
2235static void
2236mvneta_swbm_rx_frame(struct mvneta_port *pp,
2237                     struct mvneta_rx_desc *rx_desc,
2238                     struct mvneta_rx_queue *rxq,
2239                     struct xdp_buff *xdp, int *size,
2240                     struct page *page)
2241{
2242        unsigned char *data = page_address(page);
2243        int data_len = -MVNETA_MH_SIZE, len;
2244        struct net_device *dev = pp->dev;
2245        enum dma_data_direction dma_dir;
2246        struct skb_shared_info *sinfo;
2247
2248        if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2249                len = MVNETA_MAX_RX_BUF_SIZE;
2250                data_len += len;
2251        } else {
2252                len = *size;
2253                data_len += len - ETH_FCS_LEN;
2254        }
2255        *size = *size - len;
2256
2257        dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2258        dma_sync_single_for_cpu(dev->dev.parent,
2259                                rx_desc->buf_phys_addr,
2260                                len, dma_dir);
2261
2262        rx_desc->buf_phys_addr = 0;
2263
2264        /* Prefetch header */
2265        prefetch(data);
2266
2267        xdp->data_hard_start = data;
2268        xdp->data = data + pp->rx_offset_correction + MVNETA_MH_SIZE;
2269        xdp->data_end = xdp->data + data_len;
2270        xdp_set_data_meta_invalid(xdp);
2271
2272        sinfo = xdp_get_shared_info_from_buff(xdp);
2273        sinfo->nr_frags = 0;
2274}
2275
2276static void
2277mvneta_swbm_add_rx_fragment(struct mvneta_port *pp,
2278                            struct mvneta_rx_desc *rx_desc,
2279                            struct mvneta_rx_queue *rxq,
2280                            struct xdp_buff *xdp, int *size,
2281                            struct skb_shared_info *xdp_sinfo,
2282                            struct page *page)
2283{
2284        struct net_device *dev = pp->dev;
2285        enum dma_data_direction dma_dir;
2286        int data_len, len;
2287
2288        if (*size > MVNETA_MAX_RX_BUF_SIZE) {
2289                len = MVNETA_MAX_RX_BUF_SIZE;
2290                data_len = len;
2291        } else {
2292                len = *size;
2293                data_len = len - ETH_FCS_LEN;
2294        }
2295        dma_dir = page_pool_get_dma_dir(rxq->page_pool);
2296        dma_sync_single_for_cpu(dev->dev.parent,
2297                                rx_desc->buf_phys_addr,
2298                                len, dma_dir);
2299        rx_desc->buf_phys_addr = 0;
2300
2301        if (data_len > 0 && xdp_sinfo->nr_frags < MAX_SKB_FRAGS) {
2302                skb_frag_t *frag = &xdp_sinfo->frags[xdp_sinfo->nr_frags++];
2303
2304                skb_frag_off_set(frag, pp->rx_offset_correction);
2305                skb_frag_size_set(frag, data_len);
2306                __skb_frag_set_page(frag, page);
2307
2308                /* last fragment */
2309                if (len == *size) {
2310                        struct skb_shared_info *sinfo;
2311
2312                        sinfo = xdp_get_shared_info_from_buff(xdp);
2313                        sinfo->nr_frags = xdp_sinfo->nr_frags;
2314                        memcpy(sinfo->frags, xdp_sinfo->frags,
2315                               sinfo->nr_frags * sizeof(skb_frag_t));
2316                }
2317        } else {
2318                page_pool_put_full_page(rxq->page_pool, page, true);
2319        }
2320        *size -= len;
2321}
2322
2323static struct sk_buff *
2324mvneta_swbm_build_skb(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2325                      struct xdp_buff *xdp, u32 desc_status)
2326{
2327        struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2328        int i, num_frags = sinfo->nr_frags;
2329        struct sk_buff *skb;
2330
2331        skb = build_skb(xdp->data_hard_start, PAGE_SIZE);
2332        if (!skb)
2333                return ERR_PTR(-ENOMEM);
2334
2335        page_pool_release_page(rxq->page_pool, virt_to_page(xdp->data));
2336
2337        skb_reserve(skb, xdp->data - xdp->data_hard_start);
2338        skb_put(skb, xdp->data_end - xdp->data);
2339        mvneta_rx_csum(pp, desc_status, skb);
2340
2341        for (i = 0; i < num_frags; i++) {
2342                skb_frag_t *frag = &sinfo->frags[i];
2343
2344                skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
2345                                skb_frag_page(frag), skb_frag_off(frag),
2346                                skb_frag_size(frag), PAGE_SIZE);
2347                page_pool_release_page(rxq->page_pool, skb_frag_page(frag));
2348        }
2349
2350        return skb;
2351}
2352
2353/* Main rx processing when using software buffer management */
2354static int mvneta_rx_swbm(struct napi_struct *napi,
2355                          struct mvneta_port *pp, int budget,
2356                          struct mvneta_rx_queue *rxq)
2357{
2358        int rx_proc = 0, rx_todo, refill, size = 0;
2359        struct net_device *dev = pp->dev;
2360        struct skb_shared_info sinfo;
2361        struct mvneta_stats ps = {};
2362        struct bpf_prog *xdp_prog;
2363        u32 desc_status, frame_sz;
2364        struct xdp_buff xdp_buf;
2365
2366        xdp_buf.data_hard_start = NULL;
2367        xdp_buf.frame_sz = PAGE_SIZE;
2368        xdp_buf.rxq = &rxq->xdp_rxq;
2369
2370        sinfo.nr_frags = 0;
2371
2372        /* Get number of received packets */
2373        rx_todo = mvneta_rxq_busy_desc_num_get(pp, rxq);
2374
2375        rcu_read_lock();
2376        xdp_prog = READ_ONCE(pp->xdp_prog);
2377
2378        /* Fairness NAPI loop */
2379        while (rx_proc < budget && rx_proc < rx_todo) {
2380                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2381                u32 rx_status, index;
2382                struct sk_buff *skb;
2383                struct page *page;
2384
2385                index = rx_desc - rxq->descs;
2386                page = (struct page *)rxq->buf_virt_addr[index];
2387
2388                rx_status = rx_desc->status;
2389                rx_proc++;
2390                rxq->refill_num++;
2391
2392                if (rx_status & MVNETA_RXD_FIRST_DESC) {
2393                        /* Check errors only for FIRST descriptor */
2394                        if (rx_status & MVNETA_RXD_ERR_SUMMARY) {
2395                                mvneta_rx_error(pp, rx_desc);
2396                                goto next;
2397                        }
2398
2399                        size = rx_desc->data_size;
2400                        frame_sz = size - ETH_FCS_LEN;
2401                        desc_status = rx_status;
2402
2403                        mvneta_swbm_rx_frame(pp, rx_desc, rxq, &xdp_buf,
2404                                             &size, page);
2405                } else {
2406                        if (unlikely(!xdp_buf.data_hard_start)) {
2407                                rx_desc->buf_phys_addr = 0;
2408                                page_pool_put_full_page(rxq->page_pool, page,
2409                                                        true);
2410                                goto next;
2411                        }
2412
2413                        mvneta_swbm_add_rx_fragment(pp, rx_desc, rxq, &xdp_buf,
2414                                                    &size, &sinfo, page);
2415                } /* Middle or Last descriptor */
2416
2417                if (!(rx_status & MVNETA_RXD_LAST_DESC))
2418                        /* no last descriptor this time */
2419                        continue;
2420
2421                if (size) {
2422                        mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2423                        goto next;
2424                }
2425
2426                if (xdp_prog &&
2427                    mvneta_run_xdp(pp, rxq, xdp_prog, &xdp_buf, frame_sz, &ps))
2428                        goto next;
2429
2430                skb = mvneta_swbm_build_skb(pp, rxq, &xdp_buf, desc_status);
2431                if (IS_ERR(skb)) {
2432                        struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2433
2434                        mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2435
2436                        u64_stats_update_begin(&stats->syncp);
2437                        stats->es.skb_alloc_error++;
2438                        stats->rx_dropped++;
2439                        u64_stats_update_end(&stats->syncp);
2440
2441                        goto next;
2442                }
2443
2444                ps.rx_bytes += skb->len;
2445                ps.rx_packets++;
2446
2447                skb->protocol = eth_type_trans(skb, dev);
2448                napi_gro_receive(napi, skb);
2449next:
2450                xdp_buf.data_hard_start = NULL;
2451                sinfo.nr_frags = 0;
2452        }
2453        rcu_read_unlock();
2454
2455        if (xdp_buf.data_hard_start)
2456                mvneta_xdp_put_buff(pp, rxq, &xdp_buf, &sinfo, -1);
2457
2458        if (ps.xdp_redirect)
2459                xdp_do_flush_map();
2460
2461        if (ps.rx_packets)
2462                mvneta_update_stats(pp, &ps);
2463
2464        /* return some buffers to hardware queue, one at a time is too slow */
2465        refill = mvneta_rx_refill_queue(pp, rxq);
2466
2467        /* Update rxq management counters */
2468        mvneta_rxq_desc_num_update(pp, rxq, rx_proc, refill);
2469
2470        return ps.rx_packets;
2471}
2472
2473/* Main rx processing when using hardware buffer management */
2474static int mvneta_rx_hwbm(struct napi_struct *napi,
2475                          struct mvneta_port *pp, int rx_todo,
2476                          struct mvneta_rx_queue *rxq)
2477{
2478        struct net_device *dev = pp->dev;
2479        int rx_done;
2480        u32 rcvd_pkts = 0;
2481        u32 rcvd_bytes = 0;
2482
2483        /* Get number of received packets */
2484        rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2485
2486        if (rx_todo > rx_done)
2487                rx_todo = rx_done;
2488
2489        rx_done = 0;
2490
2491        /* Fairness NAPI loop */
2492        while (rx_done < rx_todo) {
2493                struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2494                struct mvneta_bm_pool *bm_pool = NULL;
2495                struct sk_buff *skb;
2496                unsigned char *data;
2497                dma_addr_t phys_addr;
2498                u32 rx_status, frag_size;
2499                int rx_bytes, err;
2500                u8 pool_id;
2501
2502                rx_done++;
2503                rx_status = rx_desc->status;
2504                rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2505                data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2506                phys_addr = rx_desc->buf_phys_addr;
2507                pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2508                bm_pool = &pp->bm_priv->bm_pools[pool_id];
2509
2510                if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2511                    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2512err_drop_frame_ret_pool:
2513                        /* Return the buffer to the pool */
2514                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2515                                              rx_desc->buf_phys_addr);
2516err_drop_frame:
2517                        mvneta_rx_error(pp, rx_desc);
2518                        /* leave the descriptor untouched */
2519                        continue;
2520                }
2521
2522                if (rx_bytes <= rx_copybreak) {
2523                        /* better copy a small frame and not unmap the DMA region */
2524                        skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2525                        if (unlikely(!skb))
2526                                goto err_drop_frame_ret_pool;
2527
2528                        dma_sync_single_range_for_cpu(&pp->bm_priv->pdev->dev,
2529                                                      rx_desc->buf_phys_addr,
2530                                                      MVNETA_MH_SIZE + NET_SKB_PAD,
2531                                                      rx_bytes,
2532                                                      DMA_FROM_DEVICE);
2533                        skb_put_data(skb, data + MVNETA_MH_SIZE + NET_SKB_PAD,
2534                                     rx_bytes);
2535
2536                        skb->protocol = eth_type_trans(skb, dev);
2537                        mvneta_rx_csum(pp, rx_status, skb);
2538                        napi_gro_receive(napi, skb);
2539
2540                        rcvd_pkts++;
2541                        rcvd_bytes += rx_bytes;
2542
2543                        /* Return the buffer to the pool */
2544                        mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2545                                              rx_desc->buf_phys_addr);
2546
2547                        /* leave the descriptor and buffer untouched */
2548                        continue;
2549                }
2550
2551                /* Refill processing */
2552                err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2553                if (err) {
2554                        struct mvneta_pcpu_stats *stats;
2555
2556                        netdev_err(dev, "Linux processing - Can't refill\n");
2557
2558                        stats = this_cpu_ptr(pp->stats);
2559                        u64_stats_update_begin(&stats->syncp);
2560                        stats->es.refill_error++;
2561                        u64_stats_update_end(&stats->syncp);
2562
2563                        goto err_drop_frame_ret_pool;
2564                }
2565
2566                frag_size = bm_pool->hwbm_pool.frag_size;
2567
2568                skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2569
2570                /* After refill old buffer has to be unmapped regardless
2571                 * the skb is successfully built or not.
2572                 */
2573                dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2574                                 bm_pool->buf_size, DMA_FROM_DEVICE);
2575                if (!skb)
2576                        goto err_drop_frame;
2577
2578                rcvd_pkts++;
2579                rcvd_bytes += rx_bytes;
2580
2581                /* Linux processing */
2582                skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2583                skb_put(skb, rx_bytes);
2584
2585                skb->protocol = eth_type_trans(skb, dev);
2586
2587                mvneta_rx_csum(pp, rx_status, skb);
2588
2589                napi_gro_receive(napi, skb);
2590        }
2591
2592        if (rcvd_pkts) {
2593                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2594
2595                u64_stats_update_begin(&stats->syncp);
2596                stats->es.ps.rx_packets += rcvd_pkts;
2597                stats->es.ps.rx_bytes += rcvd_bytes;
2598                u64_stats_update_end(&stats->syncp);
2599        }
2600
2601        /* Update rxq management counters */
2602        mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2603
2604        return rx_done;
2605}
2606
2607static inline void
2608mvneta_tso_put_hdr(struct sk_buff *skb,
2609                   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2610{
2611        int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2612        struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2613        struct mvneta_tx_desc *tx_desc;
2614
2615        tx_desc = mvneta_txq_next_desc_get(txq);
2616        tx_desc->data_size = hdr_len;
2617        tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2618        tx_desc->command |= MVNETA_TXD_F_DESC;
2619        tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2620                                 txq->txq_put_index * TSO_HEADER_SIZE;
2621        buf->type = MVNETA_TYPE_SKB;
2622        buf->skb = NULL;
2623
2624        mvneta_txq_inc_put(txq);
2625}
2626
2627static inline int
2628mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2629                    struct sk_buff *skb, char *data, int size,
2630                    bool last_tcp, bool is_last)
2631{
2632        struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2633        struct mvneta_tx_desc *tx_desc;
2634
2635        tx_desc = mvneta_txq_next_desc_get(txq);
2636        tx_desc->data_size = size;
2637        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2638                                                size, DMA_TO_DEVICE);
2639        if (unlikely(dma_mapping_error(dev->dev.parent,
2640                     tx_desc->buf_phys_addr))) {
2641                mvneta_txq_desc_put(txq);
2642                return -ENOMEM;
2643        }
2644
2645        tx_desc->command = 0;
2646        buf->type = MVNETA_TYPE_SKB;
2647        buf->skb = NULL;
2648
2649        if (last_tcp) {
2650                /* last descriptor in the TCP packet */
2651                tx_desc->command = MVNETA_TXD_L_DESC;
2652
2653                /* last descriptor in SKB */
2654                if (is_last)
2655                        buf->skb = skb;
2656        }
2657        mvneta_txq_inc_put(txq);
2658        return 0;
2659}
2660
2661static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2662                         struct mvneta_tx_queue *txq)
2663{
2664        int hdr_len, total_len, data_left;
2665        int desc_count = 0;
2666        struct mvneta_port *pp = netdev_priv(dev);
2667        struct tso_t tso;
2668        int i;
2669
2670        /* Count needed descriptors */
2671        if ((txq->count + tso_count_descs(skb)) >= txq->size)
2672                return 0;
2673
2674        if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2675                pr_info("*** Is this even  possible???!?!?\n");
2676                return 0;
2677        }
2678
2679        /* Initialize the TSO handler, and prepare the first payload */
2680        hdr_len = tso_start(skb, &tso);
2681
2682        total_len = skb->len - hdr_len;
2683        while (total_len > 0) {
2684                char *hdr;
2685
2686                data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2687                total_len -= data_left;
2688                desc_count++;
2689
2690                /* prepare packet headers: MAC + IP + TCP */
2691                hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2692                tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2693
2694                mvneta_tso_put_hdr(skb, pp, txq);
2695
2696                while (data_left > 0) {
2697                        int size;
2698                        desc_count++;
2699
2700                        size = min_t(int, tso.size, data_left);
2701
2702                        if (mvneta_tso_put_data(dev, txq, skb,
2703                                                 tso.data, size,
2704                                                 size == data_left,
2705                                                 total_len == 0))
2706                                goto err_release;
2707                        data_left -= size;
2708
2709                        tso_build_data(skb, &tso, size);
2710                }
2711        }
2712
2713        return desc_count;
2714
2715err_release:
2716        /* Release all used data descriptors; header descriptors must not
2717         * be DMA-unmapped.
2718         */
2719        for (i = desc_count - 1; i >= 0; i--) {
2720                struct mvneta_tx_desc *tx_desc = txq->descs + i;
2721                if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2722                        dma_unmap_single(pp->dev->dev.parent,
2723                                         tx_desc->buf_phys_addr,
2724                                         tx_desc->data_size,
2725                                         DMA_TO_DEVICE);
2726                mvneta_txq_desc_put(txq);
2727        }
2728        return 0;
2729}
2730
2731/* Handle tx fragmentation processing */
2732static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2733                                  struct mvneta_tx_queue *txq)
2734{
2735        struct mvneta_tx_desc *tx_desc;
2736        int i, nr_frags = skb_shinfo(skb)->nr_frags;
2737
2738        for (i = 0; i < nr_frags; i++) {
2739                struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2740                skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2741                void *addr = skb_frag_address(frag);
2742
2743                tx_desc = mvneta_txq_next_desc_get(txq);
2744                tx_desc->data_size = skb_frag_size(frag);
2745
2746                tx_desc->buf_phys_addr =
2747                        dma_map_single(pp->dev->dev.parent, addr,
2748                                       tx_desc->data_size, DMA_TO_DEVICE);
2749
2750                if (dma_mapping_error(pp->dev->dev.parent,
2751                                      tx_desc->buf_phys_addr)) {
2752                        mvneta_txq_desc_put(txq);
2753                        goto error;
2754                }
2755
2756                if (i == nr_frags - 1) {
2757                        /* Last descriptor */
2758                        tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2759                        buf->skb = skb;
2760                } else {
2761                        /* Descriptor in the middle: Not First, Not Last */
2762                        tx_desc->command = 0;
2763                        buf->skb = NULL;
2764                }
2765                buf->type = MVNETA_TYPE_SKB;
2766                mvneta_txq_inc_put(txq);
2767        }
2768
2769        return 0;
2770
2771error:
2772        /* Release all descriptors that were used to map fragments of
2773         * this packet, as well as the corresponding DMA mappings
2774         */
2775        for (i = i - 1; i >= 0; i--) {
2776                tx_desc = txq->descs + i;
2777                dma_unmap_single(pp->dev->dev.parent,
2778                                 tx_desc->buf_phys_addr,
2779                                 tx_desc->data_size,
2780                                 DMA_TO_DEVICE);
2781                mvneta_txq_desc_put(txq);
2782        }
2783
2784        return -ENOMEM;
2785}
2786
2787/* Main tx processing */
2788static netdev_tx_t mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2789{
2790        struct mvneta_port *pp = netdev_priv(dev);
2791        u16 txq_id = skb_get_queue_mapping(skb);
2792        struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2793        struct mvneta_tx_buf *buf = &txq->buf[txq->txq_put_index];
2794        struct mvneta_tx_desc *tx_desc;
2795        int len = skb->len;
2796        int frags = 0;
2797        u32 tx_cmd;
2798
2799        if (!netif_running(dev))
2800                goto out;
2801
2802        if (skb_is_gso(skb)) {
2803                frags = mvneta_tx_tso(skb, dev, txq);
2804                goto out;
2805        }
2806
2807        frags = skb_shinfo(skb)->nr_frags + 1;
2808
2809        /* Get a descriptor for the first part of the packet */
2810        tx_desc = mvneta_txq_next_desc_get(txq);
2811
2812        tx_cmd = mvneta_skb_tx_csum(pp, skb);
2813
2814        tx_desc->data_size = skb_headlen(skb);
2815
2816        tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2817                                                tx_desc->data_size,
2818                                                DMA_TO_DEVICE);
2819        if (unlikely(dma_mapping_error(dev->dev.parent,
2820                                       tx_desc->buf_phys_addr))) {
2821                mvneta_txq_desc_put(txq);
2822                frags = 0;
2823                goto out;
2824        }
2825
2826        buf->type = MVNETA_TYPE_SKB;
2827        if (frags == 1) {
2828                /* First and Last descriptor */
2829                tx_cmd |= MVNETA_TXD_FLZ_DESC;
2830                tx_desc->command = tx_cmd;
2831                buf->skb = skb;
2832                mvneta_txq_inc_put(txq);
2833        } else {
2834                /* First but not Last */
2835                tx_cmd |= MVNETA_TXD_F_DESC;
2836                buf->skb = NULL;
2837                mvneta_txq_inc_put(txq);
2838                tx_desc->command = tx_cmd;
2839                /* Continue with other skb fragments */
2840                if (mvneta_tx_frag_process(pp, skb, txq)) {
2841                        dma_unmap_single(dev->dev.parent,
2842                                         tx_desc->buf_phys_addr,
2843                                         tx_desc->data_size,
2844                                         DMA_TO_DEVICE);
2845                        mvneta_txq_desc_put(txq);
2846                        frags = 0;
2847                        goto out;
2848                }
2849        }
2850
2851out:
2852        if (frags > 0) {
2853                struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2854                struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2855
2856                netdev_tx_sent_queue(nq, len);
2857
2858                txq->count += frags;
2859                if (txq->count >= txq->tx_stop_threshold)
2860                        netif_tx_stop_queue(nq);
2861
2862                if (!netdev_xmit_more() || netif_xmit_stopped(nq) ||
2863                    txq->pending + frags > MVNETA_TXQ_DEC_SENT_MASK)
2864                        mvneta_txq_pend_desc_add(pp, txq, frags);
2865                else
2866                        txq->pending += frags;
2867
2868                u64_stats_update_begin(&stats->syncp);
2869                stats->es.ps.tx_bytes += len;
2870                stats->es.ps.tx_packets++;
2871                u64_stats_update_end(&stats->syncp);
2872        } else {
2873                dev->stats.tx_dropped++;
2874                dev_kfree_skb_any(skb);
2875        }
2876
2877        return NETDEV_TX_OK;
2878}
2879
2880
2881/* Free tx resources, when resetting a port */
2882static void mvneta_txq_done_force(struct mvneta_port *pp,
2883                                  struct mvneta_tx_queue *txq)
2884
2885{
2886        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
2887        int tx_done = txq->count;
2888
2889        mvneta_txq_bufs_free(pp, txq, tx_done, nq, false);
2890
2891        /* reset txq */
2892        txq->count = 0;
2893        txq->txq_put_index = 0;
2894        txq->txq_get_index = 0;
2895}
2896
2897/* Handle tx done - called in softirq context. The <cause_tx_done> argument
2898 * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2899 */
2900static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2901{
2902        struct mvneta_tx_queue *txq;
2903        struct netdev_queue *nq;
2904        int cpu = smp_processor_id();
2905
2906        while (cause_tx_done) {
2907                txq = mvneta_tx_done_policy(pp, cause_tx_done);
2908
2909                nq = netdev_get_tx_queue(pp->dev, txq->id);
2910                __netif_tx_lock(nq, cpu);
2911
2912                if (txq->count)
2913                        mvneta_txq_done(pp, txq);
2914
2915                __netif_tx_unlock(nq);
2916                cause_tx_done &= ~((1 << txq->id));
2917        }
2918}
2919
2920/* Compute crc8 of the specified address, using a unique algorithm ,
2921 * according to hw spec, different than generic crc8 algorithm
2922 */
2923static int mvneta_addr_crc(unsigned char *addr)
2924{
2925        int crc = 0;
2926        int i;
2927
2928        for (i = 0; i < ETH_ALEN; i++) {
2929                int j;
2930
2931                crc = (crc ^ addr[i]) << 8;
2932                for (j = 7; j >= 0; j--) {
2933                        if (crc & (0x100 << j))
2934                                crc ^= 0x107 << j;
2935                }
2936        }
2937
2938        return crc;
2939}
2940
2941/* This method controls the net device special MAC multicast support.
2942 * The Special Multicast Table for MAC addresses supports MAC of the form
2943 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2944 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2945 * Table entries in the DA-Filter table. This method set the Special
2946 * Multicast Table appropriate entry.
2947 */
2948static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2949                                          unsigned char last_byte,
2950                                          int queue)
2951{
2952        unsigned int smc_table_reg;
2953        unsigned int tbl_offset;
2954        unsigned int reg_offset;
2955
2956        /* Register offset from SMC table base    */
2957        tbl_offset = (last_byte / 4);
2958        /* Entry offset within the above reg */
2959        reg_offset = last_byte % 4;
2960
2961        smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2962                                        + tbl_offset * 4));
2963
2964        if (queue == -1)
2965                smc_table_reg &= ~(0xff << (8 * reg_offset));
2966        else {
2967                smc_table_reg &= ~(0xff << (8 * reg_offset));
2968                smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2969        }
2970
2971        mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2972                    smc_table_reg);
2973}
2974
2975/* This method controls the network device Other MAC multicast support.
2976 * The Other Multicast Table is used for multicast of another type.
2977 * A CRC-8 is used as an index to the Other Multicast Table entries
2978 * in the DA-Filter table.
2979 * The method gets the CRC-8 value from the calling routine and
2980 * sets the Other Multicast Table appropriate entry according to the
2981 * specified CRC-8 .
2982 */
2983static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2984                                        unsigned char crc8,
2985                                        int queue)
2986{
2987        unsigned int omc_table_reg;
2988        unsigned int tbl_offset;
2989        unsigned int reg_offset;
2990
2991        tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2992        reg_offset = crc8 % 4;       /* Entry offset within the above reg   */
2993
2994        omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2995
2996        if (queue == -1) {
2997                /* Clear accepts frame bit at specified Other DA table entry */
2998                omc_table_reg &= ~(0xff << (8 * reg_offset));
2999        } else {
3000                omc_table_reg &= ~(0xff << (8 * reg_offset));
3001                omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
3002        }
3003
3004        mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
3005}
3006
3007/* The network device supports multicast using two tables:
3008 *    1) Special Multicast Table for MAC addresses of the form
3009 *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
3010 *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
3011 *       Table entries in the DA-Filter table.
3012 *    2) Other Multicast Table for multicast of another type. A CRC-8 value
3013 *       is used as an index to the Other Multicast Table entries in the
3014 *       DA-Filter table.
3015 */
3016static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
3017                                 int queue)
3018{
3019        unsigned char crc_result = 0;
3020
3021        if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
3022                mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
3023                return 0;
3024        }
3025
3026        crc_result = mvneta_addr_crc(p_addr);
3027        if (queue == -1) {
3028                if (pp->mcast_count[crc_result] == 0) {
3029                        netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
3030                                    crc_result);
3031                        return -EINVAL;
3032                }
3033
3034                pp->mcast_count[crc_result]--;
3035                if (pp->mcast_count[crc_result] != 0) {
3036                        netdev_info(pp->dev,
3037                                    "After delete there are %d valid Mcast for crc8=0x%02x\n",
3038                                    pp->mcast_count[crc_result], crc_result);
3039                        return -EINVAL;
3040                }
3041        } else
3042                pp->mcast_count[crc_result]++;
3043
3044        mvneta_set_other_mcast_addr(pp, crc_result, queue);
3045
3046        return 0;
3047}
3048
3049/* Configure Fitering mode of Ethernet port */
3050static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
3051                                          int is_promisc)
3052{
3053        u32 port_cfg_reg, val;
3054
3055        port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
3056
3057        val = mvreg_read(pp, MVNETA_TYPE_PRIO);
3058
3059        /* Set / Clear UPM bit in port configuration register */
3060        if (is_promisc) {
3061                /* Accept all Unicast addresses */
3062                port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
3063                val |= MVNETA_FORCE_UNI;
3064                mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
3065                mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
3066        } else {
3067                /* Reject all Unicast addresses */
3068                port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
3069                val &= ~MVNETA_FORCE_UNI;
3070        }
3071
3072        mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
3073        mvreg_write(pp, MVNETA_TYPE_PRIO, val);
3074}
3075
3076/* register unicast and multicast addresses */
3077static void mvneta_set_rx_mode(struct net_device *dev)
3078{
3079        struct mvneta_port *pp = netdev_priv(dev);
3080        struct netdev_hw_addr *ha;
3081
3082        if (dev->flags & IFF_PROMISC) {
3083                /* Accept all: Multicast + Unicast */
3084                mvneta_rx_unicast_promisc_set(pp, 1);
3085                mvneta_set_ucast_table(pp, pp->rxq_def);
3086                mvneta_set_special_mcast_table(pp, pp->rxq_def);
3087                mvneta_set_other_mcast_table(pp, pp->rxq_def);
3088        } else {
3089                /* Accept single Unicast */
3090                mvneta_rx_unicast_promisc_set(pp, 0);
3091                mvneta_set_ucast_table(pp, -1);
3092                mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
3093
3094                if (dev->flags & IFF_ALLMULTI) {
3095                        /* Accept all multicast */
3096                        mvneta_set_special_mcast_table(pp, pp->rxq_def);
3097                        mvneta_set_other_mcast_table(pp, pp->rxq_def);
3098                } else {
3099                        /* Accept only initialized multicast */
3100                        mvneta_set_special_mcast_table(pp, -1);
3101                        mvneta_set_other_mcast_table(pp, -1);
3102
3103                        if (!netdev_mc_empty(dev)) {
3104                                netdev_for_each_mc_addr(ha, dev) {
3105                                        mvneta_mcast_addr_set(pp, ha->addr,
3106                                                              pp->rxq_def);
3107                                }
3108                        }
3109                }
3110        }
3111}
3112
3113/* Interrupt handling - the callback for request_irq() */
3114static irqreturn_t mvneta_isr(int irq, void *dev_id)
3115{
3116        struct mvneta_port *pp = (struct mvneta_port *)dev_id;
3117
3118        mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
3119        napi_schedule(&pp->napi);
3120
3121        return IRQ_HANDLED;
3122}
3123
3124/* Interrupt handling - the callback for request_percpu_irq() */
3125static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
3126{
3127        struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
3128
3129        disable_percpu_irq(port->pp->dev->irq);
3130        napi_schedule(&port->napi);
3131
3132        return IRQ_HANDLED;
3133}
3134
3135static void mvneta_link_change(struct mvneta_port *pp)
3136{
3137        u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3138
3139        phylink_mac_change(pp->phylink, !!(gmac_stat & MVNETA_GMAC_LINK_UP));
3140}
3141
3142/* NAPI handler
3143 * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
3144 * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
3145 * Bits 8 -15 of the cause Rx Tx register indicate that are received
3146 * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
3147 * Each CPU has its own causeRxTx register
3148 */
3149static int mvneta_poll(struct napi_struct *napi, int budget)
3150{
3151        int rx_done = 0;
3152        u32 cause_rx_tx;
3153        int rx_queue;
3154        struct mvneta_port *pp = netdev_priv(napi->dev);
3155        struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
3156
3157        if (!netif_running(pp->dev)) {
3158                napi_complete(napi);
3159                return rx_done;
3160        }
3161
3162        /* Read cause register */
3163        cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
3164        if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
3165                u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
3166
3167                mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
3168
3169                if (cause_misc & (MVNETA_CAUSE_PHY_STATUS_CHANGE |
3170                                  MVNETA_CAUSE_LINK_CHANGE))
3171                        mvneta_link_change(pp);
3172        }
3173
3174        /* Release Tx descriptors */
3175        if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
3176                mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
3177                cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
3178        }
3179
3180        /* For the case where the last mvneta_poll did not process all
3181         * RX packets
3182         */
3183        cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
3184                port->cause_rx_tx;
3185
3186        rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
3187        if (rx_queue) {
3188                rx_queue = rx_queue - 1;
3189                if (pp->bm_priv)
3190                        rx_done = mvneta_rx_hwbm(napi, pp, budget,
3191                                                 &pp->rxqs[rx_queue]);
3192                else
3193                        rx_done = mvneta_rx_swbm(napi, pp, budget,
3194                                                 &pp->rxqs[rx_queue]);
3195        }
3196
3197        if (rx_done < budget) {
3198                cause_rx_tx = 0;
3199                napi_complete_done(napi, rx_done);
3200
3201                if (pp->neta_armada3700) {
3202                        unsigned long flags;
3203
3204                        local_irq_save(flags);
3205                        mvreg_write(pp, MVNETA_INTR_NEW_MASK,
3206                                    MVNETA_RX_INTR_MASK(rxq_number) |
3207                                    MVNETA_TX_INTR_MASK(txq_number) |
3208                                    MVNETA_MISCINTR_INTR_MASK);
3209                        local_irq_restore(flags);
3210                } else {
3211                        enable_percpu_irq(pp->dev->irq, 0);
3212                }
3213        }
3214
3215        if (pp->neta_armada3700)
3216                pp->cause_rx_tx = cause_rx_tx;
3217        else
3218                port->cause_rx_tx = cause_rx_tx;
3219
3220        return rx_done;
3221}
3222
3223static int mvneta_create_page_pool(struct mvneta_port *pp,
3224                                   struct mvneta_rx_queue *rxq, int size)
3225{
3226        struct bpf_prog *xdp_prog = READ_ONCE(pp->xdp_prog);
3227        struct page_pool_params pp_params = {
3228                .order = 0,
3229                .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
3230                .pool_size = size,
3231                .nid = NUMA_NO_NODE,
3232                .dev = pp->dev->dev.parent,
3233                .dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE,
3234                .offset = pp->rx_offset_correction,
3235                .max_len = MVNETA_MAX_RX_BUF_SIZE,
3236        };
3237        int err;
3238
3239        rxq->page_pool = page_pool_create(&pp_params);
3240        if (IS_ERR(rxq->page_pool)) {
3241                err = PTR_ERR(rxq->page_pool);
3242                rxq->page_pool = NULL;
3243                return err;
3244        }
3245
3246        err = xdp_rxq_info_reg(&rxq->xdp_rxq, pp->dev, rxq->id, 0);
3247        if (err < 0)
3248                goto err_free_pp;
3249
3250        err = xdp_rxq_info_reg_mem_model(&rxq->xdp_rxq, MEM_TYPE_PAGE_POOL,
3251                                         rxq->page_pool);
3252        if (err)
3253                goto err_unregister_rxq;
3254
3255        return 0;
3256
3257err_unregister_rxq:
3258        xdp_rxq_info_unreg(&rxq->xdp_rxq);
3259err_free_pp:
3260        page_pool_destroy(rxq->page_pool);
3261        rxq->page_pool = NULL;
3262        return err;
3263}
3264
3265/* Handle rxq fill: allocates rxq skbs; called when initializing a port */
3266static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
3267                           int num)
3268{
3269        int i, err;
3270
3271        err = mvneta_create_page_pool(pp, rxq, num);
3272        if (err < 0)
3273                return err;
3274
3275        for (i = 0; i < num; i++) {
3276                memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
3277                if (mvneta_rx_refill(pp, rxq->descs + i, rxq,
3278                                     GFP_KERNEL) != 0) {
3279                        netdev_err(pp->dev,
3280                                   "%s:rxq %d, %d of %d buffs  filled\n",
3281                                   __func__, rxq->id, i, num);
3282                        break;
3283                }
3284        }
3285
3286        /* Add this number of RX descriptors as non occupied (ready to
3287         * get packets)
3288         */
3289        mvneta_rxq_non_occup_desc_add(pp, rxq, i);
3290
3291        return i;
3292}
3293
3294/* Free all packets pending transmit from all TXQs and reset TX port */
3295static void mvneta_tx_reset(struct mvneta_port *pp)
3296{
3297        int queue;
3298
3299        /* free the skb's in the tx ring */
3300        for (queue = 0; queue < txq_number; queue++)
3301                mvneta_txq_done_force(pp, &pp->txqs[queue]);
3302
3303        mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
3304        mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
3305}
3306
3307static void mvneta_rx_reset(struct mvneta_port *pp)
3308{
3309        mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
3310        mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
3311}
3312
3313/* Rx/Tx queue initialization/cleanup methods */
3314
3315static int mvneta_rxq_sw_init(struct mvneta_port *pp,
3316                              struct mvneta_rx_queue *rxq)
3317{
3318        rxq->size = pp->rx_ring_size;
3319
3320        /* Allocate memory for RX descriptors */
3321        rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3322                                        rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3323                                        &rxq->descs_phys, GFP_KERNEL);
3324        if (!rxq->descs)
3325                return -ENOMEM;
3326
3327        rxq->last_desc = rxq->size - 1;
3328
3329        return 0;
3330}
3331
3332static void mvneta_rxq_hw_init(struct mvneta_port *pp,
3333                               struct mvneta_rx_queue *rxq)
3334{
3335        /* Set Rx descriptors queue starting address */
3336        mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
3337        mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
3338
3339        /* Set coalescing pkts and time */
3340        mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3341        mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3342
3343        if (!pp->bm_priv) {
3344                /* Set Offset */
3345                mvneta_rxq_offset_set(pp, rxq, 0);
3346                mvneta_rxq_buf_size_set(pp, rxq, PAGE_SIZE < SZ_64K ?
3347                                        MVNETA_MAX_RX_BUF_SIZE :
3348                                        MVNETA_RX_BUF_SIZE(pp->pkt_size));
3349                mvneta_rxq_bm_disable(pp, rxq);
3350                mvneta_rxq_fill(pp, rxq, rxq->size);
3351        } else {
3352                /* Set Offset */
3353                mvneta_rxq_offset_set(pp, rxq,
3354                                      NET_SKB_PAD - pp->rx_offset_correction);
3355
3356                mvneta_rxq_bm_enable(pp, rxq);
3357                /* Fill RXQ with buffers from RX pool */
3358                mvneta_rxq_long_pool_set(pp, rxq);
3359                mvneta_rxq_short_pool_set(pp, rxq);
3360                mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
3361        }
3362}
3363
3364/* Create a specified RX queue */
3365static int mvneta_rxq_init(struct mvneta_port *pp,
3366                           struct mvneta_rx_queue *rxq)
3367
3368{
3369        int ret;
3370
3371        ret = mvneta_rxq_sw_init(pp, rxq);
3372        if (ret < 0)
3373                return ret;
3374
3375        mvneta_rxq_hw_init(pp, rxq);
3376
3377        return 0;
3378}
3379
3380/* Cleanup Rx queue */
3381static void mvneta_rxq_deinit(struct mvneta_port *pp,
3382                              struct mvneta_rx_queue *rxq)
3383{
3384        mvneta_rxq_drop_pkts(pp, rxq);
3385
3386        if (rxq->descs)
3387                dma_free_coherent(pp->dev->dev.parent,
3388                                  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
3389                                  rxq->descs,
3390                                  rxq->descs_phys);
3391
3392        rxq->descs             = NULL;
3393        rxq->last_desc         = 0;
3394        rxq->next_desc_to_proc = 0;
3395        rxq->descs_phys        = 0;
3396        rxq->first_to_refill   = 0;
3397        rxq->refill_num        = 0;
3398}
3399
3400static int mvneta_txq_sw_init(struct mvneta_port *pp,
3401                              struct mvneta_tx_queue *txq)
3402{
3403        int cpu;
3404
3405        txq->size = pp->tx_ring_size;
3406
3407        /* A queue must always have room for at least one skb.
3408         * Therefore, stop the queue when the free entries reaches
3409         * the maximum number of descriptors per skb.
3410         */
3411        txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
3412        txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
3413
3414        /* Allocate memory for TX descriptors */
3415        txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
3416                                        txq->size * MVNETA_DESC_ALIGNED_SIZE,
3417                                        &txq->descs_phys, GFP_KERNEL);
3418        if (!txq->descs)
3419                return -ENOMEM;
3420
3421        txq->last_desc = txq->size - 1;
3422
3423        txq->buf = kmalloc_array(txq->size, sizeof(*txq->buf), GFP_KERNEL);
3424        if (!txq->buf)
3425                return -ENOMEM;
3426
3427        /* Allocate DMA buffers for TSO MAC/IP/TCP headers */
3428        txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
3429                                           txq->size * TSO_HEADER_SIZE,
3430                                           &txq->tso_hdrs_phys, GFP_KERNEL);
3431        if (!txq->tso_hdrs)
3432                return -ENOMEM;
3433
3434        /* Setup XPS mapping */
3435        if (txq_number > 1)
3436                cpu = txq->id % num_present_cpus();
3437        else
3438                cpu = pp->rxq_def % num_present_cpus();
3439        cpumask_set_cpu(cpu, &txq->affinity_mask);
3440        netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
3441
3442        return 0;
3443}
3444
3445static void mvneta_txq_hw_init(struct mvneta_port *pp,
3446                               struct mvneta_tx_queue *txq)
3447{
3448        /* Set maximum bandwidth for enabled TXQs */
3449        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
3450        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
3451
3452        /* Set Tx descriptors queue starting address */
3453        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
3454        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
3455
3456        mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3457}
3458
3459/* Create and initialize a tx queue */
3460static int mvneta_txq_init(struct mvneta_port *pp,
3461                           struct mvneta_tx_queue *txq)
3462{
3463        int ret;
3464
3465        ret = mvneta_txq_sw_init(pp, txq);
3466        if (ret < 0)
3467                return ret;
3468
3469        mvneta_txq_hw_init(pp, txq);
3470
3471        return 0;
3472}
3473
3474/* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
3475static void mvneta_txq_sw_deinit(struct mvneta_port *pp,
3476                                 struct mvneta_tx_queue *txq)
3477{
3478        struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
3479
3480        kfree(txq->buf);
3481
3482        if (txq->tso_hdrs)
3483                dma_free_coherent(pp->dev->dev.parent,
3484                                  txq->size * TSO_HEADER_SIZE,
3485                                  txq->tso_hdrs, txq->tso_hdrs_phys);
3486        if (txq->descs)
3487                dma_free_coherent(pp->dev->dev.parent,
3488                                  txq->size * MVNETA_DESC_ALIGNED_SIZE,
3489                                  txq->descs, txq->descs_phys);
3490
3491        netdev_tx_reset_queue(nq);
3492
3493        txq->descs             = NULL;
3494        txq->last_desc         = 0;
3495        txq->next_desc_to_proc = 0;
3496        txq->descs_phys        = 0;
3497}
3498
3499static void mvneta_txq_hw_deinit(struct mvneta_port *pp,
3500                                 struct mvneta_tx_queue *txq)
3501{
3502        /* Set minimum bandwidth for disabled TXQs */
3503        mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
3504        mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
3505
3506        /* Set Tx descriptors queue starting address and size */
3507        mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
3508        mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
3509}
3510
3511static void mvneta_txq_deinit(struct mvneta_port *pp,
3512                              struct mvneta_tx_queue *txq)
3513{
3514        mvneta_txq_sw_deinit(pp, txq);
3515        mvneta_txq_hw_deinit(pp, txq);
3516}
3517
3518/* Cleanup all Tx queues */
3519static void mvneta_cleanup_txqs(struct mvneta_port *pp)
3520{
3521        int queue;
3522
3523        for (queue = 0; queue < txq_number; queue++)
3524                mvneta_txq_deinit(pp, &pp->txqs[queue]);
3525}
3526
3527/* Cleanup all Rx queues */
3528static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
3529{
3530        int queue;
3531
3532        for (queue = 0; queue < rxq_number; queue++)
3533                mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
3534}
3535
3536
3537/* Init all Rx queues */
3538static int mvneta_setup_rxqs(struct mvneta_port *pp)
3539{
3540        int queue;
3541
3542        for (queue = 0; queue < rxq_number; queue++) {
3543                int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3544
3545                if (err) {
3546                        netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3547                                   __func__, queue);
3548                        mvneta_cleanup_rxqs(pp);
3549                        return err;
3550                }
3551        }
3552
3553        return 0;
3554}
3555
3556/* Init all tx queues */
3557static int mvneta_setup_txqs(struct mvneta_port *pp)
3558{
3559        int queue;
3560
3561        for (queue = 0; queue < txq_number; queue++) {
3562                int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3563                if (err) {
3564                        netdev_err(pp->dev, "%s: can't create txq=%d\n",
3565                                   __func__, queue);
3566                        mvneta_cleanup_txqs(pp);
3567                        return err;
3568                }
3569        }
3570
3571        return 0;
3572}
3573
3574static int mvneta_comphy_init(struct mvneta_port *pp, phy_interface_t interface)
3575{
3576        int ret;
3577
3578        ret = phy_set_mode_ext(pp->comphy, PHY_MODE_ETHERNET, interface);
3579        if (ret)
3580                return ret;
3581
3582        return phy_power_on(pp->comphy);
3583}
3584
3585static int mvneta_config_interface(struct mvneta_port *pp,
3586                                   phy_interface_t interface)
3587{
3588        int ret = 0;
3589
3590        if (pp->comphy) {
3591                if (interface == PHY_INTERFACE_MODE_SGMII ||
3592                    interface == PHY_INTERFACE_MODE_1000BASEX ||
3593                    interface == PHY_INTERFACE_MODE_2500BASEX) {
3594                        ret = mvneta_comphy_init(pp, interface);
3595                }
3596        } else {
3597                switch (interface) {
3598                case PHY_INTERFACE_MODE_QSGMII:
3599                        mvreg_write(pp, MVNETA_SERDES_CFG,
3600                                    MVNETA_QSGMII_SERDES_PROTO);
3601                        break;
3602
3603                case PHY_INTERFACE_MODE_SGMII:
3604                case PHY_INTERFACE_MODE_1000BASEX:
3605                        mvreg_write(pp, MVNETA_SERDES_CFG,
3606                                    MVNETA_SGMII_SERDES_PROTO);
3607                        break;
3608
3609                case PHY_INTERFACE_MODE_2500BASEX:
3610                        mvreg_write(pp, MVNETA_SERDES_CFG,
3611                                    MVNETA_HSGMII_SERDES_PROTO);
3612                        break;
3613                default:
3614                        break;
3615                }
3616        }
3617
3618        pp->phy_interface = interface;
3619
3620        return ret;
3621}
3622
3623static void mvneta_start_dev(struct mvneta_port *pp)
3624{
3625        int cpu;
3626
3627        WARN_ON(mvneta_config_interface(pp, pp->phy_interface));
3628
3629        mvneta_max_rx_size_set(pp, pp->pkt_size);
3630        mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3631
3632        /* start the Rx/Tx activity */
3633        mvneta_port_enable(pp);
3634
3635        if (!pp->neta_armada3700) {
3636                /* Enable polling on the port */
3637                for_each_online_cpu(cpu) {
3638                        struct mvneta_pcpu_port *port =
3639                                per_cpu_ptr(pp->ports, cpu);
3640
3641                        napi_enable(&port->napi);
3642                }
3643        } else {
3644                napi_enable(&pp->napi);
3645        }
3646
3647        /* Unmask interrupts. It has to be done from each CPU */
3648        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3649
3650        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3651                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3652                    MVNETA_CAUSE_LINK_CHANGE);
3653
3654        phylink_start(pp->phylink);
3655
3656        /* We may have called phylink_speed_down before */
3657        phylink_speed_up(pp->phylink);
3658
3659        netif_tx_start_all_queues(pp->dev);
3660
3661        clear_bit(__MVNETA_DOWN, &pp->state);
3662}
3663
3664static void mvneta_stop_dev(struct mvneta_port *pp)
3665{
3666        unsigned int cpu;
3667
3668        set_bit(__MVNETA_DOWN, &pp->state);
3669
3670        if (device_may_wakeup(&pp->dev->dev))
3671                phylink_speed_down(pp->phylink, false);
3672
3673        phylink_stop(pp->phylink);
3674
3675        if (!pp->neta_armada3700) {
3676                for_each_online_cpu(cpu) {
3677                        struct mvneta_pcpu_port *port =
3678                                per_cpu_ptr(pp->ports, cpu);
3679
3680                        napi_disable(&port->napi);
3681                }
3682        } else {
3683                napi_disable(&pp->napi);
3684        }
3685
3686        netif_carrier_off(pp->dev);
3687
3688        mvneta_port_down(pp);
3689        netif_tx_stop_all_queues(pp->dev);
3690
3691        /* Stop the port activity */
3692        mvneta_port_disable(pp);
3693
3694        /* Clear all ethernet port interrupts */
3695        on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3696
3697        /* Mask all ethernet port interrupts */
3698        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3699
3700        mvneta_tx_reset(pp);
3701        mvneta_rx_reset(pp);
3702
3703        WARN_ON(phy_power_off(pp->comphy));
3704}
3705
3706static void mvneta_percpu_enable(void *arg)
3707{
3708        struct mvneta_port *pp = arg;
3709
3710        enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3711}
3712
3713static void mvneta_percpu_disable(void *arg)
3714{
3715        struct mvneta_port *pp = arg;
3716
3717        disable_percpu_irq(pp->dev->irq);
3718}
3719
3720/* Change the device mtu */
3721static int mvneta_change_mtu(struct net_device *dev, int mtu)
3722{
3723        struct mvneta_port *pp = netdev_priv(dev);
3724        int ret;
3725
3726        if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3727                netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3728                            mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3729                mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3730        }
3731
3732        if (pp->xdp_prog && mtu > MVNETA_MAX_RX_BUF_SIZE) {
3733                netdev_info(dev, "Illegal MTU value %d for XDP mode\n", mtu);
3734                return -EINVAL;
3735        }
3736
3737        dev->mtu = mtu;
3738
3739        if (!netif_running(dev)) {
3740                if (pp->bm_priv)
3741                        mvneta_bm_update_mtu(pp, mtu);
3742
3743                netdev_update_features(dev);
3744                return 0;
3745        }
3746
3747        /* The interface is running, so we have to force a
3748         * reallocation of the queues
3749         */
3750        mvneta_stop_dev(pp);
3751        on_each_cpu(mvneta_percpu_disable, pp, true);
3752
3753        mvneta_cleanup_txqs(pp);
3754        mvneta_cleanup_rxqs(pp);
3755
3756        if (pp->bm_priv)
3757                mvneta_bm_update_mtu(pp, mtu);
3758
3759        pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3760
3761        ret = mvneta_setup_rxqs(pp);
3762        if (ret) {
3763                netdev_err(dev, "unable to setup rxqs after MTU change\n");
3764                return ret;
3765        }
3766
3767        ret = mvneta_setup_txqs(pp);
3768        if (ret) {
3769                netdev_err(dev, "unable to setup txqs after MTU change\n");
3770                return ret;
3771        }
3772
3773        on_each_cpu(mvneta_percpu_enable, pp, true);
3774        mvneta_start_dev(pp);
3775
3776        netdev_update_features(dev);
3777
3778        return 0;
3779}
3780
3781static netdev_features_t mvneta_fix_features(struct net_device *dev,
3782                                             netdev_features_t features)
3783{
3784        struct mvneta_port *pp = netdev_priv(dev);
3785
3786        if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3787                features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3788                netdev_info(dev,
3789                            "Disable IP checksum for MTU greater than %dB\n",
3790                            pp->tx_csum_limit);
3791        }
3792
3793        return features;
3794}
3795
3796/* Get mac address */
3797static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3798{
3799        u32 mac_addr_l, mac_addr_h;
3800
3801        mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3802        mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3803        addr[0] = (mac_addr_h >> 24) & 0xFF;
3804        addr[1] = (mac_addr_h >> 16) & 0xFF;
3805        addr[2] = (mac_addr_h >> 8) & 0xFF;
3806        addr[3] = mac_addr_h & 0xFF;
3807        addr[4] = (mac_addr_l >> 8) & 0xFF;
3808        addr[5] = mac_addr_l & 0xFF;
3809}
3810
3811/* Handle setting mac address */
3812static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3813{
3814        struct mvneta_port *pp = netdev_priv(dev);
3815        struct sockaddr *sockaddr = addr;
3816        int ret;
3817
3818        ret = eth_prepare_mac_addr_change(dev, addr);
3819        if (ret < 0)
3820                return ret;
3821        /* Remove previous address table entry */
3822        mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3823
3824        /* Set new addr in hw */
3825        mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3826
3827        eth_commit_mac_addr_change(dev, addr);
3828        return 0;
3829}
3830
3831static void mvneta_validate(struct phylink_config *config,
3832                            unsigned long *supported,
3833                            struct phylink_link_state *state)
3834{
3835        struct net_device *ndev = to_net_dev(config->dev);
3836        struct mvneta_port *pp = netdev_priv(ndev);
3837        __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
3838
3839        /* We only support QSGMII, SGMII, 802.3z and RGMII modes */
3840        if (state->interface != PHY_INTERFACE_MODE_NA &&
3841            state->interface != PHY_INTERFACE_MODE_QSGMII &&
3842            state->interface != PHY_INTERFACE_MODE_SGMII &&
3843            !phy_interface_mode_is_8023z(state->interface) &&
3844            !phy_interface_mode_is_rgmii(state->interface)) {
3845                bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
3846                return;
3847        }
3848
3849        /* Allow all the expected bits */
3850        phylink_set(mask, Autoneg);
3851        phylink_set_port_modes(mask);
3852
3853        /* Asymmetric pause is unsupported */
3854        phylink_set(mask, Pause);
3855
3856        /* Half-duplex at speeds higher than 100Mbit is unsupported */
3857        if (pp->comphy || state->interface != PHY_INTERFACE_MODE_2500BASEX) {
3858                phylink_set(mask, 1000baseT_Full);
3859                phylink_set(mask, 1000baseX_Full);
3860        }
3861        if (pp->comphy || state->interface == PHY_INTERFACE_MODE_2500BASEX) {
3862                phylink_set(mask, 2500baseT_Full);
3863                phylink_set(mask, 2500baseX_Full);
3864        }
3865
3866        if (!phy_interface_mode_is_8023z(state->interface)) {
3867                /* 10M and 100M are only supported in non-802.3z mode */
3868                phylink_set(mask, 10baseT_Half);
3869                phylink_set(mask, 10baseT_Full);
3870                phylink_set(mask, 100baseT_Half);
3871                phylink_set(mask, 100baseT_Full);
3872        }
3873
3874        bitmap_and(supported, supported, mask,
3875                   __ETHTOOL_LINK_MODE_MASK_NBITS);
3876        bitmap_and(state->advertising, state->advertising, mask,
3877                   __ETHTOOL_LINK_MODE_MASK_NBITS);
3878
3879        /* We can only operate at 2500BaseX or 1000BaseX.  If requested
3880         * to advertise both, only report advertising at 2500BaseX.
3881         */
3882        phylink_helper_basex_speed(state);
3883}
3884
3885static void mvneta_mac_pcs_get_state(struct phylink_config *config,
3886                                     struct phylink_link_state *state)
3887{
3888        struct net_device *ndev = to_net_dev(config->dev);
3889        struct mvneta_port *pp = netdev_priv(ndev);
3890        u32 gmac_stat;
3891
3892        gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
3893
3894        if (gmac_stat & MVNETA_GMAC_SPEED_1000)
3895                state->speed =
3896                        state->interface == PHY_INTERFACE_MODE_2500BASEX ?
3897                        SPEED_2500 : SPEED_1000;
3898        else if (gmac_stat & MVNETA_GMAC_SPEED_100)
3899                state->speed = SPEED_100;
3900        else
3901                state->speed = SPEED_10;
3902
3903        state->an_complete = !!(gmac_stat & MVNETA_GMAC_AN_COMPLETE);
3904        state->link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
3905        state->duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
3906
3907        state->pause = 0;
3908        if (gmac_stat & MVNETA_GMAC_RX_FLOW_CTRL_ENABLE)
3909                state->pause |= MLO_PAUSE_RX;
3910        if (gmac_stat & MVNETA_GMAC_TX_FLOW_CTRL_ENABLE)
3911                state->pause |= MLO_PAUSE_TX;
3912}
3913
3914static void mvneta_mac_an_restart(struct phylink_config *config)
3915{
3916        struct net_device *ndev = to_net_dev(config->dev);
3917        struct mvneta_port *pp = netdev_priv(ndev);
3918        u32 gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3919
3920        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3921                    gmac_an | MVNETA_GMAC_INBAND_RESTART_AN);
3922        mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3923                    gmac_an & ~MVNETA_GMAC_INBAND_RESTART_AN);
3924}
3925
3926static void mvneta_mac_config(struct phylink_config *config, unsigned int mode,
3927                              const struct phylink_link_state *state)
3928{
3929        struct net_device *ndev = to_net_dev(config->dev);
3930        struct mvneta_port *pp = netdev_priv(ndev);
3931        u32 new_ctrl0, gmac_ctrl0 = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
3932        u32 new_ctrl2, gmac_ctrl2 = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
3933        u32 new_ctrl4, gmac_ctrl4 = mvreg_read(pp, MVNETA_GMAC_CTRL_4);
3934        u32 new_clk, gmac_clk = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
3935        u32 new_an, gmac_an = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3936
3937        new_ctrl0 = gmac_ctrl0 & ~MVNETA_GMAC0_PORT_1000BASE_X;
3938        new_ctrl2 = gmac_ctrl2 & ~(MVNETA_GMAC2_INBAND_AN_ENABLE |
3939                                   MVNETA_GMAC2_PORT_RESET);
3940        new_ctrl4 = gmac_ctrl4 & ~(MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE);
3941        new_clk = gmac_clk & ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
3942        new_an = gmac_an & ~(MVNETA_GMAC_INBAND_AN_ENABLE |
3943                             MVNETA_GMAC_INBAND_RESTART_AN |
3944                             MVNETA_GMAC_AN_SPEED_EN |
3945                             MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL |
3946                             MVNETA_GMAC_AN_FLOW_CTRL_EN |
3947                             MVNETA_GMAC_AN_DUPLEX_EN);
3948
3949        /* Even though it might look weird, when we're configured in
3950         * SGMII or QSGMII mode, the RGMII bit needs to be set.
3951         */
3952        new_ctrl2 |= MVNETA_GMAC2_PORT_RGMII;
3953
3954        if (state->interface == PHY_INTERFACE_MODE_QSGMII ||
3955            state->interface == PHY_INTERFACE_MODE_SGMII ||
3956            phy_interface_mode_is_8023z(state->interface))
3957                new_ctrl2 |= MVNETA_GMAC2_PCS_ENABLE;
3958
3959        if (phylink_test(state->advertising, Pause))
3960                new_an |= MVNETA_GMAC_ADVERT_SYM_FLOW_CTRL;
3961
3962        if (!phylink_autoneg_inband(mode)) {
3963                /* Phy or fixed speed - nothing to do, leave the
3964                 * configured speed, duplex and flow control as-is.
3965                 */
3966        } else if (state->interface == PHY_INTERFACE_MODE_SGMII) {
3967                /* SGMII mode receives the state from the PHY */
3968                new_ctrl2 |= MVNETA_GMAC2_INBAND_AN_ENABLE;
3969                new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3970                new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3971                                     MVNETA_GMAC_FORCE_LINK_PASS |
3972                                     MVNETA_GMAC_CONFIG_MII_SPEED |
3973                                     MVNETA_GMAC_CONFIG_GMII_SPEED |
3974                                     MVNETA_GMAC_CONFIG_FULL_DUPLEX)) |
3975                         MVNETA_GMAC_INBAND_AN_ENABLE |
3976                         MVNETA_GMAC_AN_SPEED_EN |
3977                         MVNETA_GMAC_AN_DUPLEX_EN;
3978        } else {
3979                /* 802.3z negotiation - only 1000base-X */
3980                new_ctrl0 |= MVNETA_GMAC0_PORT_1000BASE_X;
3981                new_clk |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
3982                new_an = (new_an & ~(MVNETA_GMAC_FORCE_LINK_DOWN |
3983                                     MVNETA_GMAC_FORCE_LINK_PASS |
3984                                     MVNETA_GMAC_CONFIG_MII_SPEED)) |
3985                         MVNETA_GMAC_INBAND_AN_ENABLE |
3986                         MVNETA_GMAC_CONFIG_GMII_SPEED |
3987                         /* The MAC only supports FD mode */
3988                         MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3989
3990                if (state->pause & MLO_PAUSE_AN && state->an_enabled)
3991                        new_an |= MVNETA_GMAC_AN_FLOW_CTRL_EN;
3992        }
3993
3994        /* Armada 370 documentation says we can only change the port mode
3995         * and in-band enable when the link is down, so force it down
3996         * while making these changes. We also do this for GMAC_CTRL2 */
3997        if ((new_ctrl0 ^ gmac_ctrl0) & MVNETA_GMAC0_PORT_1000BASE_X ||
3998            (new_ctrl2 ^ gmac_ctrl2) & MVNETA_GMAC2_INBAND_AN_ENABLE ||
3999            (new_an  ^ gmac_an) & MVNETA_GMAC_INBAND_AN_ENABLE) {
4000                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
4001                            (gmac_an & ~MVNETA_GMAC_FORCE_LINK_PASS) |
4002                            MVNETA_GMAC_FORCE_LINK_DOWN);
4003        }
4004
4005
4006        /* When at 2.5G, the link partner can send frames with shortened
4007         * preambles.
4008         */
4009        if (state->interface == PHY_INTERFACE_MODE_2500BASEX)
4010                new_ctrl4 |= MVNETA_GMAC4_SHORT_PREAMBLE_ENABLE;
4011
4012        if (pp->phy_interface != state->interface) {
4013                if (pp->comphy)
4014                        WARN_ON(phy_power_off(pp->comphy));
4015                WARN_ON(mvneta_config_interface(pp, state->interface));
4016        }
4017
4018        if (new_ctrl0 != gmac_ctrl0)
4019                mvreg_write(pp, MVNETA_GMAC_CTRL_0, new_ctrl0);
4020        if (new_ctrl2 != gmac_ctrl2)
4021                mvreg_write(pp, MVNETA_GMAC_CTRL_2, new_ctrl2);
4022        if (new_ctrl4 != gmac_ctrl4)
4023                mvreg_write(pp, MVNETA_GMAC_CTRL_4, new_ctrl4);
4024        if (new_clk != gmac_clk)
4025                mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, new_clk);
4026        if (new_an != gmac_an)
4027                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, new_an);
4028
4029        if (gmac_ctrl2 & MVNETA_GMAC2_PORT_RESET) {
4030                while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4031                        MVNETA_GMAC2_PORT_RESET) != 0)
4032                        continue;
4033        }
4034}
4035
4036static void mvneta_set_eee(struct mvneta_port *pp, bool enable)
4037{
4038        u32 lpi_ctl1;
4039
4040        lpi_ctl1 = mvreg_read(pp, MVNETA_LPI_CTRL_1);
4041        if (enable)
4042                lpi_ctl1 |= MVNETA_LPI_REQUEST_ENABLE;
4043        else
4044                lpi_ctl1 &= ~MVNETA_LPI_REQUEST_ENABLE;
4045        mvreg_write(pp, MVNETA_LPI_CTRL_1, lpi_ctl1);
4046}
4047
4048static void mvneta_mac_link_down(struct phylink_config *config,
4049                                 unsigned int mode, phy_interface_t interface)
4050{
4051        struct net_device *ndev = to_net_dev(config->dev);
4052        struct mvneta_port *pp = netdev_priv(ndev);
4053        u32 val;
4054
4055        mvneta_port_down(pp);
4056
4057        if (!phylink_autoneg_inband(mode)) {
4058                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4059                val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
4060                val |= MVNETA_GMAC_FORCE_LINK_DOWN;
4061                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4062        }
4063
4064        pp->eee_active = false;
4065        mvneta_set_eee(pp, false);
4066}
4067
4068static void mvneta_mac_link_up(struct phylink_config *config,
4069                               struct phy_device *phy,
4070                               unsigned int mode, phy_interface_t interface,
4071                               int speed, int duplex,
4072                               bool tx_pause, bool rx_pause)
4073{
4074        struct net_device *ndev = to_net_dev(config->dev);
4075        struct mvneta_port *pp = netdev_priv(ndev);
4076        u32 val;
4077
4078        if (!phylink_autoneg_inband(mode)) {
4079                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4080                val &= ~(MVNETA_GMAC_FORCE_LINK_DOWN |
4081                         MVNETA_GMAC_CONFIG_MII_SPEED |
4082                         MVNETA_GMAC_CONFIG_GMII_SPEED |
4083                         MVNETA_GMAC_CONFIG_FLOW_CTRL |
4084                         MVNETA_GMAC_CONFIG_FULL_DUPLEX);
4085                val |= MVNETA_GMAC_FORCE_LINK_PASS;
4086
4087                if (speed == SPEED_1000 || speed == SPEED_2500)
4088                        val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
4089                else if (speed == SPEED_100)
4090                        val |= MVNETA_GMAC_CONFIG_MII_SPEED;
4091
4092                if (duplex == DUPLEX_FULL)
4093                        val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
4094
4095                if (tx_pause || rx_pause)
4096                        val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4097
4098                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4099        } else {
4100                /* When inband doesn't cover flow control or flow control is
4101                 * disabled, we need to manually configure it. This bit will
4102                 * only have effect if MVNETA_GMAC_AN_FLOW_CTRL_EN is unset.
4103                 */
4104                val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
4105                val &= ~MVNETA_GMAC_CONFIG_FLOW_CTRL;
4106
4107                if (tx_pause || rx_pause)
4108                        val |= MVNETA_GMAC_CONFIG_FLOW_CTRL;
4109
4110                mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
4111        }
4112
4113        mvneta_port_up(pp);
4114
4115        if (phy && pp->eee_enabled) {
4116                pp->eee_active = phy_init_eee(phy, 0) >= 0;
4117                mvneta_set_eee(pp, pp->eee_active && pp->tx_lpi_enabled);
4118        }
4119}
4120
4121static const struct phylink_mac_ops mvneta_phylink_ops = {
4122        .validate = mvneta_validate,
4123        .mac_pcs_get_state = mvneta_mac_pcs_get_state,
4124        .mac_an_restart = mvneta_mac_an_restart,
4125        .mac_config = mvneta_mac_config,
4126        .mac_link_down = mvneta_mac_link_down,
4127        .mac_link_up = mvneta_mac_link_up,
4128};
4129
4130static int mvneta_mdio_probe(struct mvneta_port *pp)
4131{
4132        struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
4133        int err = phylink_of_phy_connect(pp->phylink, pp->dn, 0);
4134
4135        if (err)
4136                netdev_err(pp->dev, "could not attach PHY: %d\n", err);
4137
4138        phylink_ethtool_get_wol(pp->phylink, &wol);
4139        device_set_wakeup_capable(&pp->dev->dev, !!wol.supported);
4140
4141        /* PHY WoL may be enabled but device wakeup disabled */
4142        if (wol.supported)
4143                device_set_wakeup_enable(&pp->dev->dev, !!wol.wolopts);
4144
4145        return err;
4146}
4147
4148static void mvneta_mdio_remove(struct mvneta_port *pp)
4149{
4150        phylink_disconnect_phy(pp->phylink);
4151}
4152
4153/* Electing a CPU must be done in an atomic way: it should be done
4154 * after or before the removal/insertion of a CPU and this function is
4155 * not reentrant.
4156 */
4157static void mvneta_percpu_elect(struct mvneta_port *pp)
4158{
4159        int elected_cpu = 0, max_cpu, cpu, i = 0;
4160
4161        /* Use the cpu associated to the rxq when it is online, in all
4162         * the other cases, use the cpu 0 which can't be offline.
4163         */
4164        if (cpu_online(pp->rxq_def))
4165                elected_cpu = pp->rxq_def;
4166
4167        max_cpu = num_present_cpus();
4168
4169        for_each_online_cpu(cpu) {
4170                int rxq_map = 0, txq_map = 0;
4171                int rxq;
4172
4173                for (rxq = 0; rxq < rxq_number; rxq++)
4174                        if ((rxq % max_cpu) == cpu)
4175                                rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
4176
4177                if (cpu == elected_cpu)
4178                        /* Map the default receive queue queue to the
4179                         * elected CPU
4180                         */
4181                        rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
4182
4183                /* We update the TX queue map only if we have one
4184                 * queue. In this case we associate the TX queue to
4185                 * the CPU bound to the default RX queue
4186                 */
4187                if (txq_number == 1)
4188                        txq_map = (cpu == elected_cpu) ?
4189                                MVNETA_CPU_TXQ_ACCESS(1) : 0;
4190                else
4191                        txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
4192                                MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
4193
4194                mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
4195
4196                /* Update the interrupt mask on each CPU according the
4197                 * new mapping
4198                 */
4199                smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
4200                                         pp, true);
4201                i++;
4202
4203        }
4204};
4205
4206static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
4207{
4208        int other_cpu;
4209        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4210                                                  node_online);
4211        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4212
4213
4214        spin_lock(&pp->lock);
4215        /*
4216         * Configuring the driver for a new CPU while the driver is
4217         * stopping is racy, so just avoid it.
4218         */
4219        if (pp->is_stopped) {
4220                spin_unlock(&pp->lock);
4221                return 0;
4222        }
4223        netif_tx_stop_all_queues(pp->dev);
4224
4225        /*
4226         * We have to synchronise on tha napi of each CPU except the one
4227         * just being woken up
4228         */
4229        for_each_online_cpu(other_cpu) {
4230                if (other_cpu != cpu) {
4231                        struct mvneta_pcpu_port *other_port =
4232                                per_cpu_ptr(pp->ports, other_cpu);
4233
4234                        napi_synchronize(&other_port->napi);
4235                }
4236        }
4237
4238        /* Mask all ethernet port interrupts */
4239        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4240        napi_enable(&port->napi);
4241
4242        /*
4243         * Enable per-CPU interrupts on the CPU that is
4244         * brought up.
4245         */
4246        mvneta_percpu_enable(pp);
4247
4248        /*
4249         * Enable per-CPU interrupt on the one CPU we care
4250         * about.
4251         */
4252        mvneta_percpu_elect(pp);
4253
4254        /* Unmask all ethernet port interrupts */
4255        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4256        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4257                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4258                    MVNETA_CAUSE_LINK_CHANGE);
4259        netif_tx_start_all_queues(pp->dev);
4260        spin_unlock(&pp->lock);
4261        return 0;
4262}
4263
4264static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
4265{
4266        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4267                                                  node_online);
4268        struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
4269
4270        /*
4271         * Thanks to this lock we are sure that any pending cpu election is
4272         * done.
4273         */
4274        spin_lock(&pp->lock);
4275        /* Mask all ethernet port interrupts */
4276        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4277        spin_unlock(&pp->lock);
4278
4279        napi_synchronize(&port->napi);
4280        napi_disable(&port->napi);
4281        /* Disable per-CPU interrupts on the CPU that is brought down. */
4282        mvneta_percpu_disable(pp);
4283        return 0;
4284}
4285
4286static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
4287{
4288        struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
4289                                                  node_dead);
4290
4291        /* Check if a new CPU must be elected now this on is down */
4292        spin_lock(&pp->lock);
4293        mvneta_percpu_elect(pp);
4294        spin_unlock(&pp->lock);
4295        /* Unmask all ethernet port interrupts */
4296        on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
4297        mvreg_write(pp, MVNETA_INTR_MISC_MASK,
4298                    MVNETA_CAUSE_PHY_STATUS_CHANGE |
4299                    MVNETA_CAUSE_LINK_CHANGE);
4300        netif_tx_start_all_queues(pp->dev);
4301        return 0;
4302}
4303
4304static int mvneta_open(struct net_device *dev)
4305{
4306        struct mvneta_port *pp = netdev_priv(dev);
4307        int ret;
4308
4309        pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
4310
4311        ret = mvneta_setup_rxqs(pp);
4312        if (ret)
4313                return ret;
4314
4315        ret = mvneta_setup_txqs(pp);
4316        if (ret)
4317                goto err_cleanup_rxqs;
4318
4319        /* Connect to port interrupt line */
4320        if (pp->neta_armada3700)
4321                ret = request_irq(pp->dev->irq, mvneta_isr, 0,
4322                                  dev->name, pp);
4323        else
4324                ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
4325                                         dev->name, pp->ports);
4326        if (ret) {
4327                netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
4328                goto err_cleanup_txqs;
4329        }
4330
4331        if (!pp->neta_armada3700) {
4332                /* Enable per-CPU interrupt on all the CPU to handle our RX
4333                 * queue interrupts
4334                 */
4335                on_each_cpu(mvneta_percpu_enable, pp, true);
4336
4337                pp->is_stopped = false;
4338                /* Register a CPU notifier to handle the case where our CPU
4339                 * might be taken offline.
4340                 */
4341                ret = cpuhp_state_add_instance_nocalls(online_hpstate,
4342                                                       &pp->node_online);
4343                if (ret)
4344                        goto err_free_irq;
4345
4346                ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4347                                                       &pp->node_dead);
4348                if (ret)
4349                        goto err_free_online_hp;
4350        }
4351
4352        ret = mvneta_mdio_probe(pp);
4353        if (ret < 0) {
4354                netdev_err(dev, "cannot probe MDIO bus\n");
4355                goto err_free_dead_hp;
4356        }
4357
4358        mvneta_start_dev(pp);
4359
4360        return 0;
4361
4362err_free_dead_hp:
4363        if (!pp->neta_armada3700)
4364                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4365                                                    &pp->node_dead);
4366err_free_online_hp:
4367        if (!pp->neta_armada3700)
4368                cpuhp_state_remove_instance_nocalls(online_hpstate,
4369                                                    &pp->node_online);
4370err_free_irq:
4371        if (pp->neta_armada3700) {
4372                free_irq(pp->dev->irq, pp);
4373        } else {
4374                on_each_cpu(mvneta_percpu_disable, pp, true);
4375                free_percpu_irq(pp->dev->irq, pp->ports);
4376        }
4377err_cleanup_txqs:
4378        mvneta_cleanup_txqs(pp);
4379err_cleanup_rxqs:
4380        mvneta_cleanup_rxqs(pp);
4381        return ret;
4382}
4383
4384/* Stop the port, free port interrupt line */
4385static int mvneta_stop(struct net_device *dev)
4386{
4387        struct mvneta_port *pp = netdev_priv(dev);
4388
4389        if (!pp->neta_armada3700) {
4390                /* Inform that we are stopping so we don't want to setup the
4391                 * driver for new CPUs in the notifiers. The code of the
4392                 * notifier for CPU online is protected by the same spinlock,
4393                 * so when we get the lock, the notifer work is done.
4394                 */
4395                spin_lock(&pp->lock);
4396                pp->is_stopped = true;
4397                spin_unlock(&pp->lock);
4398
4399                mvneta_stop_dev(pp);
4400                mvneta_mdio_remove(pp);
4401
4402                cpuhp_state_remove_instance_nocalls(online_hpstate,
4403                                                    &pp->node_online);
4404                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
4405                                                    &pp->node_dead);
4406                on_each_cpu(mvneta_percpu_disable, pp, true);
4407                free_percpu_irq(dev->irq, pp->ports);
4408        } else {
4409                mvneta_stop_dev(pp);
4410                mvneta_mdio_remove(pp);
4411                free_irq(dev->irq, pp);
4412        }
4413
4414        mvneta_cleanup_rxqs(pp);
4415        mvneta_cleanup_txqs(pp);
4416
4417        return 0;
4418}
4419
4420static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4421{
4422        struct mvneta_port *pp = netdev_priv(dev);
4423
4424        return phylink_mii_ioctl(pp->phylink, ifr, cmd);
4425}
4426
4427static int mvneta_xdp_setup(struct net_device *dev, struct bpf_prog *prog,
4428                            struct netlink_ext_ack *extack)
4429{
4430        bool need_update, running = netif_running(dev);
4431        struct mvneta_port *pp = netdev_priv(dev);
4432        struct bpf_prog *old_prog;
4433
4434        if (prog && dev->mtu > MVNETA_MAX_RX_BUF_SIZE) {
4435                NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP");
4436                return -EOPNOTSUPP;
4437        }
4438
4439        if (pp->bm_priv) {
4440                NL_SET_ERR_MSG_MOD(extack,
4441                                   "Hardware Buffer Management not supported on XDP");
4442                return -EOPNOTSUPP;
4443        }
4444
4445        need_update = !!pp->xdp_prog != !!prog;
4446        if (running && need_update)
4447                mvneta_stop(dev);
4448
4449        old_prog = xchg(&pp->xdp_prog, prog);
4450        if (old_prog)
4451                bpf_prog_put(old_prog);
4452
4453        if (running && need_update)
4454                return mvneta_open(dev);
4455
4456        return 0;
4457}
4458
4459static int mvneta_xdp(struct net_device *dev, struct netdev_bpf *xdp)
4460{
4461        switch (xdp->command) {
4462        case XDP_SETUP_PROG:
4463                return mvneta_xdp_setup(dev, xdp->prog, xdp->extack);
4464        default:
4465                return -EINVAL;
4466        }
4467}
4468
4469/* Ethtool methods */
4470
4471/* Set link ksettings (phy address, speed) for ethtools */
4472static int
4473mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
4474                                  const struct ethtool_link_ksettings *cmd)
4475{
4476        struct mvneta_port *pp = netdev_priv(ndev);
4477
4478        return phylink_ethtool_ksettings_set(pp->phylink, cmd);
4479}
4480
4481/* Get link ksettings for ethtools */
4482static int
4483mvneta_ethtool_get_link_ksettings(struct net_device *ndev,
4484                                  struct ethtool_link_ksettings *cmd)
4485{
4486        struct mvneta_port *pp = netdev_priv(ndev);
4487
4488        return phylink_ethtool_ksettings_get(pp->phylink, cmd);
4489}
4490
4491static int mvneta_ethtool_nway_reset(struct net_device *dev)
4492{
4493        struct mvneta_port *pp = netdev_priv(dev);
4494
4495        return phylink_ethtool_nway_reset(pp->phylink);
4496}
4497
4498/* Set interrupt coalescing for ethtools */
4499static int mvneta_ethtool_set_coalesce(struct net_device *dev,
4500                                       struct ethtool_coalesce *c)
4501{
4502        struct mvneta_port *pp = netdev_priv(dev);
4503        int queue;
4504
4505        for (queue = 0; queue < rxq_number; queue++) {
4506                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4507                rxq->time_coal = c->rx_coalesce_usecs;
4508                rxq->pkts_coal = c->rx_max_coalesced_frames;
4509                mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
4510                mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
4511        }
4512
4513        for (queue = 0; queue < txq_number; queue++) {
4514                struct mvneta_tx_queue *txq = &pp->txqs[queue];
4515                txq->done_pkts_coal = c->tx_max_coalesced_frames;
4516                mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
4517        }
4518
4519        return 0;
4520}
4521
4522/* get coalescing for ethtools */
4523static int mvneta_ethtool_get_coalesce(struct net_device *dev,
4524                                       struct ethtool_coalesce *c)
4525{
4526        struct mvneta_port *pp = netdev_priv(dev);
4527
4528        c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
4529        c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
4530
4531        c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
4532        return 0;
4533}
4534
4535
4536static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
4537                                    struct ethtool_drvinfo *drvinfo)
4538{
4539        strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
4540                sizeof(drvinfo->driver));
4541        strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
4542                sizeof(drvinfo->version));
4543        strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
4544                sizeof(drvinfo->bus_info));
4545}
4546
4547
4548static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
4549                                         struct ethtool_ringparam *ring)
4550{
4551        struct mvneta_port *pp = netdev_priv(netdev);
4552
4553        ring->rx_max_pending = MVNETA_MAX_RXD;
4554        ring->tx_max_pending = MVNETA_MAX_TXD;
4555        ring->rx_pending = pp->rx_ring_size;
4556        ring->tx_pending = pp->tx_ring_size;
4557}
4558
4559static int mvneta_ethtool_set_ringparam(struct net_device *dev,
4560                                        struct ethtool_ringparam *ring)
4561{
4562        struct mvneta_port *pp = netdev_priv(dev);
4563
4564        if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
4565                return -EINVAL;
4566        pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
4567                ring->rx_pending : MVNETA_MAX_RXD;
4568
4569        pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
4570                                   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
4571        if (pp->tx_ring_size != ring->tx_pending)
4572                netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
4573                            pp->tx_ring_size, ring->tx_pending);
4574
4575        if (netif_running(dev)) {
4576                mvneta_stop(dev);
4577                if (mvneta_open(dev)) {
4578                        netdev_err(dev,
4579                                   "error on opening device after ring param change\n");
4580                        return -ENOMEM;
4581                }
4582        }
4583
4584        return 0;
4585}
4586
4587static void mvneta_ethtool_get_pauseparam(struct net_device *dev,
4588                                          struct ethtool_pauseparam *pause)
4589{
4590        struct mvneta_port *pp = netdev_priv(dev);
4591
4592        phylink_ethtool_get_pauseparam(pp->phylink, pause);
4593}
4594
4595static int mvneta_ethtool_set_pauseparam(struct net_device *dev,
4596                                         struct ethtool_pauseparam *pause)
4597{
4598        struct mvneta_port *pp = netdev_priv(dev);
4599
4600        return phylink_ethtool_set_pauseparam(pp->phylink, pause);
4601}
4602
4603static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
4604                                       u8 *data)
4605{
4606        if (sset == ETH_SS_STATS) {
4607                int i;
4608
4609                for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4610                        memcpy(data + i * ETH_GSTRING_LEN,
4611                               mvneta_statistics[i].name, ETH_GSTRING_LEN);
4612        }
4613}
4614
4615static void
4616mvneta_ethtool_update_pcpu_stats(struct mvneta_port *pp,
4617                                 struct mvneta_ethtool_stats *es)
4618{
4619        unsigned int start;
4620        int cpu;
4621
4622        for_each_possible_cpu(cpu) {
4623                struct mvneta_pcpu_stats *stats;
4624                u64 skb_alloc_error;
4625                u64 refill_error;
4626                u64 xdp_redirect;
4627                u64 xdp_xmit_err;
4628                u64 xdp_tx_err;
4629                u64 xdp_pass;
4630                u64 xdp_drop;
4631                u64 xdp_xmit;
4632                u64 xdp_tx;
4633
4634                stats = per_cpu_ptr(pp->stats, cpu);
4635                do {
4636                        start = u64_stats_fetch_begin_irq(&stats->syncp);
4637                        skb_alloc_error = stats->es.skb_alloc_error;
4638                        refill_error = stats->es.refill_error;
4639                        xdp_redirect = stats->es.ps.xdp_redirect;
4640                        xdp_pass = stats->es.ps.xdp_pass;
4641                        xdp_drop = stats->es.ps.xdp_drop;
4642                        xdp_xmit = stats->es.ps.xdp_xmit;
4643                        xdp_xmit_err = stats->es.ps.xdp_xmit_err;
4644                        xdp_tx = stats->es.ps.xdp_tx;
4645                        xdp_tx_err = stats->es.ps.xdp_tx_err;
4646                } while (u64_stats_fetch_retry_irq(&stats->syncp, start));
4647
4648                es->skb_alloc_error += skb_alloc_error;
4649                es->refill_error += refill_error;
4650                es->ps.xdp_redirect += xdp_redirect;
4651                es->ps.xdp_pass += xdp_pass;
4652                es->ps.xdp_drop += xdp_drop;
4653                es->ps.xdp_xmit += xdp_xmit;
4654                es->ps.xdp_xmit_err += xdp_xmit_err;
4655                es->ps.xdp_tx += xdp_tx;
4656                es->ps.xdp_tx_err += xdp_tx_err;
4657        }
4658}
4659
4660static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
4661{
4662        struct mvneta_ethtool_stats stats = {};
4663        const struct mvneta_statistic *s;
4664        void __iomem *base = pp->base;
4665        u32 high, low;
4666        u64 val;
4667        int i;
4668
4669        mvneta_ethtool_update_pcpu_stats(pp, &stats);
4670        for (i = 0, s = mvneta_statistics;
4671             s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
4672             s++, i++) {
4673                switch (s->type) {
4674                case T_REG_32:
4675                        val = readl_relaxed(base + s->offset);
4676                        pp->ethtool_stats[i] += val;
4677                        break;
4678                case T_REG_64:
4679                        /* Docs say to read low 32-bit then high */
4680                        low = readl_relaxed(base + s->offset);
4681                        high = readl_relaxed(base + s->offset + 4);
4682                        val = (u64)high << 32 | low;
4683                        pp->ethtool_stats[i] += val;
4684                        break;
4685                case T_SW:
4686                        switch (s->offset) {
4687                        case ETHTOOL_STAT_EEE_WAKEUP:
4688                                val = phylink_get_eee_err(pp->phylink);
4689                                pp->ethtool_stats[i] += val;
4690                                break;
4691                        case ETHTOOL_STAT_SKB_ALLOC_ERR:
4692                                pp->ethtool_stats[i] = stats.skb_alloc_error;
4693                                break;
4694                        case ETHTOOL_STAT_REFILL_ERR:
4695                                pp->ethtool_stats[i] = stats.refill_error;
4696                                break;
4697                        case ETHTOOL_XDP_REDIRECT:
4698                                pp->ethtool_stats[i] = stats.ps.xdp_redirect;
4699                                break;
4700                        case ETHTOOL_XDP_PASS:
4701                                pp->ethtool_stats[i] = stats.ps.xdp_pass;
4702                                break;
4703                        case ETHTOOL_XDP_DROP:
4704                                pp->ethtool_stats[i] = stats.ps.xdp_drop;
4705                                break;
4706                        case ETHTOOL_XDP_TX:
4707                                pp->ethtool_stats[i] = stats.ps.xdp_tx;
4708                                break;
4709                        case ETHTOOL_XDP_TX_ERR:
4710                                pp->ethtool_stats[i] = stats.ps.xdp_tx_err;
4711                                break;
4712                        case ETHTOOL_XDP_XMIT:
4713                                pp->ethtool_stats[i] = stats.ps.xdp_xmit;
4714                                break;
4715                        case ETHTOOL_XDP_XMIT_ERR:
4716                                pp->ethtool_stats[i] = stats.ps.xdp_xmit_err;
4717                                break;
4718                        }
4719                        break;
4720                }
4721        }
4722}
4723
4724static void mvneta_ethtool_get_stats(struct net_device *dev,
4725                                     struct ethtool_stats *stats, u64 *data)
4726{
4727        struct mvneta_port *pp = netdev_priv(dev);
4728        int i;
4729
4730        mvneta_ethtool_update_stats(pp);
4731
4732        for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
4733                *data++ = pp->ethtool_stats[i];
4734}
4735
4736static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
4737{
4738        if (sset == ETH_SS_STATS)
4739                return ARRAY_SIZE(mvneta_statistics);
4740        return -EOPNOTSUPP;
4741}
4742
4743static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
4744{
4745        return MVNETA_RSS_LU_TABLE_SIZE;
4746}
4747
4748static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
4749                                    struct ethtool_rxnfc *info,
4750                                    u32 *rules __always_unused)
4751{
4752        switch (info->cmd) {
4753        case ETHTOOL_GRXRINGS:
4754                info->data =  rxq_number;
4755                return 0;
4756        case ETHTOOL_GRXFH:
4757                return -EOPNOTSUPP;
4758        default:
4759                return -EOPNOTSUPP;
4760        }
4761}
4762
4763static int  mvneta_config_rss(struct mvneta_port *pp)
4764{
4765        int cpu;
4766        u32 val;
4767
4768        netif_tx_stop_all_queues(pp->dev);
4769
4770        on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
4771
4772        if (!pp->neta_armada3700) {
4773                /* We have to synchronise on the napi of each CPU */
4774                for_each_online_cpu(cpu) {
4775                        struct mvneta_pcpu_port *pcpu_port =
4776                                per_cpu_ptr(pp->ports, cpu);
4777
4778                        napi_synchronize(&pcpu_port->napi);
4779                        napi_disable(&pcpu_port->napi);
4780                }
4781        } else {
4782                napi_synchronize(&pp->napi);
4783                napi_disable(&pp->napi);
4784        }
4785
4786        pp->rxq_def = pp->indir[0];
4787
4788        /* Update unicast mapping */
4789        mvneta_set_rx_mode(pp->dev);
4790
4791        /* Update val of portCfg register accordingly with all RxQueue types */
4792        val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
4793        mvreg_write(pp, MVNETA_PORT_CONFIG, val);
4794
4795        /* Update the elected CPU matching the new rxq_def */
4796        spin_lock(&pp->lock);
4797        mvneta_percpu_elect(pp);
4798        spin_unlock(&pp->lock);
4799
4800        if (!pp->neta_armada3700) {
4801                /* We have to synchronise on the napi of each CPU */
4802                for_each_online_cpu(cpu) {
4803                        struct mvneta_pcpu_port *pcpu_port =
4804                                per_cpu_ptr(pp->ports, cpu);
4805
4806                        napi_enable(&pcpu_port->napi);
4807                }
4808        } else {
4809                napi_enable(&pp->napi);
4810        }
4811
4812        netif_tx_start_all_queues(pp->dev);
4813
4814        return 0;
4815}
4816
4817static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
4818                                   const u8 *key, const u8 hfunc)
4819{
4820        struct mvneta_port *pp = netdev_priv(dev);
4821
4822        /* Current code for Armada 3700 doesn't support RSS features yet */
4823        if (pp->neta_armada3700)
4824                return -EOPNOTSUPP;
4825
4826        /* We require at least one supported parameter to be changed
4827         * and no change in any of the unsupported parameters
4828         */
4829        if (key ||
4830            (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
4831                return -EOPNOTSUPP;
4832
4833        if (!indir)
4834                return 0;
4835
4836        memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
4837
4838        return mvneta_config_rss(pp);
4839}
4840
4841static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
4842                                   u8 *hfunc)
4843{
4844        struct mvneta_port *pp = netdev_priv(dev);
4845
4846        /* Current code for Armada 3700 doesn't support RSS features yet */
4847        if (pp->neta_armada3700)
4848                return -EOPNOTSUPP;
4849
4850        if (hfunc)
4851                *hfunc = ETH_RSS_HASH_TOP;
4852
4853        if (!indir)
4854                return 0;
4855
4856        memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
4857
4858        return 0;
4859}
4860
4861static void mvneta_ethtool_get_wol(struct net_device *dev,
4862                                   struct ethtool_wolinfo *wol)
4863{
4864        struct mvneta_port *pp = netdev_priv(dev);
4865
4866        phylink_ethtool_get_wol(pp->phylink, wol);
4867}
4868
4869static int mvneta_ethtool_set_wol(struct net_device *dev,
4870                                  struct ethtool_wolinfo *wol)
4871{
4872        struct mvneta_port *pp = netdev_priv(dev);
4873        int ret;
4874
4875        ret = phylink_ethtool_set_wol(pp->phylink, wol);
4876        if (!ret)
4877                device_set_wakeup_enable(&dev->dev, !!wol->wolopts);
4878
4879        return ret;
4880}
4881
4882static int mvneta_ethtool_get_eee(struct net_device *dev,
4883                                  struct ethtool_eee *eee)
4884{
4885        struct mvneta_port *pp = netdev_priv(dev);
4886        u32 lpi_ctl0;
4887
4888        lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4889
4890        eee->eee_enabled = pp->eee_enabled;
4891        eee->eee_active = pp->eee_active;
4892        eee->tx_lpi_enabled = pp->tx_lpi_enabled;
4893        eee->tx_lpi_timer = (lpi_ctl0) >> 8; // * scale;
4894
4895        return phylink_ethtool_get_eee(pp->phylink, eee);
4896}
4897
4898static int mvneta_ethtool_set_eee(struct net_device *dev,
4899                                  struct ethtool_eee *eee)
4900{
4901        struct mvneta_port *pp = netdev_priv(dev);
4902        u32 lpi_ctl0;
4903
4904        /* The Armada 37x documents do not give limits for this other than
4905         * it being an 8-bit register. */
4906        if (eee->tx_lpi_enabled && eee->tx_lpi_timer > 255)
4907                return -EINVAL;
4908
4909        lpi_ctl0 = mvreg_read(pp, MVNETA_LPI_CTRL_0);
4910        lpi_ctl0 &= ~(0xff << 8);
4911        lpi_ctl0 |= eee->tx_lpi_timer << 8;
4912        mvreg_write(pp, MVNETA_LPI_CTRL_0, lpi_ctl0);
4913
4914        pp->eee_enabled = eee->eee_enabled;
4915        pp->tx_lpi_enabled = eee->tx_lpi_enabled;
4916
4917        mvneta_set_eee(pp, eee->tx_lpi_enabled && eee->eee_enabled);
4918
4919        return phylink_ethtool_set_eee(pp->phylink, eee);
4920}
4921
4922static const struct net_device_ops mvneta_netdev_ops = {
4923        .ndo_open            = mvneta_open,
4924        .ndo_stop            = mvneta_stop,
4925        .ndo_start_xmit      = mvneta_tx,
4926        .ndo_set_rx_mode     = mvneta_set_rx_mode,
4927        .ndo_set_mac_address = mvneta_set_mac_addr,
4928        .ndo_change_mtu      = mvneta_change_mtu,
4929        .ndo_fix_features    = mvneta_fix_features,
4930        .ndo_get_stats64     = mvneta_get_stats64,
4931        .ndo_do_ioctl        = mvneta_ioctl,
4932        .ndo_bpf             = mvneta_xdp,
4933        .ndo_xdp_xmit        = mvneta_xdp_xmit,
4934};
4935
4936static const struct ethtool_ops mvneta_eth_tool_ops = {
4937        .supported_coalesce_params = ETHTOOL_COALESCE_RX_USECS |
4938                                     ETHTOOL_COALESCE_MAX_FRAMES,
4939        .nway_reset     = mvneta_ethtool_nway_reset,
4940        .get_link       = ethtool_op_get_link,
4941        .set_coalesce   = mvneta_ethtool_set_coalesce,
4942        .get_coalesce   = mvneta_ethtool_get_coalesce,
4943        .get_drvinfo    = mvneta_ethtool_get_drvinfo,
4944        .get_ringparam  = mvneta_ethtool_get_ringparam,
4945        .set_ringparam  = mvneta_ethtool_set_ringparam,
4946        .get_pauseparam = mvneta_ethtool_get_pauseparam,
4947        .set_pauseparam = mvneta_ethtool_set_pauseparam,
4948        .get_strings    = mvneta_ethtool_get_strings,
4949        .get_ethtool_stats = mvneta_ethtool_get_stats,
4950        .get_sset_count = mvneta_ethtool_get_sset_count,
4951        .get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
4952        .get_rxnfc      = mvneta_ethtool_get_rxnfc,
4953        .get_rxfh       = mvneta_ethtool_get_rxfh,
4954        .set_rxfh       = mvneta_ethtool_set_rxfh,
4955        .get_link_ksettings = mvneta_ethtool_get_link_ksettings,
4956        .set_link_ksettings = mvneta_ethtool_set_link_ksettings,
4957        .get_wol        = mvneta_ethtool_get_wol,
4958        .set_wol        = mvneta_ethtool_set_wol,
4959        .get_eee        = mvneta_ethtool_get_eee,
4960        .set_eee        = mvneta_ethtool_set_eee,
4961};
4962
4963/* Initialize hw */
4964static int mvneta_init(struct device *dev, struct mvneta_port *pp)
4965{
4966        int queue;
4967
4968        /* Disable port */
4969        mvneta_port_disable(pp);
4970
4971        /* Set port default values */
4972        mvneta_defaults_set(pp);
4973
4974        pp->txqs = devm_kcalloc(dev, txq_number, sizeof(*pp->txqs), GFP_KERNEL);
4975        if (!pp->txqs)
4976                return -ENOMEM;
4977
4978        /* Initialize TX descriptor rings */
4979        for (queue = 0; queue < txq_number; queue++) {
4980                struct mvneta_tx_queue *txq = &pp->txqs[queue];
4981                txq->id = queue;
4982                txq->size = pp->tx_ring_size;
4983                txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
4984        }
4985
4986        pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(*pp->rxqs), GFP_KERNEL);
4987        if (!pp->rxqs)
4988                return -ENOMEM;
4989
4990        /* Create Rx descriptor rings */
4991        for (queue = 0; queue < rxq_number; queue++) {
4992                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
4993                rxq->id = queue;
4994                rxq->size = pp->rx_ring_size;
4995                rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
4996                rxq->time_coal = MVNETA_RX_COAL_USEC;
4997                rxq->buf_virt_addr
4998                        = devm_kmalloc_array(pp->dev->dev.parent,
4999                                             rxq->size,
5000                                             sizeof(*rxq->buf_virt_addr),
5001                                             GFP_KERNEL);
5002                if (!rxq->buf_virt_addr)
5003                        return -ENOMEM;
5004        }
5005
5006        return 0;
5007}
5008
5009/* platform glue : initialize decoding windows */
5010static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
5011                                     const struct mbus_dram_target_info *dram)
5012{
5013        u32 win_enable;
5014        u32 win_protect;
5015        int i;
5016
5017        for (i = 0; i < 6; i++) {
5018                mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
5019                mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
5020
5021                if (i < 4)
5022                        mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
5023        }
5024
5025        win_enable = 0x3f;
5026        win_protect = 0;
5027
5028        if (dram) {
5029                for (i = 0; i < dram->num_cs; i++) {
5030                        const struct mbus_dram_window *cs = dram->cs + i;
5031
5032                        mvreg_write(pp, MVNETA_WIN_BASE(i),
5033                                    (cs->base & 0xffff0000) |
5034                                    (cs->mbus_attr << 8) |
5035                                    dram->mbus_dram_target_id);
5036
5037                        mvreg_write(pp, MVNETA_WIN_SIZE(i),
5038                                    (cs->size - 1) & 0xffff0000);
5039
5040                        win_enable &= ~(1 << i);
5041                        win_protect |= 3 << (2 * i);
5042                }
5043        } else {
5044                /* For Armada3700 open default 4GB Mbus window, leaving
5045                 * arbitration of target/attribute to a different layer
5046                 * of configuration.
5047                 */
5048                mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
5049                win_enable &= ~BIT(0);
5050                win_protect = 3;
5051        }
5052
5053        mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
5054        mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
5055}
5056
5057/* Power up the port */
5058static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
5059{
5060        /* MAC Cause register should be cleared */
5061        mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
5062
5063        if (phy_mode != PHY_INTERFACE_MODE_QSGMII &&
5064            phy_mode != PHY_INTERFACE_MODE_SGMII &&
5065            !phy_interface_mode_is_8023z(phy_mode) &&
5066            !phy_interface_mode_is_rgmii(phy_mode))
5067                return -EINVAL;
5068
5069        return 0;
5070}
5071
5072/* Device initialization routine */
5073static int mvneta_probe(struct platform_device *pdev)
5074{
5075        struct device_node *dn = pdev->dev.of_node;
5076        struct device_node *bm_node;
5077        struct mvneta_port *pp;
5078        struct net_device *dev;
5079        struct phylink *phylink;
5080        struct phy *comphy;
5081        const char *dt_mac_addr;
5082        char hw_mac_addr[ETH_ALEN];
5083        phy_interface_t phy_mode;
5084        const char *mac_from;
5085        int tx_csum_limit;
5086        int err;
5087        int cpu;
5088
5089        dev = devm_alloc_etherdev_mqs(&pdev->dev, sizeof(struct mvneta_port),
5090                                      txq_number, rxq_number);
5091        if (!dev)
5092                return -ENOMEM;
5093
5094        dev->irq = irq_of_parse_and_map(dn, 0);
5095        if (dev->irq == 0)
5096                return -EINVAL;
5097
5098        err = of_get_phy_mode(dn, &phy_mode);
5099        if (err) {
5100                dev_err(&pdev->dev, "incorrect phy-mode\n");
5101                goto err_free_irq;
5102        }
5103
5104        comphy = devm_of_phy_get(&pdev->dev, dn, NULL);
5105        if (comphy == ERR_PTR(-EPROBE_DEFER)) {
5106                err = -EPROBE_DEFER;
5107                goto err_free_irq;
5108        } else if (IS_ERR(comphy)) {
5109                comphy = NULL;
5110        }
5111
5112        pp = netdev_priv(dev);
5113        spin_lock_init(&pp->lock);
5114
5115        pp->phylink_config.dev = &dev->dev;
5116        pp->phylink_config.type = PHYLINK_NETDEV;
5117
5118        phylink = phylink_create(&pp->phylink_config, pdev->dev.fwnode,
5119                                 phy_mode, &mvneta_phylink_ops);
5120        if (IS_ERR(phylink)) {
5121                err = PTR_ERR(phylink);
5122                goto err_free_irq;
5123        }
5124
5125        dev->tx_queue_len = MVNETA_MAX_TXD;
5126        dev->watchdog_timeo = 5 * HZ;
5127        dev->netdev_ops = &mvneta_netdev_ops;
5128
5129        dev->ethtool_ops = &mvneta_eth_tool_ops;
5130
5131        pp->phylink = phylink;
5132        pp->comphy = comphy;
5133        pp->phy_interface = phy_mode;
5134        pp->dn = dn;
5135
5136        pp->rxq_def = rxq_def;
5137        pp->indir[0] = rxq_def;
5138
5139        /* Get special SoC configurations */
5140        if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
5141                pp->neta_armada3700 = true;
5142
5143        pp->clk = devm_clk_get(&pdev->dev, "core");
5144        if (IS_ERR(pp->clk))
5145                pp->clk = devm_clk_get(&pdev->dev, NULL);
5146        if (IS_ERR(pp->clk)) {
5147                err = PTR_ERR(pp->clk);
5148                goto err_free_phylink;
5149        }
5150
5151        clk_prepare_enable(pp->clk);
5152
5153        pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
5154        if (!IS_ERR(pp->clk_bus))
5155                clk_prepare_enable(pp->clk_bus);
5156
5157        pp->base = devm_platform_ioremap_resource(pdev, 0);
5158        if (IS_ERR(pp->base)) {
5159                err = PTR_ERR(pp->base);
5160                goto err_clk;
5161        }
5162
5163        /* Alloc per-cpu port structure */
5164        pp->ports = alloc_percpu(struct mvneta_pcpu_port);
5165        if (!pp->ports) {
5166                err = -ENOMEM;
5167                goto err_clk;
5168        }
5169
5170        /* Alloc per-cpu stats */
5171        pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
5172        if (!pp->stats) {
5173                err = -ENOMEM;
5174                goto err_free_ports;
5175        }
5176
5177        dt_mac_addr = of_get_mac_address(dn);
5178        if (!IS_ERR(dt_mac_addr)) {
5179                mac_from = "device tree";
5180                ether_addr_copy(dev->dev_addr, dt_mac_addr);
5181        } else {
5182                mvneta_get_mac_addr(pp, hw_mac_addr);
5183                if (is_valid_ether_addr(hw_mac_addr)) {
5184                        mac_from = "hardware";
5185                        memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
5186                } else {
5187                        mac_from = "random";
5188                        eth_hw_addr_random(dev);
5189                }
5190        }
5191
5192        if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
5193                if (tx_csum_limit < 0 ||
5194                    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
5195                        tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5196                        dev_info(&pdev->dev,
5197                                 "Wrong TX csum limit in DT, set to %dB\n",
5198                                 MVNETA_TX_CSUM_DEF_SIZE);
5199                }
5200        } else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
5201                tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
5202        } else {
5203                tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
5204        }
5205
5206        pp->tx_csum_limit = tx_csum_limit;
5207
5208        pp->dram_target_info = mv_mbus_dram_info();
5209        /* Armada3700 requires setting default configuration of Mbus
5210         * windows, however without using filled mbus_dram_target_info
5211         * structure.
5212         */
5213        if (pp->dram_target_info || pp->neta_armada3700)
5214                mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5215
5216        pp->tx_ring_size = MVNETA_MAX_TXD;
5217        pp->rx_ring_size = MVNETA_MAX_RXD;
5218
5219        pp->dev = dev;
5220        SET_NETDEV_DEV(dev, &pdev->dev);
5221
5222        pp->id = global_port_id++;
5223
5224        /* Obtain access to BM resources if enabled and already initialized */
5225        bm_node = of_parse_phandle(dn, "buffer-manager", 0);
5226        if (bm_node) {
5227                pp->bm_priv = mvneta_bm_get(bm_node);
5228                if (pp->bm_priv) {
5229                        err = mvneta_bm_port_init(pdev, pp);
5230                        if (err < 0) {
5231                                dev_info(&pdev->dev,
5232                                         "use SW buffer management\n");
5233                                mvneta_bm_put(pp->bm_priv);
5234                                pp->bm_priv = NULL;
5235                        }
5236                }
5237                /* Set RX packet offset correction for platforms, whose
5238                 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
5239                 * platforms and 0B for 32-bit ones.
5240                 */
5241                pp->rx_offset_correction = max(0,
5242                                               NET_SKB_PAD -
5243                                               MVNETA_RX_PKT_OFFSET_CORRECTION);
5244        }
5245        of_node_put(bm_node);
5246
5247        /* sw buffer management */
5248        if (!pp->bm_priv)
5249                pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5250
5251        err = mvneta_init(&pdev->dev, pp);
5252        if (err < 0)
5253                goto err_netdev;
5254
5255        err = mvneta_port_power_up(pp, pp->phy_interface);
5256        if (err < 0) {
5257                dev_err(&pdev->dev, "can't power up port\n");
5258                goto err_netdev;
5259        }
5260
5261        /* Armada3700 network controller does not support per-cpu
5262         * operation, so only single NAPI should be initialized.
5263         */
5264        if (pp->neta_armada3700) {
5265                netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
5266        } else {
5267                for_each_present_cpu(cpu) {
5268                        struct mvneta_pcpu_port *port =
5269                                per_cpu_ptr(pp->ports, cpu);
5270
5271                        netif_napi_add(dev, &port->napi, mvneta_poll,
5272                                       NAPI_POLL_WEIGHT);
5273                        port->pp = pp;
5274                }
5275        }
5276
5277        dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5278                        NETIF_F_TSO | NETIF_F_RXCSUM;
5279        dev->hw_features |= dev->features;
5280        dev->vlan_features |= dev->features;
5281        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
5282        dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
5283
5284        /* MTU range: 68 - 9676 */
5285        dev->min_mtu = ETH_MIN_MTU;
5286        /* 9676 == 9700 - 20 and rounding to 8 */
5287        dev->max_mtu = 9676;
5288
5289        err = register_netdev(dev);
5290        if (err < 0) {
5291                dev_err(&pdev->dev, "failed to register\n");
5292                goto err_netdev;
5293        }
5294
5295        netdev_info(dev, "Using %s mac address %pM\n", mac_from,
5296                    dev->dev_addr);
5297
5298        platform_set_drvdata(pdev, pp->dev);
5299
5300        return 0;
5301
5302err_netdev:
5303        if (pp->bm_priv) {
5304                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5305                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5306                                       1 << pp->id);
5307                mvneta_bm_put(pp->bm_priv);
5308        }
5309        free_percpu(pp->stats);
5310err_free_ports:
5311        free_percpu(pp->ports);
5312err_clk:
5313        clk_disable_unprepare(pp->clk_bus);
5314        clk_disable_unprepare(pp->clk);
5315err_free_phylink:
5316        if (pp->phylink)
5317                phylink_destroy(pp->phylink);
5318err_free_irq:
5319        irq_dispose_mapping(dev->irq);
5320        return err;
5321}
5322
5323/* Device removal routine */
5324static int mvneta_remove(struct platform_device *pdev)
5325{
5326        struct net_device  *dev = platform_get_drvdata(pdev);
5327        struct mvneta_port *pp = netdev_priv(dev);
5328
5329        unregister_netdev(dev);
5330        clk_disable_unprepare(pp->clk_bus);
5331        clk_disable_unprepare(pp->clk);
5332        free_percpu(pp->ports);
5333        free_percpu(pp->stats);
5334        irq_dispose_mapping(dev->irq);
5335        phylink_destroy(pp->phylink);
5336
5337        if (pp->bm_priv) {
5338                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
5339                mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
5340                                       1 << pp->id);
5341                mvneta_bm_put(pp->bm_priv);
5342        }
5343
5344        return 0;
5345}
5346
5347#ifdef CONFIG_PM_SLEEP
5348static int mvneta_suspend(struct device *device)
5349{
5350        int queue;
5351        struct net_device *dev = dev_get_drvdata(device);
5352        struct mvneta_port *pp = netdev_priv(dev);
5353
5354        if (!netif_running(dev))
5355                goto clean_exit;
5356
5357        if (!pp->neta_armada3700) {
5358                spin_lock(&pp->lock);
5359                pp->is_stopped = true;
5360                spin_unlock(&pp->lock);
5361
5362                cpuhp_state_remove_instance_nocalls(online_hpstate,
5363                                                    &pp->node_online);
5364                cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5365                                                    &pp->node_dead);
5366        }
5367
5368        rtnl_lock();
5369        mvneta_stop_dev(pp);
5370        rtnl_unlock();
5371
5372        for (queue = 0; queue < rxq_number; queue++) {
5373                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5374
5375                mvneta_rxq_drop_pkts(pp, rxq);
5376        }
5377
5378        for (queue = 0; queue < txq_number; queue++) {
5379                struct mvneta_tx_queue *txq = &pp->txqs[queue];
5380
5381                mvneta_txq_hw_deinit(pp, txq);
5382        }
5383
5384clean_exit:
5385        netif_device_detach(dev);
5386        clk_disable_unprepare(pp->clk_bus);
5387        clk_disable_unprepare(pp->clk);
5388
5389        return 0;
5390}
5391
5392static int mvneta_resume(struct device *device)
5393{
5394        struct platform_device *pdev = to_platform_device(device);
5395        struct net_device *dev = dev_get_drvdata(device);
5396        struct mvneta_port *pp = netdev_priv(dev);
5397        int err, queue;
5398
5399        clk_prepare_enable(pp->clk);
5400        if (!IS_ERR(pp->clk_bus))
5401                clk_prepare_enable(pp->clk_bus);
5402        if (pp->dram_target_info || pp->neta_armada3700)
5403                mvneta_conf_mbus_windows(pp, pp->dram_target_info);
5404        if (pp->bm_priv) {
5405                err = mvneta_bm_port_init(pdev, pp);
5406                if (err < 0) {
5407                        dev_info(&pdev->dev, "use SW buffer management\n");
5408                        pp->rx_offset_correction = MVNETA_SKB_HEADROOM;
5409                        pp->bm_priv = NULL;
5410                }
5411        }
5412        mvneta_defaults_set(pp);
5413        err = mvneta_port_power_up(pp, pp->phy_interface);
5414        if (err < 0) {
5415                dev_err(device, "can't power up port\n");
5416                return err;
5417        }
5418
5419        netif_device_attach(dev);
5420
5421        if (!netif_running(dev))
5422                return 0;
5423
5424        for (queue = 0; queue < rxq_number; queue++) {
5425                struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
5426
5427                rxq->next_desc_to_proc = 0;
5428                mvneta_rxq_hw_init(pp, rxq);
5429        }
5430
5431        for (queue = 0; queue < txq_number; queue++) {
5432                struct mvneta_tx_queue *txq = &pp->txqs[queue];
5433
5434                txq->next_desc_to_proc = 0;
5435                mvneta_txq_hw_init(pp, txq);
5436        }
5437
5438        if (!pp->neta_armada3700) {
5439                spin_lock(&pp->lock);
5440                pp->is_stopped = false;
5441                spin_unlock(&pp->lock);
5442                cpuhp_state_add_instance_nocalls(online_hpstate,
5443                                                 &pp->node_online);
5444                cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
5445                                                 &pp->node_dead);
5446        }
5447
5448        rtnl_lock();
5449        mvneta_start_dev(pp);
5450        rtnl_unlock();
5451        mvneta_set_rx_mode(dev);
5452
5453        return 0;
5454}
5455#endif
5456
5457static SIMPLE_DEV_PM_OPS(mvneta_pm_ops, mvneta_suspend, mvneta_resume);
5458
5459static const struct of_device_id mvneta_match[] = {
5460        { .compatible = "marvell,armada-370-neta" },
5461        { .compatible = "marvell,armada-xp-neta" },
5462        { .compatible = "marvell,armada-3700-neta" },
5463        { }
5464};
5465MODULE_DEVICE_TABLE(of, mvneta_match);
5466
5467static struct platform_driver mvneta_driver = {
5468        .probe = mvneta_probe,
5469        .remove = mvneta_remove,
5470        .driver = {
5471                .name = MVNETA_DRIVER_NAME,
5472                .of_match_table = mvneta_match,
5473                .pm = &mvneta_pm_ops,
5474        },
5475};
5476
5477static int __init mvneta_driver_init(void)
5478{
5479        int ret;
5480
5481        ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvneta:online",
5482                                      mvneta_cpu_online,
5483                                      mvneta_cpu_down_prepare);
5484        if (ret < 0)
5485                goto out;
5486        online_hpstate = ret;
5487        ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
5488                                      NULL, mvneta_cpu_dead);
5489        if (ret)
5490                goto err_dead;
5491
5492        ret = platform_driver_register(&mvneta_driver);
5493        if (ret)
5494                goto err;
5495        return 0;
5496
5497err:
5498        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5499err_dead:
5500        cpuhp_remove_multi_state(online_hpstate);
5501out:
5502        return ret;
5503}
5504module_init(mvneta_driver_init);
5505
5506static void __exit mvneta_driver_exit(void)
5507{
5508        platform_driver_unregister(&mvneta_driver);
5509        cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
5510        cpuhp_remove_multi_state(online_hpstate);
5511}
5512module_exit(mvneta_driver_exit);
5513
5514MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
5515MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
5516MODULE_LICENSE("GPL");
5517
5518module_param(rxq_number, int, 0444);
5519module_param(txq_number, int, 0444);
5520
5521module_param(rxq_def, int, 0444);
5522module_param(rx_copybreak, int, 0644);
5523