linux/drivers/nvdimm/pmem.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Persistent Memory Driver
   4 *
   5 * Copyright (c) 2014-2015, Intel Corporation.
   6 * Copyright (c) 2015, Christoph Hellwig <hch@lst.de>.
   7 * Copyright (c) 2015, Boaz Harrosh <boaz@plexistor.com>.
   8 */
   9
  10#include <linux/blkdev.h>
  11#include <linux/hdreg.h>
  12#include <linux/init.h>
  13#include <linux/platform_device.h>
  14#include <linux/set_memory.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/badblocks.h>
  18#include <linux/memremap.h>
  19#include <linux/vmalloc.h>
  20#include <linux/blk-mq.h>
  21#include <linux/pfn_t.h>
  22#include <linux/slab.h>
  23#include <linux/uio.h>
  24#include <linux/dax.h>
  25#include <linux/nd.h>
  26#include <linux/mm.h>
  27#include <asm/cacheflush.h>
  28#include "pmem.h"
  29#include "pfn.h"
  30#include "nd.h"
  31
  32static struct device *to_dev(struct pmem_device *pmem)
  33{
  34        /*
  35         * nvdimm bus services need a 'dev' parameter, and we record the device
  36         * at init in bb.dev.
  37         */
  38        return pmem->bb.dev;
  39}
  40
  41static struct nd_region *to_region(struct pmem_device *pmem)
  42{
  43        return to_nd_region(to_dev(pmem)->parent);
  44}
  45
  46static void hwpoison_clear(struct pmem_device *pmem,
  47                phys_addr_t phys, unsigned int len)
  48{
  49        unsigned long pfn_start, pfn_end, pfn;
  50
  51        /* only pmem in the linear map supports HWPoison */
  52        if (is_vmalloc_addr(pmem->virt_addr))
  53                return;
  54
  55        pfn_start = PHYS_PFN(phys);
  56        pfn_end = pfn_start + PHYS_PFN(len);
  57        for (pfn = pfn_start; pfn < pfn_end; pfn++) {
  58                struct page *page = pfn_to_page(pfn);
  59
  60                /*
  61                 * Note, no need to hold a get_dev_pagemap() reference
  62                 * here since we're in the driver I/O path and
  63                 * outstanding I/O requests pin the dev_pagemap.
  64                 */
  65                if (test_and_clear_pmem_poison(page))
  66                        clear_mce_nospec(pfn);
  67        }
  68}
  69
  70static blk_status_t pmem_clear_poison(struct pmem_device *pmem,
  71                phys_addr_t offset, unsigned int len)
  72{
  73        struct device *dev = to_dev(pmem);
  74        sector_t sector;
  75        long cleared;
  76        blk_status_t rc = BLK_STS_OK;
  77
  78        sector = (offset - pmem->data_offset) / 512;
  79
  80        cleared = nvdimm_clear_poison(dev, pmem->phys_addr + offset, len);
  81        if (cleared < len)
  82                rc = BLK_STS_IOERR;
  83        if (cleared > 0 && cleared / 512) {
  84                hwpoison_clear(pmem, pmem->phys_addr + offset, cleared);
  85                cleared /= 512;
  86                dev_dbg(dev, "%#llx clear %ld sector%s\n",
  87                                (unsigned long long) sector, cleared,
  88                                cleared > 1 ? "s" : "");
  89                badblocks_clear(&pmem->bb, sector, cleared);
  90                if (pmem->bb_state)
  91                        sysfs_notify_dirent(pmem->bb_state);
  92        }
  93
  94        arch_invalidate_pmem(pmem->virt_addr + offset, len);
  95
  96        return rc;
  97}
  98
  99static void write_pmem(void *pmem_addr, struct page *page,
 100                unsigned int off, unsigned int len)
 101{
 102        unsigned int chunk;
 103        void *mem;
 104
 105        while (len) {
 106                mem = kmap_atomic(page);
 107                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 108                memcpy_flushcache(pmem_addr, mem + off, chunk);
 109                kunmap_atomic(mem);
 110                len -= chunk;
 111                off = 0;
 112                page++;
 113                pmem_addr += chunk;
 114        }
 115}
 116
 117static blk_status_t read_pmem(struct page *page, unsigned int off,
 118                void *pmem_addr, unsigned int len)
 119{
 120        unsigned int chunk;
 121        unsigned long rem;
 122        void *mem;
 123
 124        while (len) {
 125                mem = kmap_atomic(page);
 126                chunk = min_t(unsigned int, len, PAGE_SIZE - off);
 127                rem = copy_mc_to_kernel(mem + off, pmem_addr, chunk);
 128                kunmap_atomic(mem);
 129                if (rem)
 130                        return BLK_STS_IOERR;
 131                len -= chunk;
 132                off = 0;
 133                page++;
 134                pmem_addr += chunk;
 135        }
 136        return BLK_STS_OK;
 137}
 138
 139static blk_status_t pmem_do_read(struct pmem_device *pmem,
 140                        struct page *page, unsigned int page_off,
 141                        sector_t sector, unsigned int len)
 142{
 143        blk_status_t rc;
 144        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 145        void *pmem_addr = pmem->virt_addr + pmem_off;
 146
 147        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 148                return BLK_STS_IOERR;
 149
 150        rc = read_pmem(page, page_off, pmem_addr, len);
 151        flush_dcache_page(page);
 152        return rc;
 153}
 154
 155static blk_status_t pmem_do_write(struct pmem_device *pmem,
 156                        struct page *page, unsigned int page_off,
 157                        sector_t sector, unsigned int len)
 158{
 159        blk_status_t rc = BLK_STS_OK;
 160        bool bad_pmem = false;
 161        phys_addr_t pmem_off = sector * 512 + pmem->data_offset;
 162        void *pmem_addr = pmem->virt_addr + pmem_off;
 163
 164        if (unlikely(is_bad_pmem(&pmem->bb, sector, len)))
 165                bad_pmem = true;
 166
 167        /*
 168         * Note that we write the data both before and after
 169         * clearing poison.  The write before clear poison
 170         * handles situations where the latest written data is
 171         * preserved and the clear poison operation simply marks
 172         * the address range as valid without changing the data.
 173         * In this case application software can assume that an
 174         * interrupted write will either return the new good
 175         * data or an error.
 176         *
 177         * However, if pmem_clear_poison() leaves the data in an
 178         * indeterminate state we need to perform the write
 179         * after clear poison.
 180         */
 181        flush_dcache_page(page);
 182        write_pmem(pmem_addr, page, page_off, len);
 183        if (unlikely(bad_pmem)) {
 184                rc = pmem_clear_poison(pmem, pmem_off, len);
 185                write_pmem(pmem_addr, page, page_off, len);
 186        }
 187
 188        return rc;
 189}
 190
 191static blk_qc_t pmem_submit_bio(struct bio *bio)
 192{
 193        int ret = 0;
 194        blk_status_t rc = 0;
 195        bool do_acct;
 196        unsigned long start;
 197        struct bio_vec bvec;
 198        struct bvec_iter iter;
 199        struct pmem_device *pmem = bio->bi_disk->private_data;
 200        struct nd_region *nd_region = to_region(pmem);
 201
 202        if (bio->bi_opf & REQ_PREFLUSH)
 203                ret = nvdimm_flush(nd_region, bio);
 204
 205        do_acct = blk_queue_io_stat(bio->bi_disk->queue);
 206        if (do_acct)
 207                start = bio_start_io_acct(bio);
 208        bio_for_each_segment(bvec, bio, iter) {
 209                if (op_is_write(bio_op(bio)))
 210                        rc = pmem_do_write(pmem, bvec.bv_page, bvec.bv_offset,
 211                                iter.bi_sector, bvec.bv_len);
 212                else
 213                        rc = pmem_do_read(pmem, bvec.bv_page, bvec.bv_offset,
 214                                iter.bi_sector, bvec.bv_len);
 215                if (rc) {
 216                        bio->bi_status = rc;
 217                        break;
 218                }
 219        }
 220        if (do_acct)
 221                bio_end_io_acct(bio, start);
 222
 223        if (bio->bi_opf & REQ_FUA)
 224                ret = nvdimm_flush(nd_region, bio);
 225
 226        if (ret)
 227                bio->bi_status = errno_to_blk_status(ret);
 228
 229        bio_endio(bio);
 230        return BLK_QC_T_NONE;
 231}
 232
 233static int pmem_rw_page(struct block_device *bdev, sector_t sector,
 234                       struct page *page, unsigned int op)
 235{
 236        struct pmem_device *pmem = bdev->bd_disk->private_data;
 237        blk_status_t rc;
 238
 239        if (op_is_write(op))
 240                rc = pmem_do_write(pmem, page, 0, sector, thp_size(page));
 241        else
 242                rc = pmem_do_read(pmem, page, 0, sector, thp_size(page));
 243        /*
 244         * The ->rw_page interface is subtle and tricky.  The core
 245         * retries on any error, so we can only invoke page_endio() in
 246         * the successful completion case.  Otherwise, we'll see crashes
 247         * caused by double completion.
 248         */
 249        if (rc == 0)
 250                page_endio(page, op_is_write(op), 0);
 251
 252        return blk_status_to_errno(rc);
 253}
 254
 255/* see "strong" declaration in tools/testing/nvdimm/pmem-dax.c */
 256__weak long __pmem_direct_access(struct pmem_device *pmem, pgoff_t pgoff,
 257                long nr_pages, void **kaddr, pfn_t *pfn)
 258{
 259        resource_size_t offset = PFN_PHYS(pgoff) + pmem->data_offset;
 260
 261        if (unlikely(is_bad_pmem(&pmem->bb, PFN_PHYS(pgoff) / 512,
 262                                        PFN_PHYS(nr_pages))))
 263                return -EIO;
 264
 265        if (kaddr)
 266                *kaddr = pmem->virt_addr + offset;
 267        if (pfn)
 268                *pfn = phys_to_pfn_t(pmem->phys_addr + offset, pmem->pfn_flags);
 269
 270        /*
 271         * If badblocks are present, limit known good range to the
 272         * requested range.
 273         */
 274        if (unlikely(pmem->bb.count))
 275                return nr_pages;
 276        return PHYS_PFN(pmem->size - pmem->pfn_pad - offset);
 277}
 278
 279static const struct block_device_operations pmem_fops = {
 280        .owner =                THIS_MODULE,
 281        .submit_bio =           pmem_submit_bio,
 282        .rw_page =              pmem_rw_page,
 283};
 284
 285static int pmem_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
 286                                    size_t nr_pages)
 287{
 288        struct pmem_device *pmem = dax_get_private(dax_dev);
 289
 290        return blk_status_to_errno(pmem_do_write(pmem, ZERO_PAGE(0), 0,
 291                                   PFN_PHYS(pgoff) >> SECTOR_SHIFT,
 292                                   PAGE_SIZE));
 293}
 294
 295static long pmem_dax_direct_access(struct dax_device *dax_dev,
 296                pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn)
 297{
 298        struct pmem_device *pmem = dax_get_private(dax_dev);
 299
 300        return __pmem_direct_access(pmem, pgoff, nr_pages, kaddr, pfn);
 301}
 302
 303/*
 304 * Use the 'no check' versions of copy_from_iter_flushcache() and
 305 * copy_mc_to_iter() to bypass HARDENED_USERCOPY overhead. Bounds
 306 * checking, both file offset and device offset, is handled by
 307 * dax_iomap_actor()
 308 */
 309static size_t pmem_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 310                void *addr, size_t bytes, struct iov_iter *i)
 311{
 312        return _copy_from_iter_flushcache(addr, bytes, i);
 313}
 314
 315static size_t pmem_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
 316                void *addr, size_t bytes, struct iov_iter *i)
 317{
 318        return _copy_mc_to_iter(addr, bytes, i);
 319}
 320
 321static const struct dax_operations pmem_dax_ops = {
 322        .direct_access = pmem_dax_direct_access,
 323        .dax_supported = generic_fsdax_supported,
 324        .copy_from_iter = pmem_copy_from_iter,
 325        .copy_to_iter = pmem_copy_to_iter,
 326        .zero_page_range = pmem_dax_zero_page_range,
 327};
 328
 329static const struct attribute_group *pmem_attribute_groups[] = {
 330        &dax_attribute_group,
 331        NULL,
 332};
 333
 334static void pmem_pagemap_cleanup(struct dev_pagemap *pgmap)
 335{
 336        struct request_queue *q =
 337                container_of(pgmap->ref, struct request_queue, q_usage_counter);
 338
 339        blk_cleanup_queue(q);
 340}
 341
 342static void pmem_release_queue(void *pgmap)
 343{
 344        pmem_pagemap_cleanup(pgmap);
 345}
 346
 347static void pmem_pagemap_kill(struct dev_pagemap *pgmap)
 348{
 349        struct request_queue *q =
 350                container_of(pgmap->ref, struct request_queue, q_usage_counter);
 351
 352        blk_freeze_queue_start(q);
 353}
 354
 355static void pmem_release_disk(void *__pmem)
 356{
 357        struct pmem_device *pmem = __pmem;
 358
 359        kill_dax(pmem->dax_dev);
 360        put_dax(pmem->dax_dev);
 361        del_gendisk(pmem->disk);
 362        put_disk(pmem->disk);
 363}
 364
 365static const struct dev_pagemap_ops fsdax_pagemap_ops = {
 366        .kill                   = pmem_pagemap_kill,
 367        .cleanup                = pmem_pagemap_cleanup,
 368};
 369
 370static int pmem_attach_disk(struct device *dev,
 371                struct nd_namespace_common *ndns)
 372{
 373        struct nd_namespace_io *nsio = to_nd_namespace_io(&ndns->dev);
 374        struct nd_region *nd_region = to_nd_region(dev->parent);
 375        int nid = dev_to_node(dev), fua;
 376        struct resource *res = &nsio->res;
 377        struct range bb_range;
 378        struct nd_pfn *nd_pfn = NULL;
 379        struct dax_device *dax_dev;
 380        struct nd_pfn_sb *pfn_sb;
 381        struct pmem_device *pmem;
 382        struct request_queue *q;
 383        struct device *gendev;
 384        struct gendisk *disk;
 385        void *addr;
 386        int rc;
 387        unsigned long flags = 0UL;
 388
 389        pmem = devm_kzalloc(dev, sizeof(*pmem), GFP_KERNEL);
 390        if (!pmem)
 391                return -ENOMEM;
 392
 393        rc = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
 394        if (rc)
 395                return rc;
 396
 397        /* while nsio_rw_bytes is active, parse a pfn info block if present */
 398        if (is_nd_pfn(dev)) {
 399                nd_pfn = to_nd_pfn(dev);
 400                rc = nvdimm_setup_pfn(nd_pfn, &pmem->pgmap);
 401                if (rc)
 402                        return rc;
 403        }
 404
 405        /* we're attaching a block device, disable raw namespace access */
 406        devm_namespace_disable(dev, ndns);
 407
 408        dev_set_drvdata(dev, pmem);
 409        pmem->phys_addr = res->start;
 410        pmem->size = resource_size(res);
 411        fua = nvdimm_has_flush(nd_region);
 412        if (!IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) || fua < 0) {
 413                dev_warn(dev, "unable to guarantee persistence of writes\n");
 414                fua = 0;
 415        }
 416
 417        if (!devm_request_mem_region(dev, res->start, resource_size(res),
 418                                dev_name(&ndns->dev))) {
 419                dev_warn(dev, "could not reserve region %pR\n", res);
 420                return -EBUSY;
 421        }
 422
 423        q = blk_alloc_queue(dev_to_node(dev));
 424        if (!q)
 425                return -ENOMEM;
 426
 427        pmem->pfn_flags = PFN_DEV;
 428        pmem->pgmap.ref = &q->q_usage_counter;
 429        if (is_nd_pfn(dev)) {
 430                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 431                pmem->pgmap.ops = &fsdax_pagemap_ops;
 432                addr = devm_memremap_pages(dev, &pmem->pgmap);
 433                pfn_sb = nd_pfn->pfn_sb;
 434                pmem->data_offset = le64_to_cpu(pfn_sb->dataoff);
 435                pmem->pfn_pad = resource_size(res) -
 436                        range_len(&pmem->pgmap.range);
 437                pmem->pfn_flags |= PFN_MAP;
 438                bb_range = pmem->pgmap.range;
 439                bb_range.start += pmem->data_offset;
 440        } else if (pmem_should_map_pages(dev)) {
 441                pmem->pgmap.range.start = res->start;
 442                pmem->pgmap.range.end = res->end;
 443                pmem->pgmap.nr_range = 1;
 444                pmem->pgmap.type = MEMORY_DEVICE_FS_DAX;
 445                pmem->pgmap.ops = &fsdax_pagemap_ops;
 446                addr = devm_memremap_pages(dev, &pmem->pgmap);
 447                pmem->pfn_flags |= PFN_MAP;
 448                bb_range = pmem->pgmap.range;
 449        } else {
 450                if (devm_add_action_or_reset(dev, pmem_release_queue,
 451                                        &pmem->pgmap))
 452                        return -ENOMEM;
 453                addr = devm_memremap(dev, pmem->phys_addr,
 454                                pmem->size, ARCH_MEMREMAP_PMEM);
 455                bb_range.start =  res->start;
 456                bb_range.end = res->end;
 457        }
 458
 459        if (IS_ERR(addr))
 460                return PTR_ERR(addr);
 461        pmem->virt_addr = addr;
 462
 463        blk_queue_write_cache(q, true, fua);
 464        blk_queue_physical_block_size(q, PAGE_SIZE);
 465        blk_queue_logical_block_size(q, pmem_sector_size(ndns));
 466        blk_queue_max_hw_sectors(q, UINT_MAX);
 467        blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
 468        if (pmem->pfn_flags & PFN_MAP)
 469                blk_queue_flag_set(QUEUE_FLAG_DAX, q);
 470
 471        disk = alloc_disk_node(0, nid);
 472        if (!disk)
 473                return -ENOMEM;
 474        pmem->disk = disk;
 475
 476        disk->fops              = &pmem_fops;
 477        disk->queue             = q;
 478        disk->flags             = GENHD_FL_EXT_DEVT;
 479        disk->private_data      = pmem;
 480        nvdimm_namespace_disk_name(ndns, disk->disk_name);
 481        set_capacity(disk, (pmem->size - pmem->pfn_pad - pmem->data_offset)
 482                        / 512);
 483        if (devm_init_badblocks(dev, &pmem->bb))
 484                return -ENOMEM;
 485        nvdimm_badblocks_populate(nd_region, &pmem->bb, &bb_range);
 486        disk->bb = &pmem->bb;
 487
 488        if (is_nvdimm_sync(nd_region))
 489                flags = DAXDEV_F_SYNC;
 490        dax_dev = alloc_dax(pmem, disk->disk_name, &pmem_dax_ops, flags);
 491        if (IS_ERR(dax_dev)) {
 492                put_disk(disk);
 493                return PTR_ERR(dax_dev);
 494        }
 495        dax_write_cache(dax_dev, nvdimm_has_cache(nd_region));
 496        pmem->dax_dev = dax_dev;
 497        gendev = disk_to_dev(disk);
 498        gendev->groups = pmem_attribute_groups;
 499
 500        device_add_disk(dev, disk, NULL);
 501        if (devm_add_action_or_reset(dev, pmem_release_disk, pmem))
 502                return -ENOMEM;
 503
 504        nvdimm_check_and_set_ro(disk);
 505
 506        pmem->bb_state = sysfs_get_dirent(disk_to_dev(disk)->kobj.sd,
 507                                          "badblocks");
 508        if (!pmem->bb_state)
 509                dev_warn(dev, "'badblocks' notification disabled\n");
 510
 511        return 0;
 512}
 513
 514static int nd_pmem_probe(struct device *dev)
 515{
 516        int ret;
 517        struct nd_namespace_common *ndns;
 518
 519        ndns = nvdimm_namespace_common_probe(dev);
 520        if (IS_ERR(ndns))
 521                return PTR_ERR(ndns);
 522
 523        if (is_nd_btt(dev))
 524                return nvdimm_namespace_attach_btt(ndns);
 525
 526        if (is_nd_pfn(dev))
 527                return pmem_attach_disk(dev, ndns);
 528
 529        ret = devm_namespace_enable(dev, ndns, nd_info_block_reserve());
 530        if (ret)
 531                return ret;
 532
 533        ret = nd_btt_probe(dev, ndns);
 534        if (ret == 0)
 535                return -ENXIO;
 536
 537        /*
 538         * We have two failure conditions here, there is no
 539         * info reserver block or we found a valid info reserve block
 540         * but failed to initialize the pfn superblock.
 541         *
 542         * For the first case consider namespace as a raw pmem namespace
 543         * and attach a disk.
 544         *
 545         * For the latter, consider this a success and advance the namespace
 546         * seed.
 547         */
 548        ret = nd_pfn_probe(dev, ndns);
 549        if (ret == 0)
 550                return -ENXIO;
 551        else if (ret == -EOPNOTSUPP)
 552                return ret;
 553
 554        ret = nd_dax_probe(dev, ndns);
 555        if (ret == 0)
 556                return -ENXIO;
 557        else if (ret == -EOPNOTSUPP)
 558                return ret;
 559
 560        /* probe complete, attach handles namespace enabling */
 561        devm_namespace_disable(dev, ndns);
 562
 563        return pmem_attach_disk(dev, ndns);
 564}
 565
 566static int nd_pmem_remove(struct device *dev)
 567{
 568        struct pmem_device *pmem = dev_get_drvdata(dev);
 569
 570        if (is_nd_btt(dev))
 571                nvdimm_namespace_detach_btt(to_nd_btt(dev));
 572        else {
 573                /*
 574                 * Note, this assumes nd_device_lock() context to not
 575                 * race nd_pmem_notify()
 576                 */
 577                sysfs_put(pmem->bb_state);
 578                pmem->bb_state = NULL;
 579        }
 580        nvdimm_flush(to_nd_region(dev->parent), NULL);
 581
 582        return 0;
 583}
 584
 585static void nd_pmem_shutdown(struct device *dev)
 586{
 587        nvdimm_flush(to_nd_region(dev->parent), NULL);
 588}
 589
 590static void nd_pmem_notify(struct device *dev, enum nvdimm_event event)
 591{
 592        struct nd_region *nd_region;
 593        resource_size_t offset = 0, end_trunc = 0;
 594        struct nd_namespace_common *ndns;
 595        struct nd_namespace_io *nsio;
 596        struct badblocks *bb;
 597        struct range range;
 598        struct kernfs_node *bb_state;
 599
 600        if (event != NVDIMM_REVALIDATE_POISON)
 601                return;
 602
 603        if (is_nd_btt(dev)) {
 604                struct nd_btt *nd_btt = to_nd_btt(dev);
 605
 606                ndns = nd_btt->ndns;
 607                nd_region = to_nd_region(ndns->dev.parent);
 608                nsio = to_nd_namespace_io(&ndns->dev);
 609                bb = &nsio->bb;
 610                bb_state = NULL;
 611        } else {
 612                struct pmem_device *pmem = dev_get_drvdata(dev);
 613
 614                nd_region = to_region(pmem);
 615                bb = &pmem->bb;
 616                bb_state = pmem->bb_state;
 617
 618                if (is_nd_pfn(dev)) {
 619                        struct nd_pfn *nd_pfn = to_nd_pfn(dev);
 620                        struct nd_pfn_sb *pfn_sb = nd_pfn->pfn_sb;
 621
 622                        ndns = nd_pfn->ndns;
 623                        offset = pmem->data_offset +
 624                                        __le32_to_cpu(pfn_sb->start_pad);
 625                        end_trunc = __le32_to_cpu(pfn_sb->end_trunc);
 626                } else {
 627                        ndns = to_ndns(dev);
 628                }
 629
 630                nsio = to_nd_namespace_io(&ndns->dev);
 631        }
 632
 633        range.start = nsio->res.start + offset;
 634        range.end = nsio->res.end - end_trunc;
 635        nvdimm_badblocks_populate(nd_region, bb, &range);
 636        if (bb_state)
 637                sysfs_notify_dirent(bb_state);
 638}
 639
 640MODULE_ALIAS("pmem");
 641MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_IO);
 642MODULE_ALIAS_ND_DEVICE(ND_DEVICE_NAMESPACE_PMEM);
 643static struct nd_device_driver nd_pmem_driver = {
 644        .probe = nd_pmem_probe,
 645        .remove = nd_pmem_remove,
 646        .notify = nd_pmem_notify,
 647        .shutdown = nd_pmem_shutdown,
 648        .drv = {
 649                .name = "nd_pmem",
 650        },
 651        .type = ND_DRIVER_NAMESPACE_IO | ND_DRIVER_NAMESPACE_PMEM,
 652};
 653
 654module_nd_driver(nd_pmem_driver);
 655
 656MODULE_AUTHOR("Ross Zwisler <ross.zwisler@linux.intel.com>");
 657MODULE_LICENSE("GPL v2");
 658