linux/drivers/pci/controller/pci-hyperv.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) Microsoft Corporation.
   4 *
   5 * Author:
   6 *   Jake Oshins <jakeo@microsoft.com>
   7 *
   8 * This driver acts as a paravirtual front-end for PCI Express root buses.
   9 * When a PCI Express function (either an entire device or an SR-IOV
  10 * Virtual Function) is being passed through to the VM, this driver exposes
  11 * a new bus to the guest VM.  This is modeled as a root PCI bus because
  12 * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
  13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
  14 * until a device as been exposed using this driver.
  15 *
  16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
  17 * the PCI Firmware Specifications.  Thus while each device passed through
  18 * to the VM using this front-end will appear at "device 0", the domain will
  19 * be unique.  Typically, each bus will have one PCI function on it, though
  20 * this driver does support more than one.
  21 *
  22 * In order to map the interrupts from the device through to the guest VM,
  23 * this driver also implements an IRQ Domain, which handles interrupts (either
  24 * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
  25 * set up, torn down, or reaffined, this driver communicates with the
  26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
  27 * interrupt will be delivered to the correct virtual processor at the right
  28 * vector.  This driver does not support level-triggered (line-based)
  29 * interrupts, and will report that the Interrupt Line register in the
  30 * function's configuration space is zero.
  31 *
  32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
  33 * facilities.  For instance, the configuration space of a function exposed
  34 * by Hyper-V is mapped into a single page of memory space, and the
  35 * read and write handlers for config space must be aware of this mechanism.
  36 * Similarly, device setup and teardown involves messages sent to and from
  37 * the PCI back-end driver in Hyper-V.
  38 */
  39
  40#include <linux/kernel.h>
  41#include <linux/module.h>
  42#include <linux/pci.h>
  43#include <linux/delay.h>
  44#include <linux/semaphore.h>
  45#include <linux/irqdomain.h>
  46#include <asm/irqdomain.h>
  47#include <asm/apic.h>
  48#include <linux/irq.h>
  49#include <linux/msi.h>
  50#include <linux/hyperv.h>
  51#include <linux/refcount.h>
  52#include <asm/mshyperv.h>
  53
  54/*
  55 * Protocol versions. The low word is the minor version, the high word the
  56 * major version.
  57 */
  58
  59#define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
  60#define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
  61#define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
  62
  63enum pci_protocol_version_t {
  64        PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),      /* Win10 */
  65        PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),      /* RS1 */
  66        PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),      /* Vibranium */
  67};
  68
  69#define CPU_AFFINITY_ALL        -1ULL
  70
  71/*
  72 * Supported protocol versions in the order of probing - highest go
  73 * first.
  74 */
  75static enum pci_protocol_version_t pci_protocol_versions[] = {
  76        PCI_PROTOCOL_VERSION_1_3,
  77        PCI_PROTOCOL_VERSION_1_2,
  78        PCI_PROTOCOL_VERSION_1_1,
  79};
  80
  81#define PCI_CONFIG_MMIO_LENGTH  0x2000
  82#define CFG_PAGE_OFFSET 0x1000
  83#define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
  84
  85#define MAX_SUPPORTED_MSI_MESSAGES 0x400
  86
  87#define STATUS_REVISION_MISMATCH 0xC0000059
  88
  89/* space for 32bit serial number as string */
  90#define SLOT_NAME_SIZE 11
  91
  92/*
  93 * Message Types
  94 */
  95
  96enum pci_message_type {
  97        /*
  98         * Version 1.1
  99         */
 100        PCI_MESSAGE_BASE                = 0x42490000,
 101        PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
 102        PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
 103        PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
 104        PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
 105        PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
 106        PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
 107        PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
 108        PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
 109        PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
 110        PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
 111        PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
 112        PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
 113        PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
 114        PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
 115        PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
 116        PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
 117        PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
 118        PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
 119        PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
 120        PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
 121        PCI_RESOURCES_ASSIGNED2         = PCI_MESSAGE_BASE + 0x16,
 122        PCI_CREATE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x17,
 123        PCI_DELETE_INTERRUPT_MESSAGE2   = PCI_MESSAGE_BASE + 0x18, /* unused */
 124        PCI_BUS_RELATIONS2              = PCI_MESSAGE_BASE + 0x19,
 125        PCI_MESSAGE_MAXIMUM
 126};
 127
 128/*
 129 * Structures defining the virtual PCI Express protocol.
 130 */
 131
 132union pci_version {
 133        struct {
 134                u16 minor_version;
 135                u16 major_version;
 136        } parts;
 137        u32 version;
 138} __packed;
 139
 140/*
 141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
 142 * which is all this driver does.  This representation is the one used in
 143 * Windows, which is what is expected when sending this back and forth with
 144 * the Hyper-V parent partition.
 145 */
 146union win_slot_encoding {
 147        struct {
 148                u32     dev:5;
 149                u32     func:3;
 150                u32     reserved:24;
 151        } bits;
 152        u32 slot;
 153} __packed;
 154
 155/*
 156 * Pretty much as defined in the PCI Specifications.
 157 */
 158struct pci_function_description {
 159        u16     v_id;   /* vendor ID */
 160        u16     d_id;   /* device ID */
 161        u8      rev;
 162        u8      prog_intf;
 163        u8      subclass;
 164        u8      base_class;
 165        u32     subsystem_id;
 166        union win_slot_encoding win_slot;
 167        u32     ser;    /* serial number */
 168} __packed;
 169
 170enum pci_device_description_flags {
 171        HV_PCI_DEVICE_FLAG_NONE                 = 0x0,
 172        HV_PCI_DEVICE_FLAG_NUMA_AFFINITY        = 0x1,
 173};
 174
 175struct pci_function_description2 {
 176        u16     v_id;   /* vendor ID */
 177        u16     d_id;   /* device ID */
 178        u8      rev;
 179        u8      prog_intf;
 180        u8      subclass;
 181        u8      base_class;
 182        u32     subsystem_id;
 183        union   win_slot_encoding win_slot;
 184        u32     ser;    /* serial number */
 185        u32     flags;
 186        u16     virtual_numa_node;
 187        u16     reserved;
 188} __packed;
 189
 190/**
 191 * struct hv_msi_desc
 192 * @vector:             IDT entry
 193 * @delivery_mode:      As defined in Intel's Programmer's
 194 *                      Reference Manual, Volume 3, Chapter 8.
 195 * @vector_count:       Number of contiguous entries in the
 196 *                      Interrupt Descriptor Table that are
 197 *                      occupied by this Message-Signaled
 198 *                      Interrupt. For "MSI", as first defined
 199 *                      in PCI 2.2, this can be between 1 and
 200 *                      32. For "MSI-X," as first defined in PCI
 201 *                      3.0, this must be 1, as each MSI-X table
 202 *                      entry would have its own descriptor.
 203 * @reserved:           Empty space
 204 * @cpu_mask:           All the target virtual processors.
 205 */
 206struct hv_msi_desc {
 207        u8      vector;
 208        u8      delivery_mode;
 209        u16     vector_count;
 210        u32     reserved;
 211        u64     cpu_mask;
 212} __packed;
 213
 214/**
 215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
 216 * @vector:             IDT entry
 217 * @delivery_mode:      As defined in Intel's Programmer's
 218 *                      Reference Manual, Volume 3, Chapter 8.
 219 * @vector_count:       Number of contiguous entries in the
 220 *                      Interrupt Descriptor Table that are
 221 *                      occupied by this Message-Signaled
 222 *                      Interrupt. For "MSI", as first defined
 223 *                      in PCI 2.2, this can be between 1 and
 224 *                      32. For "MSI-X," as first defined in PCI
 225 *                      3.0, this must be 1, as each MSI-X table
 226 *                      entry would have its own descriptor.
 227 * @processor_count:    number of bits enabled in array.
 228 * @processor_array:    All the target virtual processors.
 229 */
 230struct hv_msi_desc2 {
 231        u8      vector;
 232        u8      delivery_mode;
 233        u16     vector_count;
 234        u16     processor_count;
 235        u16     processor_array[32];
 236} __packed;
 237
 238/**
 239 * struct tran_int_desc
 240 * @reserved:           unused, padding
 241 * @vector_count:       same as in hv_msi_desc
 242 * @data:               This is the "data payload" value that is
 243 *                      written by the device when it generates
 244 *                      a message-signaled interrupt, either MSI
 245 *                      or MSI-X.
 246 * @address:            This is the address to which the data
 247 *                      payload is written on interrupt
 248 *                      generation.
 249 */
 250struct tran_int_desc {
 251        u16     reserved;
 252        u16     vector_count;
 253        u32     data;
 254        u64     address;
 255} __packed;
 256
 257/*
 258 * A generic message format for virtual PCI.
 259 * Specific message formats are defined later in the file.
 260 */
 261
 262struct pci_message {
 263        u32 type;
 264} __packed;
 265
 266struct pci_child_message {
 267        struct pci_message message_type;
 268        union win_slot_encoding wslot;
 269} __packed;
 270
 271struct pci_incoming_message {
 272        struct vmpacket_descriptor hdr;
 273        struct pci_message message_type;
 274} __packed;
 275
 276struct pci_response {
 277        struct vmpacket_descriptor hdr;
 278        s32 status;                     /* negative values are failures */
 279} __packed;
 280
 281struct pci_packet {
 282        void (*completion_func)(void *context, struct pci_response *resp,
 283                                int resp_packet_size);
 284        void *compl_ctxt;
 285
 286        struct pci_message message[];
 287};
 288
 289/*
 290 * Specific message types supporting the PCI protocol.
 291 */
 292
 293/*
 294 * Version negotiation message. Sent from the guest to the host.
 295 * The guest is free to try different versions until the host
 296 * accepts the version.
 297 *
 298 * pci_version: The protocol version requested.
 299 * is_last_attempt: If TRUE, this is the last version guest will request.
 300 * reservedz: Reserved field, set to zero.
 301 */
 302
 303struct pci_version_request {
 304        struct pci_message message_type;
 305        u32 protocol_version;
 306} __packed;
 307
 308/*
 309 * Bus D0 Entry.  This is sent from the guest to the host when the virtual
 310 * bus (PCI Express port) is ready for action.
 311 */
 312
 313struct pci_bus_d0_entry {
 314        struct pci_message message_type;
 315        u32 reserved;
 316        u64 mmio_base;
 317} __packed;
 318
 319struct pci_bus_relations {
 320        struct pci_incoming_message incoming;
 321        u32 device_count;
 322        struct pci_function_description func[];
 323} __packed;
 324
 325struct pci_bus_relations2 {
 326        struct pci_incoming_message incoming;
 327        u32 device_count;
 328        struct pci_function_description2 func[];
 329} __packed;
 330
 331struct pci_q_res_req_response {
 332        struct vmpacket_descriptor hdr;
 333        s32 status;                     /* negative values are failures */
 334        u32 probed_bar[PCI_STD_NUM_BARS];
 335} __packed;
 336
 337struct pci_set_power {
 338        struct pci_message message_type;
 339        union win_slot_encoding wslot;
 340        u32 power_state;                /* In Windows terms */
 341        u32 reserved;
 342} __packed;
 343
 344struct pci_set_power_response {
 345        struct vmpacket_descriptor hdr;
 346        s32 status;                     /* negative values are failures */
 347        union win_slot_encoding wslot;
 348        u32 resultant_state;            /* In Windows terms */
 349        u32 reserved;
 350} __packed;
 351
 352struct pci_resources_assigned {
 353        struct pci_message message_type;
 354        union win_slot_encoding wslot;
 355        u8 memory_range[0x14][6];       /* not used here */
 356        u32 msi_descriptors;
 357        u32 reserved[4];
 358} __packed;
 359
 360struct pci_resources_assigned2 {
 361        struct pci_message message_type;
 362        union win_slot_encoding wslot;
 363        u8 memory_range[0x14][6];       /* not used here */
 364        u32 msi_descriptor_count;
 365        u8 reserved[70];
 366} __packed;
 367
 368struct pci_create_interrupt {
 369        struct pci_message message_type;
 370        union win_slot_encoding wslot;
 371        struct hv_msi_desc int_desc;
 372} __packed;
 373
 374struct pci_create_int_response {
 375        struct pci_response response;
 376        u32 reserved;
 377        struct tran_int_desc int_desc;
 378} __packed;
 379
 380struct pci_create_interrupt2 {
 381        struct pci_message message_type;
 382        union win_slot_encoding wslot;
 383        struct hv_msi_desc2 int_desc;
 384} __packed;
 385
 386struct pci_delete_interrupt {
 387        struct pci_message message_type;
 388        union win_slot_encoding wslot;
 389        struct tran_int_desc int_desc;
 390} __packed;
 391
 392/*
 393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
 394 */
 395struct pci_read_block {
 396        struct pci_message message_type;
 397        u32 block_id;
 398        union win_slot_encoding wslot;
 399        u32 bytes_requested;
 400} __packed;
 401
 402struct pci_read_block_response {
 403        struct vmpacket_descriptor hdr;
 404        u32 status;
 405        u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 406} __packed;
 407
 408/*
 409 * Note: the VM must pass a valid block id, wslot and byte_count.
 410 */
 411struct pci_write_block {
 412        struct pci_message message_type;
 413        u32 block_id;
 414        union win_slot_encoding wslot;
 415        u32 byte_count;
 416        u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
 417} __packed;
 418
 419struct pci_dev_inval_block {
 420        struct pci_incoming_message incoming;
 421        union win_slot_encoding wslot;
 422        u64 block_mask;
 423} __packed;
 424
 425struct pci_dev_incoming {
 426        struct pci_incoming_message incoming;
 427        union win_slot_encoding wslot;
 428} __packed;
 429
 430struct pci_eject_response {
 431        struct pci_message message_type;
 432        union win_slot_encoding wslot;
 433        u32 status;
 434} __packed;
 435
 436static int pci_ring_size = (4 * PAGE_SIZE);
 437
 438/*
 439 * Driver specific state.
 440 */
 441
 442enum hv_pcibus_state {
 443        hv_pcibus_init = 0,
 444        hv_pcibus_probed,
 445        hv_pcibus_installed,
 446        hv_pcibus_removing,
 447        hv_pcibus_removed,
 448        hv_pcibus_maximum
 449};
 450
 451struct hv_pcibus_device {
 452        struct pci_sysdata sysdata;
 453        /* Protocol version negotiated with the host */
 454        enum pci_protocol_version_t protocol_version;
 455        enum hv_pcibus_state state;
 456        refcount_t remove_lock;
 457        struct hv_device *hdev;
 458        resource_size_t low_mmio_space;
 459        resource_size_t high_mmio_space;
 460        struct resource *mem_config;
 461        struct resource *low_mmio_res;
 462        struct resource *high_mmio_res;
 463        struct completion *survey_event;
 464        struct completion remove_event;
 465        struct pci_bus *pci_bus;
 466        spinlock_t config_lock; /* Avoid two threads writing index page */
 467        spinlock_t device_list_lock;    /* Protect lists below */
 468        void __iomem *cfg_addr;
 469
 470        struct list_head resources_for_children;
 471
 472        struct list_head children;
 473        struct list_head dr_list;
 474
 475        struct msi_domain_info msi_info;
 476        struct msi_controller msi_chip;
 477        struct irq_domain *irq_domain;
 478
 479        spinlock_t retarget_msi_interrupt_lock;
 480
 481        struct workqueue_struct *wq;
 482
 483        /* Highest slot of child device with resources allocated */
 484        int wslot_res_allocated;
 485
 486        /* hypercall arg, must not cross page boundary */
 487        struct hv_retarget_device_interrupt retarget_msi_interrupt_params;
 488
 489        /*
 490         * Don't put anything here: retarget_msi_interrupt_params must be last
 491         */
 492};
 493
 494/*
 495 * Tracks "Device Relations" messages from the host, which must be both
 496 * processed in order and deferred so that they don't run in the context
 497 * of the incoming packet callback.
 498 */
 499struct hv_dr_work {
 500        struct work_struct wrk;
 501        struct hv_pcibus_device *bus;
 502};
 503
 504struct hv_pcidev_description {
 505        u16     v_id;   /* vendor ID */
 506        u16     d_id;   /* device ID */
 507        u8      rev;
 508        u8      prog_intf;
 509        u8      subclass;
 510        u8      base_class;
 511        u32     subsystem_id;
 512        union   win_slot_encoding win_slot;
 513        u32     ser;    /* serial number */
 514        u32     flags;
 515        u16     virtual_numa_node;
 516};
 517
 518struct hv_dr_state {
 519        struct list_head list_entry;
 520        u32 device_count;
 521        struct hv_pcidev_description func[];
 522};
 523
 524enum hv_pcichild_state {
 525        hv_pcichild_init = 0,
 526        hv_pcichild_requirements,
 527        hv_pcichild_resourced,
 528        hv_pcichild_ejecting,
 529        hv_pcichild_maximum
 530};
 531
 532struct hv_pci_dev {
 533        /* List protected by pci_rescan_remove_lock */
 534        struct list_head list_entry;
 535        refcount_t refs;
 536        enum hv_pcichild_state state;
 537        struct pci_slot *pci_slot;
 538        struct hv_pcidev_description desc;
 539        bool reported_missing;
 540        struct hv_pcibus_device *hbus;
 541        struct work_struct wrk;
 542
 543        void (*block_invalidate)(void *context, u64 block_mask);
 544        void *invalidate_context;
 545
 546        /*
 547         * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
 548         * read it back, for each of the BAR offsets within config space.
 549         */
 550        u32 probed_bar[PCI_STD_NUM_BARS];
 551};
 552
 553struct hv_pci_compl {
 554        struct completion host_event;
 555        s32 completion_status;
 556};
 557
 558static void hv_pci_onchannelcallback(void *context);
 559
 560/**
 561 * hv_pci_generic_compl() - Invoked for a completion packet
 562 * @context:            Set up by the sender of the packet.
 563 * @resp:               The response packet
 564 * @resp_packet_size:   Size in bytes of the packet
 565 *
 566 * This function is used to trigger an event and report status
 567 * for any message for which the completion packet contains a
 568 * status and nothing else.
 569 */
 570static void hv_pci_generic_compl(void *context, struct pci_response *resp,
 571                                 int resp_packet_size)
 572{
 573        struct hv_pci_compl *comp_pkt = context;
 574
 575        if (resp_packet_size >= offsetofend(struct pci_response, status))
 576                comp_pkt->completion_status = resp->status;
 577        else
 578                comp_pkt->completion_status = -1;
 579
 580        complete(&comp_pkt->host_event);
 581}
 582
 583static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
 584                                                u32 wslot);
 585
 586static void get_pcichild(struct hv_pci_dev *hpdev)
 587{
 588        refcount_inc(&hpdev->refs);
 589}
 590
 591static void put_pcichild(struct hv_pci_dev *hpdev)
 592{
 593        if (refcount_dec_and_test(&hpdev->refs))
 594                kfree(hpdev);
 595}
 596
 597static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 598static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
 599
 600/*
 601 * There is no good way to get notified from vmbus_onoffer_rescind(),
 602 * so let's use polling here, since this is not a hot path.
 603 */
 604static int wait_for_response(struct hv_device *hdev,
 605                             struct completion *comp)
 606{
 607        while (true) {
 608                if (hdev->channel->rescind) {
 609                        dev_warn_once(&hdev->device, "The device is gone.\n");
 610                        return -ENODEV;
 611                }
 612
 613                if (wait_for_completion_timeout(comp, HZ / 10))
 614                        break;
 615        }
 616
 617        return 0;
 618}
 619
 620/**
 621 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
 622 * @devfn:      The Linux representation of PCI slot
 623 *
 624 * Windows uses a slightly different representation of PCI slot.
 625 *
 626 * Return: The Windows representation
 627 */
 628static u32 devfn_to_wslot(int devfn)
 629{
 630        union win_slot_encoding wslot;
 631
 632        wslot.slot = 0;
 633        wslot.bits.dev = PCI_SLOT(devfn);
 634        wslot.bits.func = PCI_FUNC(devfn);
 635
 636        return wslot.slot;
 637}
 638
 639/**
 640 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
 641 * @wslot:      The Windows representation of PCI slot
 642 *
 643 * Windows uses a slightly different representation of PCI slot.
 644 *
 645 * Return: The Linux representation
 646 */
 647static int wslot_to_devfn(u32 wslot)
 648{
 649        union win_slot_encoding slot_no;
 650
 651        slot_no.slot = wslot;
 652        return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
 653}
 654
 655/*
 656 * PCI Configuration Space for these root PCI buses is implemented as a pair
 657 * of pages in memory-mapped I/O space.  Writing to the first page chooses
 658 * the PCI function being written or read.  Once the first page has been
 659 * written to, the following page maps in the entire configuration space of
 660 * the function.
 661 */
 662
 663/**
 664 * _hv_pcifront_read_config() - Internal PCI config read
 665 * @hpdev:      The PCI driver's representation of the device
 666 * @where:      Offset within config space
 667 * @size:       Size of the transfer
 668 * @val:        Pointer to the buffer receiving the data
 669 */
 670static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
 671                                     int size, u32 *val)
 672{
 673        unsigned long flags;
 674        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 675
 676        /*
 677         * If the attempt is to read the IDs or the ROM BAR, simulate that.
 678         */
 679        if (where + size <= PCI_COMMAND) {
 680                memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
 681        } else if (where >= PCI_CLASS_REVISION && where + size <=
 682                   PCI_CACHE_LINE_SIZE) {
 683                memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
 684                       PCI_CLASS_REVISION, size);
 685        } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
 686                   PCI_ROM_ADDRESS) {
 687                memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
 688                       PCI_SUBSYSTEM_VENDOR_ID, size);
 689        } else if (where >= PCI_ROM_ADDRESS && where + size <=
 690                   PCI_CAPABILITY_LIST) {
 691                /* ROM BARs are unimplemented */
 692                *val = 0;
 693        } else if (where >= PCI_INTERRUPT_LINE && where + size <=
 694                   PCI_INTERRUPT_PIN) {
 695                /*
 696                 * Interrupt Line and Interrupt PIN are hard-wired to zero
 697                 * because this front-end only supports message-signaled
 698                 * interrupts.
 699                 */
 700                *val = 0;
 701        } else if (where + size <= CFG_PAGE_SIZE) {
 702                spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 703                /* Choose the function to be read. (See comment above) */
 704                writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 705                /* Make sure the function was chosen before we start reading. */
 706                mb();
 707                /* Read from that function's config space. */
 708                switch (size) {
 709                case 1:
 710                        *val = readb(addr);
 711                        break;
 712                case 2:
 713                        *val = readw(addr);
 714                        break;
 715                default:
 716                        *val = readl(addr);
 717                        break;
 718                }
 719                /*
 720                 * Make sure the read was done before we release the spinlock
 721                 * allowing consecutive reads/writes.
 722                 */
 723                mb();
 724                spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 725        } else {
 726                dev_err(&hpdev->hbus->hdev->device,
 727                        "Attempt to read beyond a function's config space.\n");
 728        }
 729}
 730
 731static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
 732{
 733        u16 ret;
 734        unsigned long flags;
 735        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
 736                             PCI_VENDOR_ID;
 737
 738        spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 739
 740        /* Choose the function to be read. (See comment above) */
 741        writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 742        /* Make sure the function was chosen before we start reading. */
 743        mb();
 744        /* Read from that function's config space. */
 745        ret = readw(addr);
 746        /*
 747         * mb() is not required here, because the spin_unlock_irqrestore()
 748         * is a barrier.
 749         */
 750
 751        spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 752
 753        return ret;
 754}
 755
 756/**
 757 * _hv_pcifront_write_config() - Internal PCI config write
 758 * @hpdev:      The PCI driver's representation of the device
 759 * @where:      Offset within config space
 760 * @size:       Size of the transfer
 761 * @val:        The data being transferred
 762 */
 763static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
 764                                      int size, u32 val)
 765{
 766        unsigned long flags;
 767        void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
 768
 769        if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
 770            where + size <= PCI_CAPABILITY_LIST) {
 771                /* SSIDs and ROM BARs are read-only */
 772        } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
 773                spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
 774                /* Choose the function to be written. (See comment above) */
 775                writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
 776                /* Make sure the function was chosen before we start writing. */
 777                wmb();
 778                /* Write to that function's config space. */
 779                switch (size) {
 780                case 1:
 781                        writeb(val, addr);
 782                        break;
 783                case 2:
 784                        writew(val, addr);
 785                        break;
 786                default:
 787                        writel(val, addr);
 788                        break;
 789                }
 790                /*
 791                 * Make sure the write was done before we release the spinlock
 792                 * allowing consecutive reads/writes.
 793                 */
 794                mb();
 795                spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
 796        } else {
 797                dev_err(&hpdev->hbus->hdev->device,
 798                        "Attempt to write beyond a function's config space.\n");
 799        }
 800}
 801
 802/**
 803 * hv_pcifront_read_config() - Read configuration space
 804 * @bus: PCI Bus structure
 805 * @devfn: Device/function
 806 * @where: Offset from base
 807 * @size: Byte/word/dword
 808 * @val: Value to be read
 809 *
 810 * Return: PCIBIOS_SUCCESSFUL on success
 811 *         PCIBIOS_DEVICE_NOT_FOUND on failure
 812 */
 813static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
 814                                   int where, int size, u32 *val)
 815{
 816        struct hv_pcibus_device *hbus =
 817                container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 818        struct hv_pci_dev *hpdev;
 819
 820        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 821        if (!hpdev)
 822                return PCIBIOS_DEVICE_NOT_FOUND;
 823
 824        _hv_pcifront_read_config(hpdev, where, size, val);
 825
 826        put_pcichild(hpdev);
 827        return PCIBIOS_SUCCESSFUL;
 828}
 829
 830/**
 831 * hv_pcifront_write_config() - Write configuration space
 832 * @bus: PCI Bus structure
 833 * @devfn: Device/function
 834 * @where: Offset from base
 835 * @size: Byte/word/dword
 836 * @val: Value to be written to device
 837 *
 838 * Return: PCIBIOS_SUCCESSFUL on success
 839 *         PCIBIOS_DEVICE_NOT_FOUND on failure
 840 */
 841static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
 842                                    int where, int size, u32 val)
 843{
 844        struct hv_pcibus_device *hbus =
 845            container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
 846        struct hv_pci_dev *hpdev;
 847
 848        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
 849        if (!hpdev)
 850                return PCIBIOS_DEVICE_NOT_FOUND;
 851
 852        _hv_pcifront_write_config(hpdev, where, size, val);
 853
 854        put_pcichild(hpdev);
 855        return PCIBIOS_SUCCESSFUL;
 856}
 857
 858/* PCIe operations */
 859static struct pci_ops hv_pcifront_ops = {
 860        .read  = hv_pcifront_read_config,
 861        .write = hv_pcifront_write_config,
 862};
 863
 864/*
 865 * Paravirtual backchannel
 866 *
 867 * Hyper-V SR-IOV provides a backchannel mechanism in software for
 868 * communication between a VF driver and a PF driver.  These
 869 * "configuration blocks" are similar in concept to PCI configuration space,
 870 * but instead of doing reads and writes in 32-bit chunks through a very slow
 871 * path, packets of up to 128 bytes can be sent or received asynchronously.
 872 *
 873 * Nearly every SR-IOV device contains just such a communications channel in
 874 * hardware, so using this one in software is usually optional.  Using the
 875 * software channel, however, allows driver implementers to leverage software
 876 * tools that fuzz the communications channel looking for vulnerabilities.
 877 *
 878 * The usage model for these packets puts the responsibility for reading or
 879 * writing on the VF driver.  The VF driver sends a read or a write packet,
 880 * indicating which "block" is being referred to by number.
 881 *
 882 * If the PF driver wishes to initiate communication, it can "invalidate" one or
 883 * more of the first 64 blocks.  This invalidation is delivered via a callback
 884 * supplied by the VF driver by this driver.
 885 *
 886 * No protocol is implied, except that supplied by the PF and VF drivers.
 887 */
 888
 889struct hv_read_config_compl {
 890        struct hv_pci_compl comp_pkt;
 891        void *buf;
 892        unsigned int len;
 893        unsigned int bytes_returned;
 894};
 895
 896/**
 897 * hv_pci_read_config_compl() - Invoked when a response packet
 898 * for a read config block operation arrives.
 899 * @context:            Identifies the read config operation
 900 * @resp:               The response packet itself
 901 * @resp_packet_size:   Size in bytes of the response packet
 902 */
 903static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
 904                                     int resp_packet_size)
 905{
 906        struct hv_read_config_compl *comp = context;
 907        struct pci_read_block_response *read_resp =
 908                (struct pci_read_block_response *)resp;
 909        unsigned int data_len, hdr_len;
 910
 911        hdr_len = offsetof(struct pci_read_block_response, bytes);
 912        if (resp_packet_size < hdr_len) {
 913                comp->comp_pkt.completion_status = -1;
 914                goto out;
 915        }
 916
 917        data_len = resp_packet_size - hdr_len;
 918        if (data_len > 0 && read_resp->status == 0) {
 919                comp->bytes_returned = min(comp->len, data_len);
 920                memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
 921        } else {
 922                comp->bytes_returned = 0;
 923        }
 924
 925        comp->comp_pkt.completion_status = read_resp->status;
 926out:
 927        complete(&comp->comp_pkt.host_event);
 928}
 929
 930/**
 931 * hv_read_config_block() - Sends a read config block request to
 932 * the back-end driver running in the Hyper-V parent partition.
 933 * @pdev:               The PCI driver's representation for this device.
 934 * @buf:                Buffer into which the config block will be copied.
 935 * @len:                Size in bytes of buf.
 936 * @block_id:           Identifies the config block which has been requested.
 937 * @bytes_returned:     Size which came back from the back-end driver.
 938 *
 939 * Return: 0 on success, -errno on failure
 940 */
 941static int hv_read_config_block(struct pci_dev *pdev, void *buf,
 942                                unsigned int len, unsigned int block_id,
 943                                unsigned int *bytes_returned)
 944{
 945        struct hv_pcibus_device *hbus =
 946                container_of(pdev->bus->sysdata, struct hv_pcibus_device,
 947                             sysdata);
 948        struct {
 949                struct pci_packet pkt;
 950                char buf[sizeof(struct pci_read_block)];
 951        } pkt;
 952        struct hv_read_config_compl comp_pkt;
 953        struct pci_read_block *read_blk;
 954        int ret;
 955
 956        if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
 957                return -EINVAL;
 958
 959        init_completion(&comp_pkt.comp_pkt.host_event);
 960        comp_pkt.buf = buf;
 961        comp_pkt.len = len;
 962
 963        memset(&pkt, 0, sizeof(pkt));
 964        pkt.pkt.completion_func = hv_pci_read_config_compl;
 965        pkt.pkt.compl_ctxt = &comp_pkt;
 966        read_blk = (struct pci_read_block *)&pkt.pkt.message;
 967        read_blk->message_type.type = PCI_READ_BLOCK;
 968        read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
 969        read_blk->block_id = block_id;
 970        read_blk->bytes_requested = len;
 971
 972        ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
 973                               sizeof(*read_blk), (unsigned long)&pkt.pkt,
 974                               VM_PKT_DATA_INBAND,
 975                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
 976        if (ret)
 977                return ret;
 978
 979        ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
 980        if (ret)
 981                return ret;
 982
 983        if (comp_pkt.comp_pkt.completion_status != 0 ||
 984            comp_pkt.bytes_returned == 0) {
 985                dev_err(&hbus->hdev->device,
 986                        "Read Config Block failed: 0x%x, bytes_returned=%d\n",
 987                        comp_pkt.comp_pkt.completion_status,
 988                        comp_pkt.bytes_returned);
 989                return -EIO;
 990        }
 991
 992        *bytes_returned = comp_pkt.bytes_returned;
 993        return 0;
 994}
 995
 996/**
 997 * hv_pci_write_config_compl() - Invoked when a response packet for a write
 998 * config block operation arrives.
 999 * @context:            Identifies the write config operation
1000 * @resp:               The response packet itself
1001 * @resp_packet_size:   Size in bytes of the response packet
1002 */
1003static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1004                                      int resp_packet_size)
1005{
1006        struct hv_pci_compl *comp_pkt = context;
1007
1008        comp_pkt->completion_status = resp->status;
1009        complete(&comp_pkt->host_event);
1010}
1011
1012/**
1013 * hv_write_config_block() - Sends a write config block request to the
1014 * back-end driver running in the Hyper-V parent partition.
1015 * @pdev:               The PCI driver's representation for this device.
1016 * @buf:                Buffer from which the config block will be copied.
1017 * @len:                Size in bytes of buf.
1018 * @block_id:           Identifies the config block which is being written.
1019 *
1020 * Return: 0 on success, -errno on failure
1021 */
1022static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1023                                unsigned int len, unsigned int block_id)
1024{
1025        struct hv_pcibus_device *hbus =
1026                container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1027                             sysdata);
1028        struct {
1029                struct pci_packet pkt;
1030                char buf[sizeof(struct pci_write_block)];
1031                u32 reserved;
1032        } pkt;
1033        struct hv_pci_compl comp_pkt;
1034        struct pci_write_block *write_blk;
1035        u32 pkt_size;
1036        int ret;
1037
1038        if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1039                return -EINVAL;
1040
1041        init_completion(&comp_pkt.host_event);
1042
1043        memset(&pkt, 0, sizeof(pkt));
1044        pkt.pkt.completion_func = hv_pci_write_config_compl;
1045        pkt.pkt.compl_ctxt = &comp_pkt;
1046        write_blk = (struct pci_write_block *)&pkt.pkt.message;
1047        write_blk->message_type.type = PCI_WRITE_BLOCK;
1048        write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1049        write_blk->block_id = block_id;
1050        write_blk->byte_count = len;
1051        memcpy(write_blk->bytes, buf, len);
1052        pkt_size = offsetof(struct pci_write_block, bytes) + len;
1053        /*
1054         * This quirk is required on some hosts shipped around 2018, because
1055         * these hosts don't check the pkt_size correctly (new hosts have been
1056         * fixed since early 2019). The quirk is also safe on very old hosts
1057         * and new hosts, because, on them, what really matters is the length
1058         * specified in write_blk->byte_count.
1059         */
1060        pkt_size += sizeof(pkt.reserved);
1061
1062        ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1063                               (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1064                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1065        if (ret)
1066                return ret;
1067
1068        ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1069        if (ret)
1070                return ret;
1071
1072        if (comp_pkt.completion_status != 0) {
1073                dev_err(&hbus->hdev->device,
1074                        "Write Config Block failed: 0x%x\n",
1075                        comp_pkt.completion_status);
1076                return -EIO;
1077        }
1078
1079        return 0;
1080}
1081
1082/**
1083 * hv_register_block_invalidate() - Invoked when a config block invalidation
1084 * arrives from the back-end driver.
1085 * @pdev:               The PCI driver's representation for this device.
1086 * @context:            Identifies the device.
1087 * @block_invalidate:   Identifies all of the blocks being invalidated.
1088 *
1089 * Return: 0 on success, -errno on failure
1090 */
1091static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1092                                        void (*block_invalidate)(void *context,
1093                                                                 u64 block_mask))
1094{
1095        struct hv_pcibus_device *hbus =
1096                container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1097                             sysdata);
1098        struct hv_pci_dev *hpdev;
1099
1100        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1101        if (!hpdev)
1102                return -ENODEV;
1103
1104        hpdev->block_invalidate = block_invalidate;
1105        hpdev->invalidate_context = context;
1106
1107        put_pcichild(hpdev);
1108        return 0;
1109
1110}
1111
1112/* Interrupt management hooks */
1113static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1114                             struct tran_int_desc *int_desc)
1115{
1116        struct pci_delete_interrupt *int_pkt;
1117        struct {
1118                struct pci_packet pkt;
1119                u8 buffer[sizeof(struct pci_delete_interrupt)];
1120        } ctxt;
1121
1122        memset(&ctxt, 0, sizeof(ctxt));
1123        int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1124        int_pkt->message_type.type =
1125                PCI_DELETE_INTERRUPT_MESSAGE;
1126        int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1127        int_pkt->int_desc = *int_desc;
1128        vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1129                         (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
1130        kfree(int_desc);
1131}
1132
1133/**
1134 * hv_msi_free() - Free the MSI.
1135 * @domain:     The interrupt domain pointer
1136 * @info:       Extra MSI-related context
1137 * @irq:        Identifies the IRQ.
1138 *
1139 * The Hyper-V parent partition and hypervisor are tracking the
1140 * messages that are in use, keeping the interrupt redirection
1141 * table up to date.  This callback sends a message that frees
1142 * the IRT entry and related tracking nonsense.
1143 */
1144static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1145                        unsigned int irq)
1146{
1147        struct hv_pcibus_device *hbus;
1148        struct hv_pci_dev *hpdev;
1149        struct pci_dev *pdev;
1150        struct tran_int_desc *int_desc;
1151        struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1152        struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1153
1154        pdev = msi_desc_to_pci_dev(msi);
1155        hbus = info->data;
1156        int_desc = irq_data_get_irq_chip_data(irq_data);
1157        if (!int_desc)
1158                return;
1159
1160        irq_data->chip_data = NULL;
1161        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1162        if (!hpdev) {
1163                kfree(int_desc);
1164                return;
1165        }
1166
1167        hv_int_desc_free(hpdev, int_desc);
1168        put_pcichild(hpdev);
1169}
1170
1171static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
1172                           bool force)
1173{
1174        struct irq_data *parent = data->parent_data;
1175
1176        return parent->chip->irq_set_affinity(parent, dest, force);
1177}
1178
1179static void hv_irq_mask(struct irq_data *data)
1180{
1181        pci_msi_mask_irq(data);
1182}
1183
1184/**
1185 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1186 * affinity.
1187 * @data:       Describes the IRQ
1188 *
1189 * Build new a destination for the MSI and make a hypercall to
1190 * update the Interrupt Redirection Table. "Device Logical ID"
1191 * is built out of this PCI bus's instance GUID and the function
1192 * number of the device.
1193 */
1194static void hv_irq_unmask(struct irq_data *data)
1195{
1196        struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
1197        struct irq_cfg *cfg = irqd_cfg(data);
1198        struct hv_retarget_device_interrupt *params;
1199        struct hv_pcibus_device *hbus;
1200        struct cpumask *dest;
1201        cpumask_var_t tmp;
1202        struct pci_bus *pbus;
1203        struct pci_dev *pdev;
1204        unsigned long flags;
1205        u32 var_size = 0;
1206        int cpu, nr_bank;
1207        u64 res;
1208
1209        dest = irq_data_get_effective_affinity_mask(data);
1210        pdev = msi_desc_to_pci_dev(msi_desc);
1211        pbus = pdev->bus;
1212        hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1213
1214        spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
1215
1216        params = &hbus->retarget_msi_interrupt_params;
1217        memset(params, 0, sizeof(*params));
1218        params->partition_id = HV_PARTITION_ID_SELF;
1219        params->int_entry.source = 1; /* MSI(-X) */
1220        hv_set_msi_entry_from_desc(&params->int_entry.msi_entry, msi_desc);
1221        params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
1222                           (hbus->hdev->dev_instance.b[4] << 16) |
1223                           (hbus->hdev->dev_instance.b[7] << 8) |
1224                           (hbus->hdev->dev_instance.b[6] & 0xf8) |
1225                           PCI_FUNC(pdev->devfn);
1226        params->int_target.vector = cfg->vector;
1227
1228        /*
1229         * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by
1230         * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1231         * spurious interrupt storm. Not doing so does not seem to have a
1232         * negative effect (yet?).
1233         */
1234
1235        if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
1236                /*
1237                 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1238                 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1239                 * with >64 VP support.
1240                 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1241                 * is not sufficient for this hypercall.
1242                 */
1243                params->int_target.flags |=
1244                        HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
1245
1246                if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
1247                        res = 1;
1248                        goto exit_unlock;
1249                }
1250
1251                cpumask_and(tmp, dest, cpu_online_mask);
1252                nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
1253                free_cpumask_var(tmp);
1254
1255                if (nr_bank <= 0) {
1256                        res = 1;
1257                        goto exit_unlock;
1258                }
1259
1260                /*
1261                 * var-sized hypercall, var-size starts after vp_mask (thus
1262                 * vp_set.format does not count, but vp_set.valid_bank_mask
1263                 * does).
1264                 */
1265                var_size = 1 + nr_bank;
1266        } else {
1267                for_each_cpu_and(cpu, dest, cpu_online_mask) {
1268                        params->int_target.vp_mask |=
1269                                (1ULL << hv_cpu_number_to_vp_number(cpu));
1270                }
1271        }
1272
1273        res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
1274                              params, NULL);
1275
1276exit_unlock:
1277        spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
1278
1279        /*
1280         * During hibernation, when a CPU is offlined, the kernel tries
1281         * to move the interrupt to the remaining CPUs that haven't
1282         * been offlined yet. In this case, the below hv_do_hypercall()
1283         * always fails since the vmbus channel has been closed:
1284         * refer to cpu_disable_common() -> fixup_irqs() ->
1285         * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
1286         *
1287         * Suppress the error message for hibernation because the failure
1288         * during hibernation does not matter (at this time all the devices
1289         * have been frozen). Note: the correct affinity info is still updated
1290         * into the irqdata data structure in migrate_one_irq() ->
1291         * irq_do_set_affinity() -> hv_set_affinity(), so later when the VM
1292         * resumes, hv_pci_restore_msi_state() is able to correctly restore
1293         * the interrupt with the correct affinity.
1294         */
1295        if (res && hbus->state != hv_pcibus_removing)
1296                dev_err(&hbus->hdev->device,
1297                        "%s() failed: %#llx", __func__, res);
1298
1299        pci_msi_unmask_irq(data);
1300}
1301
1302struct compose_comp_ctxt {
1303        struct hv_pci_compl comp_pkt;
1304        struct tran_int_desc int_desc;
1305};
1306
1307static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1308                                 int resp_packet_size)
1309{
1310        struct compose_comp_ctxt *comp_pkt = context;
1311        struct pci_create_int_response *int_resp =
1312                (struct pci_create_int_response *)resp;
1313
1314        comp_pkt->comp_pkt.completion_status = resp->status;
1315        comp_pkt->int_desc = int_resp->int_desc;
1316        complete(&comp_pkt->comp_pkt.host_event);
1317}
1318
1319static u32 hv_compose_msi_req_v1(
1320        struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1321        u32 slot, u8 vector)
1322{
1323        int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1324        int_pkt->wslot.slot = slot;
1325        int_pkt->int_desc.vector = vector;
1326        int_pkt->int_desc.vector_count = 1;
1327        int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1328
1329        /*
1330         * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1331         * hv_irq_unmask().
1332         */
1333        int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1334
1335        return sizeof(*int_pkt);
1336}
1337
1338static u32 hv_compose_msi_req_v2(
1339        struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1340        u32 slot, u8 vector)
1341{
1342        int cpu;
1343
1344        int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1345        int_pkt->wslot.slot = slot;
1346        int_pkt->int_desc.vector = vector;
1347        int_pkt->int_desc.vector_count = 1;
1348        int_pkt->int_desc.delivery_mode = APIC_DELIVERY_MODE_FIXED;
1349
1350        /*
1351         * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1352         * by subsequent retarget in hv_irq_unmask().
1353         */
1354        cpu = cpumask_first_and(affinity, cpu_online_mask);
1355        int_pkt->int_desc.processor_array[0] =
1356                hv_cpu_number_to_vp_number(cpu);
1357        int_pkt->int_desc.processor_count = 1;
1358
1359        return sizeof(*int_pkt);
1360}
1361
1362/**
1363 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1364 * @data:       Everything about this MSI
1365 * @msg:        Buffer that is filled in by this function
1366 *
1367 * This function unpacks the IRQ looking for target CPU set, IDT
1368 * vector and mode and sends a message to the parent partition
1369 * asking for a mapping for that tuple in this partition.  The
1370 * response supplies a data value and address to which that data
1371 * should be written to trigger that interrupt.
1372 */
1373static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1374{
1375        struct irq_cfg *cfg = irqd_cfg(data);
1376        struct hv_pcibus_device *hbus;
1377        struct vmbus_channel *channel;
1378        struct hv_pci_dev *hpdev;
1379        struct pci_bus *pbus;
1380        struct pci_dev *pdev;
1381        struct cpumask *dest;
1382        struct compose_comp_ctxt comp;
1383        struct tran_int_desc *int_desc;
1384        struct {
1385                struct pci_packet pci_pkt;
1386                union {
1387                        struct pci_create_interrupt v1;
1388                        struct pci_create_interrupt2 v2;
1389                } int_pkts;
1390        } __packed ctxt;
1391
1392        u32 size;
1393        int ret;
1394
1395        pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1396        dest = irq_data_get_effective_affinity_mask(data);
1397        pbus = pdev->bus;
1398        hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1399        channel = hbus->hdev->channel;
1400        hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1401        if (!hpdev)
1402                goto return_null_message;
1403
1404        /* Free any previous message that might have already been composed. */
1405        if (data->chip_data) {
1406                int_desc = data->chip_data;
1407                data->chip_data = NULL;
1408                hv_int_desc_free(hpdev, int_desc);
1409        }
1410
1411        int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1412        if (!int_desc)
1413                goto drop_reference;
1414
1415        memset(&ctxt, 0, sizeof(ctxt));
1416        init_completion(&comp.comp_pkt.host_event);
1417        ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1418        ctxt.pci_pkt.compl_ctxt = &comp;
1419
1420        switch (hbus->protocol_version) {
1421        case PCI_PROTOCOL_VERSION_1_1:
1422                size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1423                                        dest,
1424                                        hpdev->desc.win_slot.slot,
1425                                        cfg->vector);
1426                break;
1427
1428        case PCI_PROTOCOL_VERSION_1_2:
1429        case PCI_PROTOCOL_VERSION_1_3:
1430                size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1431                                        dest,
1432                                        hpdev->desc.win_slot.slot,
1433                                        cfg->vector);
1434                break;
1435
1436        default:
1437                /* As we only negotiate protocol versions known to this driver,
1438                 * this path should never hit. However, this is it not a hot
1439                 * path so we print a message to aid future updates.
1440                 */
1441                dev_err(&hbus->hdev->device,
1442                        "Unexpected vPCI protocol, update driver.");
1443                goto free_int_desc;
1444        }
1445
1446        ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1447                               size, (unsigned long)&ctxt.pci_pkt,
1448                               VM_PKT_DATA_INBAND,
1449                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1450        if (ret) {
1451                dev_err(&hbus->hdev->device,
1452                        "Sending request for interrupt failed: 0x%x",
1453                        comp.comp_pkt.completion_status);
1454                goto free_int_desc;
1455        }
1456
1457        /*
1458         * Prevents hv_pci_onchannelcallback() from running concurrently
1459         * in the tasklet.
1460         */
1461        tasklet_disable(&channel->callback_event);
1462
1463        /*
1464         * Since this function is called with IRQ locks held, can't
1465         * do normal wait for completion; instead poll.
1466         */
1467        while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1468                unsigned long flags;
1469
1470                /* 0xFFFF means an invalid PCI VENDOR ID. */
1471                if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1472                        dev_err_once(&hbus->hdev->device,
1473                                     "the device has gone\n");
1474                        goto enable_tasklet;
1475                }
1476
1477                /*
1478                 * Make sure that the ring buffer data structure doesn't get
1479                 * freed while we dereference the ring buffer pointer.  Test
1480                 * for the channel's onchannel_callback being NULL within a
1481                 * sched_lock critical section.  See also the inline comments
1482                 * in vmbus_reset_channel_cb().
1483                 */
1484                spin_lock_irqsave(&channel->sched_lock, flags);
1485                if (unlikely(channel->onchannel_callback == NULL)) {
1486                        spin_unlock_irqrestore(&channel->sched_lock, flags);
1487                        goto enable_tasklet;
1488                }
1489                hv_pci_onchannelcallback(hbus);
1490                spin_unlock_irqrestore(&channel->sched_lock, flags);
1491
1492                if (hpdev->state == hv_pcichild_ejecting) {
1493                        dev_err_once(&hbus->hdev->device,
1494                                     "the device is being ejected\n");
1495                        goto enable_tasklet;
1496                }
1497
1498                udelay(100);
1499        }
1500
1501        tasklet_enable(&channel->callback_event);
1502
1503        if (comp.comp_pkt.completion_status < 0) {
1504                dev_err(&hbus->hdev->device,
1505                        "Request for interrupt failed: 0x%x",
1506                        comp.comp_pkt.completion_status);
1507                goto free_int_desc;
1508        }
1509
1510        /*
1511         * Record the assignment so that this can be unwound later. Using
1512         * irq_set_chip_data() here would be appropriate, but the lock it takes
1513         * is already held.
1514         */
1515        *int_desc = comp.int_desc;
1516        data->chip_data = int_desc;
1517
1518        /* Pass up the result. */
1519        msg->address_hi = comp.int_desc.address >> 32;
1520        msg->address_lo = comp.int_desc.address & 0xffffffff;
1521        msg->data = comp.int_desc.data;
1522
1523        put_pcichild(hpdev);
1524        return;
1525
1526enable_tasklet:
1527        tasklet_enable(&channel->callback_event);
1528free_int_desc:
1529        kfree(int_desc);
1530drop_reference:
1531        put_pcichild(hpdev);
1532return_null_message:
1533        msg->address_hi = 0;
1534        msg->address_lo = 0;
1535        msg->data = 0;
1536}
1537
1538/* HW Interrupt Chip Descriptor */
1539static struct irq_chip hv_msi_irq_chip = {
1540        .name                   = "Hyper-V PCIe MSI",
1541        .irq_compose_msi_msg    = hv_compose_msi_msg,
1542        .irq_set_affinity       = hv_set_affinity,
1543        .irq_ack                = irq_chip_ack_parent,
1544        .irq_mask               = hv_irq_mask,
1545        .irq_unmask             = hv_irq_unmask,
1546};
1547
1548static struct msi_domain_ops hv_msi_ops = {
1549        .msi_prepare    = pci_msi_prepare,
1550        .msi_free       = hv_msi_free,
1551};
1552
1553/**
1554 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1555 * @hbus:       The root PCI bus
1556 *
1557 * This function creates an IRQ domain which will be used for
1558 * interrupts from devices that have been passed through.  These
1559 * devices only support MSI and MSI-X, not line-based interrupts
1560 * or simulations of line-based interrupts through PCIe's
1561 * fabric-layer messages.  Because interrupts are remapped, we
1562 * can support multi-message MSI here.
1563 *
1564 * Return: '0' on success and error value on failure
1565 */
1566static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1567{
1568        hbus->msi_info.chip = &hv_msi_irq_chip;
1569        hbus->msi_info.ops = &hv_msi_ops;
1570        hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1571                MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1572                MSI_FLAG_PCI_MSIX);
1573        hbus->msi_info.handler = handle_edge_irq;
1574        hbus->msi_info.handler_name = "edge";
1575        hbus->msi_info.data = hbus;
1576        hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1577                                                     &hbus->msi_info,
1578                                                     x86_vector_domain);
1579        if (!hbus->irq_domain) {
1580                dev_err(&hbus->hdev->device,
1581                        "Failed to build an MSI IRQ domain\n");
1582                return -ENODEV;
1583        }
1584
1585        return 0;
1586}
1587
1588/**
1589 * get_bar_size() - Get the address space consumed by a BAR
1590 * @bar_val:    Value that a BAR returned after -1 was written
1591 *              to it.
1592 *
1593 * This function returns the size of the BAR, rounded up to 1
1594 * page.  It has to be rounded up because the hypervisor's page
1595 * table entry that maps the BAR into the VM can't specify an
1596 * offset within a page.  The invariant is that the hypervisor
1597 * must place any BARs of smaller than page length at the
1598 * beginning of a page.
1599 *
1600 * Return:      Size in bytes of the consumed MMIO space.
1601 */
1602static u64 get_bar_size(u64 bar_val)
1603{
1604        return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1605                        PAGE_SIZE);
1606}
1607
1608/**
1609 * survey_child_resources() - Total all MMIO requirements
1610 * @hbus:       Root PCI bus, as understood by this driver
1611 */
1612static void survey_child_resources(struct hv_pcibus_device *hbus)
1613{
1614        struct hv_pci_dev *hpdev;
1615        resource_size_t bar_size = 0;
1616        unsigned long flags;
1617        struct completion *event;
1618        u64 bar_val;
1619        int i;
1620
1621        /* If nobody is waiting on the answer, don't compute it. */
1622        event = xchg(&hbus->survey_event, NULL);
1623        if (!event)
1624                return;
1625
1626        /* If the answer has already been computed, go with it. */
1627        if (hbus->low_mmio_space || hbus->high_mmio_space) {
1628                complete(event);
1629                return;
1630        }
1631
1632        spin_lock_irqsave(&hbus->device_list_lock, flags);
1633
1634        /*
1635         * Due to an interesting quirk of the PCI spec, all memory regions
1636         * for a child device are a power of 2 in size and aligned in memory,
1637         * so it's sufficient to just add them up without tracking alignment.
1638         */
1639        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1640                for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1641                        if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1642                                dev_err(&hbus->hdev->device,
1643                                        "There's an I/O BAR in this list!\n");
1644
1645                        if (hpdev->probed_bar[i] != 0) {
1646                                /*
1647                                 * A probed BAR has all the upper bits set that
1648                                 * can be changed.
1649                                 */
1650
1651                                bar_val = hpdev->probed_bar[i];
1652                                if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1653                                        bar_val |=
1654                                        ((u64)hpdev->probed_bar[++i] << 32);
1655                                else
1656                                        bar_val |= 0xffffffff00000000ULL;
1657
1658                                bar_size = get_bar_size(bar_val);
1659
1660                                if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1661                                        hbus->high_mmio_space += bar_size;
1662                                else
1663                                        hbus->low_mmio_space += bar_size;
1664                        }
1665                }
1666        }
1667
1668        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1669        complete(event);
1670}
1671
1672/**
1673 * prepopulate_bars() - Fill in BARs with defaults
1674 * @hbus:       Root PCI bus, as understood by this driver
1675 *
1676 * The core PCI driver code seems much, much happier if the BARs
1677 * for a device have values upon first scan. So fill them in.
1678 * The algorithm below works down from large sizes to small,
1679 * attempting to pack the assignments optimally. The assumption,
1680 * enforced in other parts of the code, is that the beginning of
1681 * the memory-mapped I/O space will be aligned on the largest
1682 * BAR size.
1683 */
1684static void prepopulate_bars(struct hv_pcibus_device *hbus)
1685{
1686        resource_size_t high_size = 0;
1687        resource_size_t low_size = 0;
1688        resource_size_t high_base = 0;
1689        resource_size_t low_base = 0;
1690        resource_size_t bar_size;
1691        struct hv_pci_dev *hpdev;
1692        unsigned long flags;
1693        u64 bar_val;
1694        u32 command;
1695        bool high;
1696        int i;
1697
1698        if (hbus->low_mmio_space) {
1699                low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1700                low_base = hbus->low_mmio_res->start;
1701        }
1702
1703        if (hbus->high_mmio_space) {
1704                high_size = 1ULL <<
1705                        (63 - __builtin_clzll(hbus->high_mmio_space));
1706                high_base = hbus->high_mmio_res->start;
1707        }
1708
1709        spin_lock_irqsave(&hbus->device_list_lock, flags);
1710
1711        /*
1712         * Clear the memory enable bit, in case it's already set. This occurs
1713         * in the suspend path of hibernation, where the device is suspended,
1714         * resumed and suspended again: see hibernation_snapshot() and
1715         * hibernation_platform_enter().
1716         *
1717         * If the memory enable bit is already set, Hyper-V sliently ignores
1718         * the below BAR updates, and the related PCI device driver can not
1719         * work, because reading from the device register(s) always returns
1720         * 0xFFFFFFFF.
1721         */
1722        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1723                _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
1724                command &= ~PCI_COMMAND_MEMORY;
1725                _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
1726        }
1727
1728        /* Pick addresses for the BARs. */
1729        do {
1730                list_for_each_entry(hpdev, &hbus->children, list_entry) {
1731                        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1732                                bar_val = hpdev->probed_bar[i];
1733                                if (bar_val == 0)
1734                                        continue;
1735                                high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1736                                if (high) {
1737                                        bar_val |=
1738                                                ((u64)hpdev->probed_bar[i + 1]
1739                                                 << 32);
1740                                } else {
1741                                        bar_val |= 0xffffffffULL << 32;
1742                                }
1743                                bar_size = get_bar_size(bar_val);
1744                                if (high) {
1745                                        if (high_size != bar_size) {
1746                                                i++;
1747                                                continue;
1748                                        }
1749                                        _hv_pcifront_write_config(hpdev,
1750                                                PCI_BASE_ADDRESS_0 + (4 * i),
1751                                                4,
1752                                                (u32)(high_base & 0xffffff00));
1753                                        i++;
1754                                        _hv_pcifront_write_config(hpdev,
1755                                                PCI_BASE_ADDRESS_0 + (4 * i),
1756                                                4, (u32)(high_base >> 32));
1757                                        high_base += bar_size;
1758                                } else {
1759                                        if (low_size != bar_size)
1760                                                continue;
1761                                        _hv_pcifront_write_config(hpdev,
1762                                                PCI_BASE_ADDRESS_0 + (4 * i),
1763                                                4,
1764                                                (u32)(low_base & 0xffffff00));
1765                                        low_base += bar_size;
1766                                }
1767                        }
1768                        if (high_size <= 1 && low_size <= 1) {
1769                                /* Set the memory enable bit. */
1770                                _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1771                                                         &command);
1772                                command |= PCI_COMMAND_MEMORY;
1773                                _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1774                                                          command);
1775                                break;
1776                        }
1777                }
1778
1779                high_size >>= 1;
1780                low_size >>= 1;
1781        }  while (high_size || low_size);
1782
1783        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1784}
1785
1786/*
1787 * Assign entries in sysfs pci slot directory.
1788 *
1789 * Note that this function does not need to lock the children list
1790 * because it is called from pci_devices_present_work which
1791 * is serialized with hv_eject_device_work because they are on the
1792 * same ordered workqueue. Therefore hbus->children list will not change
1793 * even when pci_create_slot sleeps.
1794 */
1795static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
1796{
1797        struct hv_pci_dev *hpdev;
1798        char name[SLOT_NAME_SIZE];
1799        int slot_nr;
1800
1801        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1802                if (hpdev->pci_slot)
1803                        continue;
1804
1805                slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
1806                snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
1807                hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr,
1808                                          name, NULL);
1809                if (IS_ERR(hpdev->pci_slot)) {
1810                        pr_warn("pci_create slot %s failed\n", name);
1811                        hpdev->pci_slot = NULL;
1812                }
1813        }
1814}
1815
1816/*
1817 * Remove entries in sysfs pci slot directory.
1818 */
1819static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
1820{
1821        struct hv_pci_dev *hpdev;
1822
1823        list_for_each_entry(hpdev, &hbus->children, list_entry) {
1824                if (!hpdev->pci_slot)
1825                        continue;
1826                pci_destroy_slot(hpdev->pci_slot);
1827                hpdev->pci_slot = NULL;
1828        }
1829}
1830
1831/*
1832 * Set NUMA node for the devices on the bus
1833 */
1834static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
1835{
1836        struct pci_dev *dev;
1837        struct pci_bus *bus = hbus->pci_bus;
1838        struct hv_pci_dev *hv_dev;
1839
1840        list_for_each_entry(dev, &bus->devices, bus_list) {
1841                hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
1842                if (!hv_dev)
1843                        continue;
1844
1845                if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY)
1846                        set_dev_node(&dev->dev, hv_dev->desc.virtual_numa_node);
1847
1848                put_pcichild(hv_dev);
1849        }
1850}
1851
1852/**
1853 * create_root_hv_pci_bus() - Expose a new root PCI bus
1854 * @hbus:       Root PCI bus, as understood by this driver
1855 *
1856 * Return: 0 on success, -errno on failure
1857 */
1858static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1859{
1860        /* Register the device */
1861        hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1862                                            0, /* bus number is always zero */
1863                                            &hv_pcifront_ops,
1864                                            &hbus->sysdata,
1865                                            &hbus->resources_for_children);
1866        if (!hbus->pci_bus)
1867                return -ENODEV;
1868
1869        hbus->pci_bus->msi = &hbus->msi_chip;
1870        hbus->pci_bus->msi->dev = &hbus->hdev->device;
1871
1872        pci_lock_rescan_remove();
1873        pci_scan_child_bus(hbus->pci_bus);
1874        hv_pci_assign_numa_node(hbus);
1875        pci_bus_assign_resources(hbus->pci_bus);
1876        hv_pci_assign_slots(hbus);
1877        pci_bus_add_devices(hbus->pci_bus);
1878        pci_unlock_rescan_remove();
1879        hbus->state = hv_pcibus_installed;
1880        return 0;
1881}
1882
1883struct q_res_req_compl {
1884        struct completion host_event;
1885        struct hv_pci_dev *hpdev;
1886};
1887
1888/**
1889 * q_resource_requirements() - Query Resource Requirements
1890 * @context:            The completion context.
1891 * @resp:               The response that came from the host.
1892 * @resp_packet_size:   The size in bytes of resp.
1893 *
1894 * This function is invoked on completion of a Query Resource
1895 * Requirements packet.
1896 */
1897static void q_resource_requirements(void *context, struct pci_response *resp,
1898                                    int resp_packet_size)
1899{
1900        struct q_res_req_compl *completion = context;
1901        struct pci_q_res_req_response *q_res_req =
1902                (struct pci_q_res_req_response *)resp;
1903        int i;
1904
1905        if (resp->status < 0) {
1906                dev_err(&completion->hpdev->hbus->hdev->device,
1907                        "query resource requirements failed: %x\n",
1908                        resp->status);
1909        } else {
1910                for (i = 0; i < PCI_STD_NUM_BARS; i++) {
1911                        completion->hpdev->probed_bar[i] =
1912                                q_res_req->probed_bar[i];
1913                }
1914        }
1915
1916        complete(&completion->host_event);
1917}
1918
1919/**
1920 * new_pcichild_device() - Create a new child device
1921 * @hbus:       The internal struct tracking this root PCI bus.
1922 * @desc:       The information supplied so far from the host
1923 *              about the device.
1924 *
1925 * This function creates the tracking structure for a new child
1926 * device and kicks off the process of figuring out what it is.
1927 *
1928 * Return: Pointer to the new tracking struct
1929 */
1930static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1931                struct hv_pcidev_description *desc)
1932{
1933        struct hv_pci_dev *hpdev;
1934        struct pci_child_message *res_req;
1935        struct q_res_req_compl comp_pkt;
1936        struct {
1937                struct pci_packet init_packet;
1938                u8 buffer[sizeof(struct pci_child_message)];
1939        } pkt;
1940        unsigned long flags;
1941        int ret;
1942
1943        hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1944        if (!hpdev)
1945                return NULL;
1946
1947        hpdev->hbus = hbus;
1948
1949        memset(&pkt, 0, sizeof(pkt));
1950        init_completion(&comp_pkt.host_event);
1951        comp_pkt.hpdev = hpdev;
1952        pkt.init_packet.compl_ctxt = &comp_pkt;
1953        pkt.init_packet.completion_func = q_resource_requirements;
1954        res_req = (struct pci_child_message *)&pkt.init_packet.message;
1955        res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1956        res_req->wslot.slot = desc->win_slot.slot;
1957
1958        ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1959                               sizeof(struct pci_child_message),
1960                               (unsigned long)&pkt.init_packet,
1961                               VM_PKT_DATA_INBAND,
1962                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1963        if (ret)
1964                goto error;
1965
1966        if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1967                goto error;
1968
1969        hpdev->desc = *desc;
1970        refcount_set(&hpdev->refs, 1);
1971        get_pcichild(hpdev);
1972        spin_lock_irqsave(&hbus->device_list_lock, flags);
1973
1974        list_add_tail(&hpdev->list_entry, &hbus->children);
1975        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1976        return hpdev;
1977
1978error:
1979        kfree(hpdev);
1980        return NULL;
1981}
1982
1983/**
1984 * get_pcichild_wslot() - Find device from slot
1985 * @hbus:       Root PCI bus, as understood by this driver
1986 * @wslot:      Location on the bus
1987 *
1988 * This function looks up a PCI device and returns the internal
1989 * representation of it.  It acquires a reference on it, so that
1990 * the device won't be deleted while somebody is using it.  The
1991 * caller is responsible for calling put_pcichild() to release
1992 * this reference.
1993 *
1994 * Return:      Internal representation of a PCI device
1995 */
1996static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1997                                             u32 wslot)
1998{
1999        unsigned long flags;
2000        struct hv_pci_dev *iter, *hpdev = NULL;
2001
2002        spin_lock_irqsave(&hbus->device_list_lock, flags);
2003        list_for_each_entry(iter, &hbus->children, list_entry) {
2004                if (iter->desc.win_slot.slot == wslot) {
2005                        hpdev = iter;
2006                        get_pcichild(hpdev);
2007                        break;
2008                }
2009        }
2010        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2011
2012        return hpdev;
2013}
2014
2015/**
2016 * pci_devices_present_work() - Handle new list of child devices
2017 * @work:       Work struct embedded in struct hv_dr_work
2018 *
2019 * "Bus Relations" is the Windows term for "children of this
2020 * bus."  The terminology is preserved here for people trying to
2021 * debug the interaction between Hyper-V and Linux.  This
2022 * function is called when the parent partition reports a list
2023 * of functions that should be observed under this PCI Express
2024 * port (bus).
2025 *
2026 * This function updates the list, and must tolerate being
2027 * called multiple times with the same information.  The typical
2028 * number of child devices is one, with very atypical cases
2029 * involving three or four, so the algorithms used here can be
2030 * simple and inefficient.
2031 *
2032 * It must also treat the omission of a previously observed device as
2033 * notification that the device no longer exists.
2034 *
2035 * Note that this function is serialized with hv_eject_device_work(),
2036 * because both are pushed to the ordered workqueue hbus->wq.
2037 */
2038static void pci_devices_present_work(struct work_struct *work)
2039{
2040        u32 child_no;
2041        bool found;
2042        struct hv_pcidev_description *new_desc;
2043        struct hv_pci_dev *hpdev;
2044        struct hv_pcibus_device *hbus;
2045        struct list_head removed;
2046        struct hv_dr_work *dr_wrk;
2047        struct hv_dr_state *dr = NULL;
2048        unsigned long flags;
2049
2050        dr_wrk = container_of(work, struct hv_dr_work, wrk);
2051        hbus = dr_wrk->bus;
2052        kfree(dr_wrk);
2053
2054        INIT_LIST_HEAD(&removed);
2055
2056        /* Pull this off the queue and process it if it was the last one. */
2057        spin_lock_irqsave(&hbus->device_list_lock, flags);
2058        while (!list_empty(&hbus->dr_list)) {
2059                dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2060                                      list_entry);
2061                list_del(&dr->list_entry);
2062
2063                /* Throw this away if the list still has stuff in it. */
2064                if (!list_empty(&hbus->dr_list)) {
2065                        kfree(dr);
2066                        continue;
2067                }
2068        }
2069        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2070
2071        if (!dr) {
2072                put_hvpcibus(hbus);
2073                return;
2074        }
2075
2076        /* First, mark all existing children as reported missing. */
2077        spin_lock_irqsave(&hbus->device_list_lock, flags);
2078        list_for_each_entry(hpdev, &hbus->children, list_entry) {
2079                hpdev->reported_missing = true;
2080        }
2081        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2082
2083        /* Next, add back any reported devices. */
2084        for (child_no = 0; child_no < dr->device_count; child_no++) {
2085                found = false;
2086                new_desc = &dr->func[child_no];
2087
2088                spin_lock_irqsave(&hbus->device_list_lock, flags);
2089                list_for_each_entry(hpdev, &hbus->children, list_entry) {
2090                        if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2091                            (hpdev->desc.v_id == new_desc->v_id) &&
2092                            (hpdev->desc.d_id == new_desc->d_id) &&
2093                            (hpdev->desc.ser == new_desc->ser)) {
2094                                hpdev->reported_missing = false;
2095                                found = true;
2096                        }
2097                }
2098                spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2099
2100                if (!found) {
2101                        hpdev = new_pcichild_device(hbus, new_desc);
2102                        if (!hpdev)
2103                                dev_err(&hbus->hdev->device,
2104                                        "couldn't record a child device.\n");
2105                }
2106        }
2107
2108        /* Move missing children to a list on the stack. */
2109        spin_lock_irqsave(&hbus->device_list_lock, flags);
2110        do {
2111                found = false;
2112                list_for_each_entry(hpdev, &hbus->children, list_entry) {
2113                        if (hpdev->reported_missing) {
2114                                found = true;
2115                                put_pcichild(hpdev);
2116                                list_move_tail(&hpdev->list_entry, &removed);
2117                                break;
2118                        }
2119                }
2120        } while (found);
2121        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2122
2123        /* Delete everything that should no longer exist. */
2124        while (!list_empty(&removed)) {
2125                hpdev = list_first_entry(&removed, struct hv_pci_dev,
2126                                         list_entry);
2127                list_del(&hpdev->list_entry);
2128
2129                if (hpdev->pci_slot)
2130                        pci_destroy_slot(hpdev->pci_slot);
2131
2132                put_pcichild(hpdev);
2133        }
2134
2135        switch (hbus->state) {
2136        case hv_pcibus_installed:
2137                /*
2138                 * Tell the core to rescan bus
2139                 * because there may have been changes.
2140                 */
2141                pci_lock_rescan_remove();
2142                pci_scan_child_bus(hbus->pci_bus);
2143                hv_pci_assign_numa_node(hbus);
2144                hv_pci_assign_slots(hbus);
2145                pci_unlock_rescan_remove();
2146                break;
2147
2148        case hv_pcibus_init:
2149        case hv_pcibus_probed:
2150                survey_child_resources(hbus);
2151                break;
2152
2153        default:
2154                break;
2155        }
2156
2157        put_hvpcibus(hbus);
2158        kfree(dr);
2159}
2160
2161/**
2162 * hv_pci_start_relations_work() - Queue work to start device discovery
2163 * @hbus:       Root PCI bus, as understood by this driver
2164 * @dr:         The list of children returned from host
2165 *
2166 * Return:  0 on success, -errno on failure
2167 */
2168static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2169                                       struct hv_dr_state *dr)
2170{
2171        struct hv_dr_work *dr_wrk;
2172        unsigned long flags;
2173        bool pending_dr;
2174
2175        if (hbus->state == hv_pcibus_removing) {
2176                dev_info(&hbus->hdev->device,
2177                         "PCI VMBus BUS_RELATIONS: ignored\n");
2178                return -ENOENT;
2179        }
2180
2181        dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2182        if (!dr_wrk)
2183                return -ENOMEM;
2184
2185        INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2186        dr_wrk->bus = hbus;
2187
2188        spin_lock_irqsave(&hbus->device_list_lock, flags);
2189        /*
2190         * If pending_dr is true, we have already queued a work,
2191         * which will see the new dr. Otherwise, we need to
2192         * queue a new work.
2193         */
2194        pending_dr = !list_empty(&hbus->dr_list);
2195        list_add_tail(&dr->list_entry, &hbus->dr_list);
2196        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2197
2198        if (pending_dr) {
2199                kfree(dr_wrk);
2200        } else {
2201                get_hvpcibus(hbus);
2202                queue_work(hbus->wq, &dr_wrk->wrk);
2203        }
2204
2205        return 0;
2206}
2207
2208/**
2209 * hv_pci_devices_present() - Handle list of new children
2210 * @hbus:      Root PCI bus, as understood by this driver
2211 * @relations: Packet from host listing children
2212 *
2213 * Process a new list of devices on the bus. The list of devices is
2214 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2215 * whenever a new list of devices for this bus appears.
2216 */
2217static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2218                                   struct pci_bus_relations *relations)
2219{
2220        struct hv_dr_state *dr;
2221        int i;
2222
2223        dr = kzalloc(struct_size(dr, func, relations->device_count),
2224                     GFP_NOWAIT);
2225        if (!dr)
2226                return;
2227
2228        dr->device_count = relations->device_count;
2229        for (i = 0; i < dr->device_count; i++) {
2230                dr->func[i].v_id = relations->func[i].v_id;
2231                dr->func[i].d_id = relations->func[i].d_id;
2232                dr->func[i].rev = relations->func[i].rev;
2233                dr->func[i].prog_intf = relations->func[i].prog_intf;
2234                dr->func[i].subclass = relations->func[i].subclass;
2235                dr->func[i].base_class = relations->func[i].base_class;
2236                dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2237                dr->func[i].win_slot = relations->func[i].win_slot;
2238                dr->func[i].ser = relations->func[i].ser;
2239        }
2240
2241        if (hv_pci_start_relations_work(hbus, dr))
2242                kfree(dr);
2243}
2244
2245/**
2246 * hv_pci_devices_present2() - Handle list of new children
2247 * @hbus:       Root PCI bus, as understood by this driver
2248 * @relations:  Packet from host listing children
2249 *
2250 * This function is the v2 version of hv_pci_devices_present()
2251 */
2252static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2253                                    struct pci_bus_relations2 *relations)
2254{
2255        struct hv_dr_state *dr;
2256        int i;
2257
2258        dr = kzalloc(struct_size(dr, func, relations->device_count),
2259                     GFP_NOWAIT);
2260        if (!dr)
2261                return;
2262
2263        dr->device_count = relations->device_count;
2264        for (i = 0; i < dr->device_count; i++) {
2265                dr->func[i].v_id = relations->func[i].v_id;
2266                dr->func[i].d_id = relations->func[i].d_id;
2267                dr->func[i].rev = relations->func[i].rev;
2268                dr->func[i].prog_intf = relations->func[i].prog_intf;
2269                dr->func[i].subclass = relations->func[i].subclass;
2270                dr->func[i].base_class = relations->func[i].base_class;
2271                dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2272                dr->func[i].win_slot = relations->func[i].win_slot;
2273                dr->func[i].ser = relations->func[i].ser;
2274                dr->func[i].flags = relations->func[i].flags;
2275                dr->func[i].virtual_numa_node =
2276                        relations->func[i].virtual_numa_node;
2277        }
2278
2279        if (hv_pci_start_relations_work(hbus, dr))
2280                kfree(dr);
2281}
2282
2283/**
2284 * hv_eject_device_work() - Asynchronously handles ejection
2285 * @work:       Work struct embedded in internal device struct
2286 *
2287 * This function handles ejecting a device.  Windows will
2288 * attempt to gracefully eject a device, waiting 60 seconds to
2289 * hear back from the guest OS that this completed successfully.
2290 * If this timer expires, the device will be forcibly removed.
2291 */
2292static void hv_eject_device_work(struct work_struct *work)
2293{
2294        struct pci_eject_response *ejct_pkt;
2295        struct hv_pcibus_device *hbus;
2296        struct hv_pci_dev *hpdev;
2297        struct pci_dev *pdev;
2298        unsigned long flags;
2299        int wslot;
2300        struct {
2301                struct pci_packet pkt;
2302                u8 buffer[sizeof(struct pci_eject_response)];
2303        } ctxt;
2304
2305        hpdev = container_of(work, struct hv_pci_dev, wrk);
2306        hbus = hpdev->hbus;
2307
2308        WARN_ON(hpdev->state != hv_pcichild_ejecting);
2309
2310        /*
2311         * Ejection can come before or after the PCI bus has been set up, so
2312         * attempt to find it and tear down the bus state, if it exists.  This
2313         * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2314         * because hbus->pci_bus may not exist yet.
2315         */
2316        wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2317        pdev = pci_get_domain_bus_and_slot(hbus->sysdata.domain, 0, wslot);
2318        if (pdev) {
2319                pci_lock_rescan_remove();
2320                pci_stop_and_remove_bus_device(pdev);
2321                pci_dev_put(pdev);
2322                pci_unlock_rescan_remove();
2323        }
2324
2325        spin_lock_irqsave(&hbus->device_list_lock, flags);
2326        list_del(&hpdev->list_entry);
2327        spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2328
2329        if (hpdev->pci_slot)
2330                pci_destroy_slot(hpdev->pci_slot);
2331
2332        memset(&ctxt, 0, sizeof(ctxt));
2333        ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2334        ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2335        ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2336        vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2337                         sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
2338                         VM_PKT_DATA_INBAND, 0);
2339
2340        /* For the get_pcichild() in hv_pci_eject_device() */
2341        put_pcichild(hpdev);
2342        /* For the two refs got in new_pcichild_device() */
2343        put_pcichild(hpdev);
2344        put_pcichild(hpdev);
2345        /* hpdev has been freed. Do not use it any more. */
2346
2347        put_hvpcibus(hbus);
2348}
2349
2350/**
2351 * hv_pci_eject_device() - Handles device ejection
2352 * @hpdev:      Internal device tracking struct
2353 *
2354 * This function is invoked when an ejection packet arrives.  It
2355 * just schedules work so that we don't re-enter the packet
2356 * delivery code handling the ejection.
2357 */
2358static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2359{
2360        struct hv_pcibus_device *hbus = hpdev->hbus;
2361        struct hv_device *hdev = hbus->hdev;
2362
2363        if (hbus->state == hv_pcibus_removing) {
2364                dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2365                return;
2366        }
2367
2368        hpdev->state = hv_pcichild_ejecting;
2369        get_pcichild(hpdev);
2370        INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2371        get_hvpcibus(hbus);
2372        queue_work(hbus->wq, &hpdev->wrk);
2373}
2374
2375/**
2376 * hv_pci_onchannelcallback() - Handles incoming packets
2377 * @context:    Internal bus tracking struct
2378 *
2379 * This function is invoked whenever the host sends a packet to
2380 * this channel (which is private to this root PCI bus).
2381 */
2382static void hv_pci_onchannelcallback(void *context)
2383{
2384        const int packet_size = 0x100;
2385        int ret;
2386        struct hv_pcibus_device *hbus = context;
2387        u32 bytes_recvd;
2388        u64 req_id;
2389        struct vmpacket_descriptor *desc;
2390        unsigned char *buffer;
2391        int bufferlen = packet_size;
2392        struct pci_packet *comp_packet;
2393        struct pci_response *response;
2394        struct pci_incoming_message *new_message;
2395        struct pci_bus_relations *bus_rel;
2396        struct pci_bus_relations2 *bus_rel2;
2397        struct pci_dev_inval_block *inval;
2398        struct pci_dev_incoming *dev_message;
2399        struct hv_pci_dev *hpdev;
2400
2401        buffer = kmalloc(bufferlen, GFP_ATOMIC);
2402        if (!buffer)
2403                return;
2404
2405        while (1) {
2406                ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
2407                                           bufferlen, &bytes_recvd, &req_id);
2408
2409                if (ret == -ENOBUFS) {
2410                        kfree(buffer);
2411                        /* Handle large packet */
2412                        bufferlen = bytes_recvd;
2413                        buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2414                        if (!buffer)
2415                                return;
2416                        continue;
2417                }
2418
2419                /* Zero length indicates there are no more packets. */
2420                if (ret || !bytes_recvd)
2421                        break;
2422
2423                /*
2424                 * All incoming packets must be at least as large as a
2425                 * response.
2426                 */
2427                if (bytes_recvd <= sizeof(struct pci_response))
2428                        continue;
2429                desc = (struct vmpacket_descriptor *)buffer;
2430
2431                switch (desc->type) {
2432                case VM_PKT_COMP:
2433
2434                        /*
2435                         * The host is trusted, and thus it's safe to interpret
2436                         * this transaction ID as a pointer.
2437                         */
2438                        comp_packet = (struct pci_packet *)req_id;
2439                        response = (struct pci_response *)buffer;
2440                        comp_packet->completion_func(comp_packet->compl_ctxt,
2441                                                     response,
2442                                                     bytes_recvd);
2443                        break;
2444
2445                case VM_PKT_DATA_INBAND:
2446
2447                        new_message = (struct pci_incoming_message *)buffer;
2448                        switch (new_message->message_type.type) {
2449                        case PCI_BUS_RELATIONS:
2450
2451                                bus_rel = (struct pci_bus_relations *)buffer;
2452                                if (bytes_recvd <
2453                                        struct_size(bus_rel, func,
2454                                                    bus_rel->device_count)) {
2455                                        dev_err(&hbus->hdev->device,
2456                                                "bus relations too small\n");
2457                                        break;
2458                                }
2459
2460                                hv_pci_devices_present(hbus, bus_rel);
2461                                break;
2462
2463                        case PCI_BUS_RELATIONS2:
2464
2465                                bus_rel2 = (struct pci_bus_relations2 *)buffer;
2466                                if (bytes_recvd <
2467                                        struct_size(bus_rel2, func,
2468                                                    bus_rel2->device_count)) {
2469                                        dev_err(&hbus->hdev->device,
2470                                                "bus relations v2 too small\n");
2471                                        break;
2472                                }
2473
2474                                hv_pci_devices_present2(hbus, bus_rel2);
2475                                break;
2476
2477                        case PCI_EJECT:
2478
2479                                dev_message = (struct pci_dev_incoming *)buffer;
2480                                hpdev = get_pcichild_wslot(hbus,
2481                                                      dev_message->wslot.slot);
2482                                if (hpdev) {
2483                                        hv_pci_eject_device(hpdev);
2484                                        put_pcichild(hpdev);
2485                                }
2486                                break;
2487
2488                        case PCI_INVALIDATE_BLOCK:
2489
2490                                inval = (struct pci_dev_inval_block *)buffer;
2491                                hpdev = get_pcichild_wslot(hbus,
2492                                                           inval->wslot.slot);
2493                                if (hpdev) {
2494                                        if (hpdev->block_invalidate) {
2495                                                hpdev->block_invalidate(
2496                                                    hpdev->invalidate_context,
2497                                                    inval->block_mask);
2498                                        }
2499                                        put_pcichild(hpdev);
2500                                }
2501                                break;
2502
2503                        default:
2504                                dev_warn(&hbus->hdev->device,
2505                                        "Unimplemented protocol message %x\n",
2506                                        new_message->message_type.type);
2507                                break;
2508                        }
2509                        break;
2510
2511                default:
2512                        dev_err(&hbus->hdev->device,
2513                                "unhandled packet type %d, tid %llx len %d\n",
2514                                desc->type, req_id, bytes_recvd);
2515                        break;
2516                }
2517        }
2518
2519        kfree(buffer);
2520}
2521
2522/**
2523 * hv_pci_protocol_negotiation() - Set up protocol
2524 * @hdev:               VMBus's tracking struct for this root PCI bus.
2525 * @version:            Array of supported channel protocol versions in
2526 *                      the order of probing - highest go first.
2527 * @num_version:        Number of elements in the version array.
2528 *
2529 * This driver is intended to support running on Windows 10
2530 * (server) and later versions. It will not run on earlier
2531 * versions, as they assume that many of the operations which
2532 * Linux needs accomplished with a spinlock held were done via
2533 * asynchronous messaging via VMBus.  Windows 10 increases the
2534 * surface area of PCI emulation so that these actions can take
2535 * place by suspending a virtual processor for their duration.
2536 *
2537 * This function negotiates the channel protocol version,
2538 * failing if the host doesn't support the necessary protocol
2539 * level.
2540 */
2541static int hv_pci_protocol_negotiation(struct hv_device *hdev,
2542                                       enum pci_protocol_version_t version[],
2543                                       int num_version)
2544{
2545        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2546        struct pci_version_request *version_req;
2547        struct hv_pci_compl comp_pkt;
2548        struct pci_packet *pkt;
2549        int ret;
2550        int i;
2551
2552        /*
2553         * Initiate the handshake with the host and negotiate
2554         * a version that the host can support. We start with the
2555         * highest version number and go down if the host cannot
2556         * support it.
2557         */
2558        pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2559        if (!pkt)
2560                return -ENOMEM;
2561
2562        init_completion(&comp_pkt.host_event);
2563        pkt->completion_func = hv_pci_generic_compl;
2564        pkt->compl_ctxt = &comp_pkt;
2565        version_req = (struct pci_version_request *)&pkt->message;
2566        version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2567
2568        for (i = 0; i < num_version; i++) {
2569                version_req->protocol_version = version[i];
2570                ret = vmbus_sendpacket(hdev->channel, version_req,
2571                                sizeof(struct pci_version_request),
2572                                (unsigned long)pkt, VM_PKT_DATA_INBAND,
2573                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2574                if (!ret)
2575                        ret = wait_for_response(hdev, &comp_pkt.host_event);
2576
2577                if (ret) {
2578                        dev_err(&hdev->device,
2579                                "PCI Pass-through VSP failed to request version: %d",
2580                                ret);
2581                        goto exit;
2582                }
2583
2584                if (comp_pkt.completion_status >= 0) {
2585                        hbus->protocol_version = version[i];
2586                        dev_info(&hdev->device,
2587                                "PCI VMBus probing: Using version %#x\n",
2588                                hbus->protocol_version);
2589                        goto exit;
2590                }
2591
2592                if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2593                        dev_err(&hdev->device,
2594                                "PCI Pass-through VSP failed version request: %#x",
2595                                comp_pkt.completion_status);
2596                        ret = -EPROTO;
2597                        goto exit;
2598                }
2599
2600                reinit_completion(&comp_pkt.host_event);
2601        }
2602
2603        dev_err(&hdev->device,
2604                "PCI pass-through VSP failed to find supported version");
2605        ret = -EPROTO;
2606
2607exit:
2608        kfree(pkt);
2609        return ret;
2610}
2611
2612/**
2613 * hv_pci_free_bridge_windows() - Release memory regions for the
2614 * bus
2615 * @hbus:       Root PCI bus, as understood by this driver
2616 */
2617static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2618{
2619        /*
2620         * Set the resources back to the way they looked when they
2621         * were allocated by setting IORESOURCE_BUSY again.
2622         */
2623
2624        if (hbus->low_mmio_space && hbus->low_mmio_res) {
2625                hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2626                vmbus_free_mmio(hbus->low_mmio_res->start,
2627                                resource_size(hbus->low_mmio_res));
2628        }
2629
2630        if (hbus->high_mmio_space && hbus->high_mmio_res) {
2631                hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2632                vmbus_free_mmio(hbus->high_mmio_res->start,
2633                                resource_size(hbus->high_mmio_res));
2634        }
2635}
2636
2637/**
2638 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2639 * for the bus
2640 * @hbus:       Root PCI bus, as understood by this driver
2641 *
2642 * This function calls vmbus_allocate_mmio(), which is itself a
2643 * bit of a compromise.  Ideally, we might change the pnp layer
2644 * in the kernel such that it comprehends either PCI devices
2645 * which are "grandchildren of ACPI," with some intermediate bus
2646 * node (in this case, VMBus) or change it such that it
2647 * understands VMBus.  The pnp layer, however, has been declared
2648 * deprecated, and not subject to change.
2649 *
2650 * The workaround, implemented here, is to ask VMBus to allocate
2651 * MMIO space for this bus.  VMBus itself knows which ranges are
2652 * appropriate by looking at its own ACPI objects.  Then, after
2653 * these ranges are claimed, they're modified to look like they
2654 * would have looked if the ACPI and pnp code had allocated
2655 * bridge windows.  These descriptors have to exist in this form
2656 * in order to satisfy the code which will get invoked when the
2657 * endpoint PCI function driver calls request_mem_region() or
2658 * request_mem_region_exclusive().
2659 *
2660 * Return: 0 on success, -errno on failure
2661 */
2662static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2663{
2664        resource_size_t align;
2665        int ret;
2666
2667        if (hbus->low_mmio_space) {
2668                align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2669                ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2670                                          (u64)(u32)0xffffffff,
2671                                          hbus->low_mmio_space,
2672                                          align, false);
2673                if (ret) {
2674                        dev_err(&hbus->hdev->device,
2675                                "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2676                                hbus->low_mmio_space);
2677                        return ret;
2678                }
2679
2680                /* Modify this resource to become a bridge window. */
2681                hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2682                hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2683                pci_add_resource(&hbus->resources_for_children,
2684                                 hbus->low_mmio_res);
2685        }
2686
2687        if (hbus->high_mmio_space) {
2688                align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2689                ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2690                                          0x100000000, -1,
2691                                          hbus->high_mmio_space, align,
2692                                          false);
2693                if (ret) {
2694                        dev_err(&hbus->hdev->device,
2695                                "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2696                                hbus->high_mmio_space);
2697                        goto release_low_mmio;
2698                }
2699
2700                /* Modify this resource to become a bridge window. */
2701                hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2702                hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2703                pci_add_resource(&hbus->resources_for_children,
2704                                 hbus->high_mmio_res);
2705        }
2706
2707        return 0;
2708
2709release_low_mmio:
2710        if (hbus->low_mmio_res) {
2711                vmbus_free_mmio(hbus->low_mmio_res->start,
2712                                resource_size(hbus->low_mmio_res));
2713        }
2714
2715        return ret;
2716}
2717
2718/**
2719 * hv_allocate_config_window() - Find MMIO space for PCI Config
2720 * @hbus:       Root PCI bus, as understood by this driver
2721 *
2722 * This function claims memory-mapped I/O space for accessing
2723 * configuration space for the functions on this bus.
2724 *
2725 * Return: 0 on success, -errno on failure
2726 */
2727static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2728{
2729        int ret;
2730
2731        /*
2732         * Set up a region of MMIO space to use for accessing configuration
2733         * space.
2734         */
2735        ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2736                                  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2737        if (ret)
2738                return ret;
2739
2740        /*
2741         * vmbus_allocate_mmio() gets used for allocating both device endpoint
2742         * resource claims (those which cannot be overlapped) and the ranges
2743         * which are valid for the children of this bus, which are intended
2744         * to be overlapped by those children.  Set the flag on this claim
2745         * meaning that this region can't be overlapped.
2746         */
2747
2748        hbus->mem_config->flags |= IORESOURCE_BUSY;
2749
2750        return 0;
2751}
2752
2753static void hv_free_config_window(struct hv_pcibus_device *hbus)
2754{
2755        vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2756}
2757
2758static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
2759
2760/**
2761 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2762 * @hdev:       VMBus's tracking struct for this root PCI bus
2763 *
2764 * Return: 0 on success, -errno on failure
2765 */
2766static int hv_pci_enter_d0(struct hv_device *hdev)
2767{
2768        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2769        struct pci_bus_d0_entry *d0_entry;
2770        struct hv_pci_compl comp_pkt;
2771        struct pci_packet *pkt;
2772        int ret;
2773
2774        /*
2775         * Tell the host that the bus is ready to use, and moved into the
2776         * powered-on state.  This includes telling the host which region
2777         * of memory-mapped I/O space has been chosen for configuration space
2778         * access.
2779         */
2780        pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2781        if (!pkt)
2782                return -ENOMEM;
2783
2784        init_completion(&comp_pkt.host_event);
2785        pkt->completion_func = hv_pci_generic_compl;
2786        pkt->compl_ctxt = &comp_pkt;
2787        d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2788        d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2789        d0_entry->mmio_base = hbus->mem_config->start;
2790
2791        ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2792                               (unsigned long)pkt, VM_PKT_DATA_INBAND,
2793                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2794        if (!ret)
2795                ret = wait_for_response(hdev, &comp_pkt.host_event);
2796
2797        if (ret)
2798                goto exit;
2799
2800        if (comp_pkt.completion_status < 0) {
2801                dev_err(&hdev->device,
2802                        "PCI Pass-through VSP failed D0 Entry with status %x\n",
2803                        comp_pkt.completion_status);
2804                ret = -EPROTO;
2805                goto exit;
2806        }
2807
2808        ret = 0;
2809
2810exit:
2811        kfree(pkt);
2812        return ret;
2813}
2814
2815/**
2816 * hv_pci_query_relations() - Ask host to send list of child
2817 * devices
2818 * @hdev:       VMBus's tracking struct for this root PCI bus
2819 *
2820 * Return: 0 on success, -errno on failure
2821 */
2822static int hv_pci_query_relations(struct hv_device *hdev)
2823{
2824        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2825        struct pci_message message;
2826        struct completion comp;
2827        int ret;
2828
2829        /* Ask the host to send along the list of child devices */
2830        init_completion(&comp);
2831        if (cmpxchg(&hbus->survey_event, NULL, &comp))
2832                return -ENOTEMPTY;
2833
2834        memset(&message, 0, sizeof(message));
2835        message.type = PCI_QUERY_BUS_RELATIONS;
2836
2837        ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2838                               0, VM_PKT_DATA_INBAND, 0);
2839        if (!ret)
2840                ret = wait_for_response(hdev, &comp);
2841
2842        return ret;
2843}
2844
2845/**
2846 * hv_send_resources_allocated() - Report local resource choices
2847 * @hdev:       VMBus's tracking struct for this root PCI bus
2848 *
2849 * The host OS is expecting to be sent a request as a message
2850 * which contains all the resources that the device will use.
2851 * The response contains those same resources, "translated"
2852 * which is to say, the values which should be used by the
2853 * hardware, when it delivers an interrupt.  (MMIO resources are
2854 * used in local terms.)  This is nice for Windows, and lines up
2855 * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2856 * is deeply expecting to scan an emulated PCI configuration
2857 * space.  So this message is sent here only to drive the state
2858 * machine on the host forward.
2859 *
2860 * Return: 0 on success, -errno on failure
2861 */
2862static int hv_send_resources_allocated(struct hv_device *hdev)
2863{
2864        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2865        struct pci_resources_assigned *res_assigned;
2866        struct pci_resources_assigned2 *res_assigned2;
2867        struct hv_pci_compl comp_pkt;
2868        struct hv_pci_dev *hpdev;
2869        struct pci_packet *pkt;
2870        size_t size_res;
2871        int wslot;
2872        int ret;
2873
2874        size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
2875                        ? sizeof(*res_assigned) : sizeof(*res_assigned2);
2876
2877        pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2878        if (!pkt)
2879                return -ENOMEM;
2880
2881        ret = 0;
2882
2883        for (wslot = 0; wslot < 256; wslot++) {
2884                hpdev = get_pcichild_wslot(hbus, wslot);
2885                if (!hpdev)
2886                        continue;
2887
2888                memset(pkt, 0, sizeof(*pkt) + size_res);
2889                init_completion(&comp_pkt.host_event);
2890                pkt->completion_func = hv_pci_generic_compl;
2891                pkt->compl_ctxt = &comp_pkt;
2892
2893                if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2894                        res_assigned =
2895                                (struct pci_resources_assigned *)&pkt->message;
2896                        res_assigned->message_type.type =
2897                                PCI_RESOURCES_ASSIGNED;
2898                        res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2899                } else {
2900                        res_assigned2 =
2901                                (struct pci_resources_assigned2 *)&pkt->message;
2902                        res_assigned2->message_type.type =
2903                                PCI_RESOURCES_ASSIGNED2;
2904                        res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2905                }
2906                put_pcichild(hpdev);
2907
2908                ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2909                                size_res, (unsigned long)pkt,
2910                                VM_PKT_DATA_INBAND,
2911                                VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2912                if (!ret)
2913                        ret = wait_for_response(hdev, &comp_pkt.host_event);
2914                if (ret)
2915                        break;
2916
2917                if (comp_pkt.completion_status < 0) {
2918                        ret = -EPROTO;
2919                        dev_err(&hdev->device,
2920                                "resource allocated returned 0x%x",
2921                                comp_pkt.completion_status);
2922                        break;
2923                }
2924
2925                hbus->wslot_res_allocated = wslot;
2926        }
2927
2928        kfree(pkt);
2929        return ret;
2930}
2931
2932/**
2933 * hv_send_resources_released() - Report local resources
2934 * released
2935 * @hdev:       VMBus's tracking struct for this root PCI bus
2936 *
2937 * Return: 0 on success, -errno on failure
2938 */
2939static int hv_send_resources_released(struct hv_device *hdev)
2940{
2941        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2942        struct pci_child_message pkt;
2943        struct hv_pci_dev *hpdev;
2944        int wslot;
2945        int ret;
2946
2947        for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
2948                hpdev = get_pcichild_wslot(hbus, wslot);
2949                if (!hpdev)
2950                        continue;
2951
2952                memset(&pkt, 0, sizeof(pkt));
2953                pkt.message_type.type = PCI_RESOURCES_RELEASED;
2954                pkt.wslot.slot = hpdev->desc.win_slot.slot;
2955
2956                put_pcichild(hpdev);
2957
2958                ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2959                                       VM_PKT_DATA_INBAND, 0);
2960                if (ret)
2961                        return ret;
2962
2963                hbus->wslot_res_allocated = wslot - 1;
2964        }
2965
2966        hbus->wslot_res_allocated = -1;
2967
2968        return 0;
2969}
2970
2971static void get_hvpcibus(struct hv_pcibus_device *hbus)
2972{
2973        refcount_inc(&hbus->remove_lock);
2974}
2975
2976static void put_hvpcibus(struct hv_pcibus_device *hbus)
2977{
2978        if (refcount_dec_and_test(&hbus->remove_lock))
2979                complete(&hbus->remove_event);
2980}
2981
2982#define HVPCI_DOM_MAP_SIZE (64 * 1024)
2983static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
2984
2985/*
2986 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2987 * as invalid for passthrough PCI devices of this driver.
2988 */
2989#define HVPCI_DOM_INVALID 0
2990
2991/**
2992 * hv_get_dom_num() - Get a valid PCI domain number
2993 * Check if the PCI domain number is in use, and return another number if
2994 * it is in use.
2995 *
2996 * @dom: Requested domain number
2997 *
2998 * return: domain number on success, HVPCI_DOM_INVALID on failure
2999 */
3000static u16 hv_get_dom_num(u16 dom)
3001{
3002        unsigned int i;
3003
3004        if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3005                return dom;
3006
3007        for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3008                if (test_and_set_bit(i, hvpci_dom_map) == 0)
3009                        return i;
3010        }
3011
3012        return HVPCI_DOM_INVALID;
3013}
3014
3015/**
3016 * hv_put_dom_num() - Mark the PCI domain number as free
3017 * @dom: Domain number to be freed
3018 */
3019static void hv_put_dom_num(u16 dom)
3020{
3021        clear_bit(dom, hvpci_dom_map);
3022}
3023
3024/**
3025 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3026 * @hdev:       VMBus's tracking struct for this root PCI bus
3027 * @dev_id:     Identifies the device itself
3028 *
3029 * Return: 0 on success, -errno on failure
3030 */
3031static int hv_pci_probe(struct hv_device *hdev,
3032                        const struct hv_vmbus_device_id *dev_id)
3033{
3034        struct hv_pcibus_device *hbus;
3035        u16 dom_req, dom;
3036        char *name;
3037        bool enter_d0_retry = true;
3038        int ret;
3039
3040        /*
3041         * hv_pcibus_device contains the hypercall arguments for retargeting in
3042         * hv_irq_unmask(). Those must not cross a page boundary.
3043         */
3044        BUILD_BUG_ON(sizeof(*hbus) > HV_HYP_PAGE_SIZE);
3045
3046        /*
3047         * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3048         * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3049         * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3050         * alignment of hbus is important because hbus's field
3051         * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3052         *
3053         * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3054         * allocated by the latter is not tracked and scanned by kmemleak, and
3055         * hence kmemleak reports the pointer contained in the hbus buffer
3056         * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3057         * is tracked by hbus->children) as memory leak (false positive).
3058         *
3059         * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3060         * used to allocate the hbus buffer and we can avoid the kmemleak false
3061         * positive by using kmemleak_alloc() and kmemleak_free() to ask
3062         * kmemleak to track and scan the hbus buffer.
3063         */
3064        hbus = kzalloc(HV_HYP_PAGE_SIZE, GFP_KERNEL);
3065        if (!hbus)
3066                return -ENOMEM;
3067        hbus->state = hv_pcibus_init;
3068        hbus->wslot_res_allocated = -1;
3069
3070        /*
3071         * The PCI bus "domain" is what is called "segment" in ACPI and other
3072         * specs. Pull it from the instance ID, to get something usually
3073         * unique. In rare cases of collision, we will find out another number
3074         * not in use.
3075         *
3076         * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3077         * together with this guest driver can guarantee that (1) The only
3078         * domain used by Gen1 VMs for something that looks like a physical
3079         * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3080         * (2) There will be no overlap between domains (after fixing possible
3081         * collisions) in the same VM.
3082         */
3083        dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3084        dom = hv_get_dom_num(dom_req);
3085
3086        if (dom == HVPCI_DOM_INVALID) {
3087                dev_err(&hdev->device,
3088                        "Unable to use dom# 0x%hx or other numbers", dom_req);
3089                ret = -EINVAL;
3090                goto free_bus;
3091        }
3092
3093        if (dom != dom_req)
3094                dev_info(&hdev->device,
3095                         "PCI dom# 0x%hx has collision, using 0x%hx",
3096                         dom_req, dom);
3097
3098        hbus->sysdata.domain = dom;
3099
3100        hbus->hdev = hdev;
3101        refcount_set(&hbus->remove_lock, 1);
3102        INIT_LIST_HEAD(&hbus->children);
3103        INIT_LIST_HEAD(&hbus->dr_list);
3104        INIT_LIST_HEAD(&hbus->resources_for_children);
3105        spin_lock_init(&hbus->config_lock);
3106        spin_lock_init(&hbus->device_list_lock);
3107        spin_lock_init(&hbus->retarget_msi_interrupt_lock);
3108        init_completion(&hbus->remove_event);
3109        hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3110                                           hbus->sysdata.domain);
3111        if (!hbus->wq) {
3112                ret = -ENOMEM;
3113                goto free_dom;
3114        }
3115
3116        ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3117                         hv_pci_onchannelcallback, hbus);
3118        if (ret)
3119                goto destroy_wq;
3120
3121        hv_set_drvdata(hdev, hbus);
3122
3123        ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3124                                          ARRAY_SIZE(pci_protocol_versions));
3125        if (ret)
3126                goto close;
3127
3128        ret = hv_allocate_config_window(hbus);
3129        if (ret)
3130                goto close;
3131
3132        hbus->cfg_addr = ioremap(hbus->mem_config->start,
3133                                 PCI_CONFIG_MMIO_LENGTH);
3134        if (!hbus->cfg_addr) {
3135                dev_err(&hdev->device,
3136                        "Unable to map a virtual address for config space\n");
3137                ret = -ENOMEM;
3138                goto free_config;
3139        }
3140
3141        name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3142        if (!name) {
3143                ret = -ENOMEM;
3144                goto unmap;
3145        }
3146
3147        hbus->sysdata.fwnode = irq_domain_alloc_named_fwnode(name);
3148        kfree(name);
3149        if (!hbus->sysdata.fwnode) {
3150                ret = -ENOMEM;
3151                goto unmap;
3152        }
3153
3154        ret = hv_pcie_init_irq_domain(hbus);
3155        if (ret)
3156                goto free_fwnode;
3157
3158retry:
3159        ret = hv_pci_query_relations(hdev);
3160        if (ret)
3161                goto free_irq_domain;
3162
3163        ret = hv_pci_enter_d0(hdev);
3164        /*
3165         * In certain case (Kdump) the pci device of interest was
3166         * not cleanly shut down and resource is still held on host
3167         * side, the host could return invalid device status.
3168         * We need to explicitly request host to release the resource
3169         * and try to enter D0 again.
3170         * Since the hv_pci_bus_exit() call releases structures
3171         * of all its child devices, we need to start the retry from
3172         * hv_pci_query_relations() call, requesting host to send
3173         * the synchronous child device relations message before this
3174         * information is needed in hv_send_resources_allocated()
3175         * call later.
3176         */
3177        if (ret == -EPROTO && enter_d0_retry) {
3178                enter_d0_retry = false;
3179
3180                dev_err(&hdev->device, "Retrying D0 Entry\n");
3181
3182                /*
3183                 * Hv_pci_bus_exit() calls hv_send_resources_released()
3184                 * to free up resources of its child devices.
3185                 * In the kdump kernel we need to set the
3186                 * wslot_res_allocated to 255 so it scans all child
3187                 * devices to release resources allocated in the
3188                 * normal kernel before panic happened.
3189                 */
3190                hbus->wslot_res_allocated = 255;
3191                ret = hv_pci_bus_exit(hdev, true);
3192
3193                if (ret == 0)
3194                        goto retry;
3195
3196                dev_err(&hdev->device,
3197                        "Retrying D0 failed with ret %d\n", ret);
3198        }
3199        if (ret)
3200                goto free_irq_domain;
3201
3202        ret = hv_pci_allocate_bridge_windows(hbus);
3203        if (ret)
3204                goto exit_d0;
3205
3206        ret = hv_send_resources_allocated(hdev);
3207        if (ret)
3208                goto free_windows;
3209
3210        prepopulate_bars(hbus);
3211
3212        hbus->state = hv_pcibus_probed;
3213
3214        ret = create_root_hv_pci_bus(hbus);
3215        if (ret)
3216                goto free_windows;
3217
3218        return 0;
3219
3220free_windows:
3221        hv_pci_free_bridge_windows(hbus);
3222exit_d0:
3223        (void) hv_pci_bus_exit(hdev, true);
3224free_irq_domain:
3225        irq_domain_remove(hbus->irq_domain);
3226free_fwnode:
3227        irq_domain_free_fwnode(hbus->sysdata.fwnode);
3228unmap:
3229        iounmap(hbus->cfg_addr);
3230free_config:
3231        hv_free_config_window(hbus);
3232close:
3233        vmbus_close(hdev->channel);
3234destroy_wq:
3235        destroy_workqueue(hbus->wq);
3236free_dom:
3237        hv_put_dom_num(hbus->sysdata.domain);
3238free_bus:
3239        kfree(hbus);
3240        return ret;
3241}
3242
3243static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3244{
3245        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3246        struct {
3247                struct pci_packet teardown_packet;
3248                u8 buffer[sizeof(struct pci_message)];
3249        } pkt;
3250        struct hv_dr_state *dr;
3251        struct hv_pci_compl comp_pkt;
3252        int ret;
3253
3254        /*
3255         * After the host sends the RESCIND_CHANNEL message, it doesn't
3256         * access the per-channel ringbuffer any longer.
3257         */
3258        if (hdev->channel->rescind)
3259                return 0;
3260
3261        if (!keep_devs) {
3262                /* Delete any children which might still exist. */
3263                dr = kzalloc(sizeof(*dr), GFP_KERNEL);
3264                if (dr && hv_pci_start_relations_work(hbus, dr))
3265                        kfree(dr);
3266        }
3267
3268        ret = hv_send_resources_released(hdev);
3269        if (ret) {
3270                dev_err(&hdev->device,
3271                        "Couldn't send resources released packet(s)\n");
3272                return ret;
3273        }
3274
3275        memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3276        init_completion(&comp_pkt.host_event);
3277        pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3278        pkt.teardown_packet.compl_ctxt = &comp_pkt;
3279        pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3280
3281        ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
3282                               sizeof(struct pci_message),
3283                               (unsigned long)&pkt.teardown_packet,
3284                               VM_PKT_DATA_INBAND,
3285                               VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3286        if (ret)
3287                return ret;
3288
3289        if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0)
3290                return -ETIMEDOUT;
3291
3292        return 0;
3293}
3294
3295/**
3296 * hv_pci_remove() - Remove routine for this VMBus channel
3297 * @hdev:       VMBus's tracking struct for this root PCI bus
3298 *
3299 * Return: 0 on success, -errno on failure
3300 */
3301static int hv_pci_remove(struct hv_device *hdev)
3302{
3303        struct hv_pcibus_device *hbus;
3304        int ret;
3305
3306        hbus = hv_get_drvdata(hdev);
3307        if (hbus->state == hv_pcibus_installed) {
3308                /* Remove the bus from PCI's point of view. */
3309                pci_lock_rescan_remove();
3310                pci_stop_root_bus(hbus->pci_bus);
3311                hv_pci_remove_slots(hbus);
3312                pci_remove_root_bus(hbus->pci_bus);
3313                pci_unlock_rescan_remove();
3314                hbus->state = hv_pcibus_removed;
3315        }
3316
3317        ret = hv_pci_bus_exit(hdev, false);
3318
3319        vmbus_close(hdev->channel);
3320
3321        iounmap(hbus->cfg_addr);
3322        hv_free_config_window(hbus);
3323        pci_free_resource_list(&hbus->resources_for_children);
3324        hv_pci_free_bridge_windows(hbus);
3325        irq_domain_remove(hbus->irq_domain);
3326        irq_domain_free_fwnode(hbus->sysdata.fwnode);
3327        put_hvpcibus(hbus);
3328        wait_for_completion(&hbus->remove_event);
3329        destroy_workqueue(hbus->wq);
3330
3331        hv_put_dom_num(hbus->sysdata.domain);
3332
3333        kfree(hbus);
3334        return ret;
3335}
3336
3337static int hv_pci_suspend(struct hv_device *hdev)
3338{
3339        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3340        enum hv_pcibus_state old_state;
3341        int ret;
3342
3343        /*
3344         * hv_pci_suspend() must make sure there are no pending work items
3345         * before calling vmbus_close(), since it runs in a process context
3346         * as a callback in dpm_suspend().  When it starts to run, the channel
3347         * callback hv_pci_onchannelcallback(), which runs in a tasklet
3348         * context, can be still running concurrently and scheduling new work
3349         * items onto hbus->wq in hv_pci_devices_present() and
3350         * hv_pci_eject_device(), and the work item handlers can access the
3351         * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3352         * the work item handler pci_devices_present_work() ->
3353         * new_pcichild_device() writes to the vmbus channel.
3354         *
3355         * To eliminate the race, hv_pci_suspend() disables the channel
3356         * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3357         * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3358         * it knows that no new work item can be scheduled, and then it flushes
3359         * hbus->wq and safely closes the vmbus channel.
3360         */
3361        tasklet_disable(&hdev->channel->callback_event);
3362
3363        /* Change the hbus state to prevent new work items. */
3364        old_state = hbus->state;
3365        if (hbus->state == hv_pcibus_installed)
3366                hbus->state = hv_pcibus_removing;
3367
3368        tasklet_enable(&hdev->channel->callback_event);
3369
3370        if (old_state != hv_pcibus_installed)
3371                return -EINVAL;
3372
3373        flush_workqueue(hbus->wq);
3374
3375        ret = hv_pci_bus_exit(hdev, true);
3376        if (ret)
3377                return ret;
3378
3379        vmbus_close(hdev->channel);
3380
3381        return 0;
3382}
3383
3384static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3385{
3386        struct msi_desc *entry;
3387        struct irq_data *irq_data;
3388
3389        for_each_pci_msi_entry(entry, pdev) {
3390                irq_data = irq_get_irq_data(entry->irq);
3391                if (WARN_ON_ONCE(!irq_data))
3392                        return -EINVAL;
3393
3394                hv_compose_msi_msg(irq_data, &entry->msg);
3395        }
3396
3397        return 0;
3398}
3399
3400/*
3401 * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
3402 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
3403 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
3404 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
3405 * Table entries.
3406 */
3407static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
3408{
3409        pci_walk_bus(hbus->pci_bus, hv_pci_restore_msi_msg, NULL);
3410}
3411
3412static int hv_pci_resume(struct hv_device *hdev)
3413{
3414        struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3415        enum pci_protocol_version_t version[1];
3416        int ret;
3417
3418        hbus->state = hv_pcibus_init;
3419
3420        ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3421                         hv_pci_onchannelcallback, hbus);
3422        if (ret)
3423                return ret;
3424
3425        /* Only use the version that was in use before hibernation. */
3426        version[0] = hbus->protocol_version;
3427        ret = hv_pci_protocol_negotiation(hdev, version, 1);
3428        if (ret)
3429                goto out;
3430
3431        ret = hv_pci_query_relations(hdev);
3432        if (ret)
3433                goto out;
3434
3435        ret = hv_pci_enter_d0(hdev);
3436        if (ret)
3437                goto out;
3438
3439        ret = hv_send_resources_allocated(hdev);
3440        if (ret)
3441                goto out;
3442
3443        prepopulate_bars(hbus);
3444
3445        hv_pci_restore_msi_state(hbus);
3446
3447        hbus->state = hv_pcibus_installed;
3448        return 0;
3449out:
3450        vmbus_close(hdev->channel);
3451        return ret;
3452}
3453
3454static const struct hv_vmbus_device_id hv_pci_id_table[] = {
3455        /* PCI Pass-through Class ID */
3456        /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3457        { HV_PCIE_GUID, },
3458        { },
3459};
3460
3461MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
3462
3463static struct hv_driver hv_pci_drv = {
3464        .name           = "hv_pci",
3465        .id_table       = hv_pci_id_table,
3466        .probe          = hv_pci_probe,
3467        .remove         = hv_pci_remove,
3468        .suspend        = hv_pci_suspend,
3469        .resume         = hv_pci_resume,
3470};
3471
3472static void __exit exit_hv_pci_drv(void)
3473{
3474        vmbus_driver_unregister(&hv_pci_drv);
3475
3476        hvpci_block_ops.read_block = NULL;
3477        hvpci_block_ops.write_block = NULL;
3478        hvpci_block_ops.reg_blk_invalidate = NULL;
3479}
3480
3481static int __init init_hv_pci_drv(void)
3482{
3483        /* Set the invalid domain number's bit, so it will not be used */
3484        set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
3485
3486        /* Initialize PCI block r/w interface */
3487        hvpci_block_ops.read_block = hv_read_config_block;
3488        hvpci_block_ops.write_block = hv_write_config_block;
3489        hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
3490
3491        return vmbus_driver_register(&hv_pci_drv);
3492}
3493
3494module_init(init_hv_pci_drv);
3495module_exit(exit_hv_pci_drv);
3496
3497MODULE_DESCRIPTION("Hyper-V PCI");
3498MODULE_LICENSE("GPL v2");
3499