linux/drivers/pci/controller/vmd.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Volume Management Device driver
   4 * Copyright (c) 2015, Intel Corporation.
   5 */
   6
   7#include <linux/device.h>
   8#include <linux/interrupt.h>
   9#include <linux/irq.h>
  10#include <linux/kernel.h>
  11#include <linux/module.h>
  12#include <linux/msi.h>
  13#include <linux/pci.h>
  14#include <linux/pci-ecam.h>
  15#include <linux/srcu.h>
  16#include <linux/rculist.h>
  17#include <linux/rcupdate.h>
  18
  19#include <asm/irqdomain.h>
  20#include <asm/device.h>
  21#include <asm/msi.h>
  22
  23#define VMD_CFGBAR      0
  24#define VMD_MEMBAR1     2
  25#define VMD_MEMBAR2     4
  26
  27#define PCI_REG_VMCAP           0x40
  28#define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1)
  29#define PCI_REG_VMCONFIG        0x44
  30#define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3)
  31#define PCI_REG_VMLOCK          0x70
  32#define MB2_SHADOW_EN(vmlock)   (vmlock & 0x2)
  33
  34#define MB2_SHADOW_OFFSET       0x2000
  35#define MB2_SHADOW_SIZE         16
  36
  37enum vmd_features {
  38        /*
  39         * Device may contain registers which hint the physical location of the
  40         * membars, in order to allow proper address translation during
  41         * resource assignment to enable guest virtualization
  42         */
  43        VMD_FEAT_HAS_MEMBAR_SHADOW              = (1 << 0),
  44
  45        /*
  46         * Device may provide root port configuration information which limits
  47         * bus numbering
  48         */
  49        VMD_FEAT_HAS_BUS_RESTRICTIONS           = (1 << 1),
  50
  51        /*
  52         * Device contains physical location shadow registers in
  53         * vendor-specific capability space
  54         */
  55        VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP        = (1 << 2),
  56
  57        /*
  58         * Device may use MSI-X vector 0 for software triggering and will not
  59         * be used for MSI remapping
  60         */
  61        VMD_FEAT_OFFSET_FIRST_VECTOR            = (1 << 3),
  62};
  63
  64/*
  65 * Lock for manipulating VMD IRQ lists.
  66 */
  67static DEFINE_RAW_SPINLOCK(list_lock);
  68
  69/**
  70 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
  71 * @node:       list item for parent traversal.
  72 * @irq:        back pointer to parent.
  73 * @enabled:    true if driver enabled IRQ
  74 * @virq:       the virtual IRQ value provided to the requesting driver.
  75 *
  76 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
  77 * a VMD IRQ using this structure.
  78 */
  79struct vmd_irq {
  80        struct list_head        node;
  81        struct vmd_irq_list     *irq;
  82        bool                    enabled;
  83        unsigned int            virq;
  84};
  85
  86/**
  87 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
  88 * @irq_list:   the list of irq's the VMD one demuxes to.
  89 * @srcu:       SRCU struct for local synchronization.
  90 * @count:      number of child IRQs assigned to this vector; used to track
  91 *              sharing.
  92 */
  93struct vmd_irq_list {
  94        struct list_head        irq_list;
  95        struct srcu_struct      srcu;
  96        unsigned int            count;
  97};
  98
  99struct vmd_dev {
 100        struct pci_dev          *dev;
 101
 102        spinlock_t              cfg_lock;
 103        void __iomem            *cfgbar;
 104
 105        int msix_count;
 106        struct vmd_irq_list     *irqs;
 107
 108        struct pci_sysdata      sysdata;
 109        struct resource         resources[3];
 110        struct irq_domain       *irq_domain;
 111        struct pci_bus          *bus;
 112        u8                      busn_start;
 113        u8                      first_vec;
 114};
 115
 116static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
 117{
 118        return container_of(bus->sysdata, struct vmd_dev, sysdata);
 119}
 120
 121static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
 122                                           struct vmd_irq_list *irqs)
 123{
 124        return irqs - vmd->irqs;
 125}
 126
 127/*
 128 * Drivers managing a device in a VMD domain allocate their own IRQs as before,
 129 * but the MSI entry for the hardware it's driving will be programmed with a
 130 * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
 131 * domain into one of its own, and the VMD driver de-muxes these for the
 132 * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
 133 * and irq_chip to set this up.
 134 */
 135static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
 136{
 137        struct vmd_irq *vmdirq = data->chip_data;
 138        struct vmd_irq_list *irq = vmdirq->irq;
 139        struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
 140
 141        memset(msg, 0, sizeof(*msg));
 142        msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
 143        msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
 144        msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
 145}
 146
 147/*
 148 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
 149 */
 150static void vmd_irq_enable(struct irq_data *data)
 151{
 152        struct vmd_irq *vmdirq = data->chip_data;
 153        unsigned long flags;
 154
 155        raw_spin_lock_irqsave(&list_lock, flags);
 156        WARN_ON(vmdirq->enabled);
 157        list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
 158        vmdirq->enabled = true;
 159        raw_spin_unlock_irqrestore(&list_lock, flags);
 160
 161        data->chip->irq_unmask(data);
 162}
 163
 164static void vmd_irq_disable(struct irq_data *data)
 165{
 166        struct vmd_irq *vmdirq = data->chip_data;
 167        unsigned long flags;
 168
 169        data->chip->irq_mask(data);
 170
 171        raw_spin_lock_irqsave(&list_lock, flags);
 172        if (vmdirq->enabled) {
 173                list_del_rcu(&vmdirq->node);
 174                vmdirq->enabled = false;
 175        }
 176        raw_spin_unlock_irqrestore(&list_lock, flags);
 177}
 178
 179/*
 180 * XXX: Stubbed until we develop acceptable way to not create conflicts with
 181 * other devices sharing the same vector.
 182 */
 183static int vmd_irq_set_affinity(struct irq_data *data,
 184                                const struct cpumask *dest, bool force)
 185{
 186        return -EINVAL;
 187}
 188
 189static struct irq_chip vmd_msi_controller = {
 190        .name                   = "VMD-MSI",
 191        .irq_enable             = vmd_irq_enable,
 192        .irq_disable            = vmd_irq_disable,
 193        .irq_compose_msi_msg    = vmd_compose_msi_msg,
 194        .irq_set_affinity       = vmd_irq_set_affinity,
 195};
 196
 197static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
 198                                     msi_alloc_info_t *arg)
 199{
 200        return 0;
 201}
 202
 203/*
 204 * XXX: We can be even smarter selecting the best IRQ once we solve the
 205 * affinity problem.
 206 */
 207static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
 208{
 209        unsigned long flags;
 210        int i, best;
 211
 212        if (vmd->msix_count == 1 + vmd->first_vec)
 213                return &vmd->irqs[vmd->first_vec];
 214
 215        /*
 216         * White list for fast-interrupt handlers. All others will share the
 217         * "slow" interrupt vector.
 218         */
 219        switch (msi_desc_to_pci_dev(desc)->class) {
 220        case PCI_CLASS_STORAGE_EXPRESS:
 221                break;
 222        default:
 223                return &vmd->irqs[vmd->first_vec];
 224        }
 225
 226        raw_spin_lock_irqsave(&list_lock, flags);
 227        best = vmd->first_vec + 1;
 228        for (i = best; i < vmd->msix_count; i++)
 229                if (vmd->irqs[i].count < vmd->irqs[best].count)
 230                        best = i;
 231        vmd->irqs[best].count++;
 232        raw_spin_unlock_irqrestore(&list_lock, flags);
 233
 234        return &vmd->irqs[best];
 235}
 236
 237static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
 238                        unsigned int virq, irq_hw_number_t hwirq,
 239                        msi_alloc_info_t *arg)
 240{
 241        struct msi_desc *desc = arg->desc;
 242        struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
 243        struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
 244        unsigned int index, vector;
 245
 246        if (!vmdirq)
 247                return -ENOMEM;
 248
 249        INIT_LIST_HEAD(&vmdirq->node);
 250        vmdirq->irq = vmd_next_irq(vmd, desc);
 251        vmdirq->virq = virq;
 252        index = index_from_irqs(vmd, vmdirq->irq);
 253        vector = pci_irq_vector(vmd->dev, index);
 254
 255        irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
 256                            handle_untracked_irq, vmd, NULL);
 257        return 0;
 258}
 259
 260static void vmd_msi_free(struct irq_domain *domain,
 261                        struct msi_domain_info *info, unsigned int virq)
 262{
 263        struct vmd_irq *vmdirq = irq_get_chip_data(virq);
 264        unsigned long flags;
 265
 266        synchronize_srcu(&vmdirq->irq->srcu);
 267
 268        /* XXX: Potential optimization to rebalance */
 269        raw_spin_lock_irqsave(&list_lock, flags);
 270        vmdirq->irq->count--;
 271        raw_spin_unlock_irqrestore(&list_lock, flags);
 272
 273        kfree(vmdirq);
 274}
 275
 276static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
 277                           int nvec, msi_alloc_info_t *arg)
 278{
 279        struct pci_dev *pdev = to_pci_dev(dev);
 280        struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
 281
 282        if (nvec > vmd->msix_count)
 283                return vmd->msix_count;
 284
 285        memset(arg, 0, sizeof(*arg));
 286        return 0;
 287}
 288
 289static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
 290{
 291        arg->desc = desc;
 292}
 293
 294static struct msi_domain_ops vmd_msi_domain_ops = {
 295        .get_hwirq      = vmd_get_hwirq,
 296        .msi_init       = vmd_msi_init,
 297        .msi_free       = vmd_msi_free,
 298        .msi_prepare    = vmd_msi_prepare,
 299        .set_desc       = vmd_set_desc,
 300};
 301
 302static struct msi_domain_info vmd_msi_domain_info = {
 303        .flags          = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
 304                          MSI_FLAG_PCI_MSIX,
 305        .ops            = &vmd_msi_domain_ops,
 306        .chip           = &vmd_msi_controller,
 307};
 308
 309static int vmd_create_irq_domain(struct vmd_dev *vmd)
 310{
 311        struct fwnode_handle *fn;
 312
 313        fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
 314        if (!fn)
 315                return -ENODEV;
 316
 317        vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
 318        if (!vmd->irq_domain) {
 319                irq_domain_free_fwnode(fn);
 320                return -ENODEV;
 321        }
 322
 323        return 0;
 324}
 325
 326static void vmd_remove_irq_domain(struct vmd_dev *vmd)
 327{
 328        if (vmd->irq_domain) {
 329                struct fwnode_handle *fn = vmd->irq_domain->fwnode;
 330
 331                irq_domain_remove(vmd->irq_domain);
 332                irq_domain_free_fwnode(fn);
 333        }
 334}
 335
 336static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
 337                                  unsigned int devfn, int reg, int len)
 338{
 339        unsigned int busnr_ecam = bus->number - vmd->busn_start;
 340        u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
 341
 342        if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
 343                return NULL;
 344
 345        return vmd->cfgbar + offset;
 346}
 347
 348/*
 349 * CPU may deadlock if config space is not serialized on some versions of this
 350 * hardware, so all config space access is done under a spinlock.
 351 */
 352static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
 353                        int len, u32 *value)
 354{
 355        struct vmd_dev *vmd = vmd_from_bus(bus);
 356        void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 357        unsigned long flags;
 358        int ret = 0;
 359
 360        if (!addr)
 361                return -EFAULT;
 362
 363        spin_lock_irqsave(&vmd->cfg_lock, flags);
 364        switch (len) {
 365        case 1:
 366                *value = readb(addr);
 367                break;
 368        case 2:
 369                *value = readw(addr);
 370                break;
 371        case 4:
 372                *value = readl(addr);
 373                break;
 374        default:
 375                ret = -EINVAL;
 376                break;
 377        }
 378        spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 379        return ret;
 380}
 381
 382/*
 383 * VMD h/w converts non-posted config writes to posted memory writes. The
 384 * read-back in this function forces the completion so it returns only after
 385 * the config space was written, as expected.
 386 */
 387static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
 388                         int len, u32 value)
 389{
 390        struct vmd_dev *vmd = vmd_from_bus(bus);
 391        void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
 392        unsigned long flags;
 393        int ret = 0;
 394
 395        if (!addr)
 396                return -EFAULT;
 397
 398        spin_lock_irqsave(&vmd->cfg_lock, flags);
 399        switch (len) {
 400        case 1:
 401                writeb(value, addr);
 402                readb(addr);
 403                break;
 404        case 2:
 405                writew(value, addr);
 406                readw(addr);
 407                break;
 408        case 4:
 409                writel(value, addr);
 410                readl(addr);
 411                break;
 412        default:
 413                ret = -EINVAL;
 414                break;
 415        }
 416        spin_unlock_irqrestore(&vmd->cfg_lock, flags);
 417        return ret;
 418}
 419
 420static struct pci_ops vmd_ops = {
 421        .read           = vmd_pci_read,
 422        .write          = vmd_pci_write,
 423};
 424
 425static void vmd_attach_resources(struct vmd_dev *vmd)
 426{
 427        vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
 428        vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
 429}
 430
 431static void vmd_detach_resources(struct vmd_dev *vmd)
 432{
 433        vmd->dev->resource[VMD_MEMBAR1].child = NULL;
 434        vmd->dev->resource[VMD_MEMBAR2].child = NULL;
 435}
 436
 437/*
 438 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
 439 * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
 440 * 16 bits are the PCI Segment Group (domain) number.  Other bits are
 441 * currently reserved.
 442 */
 443static int vmd_find_free_domain(void)
 444{
 445        int domain = 0xffff;
 446        struct pci_bus *bus = NULL;
 447
 448        while ((bus = pci_find_next_bus(bus)) != NULL)
 449                domain = max_t(int, domain, pci_domain_nr(bus));
 450        return domain + 1;
 451}
 452
 453static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
 454                                resource_size_t *offset1,
 455                                resource_size_t *offset2)
 456{
 457        struct pci_dev *dev = vmd->dev;
 458        u64 phys1, phys2;
 459
 460        if (native_hint) {
 461                u32 vmlock;
 462                int ret;
 463
 464                ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
 465                if (ret || vmlock == ~0)
 466                        return -ENODEV;
 467
 468                if (MB2_SHADOW_EN(vmlock)) {
 469                        void __iomem *membar2;
 470
 471                        membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
 472                        if (!membar2)
 473                                return -ENOMEM;
 474                        phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
 475                        phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
 476                        pci_iounmap(dev, membar2);
 477                } else
 478                        return 0;
 479        } else {
 480                /* Hypervisor-Emulated Vendor-Specific Capability */
 481                int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
 482                u32 reg, regu;
 483
 484                pci_read_config_dword(dev, pos + 4, &reg);
 485
 486                /* "SHDW" */
 487                if (pos && reg == 0x53484457) {
 488                        pci_read_config_dword(dev, pos + 8, &reg);
 489                        pci_read_config_dword(dev, pos + 12, &regu);
 490                        phys1 = (u64) regu << 32 | reg;
 491
 492                        pci_read_config_dword(dev, pos + 16, &reg);
 493                        pci_read_config_dword(dev, pos + 20, &regu);
 494                        phys2 = (u64) regu << 32 | reg;
 495                } else
 496                        return 0;
 497        }
 498
 499        *offset1 = dev->resource[VMD_MEMBAR1].start -
 500                        (phys1 & PCI_BASE_ADDRESS_MEM_MASK);
 501        *offset2 = dev->resource[VMD_MEMBAR2].start -
 502                        (phys2 & PCI_BASE_ADDRESS_MEM_MASK);
 503
 504        return 0;
 505}
 506
 507static int vmd_get_bus_number_start(struct vmd_dev *vmd)
 508{
 509        struct pci_dev *dev = vmd->dev;
 510        u16 reg;
 511
 512        pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
 513        if (BUS_RESTRICT_CAP(reg)) {
 514                pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
 515
 516                switch (BUS_RESTRICT_CFG(reg)) {
 517                case 0:
 518                        vmd->busn_start = 0;
 519                        break;
 520                case 1:
 521                        vmd->busn_start = 128;
 522                        break;
 523                case 2:
 524                        vmd->busn_start = 224;
 525                        break;
 526                default:
 527                        pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
 528                                BUS_RESTRICT_CFG(reg));
 529                        return -ENODEV;
 530                }
 531        }
 532
 533        return 0;
 534}
 535
 536static irqreturn_t vmd_irq(int irq, void *data)
 537{
 538        struct vmd_irq_list *irqs = data;
 539        struct vmd_irq *vmdirq;
 540        int idx;
 541
 542        idx = srcu_read_lock(&irqs->srcu);
 543        list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
 544                generic_handle_irq(vmdirq->virq);
 545        srcu_read_unlock(&irqs->srcu, idx);
 546
 547        return IRQ_HANDLED;
 548}
 549
 550static int vmd_alloc_irqs(struct vmd_dev *vmd)
 551{
 552        struct pci_dev *dev = vmd->dev;
 553        int i, err;
 554
 555        vmd->msix_count = pci_msix_vec_count(dev);
 556        if (vmd->msix_count < 0)
 557                return -ENODEV;
 558
 559        vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
 560                                                vmd->msix_count, PCI_IRQ_MSIX);
 561        if (vmd->msix_count < 0)
 562                return vmd->msix_count;
 563
 564        vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
 565                                 GFP_KERNEL);
 566        if (!vmd->irqs)
 567                return -ENOMEM;
 568
 569        for (i = 0; i < vmd->msix_count; i++) {
 570                err = init_srcu_struct(&vmd->irqs[i].srcu);
 571                if (err)
 572                        return err;
 573
 574                INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
 575                err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
 576                                       vmd_irq, IRQF_NO_THREAD,
 577                                       "vmd", &vmd->irqs[i]);
 578                if (err)
 579                        return err;
 580        }
 581
 582        return 0;
 583}
 584
 585static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
 586{
 587        struct pci_sysdata *sd = &vmd->sysdata;
 588        struct resource *res;
 589        u32 upper_bits;
 590        unsigned long flags;
 591        LIST_HEAD(resources);
 592        resource_size_t offset[2] = {0};
 593        resource_size_t membar2_offset = 0x2000;
 594        struct pci_bus *child;
 595        int ret;
 596
 597        /*
 598         * Shadow registers may exist in certain VMD device ids which allow
 599         * guests to correctly assign host physical addresses to the root ports
 600         * and child devices. These registers will either return the host value
 601         * or 0, depending on an enable bit in the VMD device.
 602         */
 603        if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
 604                membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
 605                ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
 606                if (ret)
 607                        return ret;
 608        } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
 609                ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
 610                if (ret)
 611                        return ret;
 612        }
 613
 614        /*
 615         * Certain VMD devices may have a root port configuration option which
 616         * limits the bus range to between 0-127, 128-255, or 224-255
 617         */
 618        if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
 619                ret = vmd_get_bus_number_start(vmd);
 620                if (ret)
 621                        return ret;
 622        }
 623
 624        res = &vmd->dev->resource[VMD_CFGBAR];
 625        vmd->resources[0] = (struct resource) {
 626                .name  = "VMD CFGBAR",
 627                .start = vmd->busn_start,
 628                .end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
 629                .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
 630        };
 631
 632        /*
 633         * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
 634         * put 32-bit resources in the window.
 635         *
 636         * There's no hardware reason why a 64-bit window *couldn't*
 637         * contain a 32-bit resource, but pbus_size_mem() computes the
 638         * bridge window size assuming a 64-bit window will contain no
 639         * 32-bit resources.  __pci_assign_resource() enforces that
 640         * artificial restriction to make sure everything will fit.
 641         *
 642         * The only way we could use a 64-bit non-prefetchable MEMBAR is
 643         * if its address is <4GB so that we can convert it to a 32-bit
 644         * resource.  To be visible to the host OS, all VMD endpoints must
 645         * be initially configured by platform BIOS, which includes setting
 646         * up these resources.  We can assume the device is configured
 647         * according to the platform needs.
 648         */
 649        res = &vmd->dev->resource[VMD_MEMBAR1];
 650        upper_bits = upper_32_bits(res->end);
 651        flags = res->flags & ~IORESOURCE_SIZEALIGN;
 652        if (!upper_bits)
 653                flags &= ~IORESOURCE_MEM_64;
 654        vmd->resources[1] = (struct resource) {
 655                .name  = "VMD MEMBAR1",
 656                .start = res->start,
 657                .end   = res->end,
 658                .flags = flags,
 659                .parent = res,
 660        };
 661
 662        res = &vmd->dev->resource[VMD_MEMBAR2];
 663        upper_bits = upper_32_bits(res->end);
 664        flags = res->flags & ~IORESOURCE_SIZEALIGN;
 665        if (!upper_bits)
 666                flags &= ~IORESOURCE_MEM_64;
 667        vmd->resources[2] = (struct resource) {
 668                .name  = "VMD MEMBAR2",
 669                .start = res->start + membar2_offset,
 670                .end   = res->end,
 671                .flags = flags,
 672                .parent = res,
 673        };
 674
 675        sd->vmd_dev = vmd->dev;
 676        sd->domain = vmd_find_free_domain();
 677        if (sd->domain < 0)
 678                return sd->domain;
 679
 680        sd->node = pcibus_to_node(vmd->dev->bus);
 681
 682        ret = vmd_create_irq_domain(vmd);
 683        if (ret)
 684                return ret;
 685
 686        /*
 687         * Override the irq domain bus token so the domain can be distinguished
 688         * from a regular PCI/MSI domain.
 689         */
 690        irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
 691
 692        pci_add_resource(&resources, &vmd->resources[0]);
 693        pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
 694        pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
 695
 696        vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
 697                                       &vmd_ops, sd, &resources);
 698        if (!vmd->bus) {
 699                pci_free_resource_list(&resources);
 700                vmd_remove_irq_domain(vmd);
 701                return -ENODEV;
 702        }
 703
 704        vmd_attach_resources(vmd);
 705        if (vmd->irq_domain)
 706                dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
 707
 708        pci_scan_child_bus(vmd->bus);
 709        pci_assign_unassigned_bus_resources(vmd->bus);
 710
 711        /*
 712         * VMD root buses are virtual and don't return true on pci_is_pcie()
 713         * and will fail pcie_bus_configure_settings() early. It can instead be
 714         * run on each of the real root ports.
 715         */
 716        list_for_each_entry(child, &vmd->bus->children, node)
 717                pcie_bus_configure_settings(child);
 718
 719        pci_bus_add_devices(vmd->bus);
 720
 721        WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
 722                               "domain"), "Can't create symlink to domain\n");
 723        return 0;
 724}
 725
 726static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
 727{
 728        unsigned long features = (unsigned long) id->driver_data;
 729        struct vmd_dev *vmd;
 730        int err;
 731
 732        if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
 733                return -ENOMEM;
 734
 735        vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
 736        if (!vmd)
 737                return -ENOMEM;
 738
 739        vmd->dev = dev;
 740        err = pcim_enable_device(dev);
 741        if (err < 0)
 742                return err;
 743
 744        vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
 745        if (!vmd->cfgbar)
 746                return -ENOMEM;
 747
 748        pci_set_master(dev);
 749        if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
 750            dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
 751                return -ENODEV;
 752
 753        if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
 754                vmd->first_vec = 1;
 755
 756        err = vmd_alloc_irqs(vmd);
 757        if (err)
 758                return err;
 759
 760        spin_lock_init(&vmd->cfg_lock);
 761        pci_set_drvdata(dev, vmd);
 762        err = vmd_enable_domain(vmd, features);
 763        if (err)
 764                return err;
 765
 766        dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
 767                 vmd->sysdata.domain);
 768        return 0;
 769}
 770
 771static void vmd_cleanup_srcu(struct vmd_dev *vmd)
 772{
 773        int i;
 774
 775        for (i = 0; i < vmd->msix_count; i++)
 776                cleanup_srcu_struct(&vmd->irqs[i].srcu);
 777}
 778
 779static void vmd_remove(struct pci_dev *dev)
 780{
 781        struct vmd_dev *vmd = pci_get_drvdata(dev);
 782
 783        sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
 784        pci_stop_root_bus(vmd->bus);
 785        pci_remove_root_bus(vmd->bus);
 786        vmd_cleanup_srcu(vmd);
 787        vmd_detach_resources(vmd);
 788        vmd_remove_irq_domain(vmd);
 789}
 790
 791#ifdef CONFIG_PM_SLEEP
 792static int vmd_suspend(struct device *dev)
 793{
 794        struct pci_dev *pdev = to_pci_dev(dev);
 795        struct vmd_dev *vmd = pci_get_drvdata(pdev);
 796        int i;
 797
 798        for (i = 0; i < vmd->msix_count; i++)
 799                devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
 800
 801        return 0;
 802}
 803
 804static int vmd_resume(struct device *dev)
 805{
 806        struct pci_dev *pdev = to_pci_dev(dev);
 807        struct vmd_dev *vmd = pci_get_drvdata(pdev);
 808        int err, i;
 809
 810        for (i = 0; i < vmd->msix_count; i++) {
 811                err = devm_request_irq(dev, pci_irq_vector(pdev, i),
 812                                       vmd_irq, IRQF_NO_THREAD,
 813                                       "vmd", &vmd->irqs[i]);
 814                if (err)
 815                        return err;
 816        }
 817
 818        return 0;
 819}
 820#endif
 821static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
 822
 823static const struct pci_device_id vmd_ids[] = {
 824        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
 825                .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
 826        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
 827                .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
 828                                VMD_FEAT_HAS_BUS_RESTRICTIONS,},
 829        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
 830                .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
 831                                VMD_FEAT_HAS_BUS_RESTRICTIONS |
 832                                VMD_FEAT_OFFSET_FIRST_VECTOR,},
 833        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
 834                .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
 835                                VMD_FEAT_HAS_BUS_RESTRICTIONS |
 836                                VMD_FEAT_OFFSET_FIRST_VECTOR,},
 837        {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
 838                .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
 839                                VMD_FEAT_HAS_BUS_RESTRICTIONS |
 840                                VMD_FEAT_OFFSET_FIRST_VECTOR,},
 841        {0,}
 842};
 843MODULE_DEVICE_TABLE(pci, vmd_ids);
 844
 845static struct pci_driver vmd_drv = {
 846        .name           = "vmd",
 847        .id_table       = vmd_ids,
 848        .probe          = vmd_probe,
 849        .remove         = vmd_remove,
 850        .driver         = {
 851                .pm     = &vmd_dev_pm_ops,
 852        },
 853};
 854module_pci_driver(vmd_drv);
 855
 856MODULE_AUTHOR("Intel Corporation");
 857MODULE_LICENSE("GPL v2");
 858MODULE_VERSION("0.6");
 859