linux/drivers/pci/pci.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * PCI Bus Services, see include/linux/pci.h for further explanation.
   4 *
   5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
   6 * David Mosberger-Tang
   7 *
   8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/kernel.h>
  13#include <linux/delay.h>
  14#include <linux/dmi.h>
  15#include <linux/init.h>
  16#include <linux/msi.h>
  17#include <linux/of.h>
  18#include <linux/pci.h>
  19#include <linux/pm.h>
  20#include <linux/slab.h>
  21#include <linux/module.h>
  22#include <linux/spinlock.h>
  23#include <linux/string.h>
  24#include <linux/log2.h>
  25#include <linux/logic_pio.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/interrupt.h>
  28#include <linux/device.h>
  29#include <linux/pm_runtime.h>
  30#include <linux/pci_hotplug.h>
  31#include <linux/vmalloc.h>
  32#include <asm/dma.h>
  33#include <linux/aer.h>
  34#include "pci.h"
  35
  36DEFINE_MUTEX(pci_slot_mutex);
  37
  38const char *pci_power_names[] = {
  39        "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
  40};
  41EXPORT_SYMBOL_GPL(pci_power_names);
  42
  43int isa_dma_bridge_buggy;
  44EXPORT_SYMBOL(isa_dma_bridge_buggy);
  45
  46int pci_pci_problems;
  47EXPORT_SYMBOL(pci_pci_problems);
  48
  49unsigned int pci_pm_d3hot_delay;
  50
  51static void pci_pme_list_scan(struct work_struct *work);
  52
  53static LIST_HEAD(pci_pme_list);
  54static DEFINE_MUTEX(pci_pme_list_mutex);
  55static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
  56
  57struct pci_pme_device {
  58        struct list_head list;
  59        struct pci_dev *dev;
  60};
  61
  62#define PME_TIMEOUT 1000 /* How long between PME checks */
  63
  64static void pci_dev_d3_sleep(struct pci_dev *dev)
  65{
  66        unsigned int delay = dev->d3hot_delay;
  67
  68        if (delay < pci_pm_d3hot_delay)
  69                delay = pci_pm_d3hot_delay;
  70
  71        if (delay)
  72                msleep(delay);
  73}
  74
  75#ifdef CONFIG_PCI_DOMAINS
  76int pci_domains_supported = 1;
  77#endif
  78
  79#define DEFAULT_CARDBUS_IO_SIZE         (256)
  80#define DEFAULT_CARDBUS_MEM_SIZE        (64*1024*1024)
  81/* pci=cbmemsize=nnM,cbiosize=nn can override this */
  82unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
  83unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
  84
  85#define DEFAULT_HOTPLUG_IO_SIZE         (256)
  86#define DEFAULT_HOTPLUG_MMIO_SIZE       (2*1024*1024)
  87#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE  (2*1024*1024)
  88/* hpiosize=nn can override this */
  89unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
  90/*
  91 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
  92 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
  93 * pci=hpmemsize=nnM overrides both
  94 */
  95unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
  96unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
  97
  98#define DEFAULT_HOTPLUG_BUS_SIZE        1
  99unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
 100
 101
 102/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
 103#ifdef CONFIG_PCIE_BUS_TUNE_OFF
 104enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
 105#elif defined CONFIG_PCIE_BUS_SAFE
 106enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
 107#elif defined CONFIG_PCIE_BUS_PERFORMANCE
 108enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
 109#elif defined CONFIG_PCIE_BUS_PEER2PEER
 110enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
 111#else
 112enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
 113#endif
 114
 115/*
 116 * The default CLS is used if arch didn't set CLS explicitly and not
 117 * all pci devices agree on the same value.  Arch can override either
 118 * the dfl or actual value as it sees fit.  Don't forget this is
 119 * measured in 32-bit words, not bytes.
 120 */
 121u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
 122u8 pci_cache_line_size;
 123
 124/*
 125 * If we set up a device for bus mastering, we need to check the latency
 126 * timer as certain BIOSes forget to set it properly.
 127 */
 128unsigned int pcibios_max_latency = 255;
 129
 130/* If set, the PCIe ARI capability will not be used. */
 131static bool pcie_ari_disabled;
 132
 133/* If set, the PCIe ATS capability will not be used. */
 134static bool pcie_ats_disabled;
 135
 136/* If set, the PCI config space of each device is printed during boot. */
 137bool pci_early_dump;
 138
 139bool pci_ats_disabled(void)
 140{
 141        return pcie_ats_disabled;
 142}
 143EXPORT_SYMBOL_GPL(pci_ats_disabled);
 144
 145/* Disable bridge_d3 for all PCIe ports */
 146static bool pci_bridge_d3_disable;
 147/* Force bridge_d3 for all PCIe ports */
 148static bool pci_bridge_d3_force;
 149
 150static int __init pcie_port_pm_setup(char *str)
 151{
 152        if (!strcmp(str, "off"))
 153                pci_bridge_d3_disable = true;
 154        else if (!strcmp(str, "force"))
 155                pci_bridge_d3_force = true;
 156        return 1;
 157}
 158__setup("pcie_port_pm=", pcie_port_pm_setup);
 159
 160/* Time to wait after a reset for device to become responsive */
 161#define PCIE_RESET_READY_POLL_MS 60000
 162
 163/**
 164 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 165 * @bus: pointer to PCI bus structure to search
 166 *
 167 * Given a PCI bus, returns the highest PCI bus number present in the set
 168 * including the given PCI bus and its list of child PCI buses.
 169 */
 170unsigned char pci_bus_max_busnr(struct pci_bus *bus)
 171{
 172        struct pci_bus *tmp;
 173        unsigned char max, n;
 174
 175        max = bus->busn_res.end;
 176        list_for_each_entry(tmp, &bus->children, node) {
 177                n = pci_bus_max_busnr(tmp);
 178                if (n > max)
 179                        max = n;
 180        }
 181        return max;
 182}
 183EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
 184
 185/**
 186 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 187 * @pdev: the PCI device
 188 *
 189 * Returns error bits set in PCI_STATUS and clears them.
 190 */
 191int pci_status_get_and_clear_errors(struct pci_dev *pdev)
 192{
 193        u16 status;
 194        int ret;
 195
 196        ret = pci_read_config_word(pdev, PCI_STATUS, &status);
 197        if (ret != PCIBIOS_SUCCESSFUL)
 198                return -EIO;
 199
 200        status &= PCI_STATUS_ERROR_BITS;
 201        if (status)
 202                pci_write_config_word(pdev, PCI_STATUS, status);
 203
 204        return status;
 205}
 206EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
 207
 208#ifdef CONFIG_HAS_IOMEM
 209void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
 210{
 211        struct resource *res = &pdev->resource[bar];
 212
 213        /*
 214         * Make sure the BAR is actually a memory resource, not an IO resource
 215         */
 216        if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
 217                pci_warn(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
 218                return NULL;
 219        }
 220        return ioremap(res->start, resource_size(res));
 221}
 222EXPORT_SYMBOL_GPL(pci_ioremap_bar);
 223
 224void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
 225{
 226        /*
 227         * Make sure the BAR is actually a memory resource, not an IO resource
 228         */
 229        if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
 230                WARN_ON(1);
 231                return NULL;
 232        }
 233        return ioremap_wc(pci_resource_start(pdev, bar),
 234                          pci_resource_len(pdev, bar));
 235}
 236EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
 237#endif
 238
 239/**
 240 * pci_dev_str_match_path - test if a path string matches a device
 241 * @dev: the PCI device to test
 242 * @path: string to match the device against
 243 * @endptr: pointer to the string after the match
 244 *
 245 * Test if a string (typically from a kernel parameter) formatted as a
 246 * path of device/function addresses matches a PCI device. The string must
 247 * be of the form:
 248 *
 249 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 250 *
 251 * A path for a device can be obtained using 'lspci -t'.  Using a path
 252 * is more robust against bus renumbering than using only a single bus,
 253 * device and function address.
 254 *
 255 * Returns 1 if the string matches the device, 0 if it does not and
 256 * a negative error code if it fails to parse the string.
 257 */
 258static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
 259                                  const char **endptr)
 260{
 261        int ret;
 262        int seg, bus, slot, func;
 263        char *wpath, *p;
 264        char end;
 265
 266        *endptr = strchrnul(path, ';');
 267
 268        wpath = kmemdup_nul(path, *endptr - path, GFP_KERNEL);
 269        if (!wpath)
 270                return -ENOMEM;
 271
 272        while (1) {
 273                p = strrchr(wpath, '/');
 274                if (!p)
 275                        break;
 276                ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
 277                if (ret != 2) {
 278                        ret = -EINVAL;
 279                        goto free_and_exit;
 280                }
 281
 282                if (dev->devfn != PCI_DEVFN(slot, func)) {
 283                        ret = 0;
 284                        goto free_and_exit;
 285                }
 286
 287                /*
 288                 * Note: we don't need to get a reference to the upstream
 289                 * bridge because we hold a reference to the top level
 290                 * device which should hold a reference to the bridge,
 291                 * and so on.
 292                 */
 293                dev = pci_upstream_bridge(dev);
 294                if (!dev) {
 295                        ret = 0;
 296                        goto free_and_exit;
 297                }
 298
 299                *p = 0;
 300        }
 301
 302        ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
 303                     &func, &end);
 304        if (ret != 4) {
 305                seg = 0;
 306                ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
 307                if (ret != 3) {
 308                        ret = -EINVAL;
 309                        goto free_and_exit;
 310                }
 311        }
 312
 313        ret = (seg == pci_domain_nr(dev->bus) &&
 314               bus == dev->bus->number &&
 315               dev->devfn == PCI_DEVFN(slot, func));
 316
 317free_and_exit:
 318        kfree(wpath);
 319        return ret;
 320}
 321
 322/**
 323 * pci_dev_str_match - test if a string matches a device
 324 * @dev: the PCI device to test
 325 * @p: string to match the device against
 326 * @endptr: pointer to the string after the match
 327 *
 328 * Test if a string (typically from a kernel parameter) matches a specified
 329 * PCI device. The string may be of one of the following formats:
 330 *
 331 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 332 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 333 *
 334 * The first format specifies a PCI bus/device/function address which
 335 * may change if new hardware is inserted, if motherboard firmware changes,
 336 * or due to changes caused in kernel parameters. If the domain is
 337 * left unspecified, it is taken to be 0.  In order to be robust against
 338 * bus renumbering issues, a path of PCI device/function numbers may be used
 339 * to address the specific device.  The path for a device can be determined
 340 * through the use of 'lspci -t'.
 341 *
 342 * The second format matches devices using IDs in the configuration
 343 * space which may match multiple devices in the system. A value of 0
 344 * for any field will match all devices. (Note: this differs from
 345 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 346 * legacy reasons and convenience so users don't have to specify
 347 * FFFFFFFFs on the command line.)
 348 *
 349 * Returns 1 if the string matches the device, 0 if it does not and
 350 * a negative error code if the string cannot be parsed.
 351 */
 352static int pci_dev_str_match(struct pci_dev *dev, const char *p,
 353                             const char **endptr)
 354{
 355        int ret;
 356        int count;
 357        unsigned short vendor, device, subsystem_vendor, subsystem_device;
 358
 359        if (strncmp(p, "pci:", 4) == 0) {
 360                /* PCI vendor/device (subvendor/subdevice) IDs are specified */
 361                p += 4;
 362                ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
 363                             &subsystem_vendor, &subsystem_device, &count);
 364                if (ret != 4) {
 365                        ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
 366                        if (ret != 2)
 367                                return -EINVAL;
 368
 369                        subsystem_vendor = 0;
 370                        subsystem_device = 0;
 371                }
 372
 373                p += count;
 374
 375                if ((!vendor || vendor == dev->vendor) &&
 376                    (!device || device == dev->device) &&
 377                    (!subsystem_vendor ||
 378                            subsystem_vendor == dev->subsystem_vendor) &&
 379                    (!subsystem_device ||
 380                            subsystem_device == dev->subsystem_device))
 381                        goto found;
 382        } else {
 383                /*
 384                 * PCI Bus, Device, Function IDs are specified
 385                 * (optionally, may include a path of devfns following it)
 386                 */
 387                ret = pci_dev_str_match_path(dev, p, &p);
 388                if (ret < 0)
 389                        return ret;
 390                else if (ret)
 391                        goto found;
 392        }
 393
 394        *endptr = p;
 395        return 0;
 396
 397found:
 398        *endptr = p;
 399        return 1;
 400}
 401
 402static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
 403                                  u8 pos, int cap, int *ttl)
 404{
 405        u8 id;
 406        u16 ent;
 407
 408        pci_bus_read_config_byte(bus, devfn, pos, &pos);
 409
 410        while ((*ttl)--) {
 411                if (pos < 0x40)
 412                        break;
 413                pos &= ~3;
 414                pci_bus_read_config_word(bus, devfn, pos, &ent);
 415
 416                id = ent & 0xff;
 417                if (id == 0xff)
 418                        break;
 419                if (id == cap)
 420                        return pos;
 421                pos = (ent >> 8);
 422        }
 423        return 0;
 424}
 425
 426static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
 427                              u8 pos, int cap)
 428{
 429        int ttl = PCI_FIND_CAP_TTL;
 430
 431        return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
 432}
 433
 434u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
 435{
 436        return __pci_find_next_cap(dev->bus, dev->devfn,
 437                                   pos + PCI_CAP_LIST_NEXT, cap);
 438}
 439EXPORT_SYMBOL_GPL(pci_find_next_capability);
 440
 441static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
 442                                    unsigned int devfn, u8 hdr_type)
 443{
 444        u16 status;
 445
 446        pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
 447        if (!(status & PCI_STATUS_CAP_LIST))
 448                return 0;
 449
 450        switch (hdr_type) {
 451        case PCI_HEADER_TYPE_NORMAL:
 452        case PCI_HEADER_TYPE_BRIDGE:
 453                return PCI_CAPABILITY_LIST;
 454        case PCI_HEADER_TYPE_CARDBUS:
 455                return PCI_CB_CAPABILITY_LIST;
 456        }
 457
 458        return 0;
 459}
 460
 461/**
 462 * pci_find_capability - query for devices' capabilities
 463 * @dev: PCI device to query
 464 * @cap: capability code
 465 *
 466 * Tell if a device supports a given PCI capability.
 467 * Returns the address of the requested capability structure within the
 468 * device's PCI configuration space or 0 in case the device does not
 469 * support it.  Possible values for @cap include:
 470 *
 471 *  %PCI_CAP_ID_PM           Power Management
 472 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 473 *  %PCI_CAP_ID_VPD          Vital Product Data
 474 *  %PCI_CAP_ID_SLOTID       Slot Identification
 475 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
 476 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
 477 *  %PCI_CAP_ID_PCIX         PCI-X
 478 *  %PCI_CAP_ID_EXP          PCI Express
 479 */
 480u8 pci_find_capability(struct pci_dev *dev, int cap)
 481{
 482        u8 pos;
 483
 484        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 485        if (pos)
 486                pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
 487
 488        return pos;
 489}
 490EXPORT_SYMBOL(pci_find_capability);
 491
 492/**
 493 * pci_bus_find_capability - query for devices' capabilities
 494 * @bus: the PCI bus to query
 495 * @devfn: PCI device to query
 496 * @cap: capability code
 497 *
 498 * Like pci_find_capability() but works for PCI devices that do not have a
 499 * pci_dev structure set up yet.
 500 *
 501 * Returns the address of the requested capability structure within the
 502 * device's PCI configuration space or 0 in case the device does not
 503 * support it.
 504 */
 505u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
 506{
 507        u8 hdr_type, pos;
 508
 509        pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
 510
 511        pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
 512        if (pos)
 513                pos = __pci_find_next_cap(bus, devfn, pos, cap);
 514
 515        return pos;
 516}
 517EXPORT_SYMBOL(pci_bus_find_capability);
 518
 519/**
 520 * pci_find_next_ext_capability - Find an extended capability
 521 * @dev: PCI device to query
 522 * @start: address at which to start looking (0 to start at beginning of list)
 523 * @cap: capability code
 524 *
 525 * Returns the address of the next matching extended capability structure
 526 * within the device's PCI configuration space or 0 if the device does
 527 * not support it.  Some capabilities can occur several times, e.g., the
 528 * vendor-specific capability, and this provides a way to find them all.
 529 */
 530u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
 531{
 532        u32 header;
 533        int ttl;
 534        u16 pos = PCI_CFG_SPACE_SIZE;
 535
 536        /* minimum 8 bytes per capability */
 537        ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
 538
 539        if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
 540                return 0;
 541
 542        if (start)
 543                pos = start;
 544
 545        if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 546                return 0;
 547
 548        /*
 549         * If we have no capabilities, this is indicated by cap ID,
 550         * cap version and next pointer all being 0.
 551         */
 552        if (header == 0)
 553                return 0;
 554
 555        while (ttl-- > 0) {
 556                if (PCI_EXT_CAP_ID(header) == cap && pos != start)
 557                        return pos;
 558
 559                pos = PCI_EXT_CAP_NEXT(header);
 560                if (pos < PCI_CFG_SPACE_SIZE)
 561                        break;
 562
 563                if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
 564                        break;
 565        }
 566
 567        return 0;
 568}
 569EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
 570
 571/**
 572 * pci_find_ext_capability - Find an extended capability
 573 * @dev: PCI device to query
 574 * @cap: capability code
 575 *
 576 * Returns the address of the requested extended capability structure
 577 * within the device's PCI configuration space or 0 if the device does
 578 * not support it.  Possible values for @cap include:
 579 *
 580 *  %PCI_EXT_CAP_ID_ERR         Advanced Error Reporting
 581 *  %PCI_EXT_CAP_ID_VC          Virtual Channel
 582 *  %PCI_EXT_CAP_ID_DSN         Device Serial Number
 583 *  %PCI_EXT_CAP_ID_PWR         Power Budgeting
 584 */
 585u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
 586{
 587        return pci_find_next_ext_capability(dev, 0, cap);
 588}
 589EXPORT_SYMBOL_GPL(pci_find_ext_capability);
 590
 591/**
 592 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 593 * @dev: PCI device to query
 594 *
 595 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 596 * Number.
 597 *
 598 * Returns the DSN, or zero if the capability does not exist.
 599 */
 600u64 pci_get_dsn(struct pci_dev *dev)
 601{
 602        u32 dword;
 603        u64 dsn;
 604        int pos;
 605
 606        pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
 607        if (!pos)
 608                return 0;
 609
 610        /*
 611         * The Device Serial Number is two dwords offset 4 bytes from the
 612         * capability position. The specification says that the first dword is
 613         * the lower half, and the second dword is the upper half.
 614         */
 615        pos += 4;
 616        pci_read_config_dword(dev, pos, &dword);
 617        dsn = (u64)dword;
 618        pci_read_config_dword(dev, pos + 4, &dword);
 619        dsn |= ((u64)dword) << 32;
 620
 621        return dsn;
 622}
 623EXPORT_SYMBOL_GPL(pci_get_dsn);
 624
 625static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
 626{
 627        int rc, ttl = PCI_FIND_CAP_TTL;
 628        u8 cap, mask;
 629
 630        if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
 631                mask = HT_3BIT_CAP_MASK;
 632        else
 633                mask = HT_5BIT_CAP_MASK;
 634
 635        pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
 636                                      PCI_CAP_ID_HT, &ttl);
 637        while (pos) {
 638                rc = pci_read_config_byte(dev, pos + 3, &cap);
 639                if (rc != PCIBIOS_SUCCESSFUL)
 640                        return 0;
 641
 642                if ((cap & mask) == ht_cap)
 643                        return pos;
 644
 645                pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
 646                                              pos + PCI_CAP_LIST_NEXT,
 647                                              PCI_CAP_ID_HT, &ttl);
 648        }
 649
 650        return 0;
 651}
 652
 653/**
 654 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
 655 * @dev: PCI device to query
 656 * @pos: Position from which to continue searching
 657 * @ht_cap: HyperTransport capability code
 658 *
 659 * To be used in conjunction with pci_find_ht_capability() to search for
 660 * all capabilities matching @ht_cap. @pos should always be a value returned
 661 * from pci_find_ht_capability().
 662 *
 663 * NB. To be 100% safe against broken PCI devices, the caller should take
 664 * steps to avoid an infinite loop.
 665 */
 666u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
 667{
 668        return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
 669}
 670EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
 671
 672/**
 673 * pci_find_ht_capability - query a device's HyperTransport capabilities
 674 * @dev: PCI device to query
 675 * @ht_cap: HyperTransport capability code
 676 *
 677 * Tell if a device supports a given HyperTransport capability.
 678 * Returns an address within the device's PCI configuration space
 679 * or 0 in case the device does not support the request capability.
 680 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
 681 * which has a HyperTransport capability matching @ht_cap.
 682 */
 683u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
 684{
 685        u8 pos;
 686
 687        pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
 688        if (pos)
 689                pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
 690
 691        return pos;
 692}
 693EXPORT_SYMBOL_GPL(pci_find_ht_capability);
 694
 695/**
 696 * pci_find_parent_resource - return resource region of parent bus of given
 697 *                            region
 698 * @dev: PCI device structure contains resources to be searched
 699 * @res: child resource record for which parent is sought
 700 *
 701 * For given resource region of given device, return the resource region of
 702 * parent bus the given region is contained in.
 703 */
 704struct resource *pci_find_parent_resource(const struct pci_dev *dev,
 705                                          struct resource *res)
 706{
 707        const struct pci_bus *bus = dev->bus;
 708        struct resource *r;
 709        int i;
 710
 711        pci_bus_for_each_resource(bus, r, i) {
 712                if (!r)
 713                        continue;
 714                if (resource_contains(r, res)) {
 715
 716                        /*
 717                         * If the window is prefetchable but the BAR is
 718                         * not, the allocator made a mistake.
 719                         */
 720                        if (r->flags & IORESOURCE_PREFETCH &&
 721                            !(res->flags & IORESOURCE_PREFETCH))
 722                                return NULL;
 723
 724                        /*
 725                         * If we're below a transparent bridge, there may
 726                         * be both a positively-decoded aperture and a
 727                         * subtractively-decoded region that contain the BAR.
 728                         * We want the positively-decoded one, so this depends
 729                         * on pci_bus_for_each_resource() giving us those
 730                         * first.
 731                         */
 732                        return r;
 733                }
 734        }
 735        return NULL;
 736}
 737EXPORT_SYMBOL(pci_find_parent_resource);
 738
 739/**
 740 * pci_find_resource - Return matching PCI device resource
 741 * @dev: PCI device to query
 742 * @res: Resource to look for
 743 *
 744 * Goes over standard PCI resources (BARs) and checks if the given resource
 745 * is partially or fully contained in any of them. In that case the
 746 * matching resource is returned, %NULL otherwise.
 747 */
 748struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
 749{
 750        int i;
 751
 752        for (i = 0; i < PCI_STD_NUM_BARS; i++) {
 753                struct resource *r = &dev->resource[i];
 754
 755                if (r->start && resource_contains(r, res))
 756                        return r;
 757        }
 758
 759        return NULL;
 760}
 761EXPORT_SYMBOL(pci_find_resource);
 762
 763/**
 764 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 765 * @dev: the PCI device to operate on
 766 * @pos: config space offset of status word
 767 * @mask: mask of bit(s) to care about in status word
 768 *
 769 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 770 */
 771int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
 772{
 773        int i;
 774
 775        /* Wait for Transaction Pending bit clean */
 776        for (i = 0; i < 4; i++) {
 777                u16 status;
 778                if (i)
 779                        msleep((1 << (i - 1)) * 100);
 780
 781                pci_read_config_word(dev, pos, &status);
 782                if (!(status & mask))
 783                        return 1;
 784        }
 785
 786        return 0;
 787}
 788
 789static int pci_acs_enable;
 790
 791/**
 792 * pci_request_acs - ask for ACS to be enabled if supported
 793 */
 794void pci_request_acs(void)
 795{
 796        pci_acs_enable = 1;
 797}
 798
 799static const char *disable_acs_redir_param;
 800
 801/**
 802 * pci_disable_acs_redir - disable ACS redirect capabilities
 803 * @dev: the PCI device
 804 *
 805 * For only devices specified in the disable_acs_redir parameter.
 806 */
 807static void pci_disable_acs_redir(struct pci_dev *dev)
 808{
 809        int ret = 0;
 810        const char *p;
 811        int pos;
 812        u16 ctrl;
 813
 814        if (!disable_acs_redir_param)
 815                return;
 816
 817        p = disable_acs_redir_param;
 818        while (*p) {
 819                ret = pci_dev_str_match(dev, p, &p);
 820                if (ret < 0) {
 821                        pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
 822                                     disable_acs_redir_param);
 823
 824                        break;
 825                } else if (ret == 1) {
 826                        /* Found a match */
 827                        break;
 828                }
 829
 830                if (*p != ';' && *p != ',') {
 831                        /* End of param or invalid format */
 832                        break;
 833                }
 834                p++;
 835        }
 836
 837        if (ret != 1)
 838                return;
 839
 840        if (!pci_dev_specific_disable_acs_redir(dev))
 841                return;
 842
 843        pos = dev->acs_cap;
 844        if (!pos) {
 845                pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
 846                return;
 847        }
 848
 849        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 850
 851        /* P2P Request & Completion Redirect */
 852        ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
 853
 854        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 855
 856        pci_info(dev, "disabled ACS redirect\n");
 857}
 858
 859/**
 860 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 861 * @dev: the PCI device
 862 */
 863static void pci_std_enable_acs(struct pci_dev *dev)
 864{
 865        int pos;
 866        u16 cap;
 867        u16 ctrl;
 868
 869        pos = dev->acs_cap;
 870        if (!pos)
 871                return;
 872
 873        pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
 874        pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
 875
 876        /* Source Validation */
 877        ctrl |= (cap & PCI_ACS_SV);
 878
 879        /* P2P Request Redirect */
 880        ctrl |= (cap & PCI_ACS_RR);
 881
 882        /* P2P Completion Redirect */
 883        ctrl |= (cap & PCI_ACS_CR);
 884
 885        /* Upstream Forwarding */
 886        ctrl |= (cap & PCI_ACS_UF);
 887
 888        /* Enable Translation Blocking for external devices */
 889        if (dev->external_facing || dev->untrusted)
 890                ctrl |= (cap & PCI_ACS_TB);
 891
 892        pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
 893}
 894
 895/**
 896 * pci_enable_acs - enable ACS if hardware support it
 897 * @dev: the PCI device
 898 */
 899static void pci_enable_acs(struct pci_dev *dev)
 900{
 901        if (!pci_acs_enable)
 902                goto disable_acs_redir;
 903
 904        if (!pci_dev_specific_enable_acs(dev))
 905                goto disable_acs_redir;
 906
 907        pci_std_enable_acs(dev);
 908
 909disable_acs_redir:
 910        /*
 911         * Note: pci_disable_acs_redir() must be called even if ACS was not
 912         * enabled by the kernel because it may have been enabled by
 913         * platform firmware.  So if we are told to disable it, we should
 914         * always disable it after setting the kernel's default
 915         * preferences.
 916         */
 917        pci_disable_acs_redir(dev);
 918}
 919
 920/**
 921 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
 922 * @dev: PCI device to have its BARs restored
 923 *
 924 * Restore the BAR values for a given device, so as to make it
 925 * accessible by its driver.
 926 */
 927static void pci_restore_bars(struct pci_dev *dev)
 928{
 929        int i;
 930
 931        for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
 932                pci_update_resource(dev, i);
 933}
 934
 935static const struct pci_platform_pm_ops *pci_platform_pm;
 936
 937int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
 938{
 939        if (!ops->is_manageable || !ops->set_state  || !ops->get_state ||
 940            !ops->choose_state  || !ops->set_wakeup || !ops->need_resume)
 941                return -EINVAL;
 942        pci_platform_pm = ops;
 943        return 0;
 944}
 945
 946static inline bool platform_pci_power_manageable(struct pci_dev *dev)
 947{
 948        return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
 949}
 950
 951static inline int platform_pci_set_power_state(struct pci_dev *dev,
 952                                               pci_power_t t)
 953{
 954        return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
 955}
 956
 957static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
 958{
 959        return pci_platform_pm ? pci_platform_pm->get_state(dev) : PCI_UNKNOWN;
 960}
 961
 962static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
 963{
 964        if (pci_platform_pm && pci_platform_pm->refresh_state)
 965                pci_platform_pm->refresh_state(dev);
 966}
 967
 968static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
 969{
 970        return pci_platform_pm ?
 971                        pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
 972}
 973
 974static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
 975{
 976        return pci_platform_pm ?
 977                        pci_platform_pm->set_wakeup(dev, enable) : -ENODEV;
 978}
 979
 980static inline bool platform_pci_need_resume(struct pci_dev *dev)
 981{
 982        return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
 983}
 984
 985static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
 986{
 987        if (pci_platform_pm && pci_platform_pm->bridge_d3)
 988                return pci_platform_pm->bridge_d3(dev);
 989        return false;
 990}
 991
 992/**
 993 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
 994 *                           given PCI device
 995 * @dev: PCI device to handle.
 996 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 997 *
 998 * RETURN VALUE:
 999 * -EINVAL if the requested state is invalid.
1000 * -EIO if device does not support PCI PM or its PM capabilities register has a
1001 * wrong version, or device doesn't support the requested state.
1002 * 0 if device already is in the requested state.
1003 * 0 if device's power state has been successfully changed.
1004 */
1005static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
1006{
1007        u16 pmcsr;
1008        bool need_restore = false;
1009
1010        /* Check if we're already there */
1011        if (dev->current_state == state)
1012                return 0;
1013
1014        if (!dev->pm_cap)
1015                return -EIO;
1016
1017        if (state < PCI_D0 || state > PCI_D3hot)
1018                return -EINVAL;
1019
1020        /*
1021         * Validate transition: We can enter D0 from any state, but if
1022         * we're already in a low-power state, we can only go deeper.  E.g.,
1023         * we can go from D1 to D3, but we can't go directly from D3 to D1;
1024         * we'd have to go from D3 to D0, then to D1.
1025         */
1026        if (state != PCI_D0 && dev->current_state <= PCI_D3cold
1027            && dev->current_state > state) {
1028                pci_err(dev, "invalid power transition (from %s to %s)\n",
1029                        pci_power_name(dev->current_state),
1030                        pci_power_name(state));
1031                return -EINVAL;
1032        }
1033
1034        /* Check if this device supports the desired state */
1035        if ((state == PCI_D1 && !dev->d1_support)
1036           || (state == PCI_D2 && !dev->d2_support))
1037                return -EIO;
1038
1039        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1040        if (pmcsr == (u16) ~0) {
1041                pci_err(dev, "can't change power state from %s to %s (config space inaccessible)\n",
1042                        pci_power_name(dev->current_state),
1043                        pci_power_name(state));
1044                return -EIO;
1045        }
1046
1047        /*
1048         * If we're (effectively) in D3, force entire word to 0.
1049         * This doesn't affect PME_Status, disables PME_En, and
1050         * sets PowerState to 0.
1051         */
1052        switch (dev->current_state) {
1053        case PCI_D0:
1054        case PCI_D1:
1055        case PCI_D2:
1056                pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1057                pmcsr |= state;
1058                break;
1059        case PCI_D3hot:
1060        case PCI_D3cold:
1061        case PCI_UNKNOWN: /* Boot-up */
1062                if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
1063                 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
1064                        need_restore = true;
1065                fallthrough;    /* force to D0 */
1066        default:
1067                pmcsr = 0;
1068                break;
1069        }
1070
1071        /* Enter specified state */
1072        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1073
1074        /*
1075         * Mandatory power management transition delays; see PCI PM 1.1
1076         * 5.6.1 table 18
1077         */
1078        if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
1079                pci_dev_d3_sleep(dev);
1080        else if (state == PCI_D2 || dev->current_state == PCI_D2)
1081                udelay(PCI_PM_D2_DELAY);
1082
1083        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1084        dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1085        if (dev->current_state != state)
1086                pci_info_ratelimited(dev, "refused to change power state from %s to %s\n",
1087                         pci_power_name(dev->current_state),
1088                         pci_power_name(state));
1089
1090        /*
1091         * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1092         * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1093         * from D3hot to D0 _may_ perform an internal reset, thereby
1094         * going to "D0 Uninitialized" rather than "D0 Initialized".
1095         * For example, at least some versions of the 3c905B and the
1096         * 3c556B exhibit this behaviour.
1097         *
1098         * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1099         * devices in a D3hot state at boot.  Consequently, we need to
1100         * restore at least the BARs so that the device will be
1101         * accessible to its driver.
1102         */
1103        if (need_restore)
1104                pci_restore_bars(dev);
1105
1106        if (dev->bus->self)
1107                pcie_aspm_pm_state_change(dev->bus->self);
1108
1109        return 0;
1110}
1111
1112/**
1113 * pci_update_current_state - Read power state of given device and cache it
1114 * @dev: PCI device to handle.
1115 * @state: State to cache in case the device doesn't have the PM capability
1116 *
1117 * The power state is read from the PMCSR register, which however is
1118 * inaccessible in D3cold.  The platform firmware is therefore queried first
1119 * to detect accessibility of the register.  In case the platform firmware
1120 * reports an incorrect state or the device isn't power manageable by the
1121 * platform at all, we try to detect D3cold by testing accessibility of the
1122 * vendor ID in config space.
1123 */
1124void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1125{
1126        if (platform_pci_get_power_state(dev) == PCI_D3cold ||
1127            !pci_device_is_present(dev)) {
1128                dev->current_state = PCI_D3cold;
1129        } else if (dev->pm_cap) {
1130                u16 pmcsr;
1131
1132                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1133                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1134        } else {
1135                dev->current_state = state;
1136        }
1137}
1138
1139/**
1140 * pci_refresh_power_state - Refresh the given device's power state data
1141 * @dev: Target PCI device.
1142 *
1143 * Ask the platform to refresh the devices power state information and invoke
1144 * pci_update_current_state() to update its current PCI power state.
1145 */
1146void pci_refresh_power_state(struct pci_dev *dev)
1147{
1148        if (platform_pci_power_manageable(dev))
1149                platform_pci_refresh_power_state(dev);
1150
1151        pci_update_current_state(dev, dev->current_state);
1152}
1153
1154/**
1155 * pci_platform_power_transition - Use platform to change device power state
1156 * @dev: PCI device to handle.
1157 * @state: State to put the device into.
1158 */
1159int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1160{
1161        int error;
1162
1163        if (platform_pci_power_manageable(dev)) {
1164                error = platform_pci_set_power_state(dev, state);
1165                if (!error)
1166                        pci_update_current_state(dev, state);
1167        } else
1168                error = -ENODEV;
1169
1170        if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
1171                dev->current_state = PCI_D0;
1172
1173        return error;
1174}
1175EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1176
1177static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1178{
1179        pm_request_resume(&pci_dev->dev);
1180        return 0;
1181}
1182
1183/**
1184 * pci_resume_bus - Walk given bus and runtime resume devices on it
1185 * @bus: Top bus of the subtree to walk.
1186 */
1187void pci_resume_bus(struct pci_bus *bus)
1188{
1189        if (bus)
1190                pci_walk_bus(bus, pci_resume_one, NULL);
1191}
1192
1193static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1194{
1195        int delay = 1;
1196        u32 id;
1197
1198        /*
1199         * After reset, the device should not silently discard config
1200         * requests, but it may still indicate that it needs more time by
1201         * responding to them with CRS completions.  The Root Port will
1202         * generally synthesize ~0 data to complete the read (except when
1203         * CRS SV is enabled and the read was for the Vendor ID; in that
1204         * case it synthesizes 0x0001 data).
1205         *
1206         * Wait for the device to return a non-CRS completion.  Read the
1207         * Command register instead of Vendor ID so we don't have to
1208         * contend with the CRS SV value.
1209         */
1210        pci_read_config_dword(dev, PCI_COMMAND, &id);
1211        while (id == ~0) {
1212                if (delay > timeout) {
1213                        pci_warn(dev, "not ready %dms after %s; giving up\n",
1214                                 delay - 1, reset_type);
1215                        return -ENOTTY;
1216                }
1217
1218                if (delay > 1000)
1219                        pci_info(dev, "not ready %dms after %s; waiting\n",
1220                                 delay - 1, reset_type);
1221
1222                msleep(delay);
1223                delay *= 2;
1224                pci_read_config_dword(dev, PCI_COMMAND, &id);
1225        }
1226
1227        if (delay > 1000)
1228                pci_info(dev, "ready %dms after %s\n", delay - 1,
1229                         reset_type);
1230
1231        return 0;
1232}
1233
1234/**
1235 * pci_power_up - Put the given device into D0
1236 * @dev: PCI device to power up
1237 */
1238int pci_power_up(struct pci_dev *dev)
1239{
1240        pci_platform_power_transition(dev, PCI_D0);
1241
1242        /*
1243         * Mandatory power management transition delays are handled in
1244         * pci_pm_resume_noirq() and pci_pm_runtime_resume() of the
1245         * corresponding bridge.
1246         */
1247        if (dev->runtime_d3cold) {
1248                /*
1249                 * When powering on a bridge from D3cold, the whole hierarchy
1250                 * may be powered on into D0uninitialized state, resume them to
1251                 * give them a chance to suspend again
1252                 */
1253                pci_resume_bus(dev->subordinate);
1254        }
1255
1256        return pci_raw_set_power_state(dev, PCI_D0);
1257}
1258
1259/**
1260 * __pci_dev_set_current_state - Set current state of a PCI device
1261 * @dev: Device to handle
1262 * @data: pointer to state to be set
1263 */
1264static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1265{
1266        pci_power_t state = *(pci_power_t *)data;
1267
1268        dev->current_state = state;
1269        return 0;
1270}
1271
1272/**
1273 * pci_bus_set_current_state - Walk given bus and set current state of devices
1274 * @bus: Top bus of the subtree to walk.
1275 * @state: state to be set
1276 */
1277void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1278{
1279        if (bus)
1280                pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1281}
1282
1283/**
1284 * pci_set_power_state - Set the power state of a PCI device
1285 * @dev: PCI device to handle.
1286 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1287 *
1288 * Transition a device to a new power state, using the platform firmware and/or
1289 * the device's PCI PM registers.
1290 *
1291 * RETURN VALUE:
1292 * -EINVAL if the requested state is invalid.
1293 * -EIO if device does not support PCI PM or its PM capabilities register has a
1294 * wrong version, or device doesn't support the requested state.
1295 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1296 * 0 if device already is in the requested state.
1297 * 0 if the transition is to D3 but D3 is not supported.
1298 * 0 if device's power state has been successfully changed.
1299 */
1300int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1301{
1302        int error;
1303
1304        /* Bound the state we're entering */
1305        if (state > PCI_D3cold)
1306                state = PCI_D3cold;
1307        else if (state < PCI_D0)
1308                state = PCI_D0;
1309        else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1310
1311                /*
1312                 * If the device or the parent bridge do not support PCI
1313                 * PM, ignore the request if we're doing anything other
1314                 * than putting it into D0 (which would only happen on
1315                 * boot).
1316                 */
1317                return 0;
1318
1319        /* Check if we're already there */
1320        if (dev->current_state == state)
1321                return 0;
1322
1323        if (state == PCI_D0)
1324                return pci_power_up(dev);
1325
1326        /*
1327         * This device is quirked not to be put into D3, so don't put it in
1328         * D3
1329         */
1330        if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1331                return 0;
1332
1333        /*
1334         * To put device in D3cold, we put device into D3hot in native
1335         * way, then put device into D3cold with platform ops
1336         */
1337        error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
1338                                        PCI_D3hot : state);
1339
1340        if (pci_platform_power_transition(dev, state))
1341                return error;
1342
1343        /* Powering off a bridge may power off the whole hierarchy */
1344        if (state == PCI_D3cold)
1345                pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1346
1347        return 0;
1348}
1349EXPORT_SYMBOL(pci_set_power_state);
1350
1351/**
1352 * pci_choose_state - Choose the power state of a PCI device
1353 * @dev: PCI device to be suspended
1354 * @state: target sleep state for the whole system. This is the value
1355 *         that is passed to suspend() function.
1356 *
1357 * Returns PCI power state suitable for given device and given system
1358 * message.
1359 */
1360pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
1361{
1362        pci_power_t ret;
1363
1364        if (!dev->pm_cap)
1365                return PCI_D0;
1366
1367        ret = platform_pci_choose_state(dev);
1368        if (ret != PCI_POWER_ERROR)
1369                return ret;
1370
1371        switch (state.event) {
1372        case PM_EVENT_ON:
1373                return PCI_D0;
1374        case PM_EVENT_FREEZE:
1375        case PM_EVENT_PRETHAW:
1376                /* REVISIT both freeze and pre-thaw "should" use D0 */
1377        case PM_EVENT_SUSPEND:
1378        case PM_EVENT_HIBERNATE:
1379                return PCI_D3hot;
1380        default:
1381                pci_info(dev, "unrecognized suspend event %d\n",
1382                         state.event);
1383                BUG();
1384        }
1385        return PCI_D0;
1386}
1387EXPORT_SYMBOL(pci_choose_state);
1388
1389#define PCI_EXP_SAVE_REGS       7
1390
1391static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1392                                                       u16 cap, bool extended)
1393{
1394        struct pci_cap_saved_state *tmp;
1395
1396        hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1397                if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1398                        return tmp;
1399        }
1400        return NULL;
1401}
1402
1403struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1404{
1405        return _pci_find_saved_cap(dev, cap, false);
1406}
1407
1408struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1409{
1410        return _pci_find_saved_cap(dev, cap, true);
1411}
1412
1413static int pci_save_pcie_state(struct pci_dev *dev)
1414{
1415        int i = 0;
1416        struct pci_cap_saved_state *save_state;
1417        u16 *cap;
1418
1419        if (!pci_is_pcie(dev))
1420                return 0;
1421
1422        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1423        if (!save_state) {
1424                pci_err(dev, "buffer not found in %s\n", __func__);
1425                return -ENOMEM;
1426        }
1427
1428        cap = (u16 *)&save_state->cap.data[0];
1429        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1430        pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1431        pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1432        pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1433        pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1434        pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1435        pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1436
1437        return 0;
1438}
1439
1440static void pci_restore_pcie_state(struct pci_dev *dev)
1441{
1442        int i = 0;
1443        struct pci_cap_saved_state *save_state;
1444        u16 *cap;
1445
1446        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1447        if (!save_state)
1448                return;
1449
1450        cap = (u16 *)&save_state->cap.data[0];
1451        pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1452        pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1453        pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1454        pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1455        pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1456        pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1457        pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1458}
1459
1460static int pci_save_pcix_state(struct pci_dev *dev)
1461{
1462        int pos;
1463        struct pci_cap_saved_state *save_state;
1464
1465        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1466        if (!pos)
1467                return 0;
1468
1469        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1470        if (!save_state) {
1471                pci_err(dev, "buffer not found in %s\n", __func__);
1472                return -ENOMEM;
1473        }
1474
1475        pci_read_config_word(dev, pos + PCI_X_CMD,
1476                             (u16 *)save_state->cap.data);
1477
1478        return 0;
1479}
1480
1481static void pci_restore_pcix_state(struct pci_dev *dev)
1482{
1483        int i = 0, pos;
1484        struct pci_cap_saved_state *save_state;
1485        u16 *cap;
1486
1487        save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1488        pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1489        if (!save_state || !pos)
1490                return;
1491        cap = (u16 *)&save_state->cap.data[0];
1492
1493        pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1494}
1495
1496static void pci_save_ltr_state(struct pci_dev *dev)
1497{
1498        int ltr;
1499        struct pci_cap_saved_state *save_state;
1500        u16 *cap;
1501
1502        if (!pci_is_pcie(dev))
1503                return;
1504
1505        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1506        if (!ltr)
1507                return;
1508
1509        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1510        if (!save_state) {
1511                pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1512                return;
1513        }
1514
1515        cap = (u16 *)&save_state->cap.data[0];
1516        pci_read_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap++);
1517        pci_read_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, cap++);
1518}
1519
1520static void pci_restore_ltr_state(struct pci_dev *dev)
1521{
1522        struct pci_cap_saved_state *save_state;
1523        int ltr;
1524        u16 *cap;
1525
1526        save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1527        ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1528        if (!save_state || !ltr)
1529                return;
1530
1531        cap = (u16 *)&save_state->cap.data[0];
1532        pci_write_config_word(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap++);
1533        pci_write_config_word(dev, ltr + PCI_LTR_MAX_NOSNOOP_LAT, *cap++);
1534}
1535
1536/**
1537 * pci_save_state - save the PCI configuration space of a device before
1538 *                  suspending
1539 * @dev: PCI device that we're dealing with
1540 */
1541int pci_save_state(struct pci_dev *dev)
1542{
1543        int i;
1544        /* XXX: 100% dword access ok here? */
1545        for (i = 0; i < 16; i++) {
1546                pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1547                pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1548                        i * 4, dev->saved_config_space[i]);
1549        }
1550        dev->state_saved = true;
1551
1552        i = pci_save_pcie_state(dev);
1553        if (i != 0)
1554                return i;
1555
1556        i = pci_save_pcix_state(dev);
1557        if (i != 0)
1558                return i;
1559
1560        pci_save_ltr_state(dev);
1561        pci_save_dpc_state(dev);
1562        pci_save_aer_state(dev);
1563        pci_save_ptm_state(dev);
1564        return pci_save_vc_state(dev);
1565}
1566EXPORT_SYMBOL(pci_save_state);
1567
1568static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1569                                     u32 saved_val, int retry, bool force)
1570{
1571        u32 val;
1572
1573        pci_read_config_dword(pdev, offset, &val);
1574        if (!force && val == saved_val)
1575                return;
1576
1577        for (;;) {
1578                pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1579                        offset, val, saved_val);
1580                pci_write_config_dword(pdev, offset, saved_val);
1581                if (retry-- <= 0)
1582                        return;
1583
1584                pci_read_config_dword(pdev, offset, &val);
1585                if (val == saved_val)
1586                        return;
1587
1588                mdelay(1);
1589        }
1590}
1591
1592static void pci_restore_config_space_range(struct pci_dev *pdev,
1593                                           int start, int end, int retry,
1594                                           bool force)
1595{
1596        int index;
1597
1598        for (index = end; index >= start; index--)
1599                pci_restore_config_dword(pdev, 4 * index,
1600                                         pdev->saved_config_space[index],
1601                                         retry, force);
1602}
1603
1604static void pci_restore_config_space(struct pci_dev *pdev)
1605{
1606        if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1607                pci_restore_config_space_range(pdev, 10, 15, 0, false);
1608                /* Restore BARs before the command register. */
1609                pci_restore_config_space_range(pdev, 4, 9, 10, false);
1610                pci_restore_config_space_range(pdev, 0, 3, 0, false);
1611        } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1612                pci_restore_config_space_range(pdev, 12, 15, 0, false);
1613
1614                /*
1615                 * Force rewriting of prefetch registers to avoid S3 resume
1616                 * issues on Intel PCI bridges that occur when these
1617                 * registers are not explicitly written.
1618                 */
1619                pci_restore_config_space_range(pdev, 9, 11, 0, true);
1620                pci_restore_config_space_range(pdev, 0, 8, 0, false);
1621        } else {
1622                pci_restore_config_space_range(pdev, 0, 15, 0, false);
1623        }
1624}
1625
1626static void pci_restore_rebar_state(struct pci_dev *pdev)
1627{
1628        unsigned int pos, nbars, i;
1629        u32 ctrl;
1630
1631        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1632        if (!pos)
1633                return;
1634
1635        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1636        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1637                    PCI_REBAR_CTRL_NBAR_SHIFT;
1638
1639        for (i = 0; i < nbars; i++, pos += 8) {
1640                struct resource *res;
1641                int bar_idx, size;
1642
1643                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1644                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1645                res = pdev->resource + bar_idx;
1646                size = ilog2(resource_size(res)) - 20;
1647                ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1648                ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1649                pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1650        }
1651}
1652
1653/**
1654 * pci_restore_state - Restore the saved state of a PCI device
1655 * @dev: PCI device that we're dealing with
1656 */
1657void pci_restore_state(struct pci_dev *dev)
1658{
1659        if (!dev->state_saved)
1660                return;
1661
1662        /*
1663         * Restore max latencies (in the LTR capability) before enabling
1664         * LTR itself (in the PCIe capability).
1665         */
1666        pci_restore_ltr_state(dev);
1667
1668        pci_restore_pcie_state(dev);
1669        pci_restore_pasid_state(dev);
1670        pci_restore_pri_state(dev);
1671        pci_restore_ats_state(dev);
1672        pci_restore_vc_state(dev);
1673        pci_restore_rebar_state(dev);
1674        pci_restore_dpc_state(dev);
1675        pci_restore_ptm_state(dev);
1676
1677        pci_aer_clear_status(dev);
1678        pci_restore_aer_state(dev);
1679
1680        pci_restore_config_space(dev);
1681
1682        pci_restore_pcix_state(dev);
1683        pci_restore_msi_state(dev);
1684
1685        /* Restore ACS and IOV configuration state */
1686        pci_enable_acs(dev);
1687        pci_restore_iov_state(dev);
1688
1689        dev->state_saved = false;
1690}
1691EXPORT_SYMBOL(pci_restore_state);
1692
1693struct pci_saved_state {
1694        u32 config_space[16];
1695        struct pci_cap_saved_data cap[];
1696};
1697
1698/**
1699 * pci_store_saved_state - Allocate and return an opaque struct containing
1700 *                         the device saved state.
1701 * @dev: PCI device that we're dealing with
1702 *
1703 * Return NULL if no state or error.
1704 */
1705struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1706{
1707        struct pci_saved_state *state;
1708        struct pci_cap_saved_state *tmp;
1709        struct pci_cap_saved_data *cap;
1710        size_t size;
1711
1712        if (!dev->state_saved)
1713                return NULL;
1714
1715        size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1716
1717        hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1718                size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1719
1720        state = kzalloc(size, GFP_KERNEL);
1721        if (!state)
1722                return NULL;
1723
1724        memcpy(state->config_space, dev->saved_config_space,
1725               sizeof(state->config_space));
1726
1727        cap = state->cap;
1728        hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1729                size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1730                memcpy(cap, &tmp->cap, len);
1731                cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1732        }
1733        /* Empty cap_save terminates list */
1734
1735        return state;
1736}
1737EXPORT_SYMBOL_GPL(pci_store_saved_state);
1738
1739/**
1740 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1741 * @dev: PCI device that we're dealing with
1742 * @state: Saved state returned from pci_store_saved_state()
1743 */
1744int pci_load_saved_state(struct pci_dev *dev,
1745                         struct pci_saved_state *state)
1746{
1747        struct pci_cap_saved_data *cap;
1748
1749        dev->state_saved = false;
1750
1751        if (!state)
1752                return 0;
1753
1754        memcpy(dev->saved_config_space, state->config_space,
1755               sizeof(state->config_space));
1756
1757        cap = state->cap;
1758        while (cap->size) {
1759                struct pci_cap_saved_state *tmp;
1760
1761                tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1762                if (!tmp || tmp->cap.size != cap->size)
1763                        return -EINVAL;
1764
1765                memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1766                cap = (struct pci_cap_saved_data *)((u8 *)cap +
1767                       sizeof(struct pci_cap_saved_data) + cap->size);
1768        }
1769
1770        dev->state_saved = true;
1771        return 0;
1772}
1773EXPORT_SYMBOL_GPL(pci_load_saved_state);
1774
1775/**
1776 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1777 *                                 and free the memory allocated for it.
1778 * @dev: PCI device that we're dealing with
1779 * @state: Pointer to saved state returned from pci_store_saved_state()
1780 */
1781int pci_load_and_free_saved_state(struct pci_dev *dev,
1782                                  struct pci_saved_state **state)
1783{
1784        int ret = pci_load_saved_state(dev, *state);
1785        kfree(*state);
1786        *state = NULL;
1787        return ret;
1788}
1789EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1790
1791int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1792{
1793        return pci_enable_resources(dev, bars);
1794}
1795
1796static int do_pci_enable_device(struct pci_dev *dev, int bars)
1797{
1798        int err;
1799        struct pci_dev *bridge;
1800        u16 cmd;
1801        u8 pin;
1802
1803        err = pci_set_power_state(dev, PCI_D0);
1804        if (err < 0 && err != -EIO)
1805                return err;
1806
1807        bridge = pci_upstream_bridge(dev);
1808        if (bridge)
1809                pcie_aspm_powersave_config_link(bridge);
1810
1811        err = pcibios_enable_device(dev, bars);
1812        if (err < 0)
1813                return err;
1814        pci_fixup_device(pci_fixup_enable, dev);
1815
1816        if (dev->msi_enabled || dev->msix_enabled)
1817                return 0;
1818
1819        pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1820        if (pin) {
1821                pci_read_config_word(dev, PCI_COMMAND, &cmd);
1822                if (cmd & PCI_COMMAND_INTX_DISABLE)
1823                        pci_write_config_word(dev, PCI_COMMAND,
1824                                              cmd & ~PCI_COMMAND_INTX_DISABLE);
1825        }
1826
1827        return 0;
1828}
1829
1830/**
1831 * pci_reenable_device - Resume abandoned device
1832 * @dev: PCI device to be resumed
1833 *
1834 * NOTE: This function is a backend of pci_default_resume() and is not supposed
1835 * to be called by normal code, write proper resume handler and use it instead.
1836 */
1837int pci_reenable_device(struct pci_dev *dev)
1838{
1839        if (pci_is_enabled(dev))
1840                return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1841        return 0;
1842}
1843EXPORT_SYMBOL(pci_reenable_device);
1844
1845static void pci_enable_bridge(struct pci_dev *dev)
1846{
1847        struct pci_dev *bridge;
1848        int retval;
1849
1850        bridge = pci_upstream_bridge(dev);
1851        if (bridge)
1852                pci_enable_bridge(bridge);
1853
1854        if (pci_is_enabled(dev)) {
1855                if (!dev->is_busmaster)
1856                        pci_set_master(dev);
1857                return;
1858        }
1859
1860        retval = pci_enable_device(dev);
1861        if (retval)
1862                pci_err(dev, "Error enabling bridge (%d), continuing\n",
1863                        retval);
1864        pci_set_master(dev);
1865}
1866
1867static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1868{
1869        struct pci_dev *bridge;
1870        int err;
1871        int i, bars = 0;
1872
1873        /*
1874         * Power state could be unknown at this point, either due to a fresh
1875         * boot or a device removal call.  So get the current power state
1876         * so that things like MSI message writing will behave as expected
1877         * (e.g. if the device really is in D0 at enable time).
1878         */
1879        if (dev->pm_cap) {
1880                u16 pmcsr;
1881                pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1882                dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1883        }
1884
1885        if (atomic_inc_return(&dev->enable_cnt) > 1)
1886                return 0;               /* already enabled */
1887
1888        bridge = pci_upstream_bridge(dev);
1889        if (bridge)
1890                pci_enable_bridge(bridge);
1891
1892        /* only skip sriov related */
1893        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1894                if (dev->resource[i].flags & flags)
1895                        bars |= (1 << i);
1896        for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1897                if (dev->resource[i].flags & flags)
1898                        bars |= (1 << i);
1899
1900        err = do_pci_enable_device(dev, bars);
1901        if (err < 0)
1902                atomic_dec(&dev->enable_cnt);
1903        return err;
1904}
1905
1906/**
1907 * pci_enable_device_io - Initialize a device for use with IO space
1908 * @dev: PCI device to be initialized
1909 *
1910 * Initialize device before it's used by a driver. Ask low-level code
1911 * to enable I/O resources. Wake up the device if it was suspended.
1912 * Beware, this function can fail.
1913 */
1914int pci_enable_device_io(struct pci_dev *dev)
1915{
1916        return pci_enable_device_flags(dev, IORESOURCE_IO);
1917}
1918EXPORT_SYMBOL(pci_enable_device_io);
1919
1920/**
1921 * pci_enable_device_mem - Initialize a device for use with Memory space
1922 * @dev: PCI device to be initialized
1923 *
1924 * Initialize device before it's used by a driver. Ask low-level code
1925 * to enable Memory resources. Wake up the device if it was suspended.
1926 * Beware, this function can fail.
1927 */
1928int pci_enable_device_mem(struct pci_dev *dev)
1929{
1930        return pci_enable_device_flags(dev, IORESOURCE_MEM);
1931}
1932EXPORT_SYMBOL(pci_enable_device_mem);
1933
1934/**
1935 * pci_enable_device - Initialize device before it's used by a driver.
1936 * @dev: PCI device to be initialized
1937 *
1938 * Initialize device before it's used by a driver. Ask low-level code
1939 * to enable I/O and memory. Wake up the device if it was suspended.
1940 * Beware, this function can fail.
1941 *
1942 * Note we don't actually enable the device many times if we call
1943 * this function repeatedly (we just increment the count).
1944 */
1945int pci_enable_device(struct pci_dev *dev)
1946{
1947        return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1948}
1949EXPORT_SYMBOL(pci_enable_device);
1950
1951/*
1952 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
1953 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
1954 * there's no need to track it separately.  pci_devres is initialized
1955 * when a device is enabled using managed PCI device enable interface.
1956 */
1957struct pci_devres {
1958        unsigned int enabled:1;
1959        unsigned int pinned:1;
1960        unsigned int orig_intx:1;
1961        unsigned int restore_intx:1;
1962        unsigned int mwi:1;
1963        u32 region_mask;
1964};
1965
1966static void pcim_release(struct device *gendev, void *res)
1967{
1968        struct pci_dev *dev = to_pci_dev(gendev);
1969        struct pci_devres *this = res;
1970        int i;
1971
1972        if (dev->msi_enabled)
1973                pci_disable_msi(dev);
1974        if (dev->msix_enabled)
1975                pci_disable_msix(dev);
1976
1977        for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1978                if (this->region_mask & (1 << i))
1979                        pci_release_region(dev, i);
1980
1981        if (this->mwi)
1982                pci_clear_mwi(dev);
1983
1984        if (this->restore_intx)
1985                pci_intx(dev, this->orig_intx);
1986
1987        if (this->enabled && !this->pinned)
1988                pci_disable_device(dev);
1989}
1990
1991static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1992{
1993        struct pci_devres *dr, *new_dr;
1994
1995        dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1996        if (dr)
1997                return dr;
1998
1999        new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2000        if (!new_dr)
2001                return NULL;
2002        return devres_get(&pdev->dev, new_dr, NULL, NULL);
2003}
2004
2005static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2006{
2007        if (pci_is_managed(pdev))
2008                return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2009        return NULL;
2010}
2011
2012/**
2013 * pcim_enable_device - Managed pci_enable_device()
2014 * @pdev: PCI device to be initialized
2015 *
2016 * Managed pci_enable_device().
2017 */
2018int pcim_enable_device(struct pci_dev *pdev)
2019{
2020        struct pci_devres *dr;
2021        int rc;
2022
2023        dr = get_pci_dr(pdev);
2024        if (unlikely(!dr))
2025                return -ENOMEM;
2026        if (dr->enabled)
2027                return 0;
2028
2029        rc = pci_enable_device(pdev);
2030        if (!rc) {
2031                pdev->is_managed = 1;
2032                dr->enabled = 1;
2033        }
2034        return rc;
2035}
2036EXPORT_SYMBOL(pcim_enable_device);
2037
2038/**
2039 * pcim_pin_device - Pin managed PCI device
2040 * @pdev: PCI device to pin
2041 *
2042 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2043 * driver detach.  @pdev must have been enabled with
2044 * pcim_enable_device().
2045 */
2046void pcim_pin_device(struct pci_dev *pdev)
2047{
2048        struct pci_devres *dr;
2049
2050        dr = find_pci_dr(pdev);
2051        WARN_ON(!dr || !dr->enabled);
2052        if (dr)
2053                dr->pinned = 1;
2054}
2055EXPORT_SYMBOL(pcim_pin_device);
2056
2057/*
2058 * pcibios_add_device - provide arch specific hooks when adding device dev
2059 * @dev: the PCI device being added
2060 *
2061 * Permits the platform to provide architecture specific functionality when
2062 * devices are added. This is the default implementation. Architecture
2063 * implementations can override this.
2064 */
2065int __weak pcibios_add_device(struct pci_dev *dev)
2066{
2067        return 0;
2068}
2069
2070/**
2071 * pcibios_release_device - provide arch specific hooks when releasing
2072 *                          device dev
2073 * @dev: the PCI device being released
2074 *
2075 * Permits the platform to provide architecture specific functionality when
2076 * devices are released. This is the default implementation. Architecture
2077 * implementations can override this.
2078 */
2079void __weak pcibios_release_device(struct pci_dev *dev) {}
2080
2081/**
2082 * pcibios_disable_device - disable arch specific PCI resources for device dev
2083 * @dev: the PCI device to disable
2084 *
2085 * Disables architecture specific PCI resources for the device. This
2086 * is the default implementation. Architecture implementations can
2087 * override this.
2088 */
2089void __weak pcibios_disable_device(struct pci_dev *dev) {}
2090
2091/**
2092 * pcibios_penalize_isa_irq - penalize an ISA IRQ
2093 * @irq: ISA IRQ to penalize
2094 * @active: IRQ active or not
2095 *
2096 * Permits the platform to provide architecture-specific functionality when
2097 * penalizing ISA IRQs. This is the default implementation. Architecture
2098 * implementations can override this.
2099 */
2100void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2101
2102static void do_pci_disable_device(struct pci_dev *dev)
2103{
2104        u16 pci_command;
2105
2106        pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2107        if (pci_command & PCI_COMMAND_MASTER) {
2108                pci_command &= ~PCI_COMMAND_MASTER;
2109                pci_write_config_word(dev, PCI_COMMAND, pci_command);
2110        }
2111
2112        pcibios_disable_device(dev);
2113}
2114
2115/**
2116 * pci_disable_enabled_device - Disable device without updating enable_cnt
2117 * @dev: PCI device to disable
2118 *
2119 * NOTE: This function is a backend of PCI power management routines and is
2120 * not supposed to be called drivers.
2121 */
2122void pci_disable_enabled_device(struct pci_dev *dev)
2123{
2124        if (pci_is_enabled(dev))
2125                do_pci_disable_device(dev);
2126}
2127
2128/**
2129 * pci_disable_device - Disable PCI device after use
2130 * @dev: PCI device to be disabled
2131 *
2132 * Signal to the system that the PCI device is not in use by the system
2133 * anymore.  This only involves disabling PCI bus-mastering, if active.
2134 *
2135 * Note we don't actually disable the device until all callers of
2136 * pci_enable_device() have called pci_disable_device().
2137 */
2138void pci_disable_device(struct pci_dev *dev)
2139{
2140        struct pci_devres *dr;
2141
2142        dr = find_pci_dr(dev);
2143        if (dr)
2144                dr->enabled = 0;
2145
2146        dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2147                      "disabling already-disabled device");
2148
2149        if (atomic_dec_return(&dev->enable_cnt) != 0)
2150                return;
2151
2152        do_pci_disable_device(dev);
2153
2154        dev->is_busmaster = 0;
2155}
2156EXPORT_SYMBOL(pci_disable_device);
2157
2158/**
2159 * pcibios_set_pcie_reset_state - set reset state for device dev
2160 * @dev: the PCIe device reset
2161 * @state: Reset state to enter into
2162 *
2163 * Set the PCIe reset state for the device. This is the default
2164 * implementation. Architecture implementations can override this.
2165 */
2166int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2167                                        enum pcie_reset_state state)
2168{
2169        return -EINVAL;
2170}
2171
2172/**
2173 * pci_set_pcie_reset_state - set reset state for device dev
2174 * @dev: the PCIe device reset
2175 * @state: Reset state to enter into
2176 *
2177 * Sets the PCI reset state for the device.
2178 */
2179int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2180{
2181        return pcibios_set_pcie_reset_state(dev, state);
2182}
2183EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2184
2185void pcie_clear_device_status(struct pci_dev *dev)
2186{
2187        u16 sta;
2188
2189        pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2190        pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2191}
2192
2193/**
2194 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2195 * @dev: PCIe root port or event collector.
2196 */
2197void pcie_clear_root_pme_status(struct pci_dev *dev)
2198{
2199        pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2200}
2201
2202/**
2203 * pci_check_pme_status - Check if given device has generated PME.
2204 * @dev: Device to check.
2205 *
2206 * Check the PME status of the device and if set, clear it and clear PME enable
2207 * (if set).  Return 'true' if PME status and PME enable were both set or
2208 * 'false' otherwise.
2209 */
2210bool pci_check_pme_status(struct pci_dev *dev)
2211{
2212        int pmcsr_pos;
2213        u16 pmcsr;
2214        bool ret = false;
2215
2216        if (!dev->pm_cap)
2217                return false;
2218
2219        pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2220        pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2221        if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2222                return false;
2223
2224        /* Clear PME status. */
2225        pmcsr |= PCI_PM_CTRL_PME_STATUS;
2226        if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2227                /* Disable PME to avoid interrupt flood. */
2228                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2229                ret = true;
2230        }
2231
2232        pci_write_config_word(dev, pmcsr_pos, pmcsr);
2233
2234        return ret;
2235}
2236
2237/**
2238 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2239 * @dev: Device to handle.
2240 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2241 *
2242 * Check if @dev has generated PME and queue a resume request for it in that
2243 * case.
2244 */
2245static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2246{
2247        if (pme_poll_reset && dev->pme_poll)
2248                dev->pme_poll = false;
2249
2250        if (pci_check_pme_status(dev)) {
2251                pci_wakeup_event(dev);
2252                pm_request_resume(&dev->dev);
2253        }
2254        return 0;
2255}
2256
2257/**
2258 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2259 * @bus: Top bus of the subtree to walk.
2260 */
2261void pci_pme_wakeup_bus(struct pci_bus *bus)
2262{
2263        if (bus)
2264                pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2265}
2266
2267
2268/**
2269 * pci_pme_capable - check the capability of PCI device to generate PME#
2270 * @dev: PCI device to handle.
2271 * @state: PCI state from which device will issue PME#.
2272 */
2273bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2274{
2275        if (!dev->pm_cap)
2276                return false;
2277
2278        return !!(dev->pme_support & (1 << state));
2279}
2280EXPORT_SYMBOL(pci_pme_capable);
2281
2282static void pci_pme_list_scan(struct work_struct *work)
2283{
2284        struct pci_pme_device *pme_dev, *n;
2285
2286        mutex_lock(&pci_pme_list_mutex);
2287        list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2288                if (pme_dev->dev->pme_poll) {
2289                        struct pci_dev *bridge;
2290
2291                        bridge = pme_dev->dev->bus->self;
2292                        /*
2293                         * If bridge is in low power state, the
2294                         * configuration space of subordinate devices
2295                         * may be not accessible
2296                         */
2297                        if (bridge && bridge->current_state != PCI_D0)
2298                                continue;
2299                        /*
2300                         * If the device is in D3cold it should not be
2301                         * polled either.
2302                         */
2303                        if (pme_dev->dev->current_state == PCI_D3cold)
2304                                continue;
2305
2306                        pci_pme_wakeup(pme_dev->dev, NULL);
2307                } else {
2308                        list_del(&pme_dev->list);
2309                        kfree(pme_dev);
2310                }
2311        }
2312        if (!list_empty(&pci_pme_list))
2313                queue_delayed_work(system_freezable_wq, &pci_pme_work,
2314                                   msecs_to_jiffies(PME_TIMEOUT));
2315        mutex_unlock(&pci_pme_list_mutex);
2316}
2317
2318static void __pci_pme_active(struct pci_dev *dev, bool enable)
2319{
2320        u16 pmcsr;
2321
2322        if (!dev->pme_support)
2323                return;
2324
2325        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2326        /* Clear PME_Status by writing 1 to it and enable PME# */
2327        pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2328        if (!enable)
2329                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2330
2331        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2332}
2333
2334/**
2335 * pci_pme_restore - Restore PME configuration after config space restore.
2336 * @dev: PCI device to update.
2337 */
2338void pci_pme_restore(struct pci_dev *dev)
2339{
2340        u16 pmcsr;
2341
2342        if (!dev->pme_support)
2343                return;
2344
2345        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2346        if (dev->wakeup_prepared) {
2347                pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2348                pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2349        } else {
2350                pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2351                pmcsr |= PCI_PM_CTRL_PME_STATUS;
2352        }
2353        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2354}
2355
2356/**
2357 * pci_pme_active - enable or disable PCI device's PME# function
2358 * @dev: PCI device to handle.
2359 * @enable: 'true' to enable PME# generation; 'false' to disable it.
2360 *
2361 * The caller must verify that the device is capable of generating PME# before
2362 * calling this function with @enable equal to 'true'.
2363 */
2364void pci_pme_active(struct pci_dev *dev, bool enable)
2365{
2366        __pci_pme_active(dev, enable);
2367
2368        /*
2369         * PCI (as opposed to PCIe) PME requires that the device have
2370         * its PME# line hooked up correctly. Not all hardware vendors
2371         * do this, so the PME never gets delivered and the device
2372         * remains asleep. The easiest way around this is to
2373         * periodically walk the list of suspended devices and check
2374         * whether any have their PME flag set. The assumption is that
2375         * we'll wake up often enough anyway that this won't be a huge
2376         * hit, and the power savings from the devices will still be a
2377         * win.
2378         *
2379         * Although PCIe uses in-band PME message instead of PME# line
2380         * to report PME, PME does not work for some PCIe devices in
2381         * reality.  For example, there are devices that set their PME
2382         * status bits, but don't really bother to send a PME message;
2383         * there are PCI Express Root Ports that don't bother to
2384         * trigger interrupts when they receive PME messages from the
2385         * devices below.  So PME poll is used for PCIe devices too.
2386         */
2387
2388        if (dev->pme_poll) {
2389                struct pci_pme_device *pme_dev;
2390                if (enable) {
2391                        pme_dev = kmalloc(sizeof(struct pci_pme_device),
2392                                          GFP_KERNEL);
2393                        if (!pme_dev) {
2394                                pci_warn(dev, "can't enable PME#\n");
2395                                return;
2396                        }
2397                        pme_dev->dev = dev;
2398                        mutex_lock(&pci_pme_list_mutex);
2399                        list_add(&pme_dev->list, &pci_pme_list);
2400                        if (list_is_singular(&pci_pme_list))
2401                                queue_delayed_work(system_freezable_wq,
2402                                                   &pci_pme_work,
2403                                                   msecs_to_jiffies(PME_TIMEOUT));
2404                        mutex_unlock(&pci_pme_list_mutex);
2405                } else {
2406                        mutex_lock(&pci_pme_list_mutex);
2407                        list_for_each_entry(pme_dev, &pci_pme_list, list) {
2408                                if (pme_dev->dev == dev) {
2409                                        list_del(&pme_dev->list);
2410                                        kfree(pme_dev);
2411                                        break;
2412                                }
2413                        }
2414                        mutex_unlock(&pci_pme_list_mutex);
2415                }
2416        }
2417
2418        pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2419}
2420EXPORT_SYMBOL(pci_pme_active);
2421
2422/**
2423 * __pci_enable_wake - enable PCI device as wakeup event source
2424 * @dev: PCI device affected
2425 * @state: PCI state from which device will issue wakeup events
2426 * @enable: True to enable event generation; false to disable
2427 *
2428 * This enables the device as a wakeup event source, or disables it.
2429 * When such events involves platform-specific hooks, those hooks are
2430 * called automatically by this routine.
2431 *
2432 * Devices with legacy power management (no standard PCI PM capabilities)
2433 * always require such platform hooks.
2434 *
2435 * RETURN VALUE:
2436 * 0 is returned on success
2437 * -EINVAL is returned if device is not supposed to wake up the system
2438 * Error code depending on the platform is returned if both the platform and
2439 * the native mechanism fail to enable the generation of wake-up events
2440 */
2441static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2442{
2443        int ret = 0;
2444
2445        /*
2446         * Bridges that are not power-manageable directly only signal
2447         * wakeup on behalf of subordinate devices which is set up
2448         * elsewhere, so skip them. However, bridges that are
2449         * power-manageable may signal wakeup for themselves (for example,
2450         * on a hotplug event) and they need to be covered here.
2451         */
2452        if (!pci_power_manageable(dev))
2453                return 0;
2454
2455        /* Don't do the same thing twice in a row for one device. */
2456        if (!!enable == !!dev->wakeup_prepared)
2457                return 0;
2458
2459        /*
2460         * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2461         * Anderson we should be doing PME# wake enable followed by ACPI wake
2462         * enable.  To disable wake-up we call the platform first, for symmetry.
2463         */
2464
2465        if (enable) {
2466                int error;
2467
2468                if (pci_pme_capable(dev, state))
2469                        pci_pme_active(dev, true);
2470                else
2471                        ret = 1;
2472                error = platform_pci_set_wakeup(dev, true);
2473                if (ret)
2474                        ret = error;
2475                if (!ret)
2476                        dev->wakeup_prepared = true;
2477        } else {
2478                platform_pci_set_wakeup(dev, false);
2479                pci_pme_active(dev, false);
2480                dev->wakeup_prepared = false;
2481        }
2482
2483        return ret;
2484}
2485
2486/**
2487 * pci_enable_wake - change wakeup settings for a PCI device
2488 * @pci_dev: Target device
2489 * @state: PCI state from which device will issue wakeup events
2490 * @enable: Whether or not to enable event generation
2491 *
2492 * If @enable is set, check device_may_wakeup() for the device before calling
2493 * __pci_enable_wake() for it.
2494 */
2495int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2496{
2497        if (enable && !device_may_wakeup(&pci_dev->dev))
2498                return -EINVAL;
2499
2500        return __pci_enable_wake(pci_dev, state, enable);
2501}
2502EXPORT_SYMBOL(pci_enable_wake);
2503
2504/**
2505 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2506 * @dev: PCI device to prepare
2507 * @enable: True to enable wake-up event generation; false to disable
2508 *
2509 * Many drivers want the device to wake up the system from D3_hot or D3_cold
2510 * and this function allows them to set that up cleanly - pci_enable_wake()
2511 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2512 * ordering constraints.
2513 *
2514 * This function only returns error code if the device is not allowed to wake
2515 * up the system from sleep or it is not capable of generating PME# from both
2516 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2517 */
2518int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2519{
2520        return pci_pme_capable(dev, PCI_D3cold) ?
2521                        pci_enable_wake(dev, PCI_D3cold, enable) :
2522                        pci_enable_wake(dev, PCI_D3hot, enable);
2523}
2524EXPORT_SYMBOL(pci_wake_from_d3);
2525
2526/**
2527 * pci_target_state - find an appropriate low power state for a given PCI dev
2528 * @dev: PCI device
2529 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2530 *
2531 * Use underlying platform code to find a supported low power state for @dev.
2532 * If the platform can't manage @dev, return the deepest state from which it
2533 * can generate wake events, based on any available PME info.
2534 */
2535static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2536{
2537        pci_power_t target_state = PCI_D3hot;
2538
2539        if (platform_pci_power_manageable(dev)) {
2540                /*
2541                 * Call the platform to find the target state for the device.
2542                 */
2543                pci_power_t state = platform_pci_choose_state(dev);
2544
2545                switch (state) {
2546                case PCI_POWER_ERROR:
2547                case PCI_UNKNOWN:
2548                        break;
2549                case PCI_D1:
2550                case PCI_D2:
2551                        if (pci_no_d1d2(dev))
2552                                break;
2553                        fallthrough;
2554                default:
2555                        target_state = state;
2556                }
2557
2558                return target_state;
2559        }
2560
2561        if (!dev->pm_cap)
2562                target_state = PCI_D0;
2563
2564        /*
2565         * If the device is in D3cold even though it's not power-manageable by
2566         * the platform, it may have been powered down by non-standard means.
2567         * Best to let it slumber.
2568         */
2569        if (dev->current_state == PCI_D3cold)
2570                target_state = PCI_D3cold;
2571
2572        if (wakeup) {
2573                /*
2574                 * Find the deepest state from which the device can generate
2575                 * PME#.
2576                 */
2577                if (dev->pme_support) {
2578                        while (target_state
2579                              && !(dev->pme_support & (1 << target_state)))
2580                                target_state--;
2581                }
2582        }
2583
2584        return target_state;
2585}
2586
2587/**
2588 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2589 *                        into a sleep state
2590 * @dev: Device to handle.
2591 *
2592 * Choose the power state appropriate for the device depending on whether
2593 * it can wake up the system and/or is power manageable by the platform
2594 * (PCI_D3hot is the default) and put the device into that state.
2595 */
2596int pci_prepare_to_sleep(struct pci_dev *dev)
2597{
2598        bool wakeup = device_may_wakeup(&dev->dev);
2599        pci_power_t target_state = pci_target_state(dev, wakeup);
2600        int error;
2601
2602        if (target_state == PCI_POWER_ERROR)
2603                return -EIO;
2604
2605        /*
2606         * There are systems (for example, Intel mobile chips since Coffee
2607         * Lake) where the power drawn while suspended can be significantly
2608         * reduced by disabling PTM on PCIe root ports as this allows the
2609         * port to enter a lower-power PM state and the SoC to reach a
2610         * lower-power idle state as a whole.
2611         */
2612        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2613                pci_disable_ptm(dev);
2614
2615        pci_enable_wake(dev, target_state, wakeup);
2616
2617        error = pci_set_power_state(dev, target_state);
2618
2619        if (error) {
2620                pci_enable_wake(dev, target_state, false);
2621                pci_restore_ptm_state(dev);
2622        }
2623
2624        return error;
2625}
2626EXPORT_SYMBOL(pci_prepare_to_sleep);
2627
2628/**
2629 * pci_back_from_sleep - turn PCI device on during system-wide transition
2630 *                       into working state
2631 * @dev: Device to handle.
2632 *
2633 * Disable device's system wake-up capability and put it into D0.
2634 */
2635int pci_back_from_sleep(struct pci_dev *dev)
2636{
2637        pci_enable_wake(dev, PCI_D0, false);
2638        return pci_set_power_state(dev, PCI_D0);
2639}
2640EXPORT_SYMBOL(pci_back_from_sleep);
2641
2642/**
2643 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2644 * @dev: PCI device being suspended.
2645 *
2646 * Prepare @dev to generate wake-up events at run time and put it into a low
2647 * power state.
2648 */
2649int pci_finish_runtime_suspend(struct pci_dev *dev)
2650{
2651        pci_power_t target_state;
2652        int error;
2653
2654        target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2655        if (target_state == PCI_POWER_ERROR)
2656                return -EIO;
2657
2658        dev->runtime_d3cold = target_state == PCI_D3cold;
2659
2660        /*
2661         * There are systems (for example, Intel mobile chips since Coffee
2662         * Lake) where the power drawn while suspended can be significantly
2663         * reduced by disabling PTM on PCIe root ports as this allows the
2664         * port to enter a lower-power PM state and the SoC to reach a
2665         * lower-power idle state as a whole.
2666         */
2667        if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT)
2668                pci_disable_ptm(dev);
2669
2670        __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2671
2672        error = pci_set_power_state(dev, target_state);
2673
2674        if (error) {
2675                pci_enable_wake(dev, target_state, false);
2676                pci_restore_ptm_state(dev);
2677                dev->runtime_d3cold = false;
2678        }
2679
2680        return error;
2681}
2682
2683/**
2684 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2685 * @dev: Device to check.
2686 *
2687 * Return true if the device itself is capable of generating wake-up events
2688 * (through the platform or using the native PCIe PME) or if the device supports
2689 * PME and one of its upstream bridges can generate wake-up events.
2690 */
2691bool pci_dev_run_wake(struct pci_dev *dev)
2692{
2693        struct pci_bus *bus = dev->bus;
2694
2695        if (!dev->pme_support)
2696                return false;
2697
2698        /* PME-capable in principle, but not from the target power state */
2699        if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2700                return false;
2701
2702        if (device_can_wakeup(&dev->dev))
2703                return true;
2704
2705        while (bus->parent) {
2706                struct pci_dev *bridge = bus->self;
2707
2708                if (device_can_wakeup(&bridge->dev))
2709                        return true;
2710
2711                bus = bus->parent;
2712        }
2713
2714        /* We have reached the root bus. */
2715        if (bus->bridge)
2716                return device_can_wakeup(bus->bridge);
2717
2718        return false;
2719}
2720EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2721
2722/**
2723 * pci_dev_need_resume - Check if it is necessary to resume the device.
2724 * @pci_dev: Device to check.
2725 *
2726 * Return 'true' if the device is not runtime-suspended or it has to be
2727 * reconfigured due to wakeup settings difference between system and runtime
2728 * suspend, or the current power state of it is not suitable for the upcoming
2729 * (system-wide) transition.
2730 */
2731bool pci_dev_need_resume(struct pci_dev *pci_dev)
2732{
2733        struct device *dev = &pci_dev->dev;
2734        pci_power_t target_state;
2735
2736        if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2737                return true;
2738
2739        target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2740
2741        /*
2742         * If the earlier platform check has not triggered, D3cold is just power
2743         * removal on top of D3hot, so no need to resume the device in that
2744         * case.
2745         */
2746        return target_state != pci_dev->current_state &&
2747                target_state != PCI_D3cold &&
2748                pci_dev->current_state != PCI_D3hot;
2749}
2750
2751/**
2752 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2753 * @pci_dev: Device to check.
2754 *
2755 * If the device is suspended and it is not configured for system wakeup,
2756 * disable PME for it to prevent it from waking up the system unnecessarily.
2757 *
2758 * Note that if the device's power state is D3cold and the platform check in
2759 * pci_dev_need_resume() has not triggered, the device's configuration need not
2760 * be changed.
2761 */
2762void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2763{
2764        struct device *dev = &pci_dev->dev;
2765
2766        spin_lock_irq(&dev->power.lock);
2767
2768        if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2769            pci_dev->current_state < PCI_D3cold)
2770                __pci_pme_active(pci_dev, false);
2771
2772        spin_unlock_irq(&dev->power.lock);
2773}
2774
2775/**
2776 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2777 * @pci_dev: Device to handle.
2778 *
2779 * If the device is runtime suspended and wakeup-capable, enable PME for it as
2780 * it might have been disabled during the prepare phase of system suspend if
2781 * the device was not configured for system wakeup.
2782 */
2783void pci_dev_complete_resume(struct pci_dev *pci_dev)
2784{
2785        struct device *dev = &pci_dev->dev;
2786
2787        if (!pci_dev_run_wake(pci_dev))
2788                return;
2789
2790        spin_lock_irq(&dev->power.lock);
2791
2792        if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2793                __pci_pme_active(pci_dev, true);
2794
2795        spin_unlock_irq(&dev->power.lock);
2796}
2797
2798void pci_config_pm_runtime_get(struct pci_dev *pdev)
2799{
2800        struct device *dev = &pdev->dev;
2801        struct device *parent = dev->parent;
2802
2803        if (parent)
2804                pm_runtime_get_sync(parent);
2805        pm_runtime_get_noresume(dev);
2806        /*
2807         * pdev->current_state is set to PCI_D3cold during suspending,
2808         * so wait until suspending completes
2809         */
2810        pm_runtime_barrier(dev);
2811        /*
2812         * Only need to resume devices in D3cold, because config
2813         * registers are still accessible for devices suspended but
2814         * not in D3cold.
2815         */
2816        if (pdev->current_state == PCI_D3cold)
2817                pm_runtime_resume(dev);
2818}
2819
2820void pci_config_pm_runtime_put(struct pci_dev *pdev)
2821{
2822        struct device *dev = &pdev->dev;
2823        struct device *parent = dev->parent;
2824
2825        pm_runtime_put(dev);
2826        if (parent)
2827                pm_runtime_put_sync(parent);
2828}
2829
2830static const struct dmi_system_id bridge_d3_blacklist[] = {
2831#ifdef CONFIG_X86
2832        {
2833                /*
2834                 * Gigabyte X299 root port is not marked as hotplug capable
2835                 * which allows Linux to power manage it.  However, this
2836                 * confuses the BIOS SMI handler so don't power manage root
2837                 * ports on that system.
2838                 */
2839                .ident = "X299 DESIGNARE EX-CF",
2840                .matches = {
2841                        DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2842                        DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2843                },
2844        },
2845#endif
2846        { }
2847};
2848
2849/**
2850 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2851 * @bridge: Bridge to check
2852 *
2853 * This function checks if it is possible to move the bridge to D3.
2854 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2855 */
2856bool pci_bridge_d3_possible(struct pci_dev *bridge)
2857{
2858        if (!pci_is_pcie(bridge))
2859                return false;
2860
2861        switch (pci_pcie_type(bridge)) {
2862        case PCI_EXP_TYPE_ROOT_PORT:
2863        case PCI_EXP_TYPE_UPSTREAM:
2864        case PCI_EXP_TYPE_DOWNSTREAM:
2865                if (pci_bridge_d3_disable)
2866                        return false;
2867
2868                /*
2869                 * Hotplug ports handled by firmware in System Management Mode
2870                 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
2871                 */
2872                if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
2873                        return false;
2874
2875                if (pci_bridge_d3_force)
2876                        return true;
2877
2878                /* Even the oldest 2010 Thunderbolt controller supports D3. */
2879                if (bridge->is_thunderbolt)
2880                        return true;
2881
2882                /* Platform might know better if the bridge supports D3 */
2883                if (platform_pci_bridge_d3(bridge))
2884                        return true;
2885
2886                /*
2887                 * Hotplug ports handled natively by the OS were not validated
2888                 * by vendors for runtime D3 at least until 2018 because there
2889                 * was no OS support.
2890                 */
2891                if (bridge->is_hotplug_bridge)
2892                        return false;
2893
2894                if (dmi_check_system(bridge_d3_blacklist))
2895                        return false;
2896
2897                /*
2898                 * It should be safe to put PCIe ports from 2015 or newer
2899                 * to D3.
2900                 */
2901                if (dmi_get_bios_year() >= 2015)
2902                        return true;
2903                break;
2904        }
2905
2906        return false;
2907}
2908
2909static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2910{
2911        bool *d3cold_ok = data;
2912
2913        if (/* The device needs to be allowed to go D3cold ... */
2914            dev->no_d3cold || !dev->d3cold_allowed ||
2915
2916            /* ... and if it is wakeup capable to do so from D3cold. */
2917            (device_may_wakeup(&dev->dev) &&
2918             !pci_pme_capable(dev, PCI_D3cold)) ||
2919
2920            /* If it is a bridge it must be allowed to go to D3. */
2921            !pci_power_manageable(dev))
2922
2923                *d3cold_ok = false;
2924
2925        return !*d3cold_ok;
2926}
2927
2928/*
2929 * pci_bridge_d3_update - Update bridge D3 capabilities
2930 * @dev: PCI device which is changed
2931 *
2932 * Update upstream bridge PM capabilities accordingly depending on if the
2933 * device PM configuration was changed or the device is being removed.  The
2934 * change is also propagated upstream.
2935 */
2936void pci_bridge_d3_update(struct pci_dev *dev)
2937{
2938        bool remove = !device_is_registered(&dev->dev);
2939        struct pci_dev *bridge;
2940        bool d3cold_ok = true;
2941
2942        bridge = pci_upstream_bridge(dev);
2943        if (!bridge || !pci_bridge_d3_possible(bridge))
2944                return;
2945
2946        /*
2947         * If D3 is currently allowed for the bridge, removing one of its
2948         * children won't change that.
2949         */
2950        if (remove && bridge->bridge_d3)
2951                return;
2952
2953        /*
2954         * If D3 is currently allowed for the bridge and a child is added or
2955         * changed, disallowance of D3 can only be caused by that child, so
2956         * we only need to check that single device, not any of its siblings.
2957         *
2958         * If D3 is currently not allowed for the bridge, checking the device
2959         * first may allow us to skip checking its siblings.
2960         */
2961        if (!remove)
2962                pci_dev_check_d3cold(dev, &d3cold_ok);
2963
2964        /*
2965         * If D3 is currently not allowed for the bridge, this may be caused
2966         * either by the device being changed/removed or any of its siblings,
2967         * so we need to go through all children to find out if one of them
2968         * continues to block D3.
2969         */
2970        if (d3cold_ok && !bridge->bridge_d3)
2971                pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2972                             &d3cold_ok);
2973
2974        if (bridge->bridge_d3 != d3cold_ok) {
2975                bridge->bridge_d3 = d3cold_ok;
2976                /* Propagate change to upstream bridges */
2977                pci_bridge_d3_update(bridge);
2978        }
2979}
2980
2981/**
2982 * pci_d3cold_enable - Enable D3cold for device
2983 * @dev: PCI device to handle
2984 *
2985 * This function can be used in drivers to enable D3cold from the device
2986 * they handle.  It also updates upstream PCI bridge PM capabilities
2987 * accordingly.
2988 */
2989void pci_d3cold_enable(struct pci_dev *dev)
2990{
2991        if (dev->no_d3cold) {
2992                dev->no_d3cold = false;
2993                pci_bridge_d3_update(dev);
2994        }
2995}
2996EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2997
2998/**
2999 * pci_d3cold_disable - Disable D3cold for device
3000 * @dev: PCI device to handle
3001 *
3002 * This function can be used in drivers to disable D3cold from the device
3003 * they handle.  It also updates upstream PCI bridge PM capabilities
3004 * accordingly.
3005 */
3006void pci_d3cold_disable(struct pci_dev *dev)
3007{
3008        if (!dev->no_d3cold) {
3009                dev->no_d3cold = true;
3010                pci_bridge_d3_update(dev);
3011        }
3012}
3013EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3014
3015/**
3016 * pci_pm_init - Initialize PM functions of given PCI device
3017 * @dev: PCI device to handle.
3018 */
3019void pci_pm_init(struct pci_dev *dev)
3020{
3021        int pm;
3022        u16 status;
3023        u16 pmc;
3024
3025        pm_runtime_forbid(&dev->dev);
3026        pm_runtime_set_active(&dev->dev);
3027        pm_runtime_enable(&dev->dev);
3028        device_enable_async_suspend(&dev->dev);
3029        dev->wakeup_prepared = false;
3030
3031        dev->pm_cap = 0;
3032        dev->pme_support = 0;
3033
3034        /* find PCI PM capability in list */
3035        pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3036        if (!pm)
3037                return;
3038        /* Check device's ability to generate PME# */
3039        pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3040
3041        if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3042                pci_err(dev, "unsupported PM cap regs version (%u)\n",
3043                        pmc & PCI_PM_CAP_VER_MASK);
3044                return;
3045        }
3046
3047        dev->pm_cap = pm;
3048        dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3049        dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3050        dev->bridge_d3 = pci_bridge_d3_possible(dev);
3051        dev->d3cold_allowed = true;
3052
3053        dev->d1_support = false;
3054        dev->d2_support = false;
3055        if (!pci_no_d1d2(dev)) {
3056                if (pmc & PCI_PM_CAP_D1)
3057                        dev->d1_support = true;
3058                if (pmc & PCI_PM_CAP_D2)
3059                        dev->d2_support = true;
3060
3061                if (dev->d1_support || dev->d2_support)
3062                        pci_info(dev, "supports%s%s\n",
3063                                   dev->d1_support ? " D1" : "",
3064                                   dev->d2_support ? " D2" : "");
3065        }
3066
3067        pmc &= PCI_PM_CAP_PME_MASK;
3068        if (pmc) {
3069                pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3070                         (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3071                         (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3072                         (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3073                         (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3074                         (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3075                dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3076                dev->pme_poll = true;
3077                /*
3078                 * Make device's PM flags reflect the wake-up capability, but
3079                 * let the user space enable it to wake up the system as needed.
3080                 */
3081                device_set_wakeup_capable(&dev->dev, true);
3082                /* Disable the PME# generation functionality */
3083                pci_pme_active(dev, false);
3084        }
3085
3086        pci_read_config_word(dev, PCI_STATUS, &status);
3087        if (status & PCI_STATUS_IMM_READY)
3088                dev->imm_ready = 1;
3089}
3090
3091static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3092{
3093        unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3094
3095        switch (prop) {
3096        case PCI_EA_P_MEM:
3097        case PCI_EA_P_VF_MEM:
3098                flags |= IORESOURCE_MEM;
3099                break;
3100        case PCI_EA_P_MEM_PREFETCH:
3101        case PCI_EA_P_VF_MEM_PREFETCH:
3102                flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3103                break;
3104        case PCI_EA_P_IO:
3105                flags |= IORESOURCE_IO;
3106                break;
3107        default:
3108                return 0;
3109        }
3110
3111        return flags;
3112}
3113
3114static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3115                                            u8 prop)
3116{
3117        if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3118                return &dev->resource[bei];
3119#ifdef CONFIG_PCI_IOV
3120        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3121                 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3122                return &dev->resource[PCI_IOV_RESOURCES +
3123                                      bei - PCI_EA_BEI_VF_BAR0];
3124#endif
3125        else if (bei == PCI_EA_BEI_ROM)
3126                return &dev->resource[PCI_ROM_RESOURCE];
3127        else
3128                return NULL;
3129}
3130
3131/* Read an Enhanced Allocation (EA) entry */
3132static int pci_ea_read(struct pci_dev *dev, int offset)
3133{
3134        struct resource *res;
3135        int ent_size, ent_offset = offset;
3136        resource_size_t start, end;
3137        unsigned long flags;
3138        u32 dw0, bei, base, max_offset;
3139        u8 prop;
3140        bool support_64 = (sizeof(resource_size_t) >= 8);
3141
3142        pci_read_config_dword(dev, ent_offset, &dw0);
3143        ent_offset += 4;
3144
3145        /* Entry size field indicates DWORDs after 1st */
3146        ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3147
3148        if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3149                goto out;
3150
3151        bei = (dw0 & PCI_EA_BEI) >> 4;
3152        prop = (dw0 & PCI_EA_PP) >> 8;
3153
3154        /*
3155         * If the Property is in the reserved range, try the Secondary
3156         * Property instead.
3157         */
3158        if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3159                prop = (dw0 & PCI_EA_SP) >> 16;
3160        if (prop > PCI_EA_P_BRIDGE_IO)
3161                goto out;
3162
3163        res = pci_ea_get_resource(dev, bei, prop);
3164        if (!res) {
3165                pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3166                goto out;
3167        }
3168
3169        flags = pci_ea_flags(dev, prop);
3170        if (!flags) {
3171                pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3172                goto out;
3173        }
3174
3175        /* Read Base */
3176        pci_read_config_dword(dev, ent_offset, &base);
3177        start = (base & PCI_EA_FIELD_MASK);
3178        ent_offset += 4;
3179
3180        /* Read MaxOffset */
3181        pci_read_config_dword(dev, ent_offset, &max_offset);
3182        ent_offset += 4;
3183
3184        /* Read Base MSBs (if 64-bit entry) */
3185        if (base & PCI_EA_IS_64) {
3186                u32 base_upper;
3187
3188                pci_read_config_dword(dev, ent_offset, &base_upper);
3189                ent_offset += 4;
3190
3191                flags |= IORESOURCE_MEM_64;
3192
3193                /* entry starts above 32-bit boundary, can't use */
3194                if (!support_64 && base_upper)
3195                        goto out;
3196
3197                if (support_64)
3198                        start |= ((u64)base_upper << 32);
3199        }
3200
3201        end = start + (max_offset | 0x03);
3202
3203        /* Read MaxOffset MSBs (if 64-bit entry) */
3204        if (max_offset & PCI_EA_IS_64) {
3205                u32 max_offset_upper;
3206
3207                pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3208                ent_offset += 4;
3209
3210                flags |= IORESOURCE_MEM_64;
3211
3212                /* entry too big, can't use */
3213                if (!support_64 && max_offset_upper)
3214                        goto out;
3215
3216                if (support_64)
3217                        end += ((u64)max_offset_upper << 32);
3218        }
3219
3220        if (end < start) {
3221                pci_err(dev, "EA Entry crosses address boundary\n");
3222                goto out;
3223        }
3224
3225        if (ent_size != ent_offset - offset) {
3226                pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3227                        ent_size, ent_offset - offset);
3228                goto out;
3229        }
3230
3231        res->name = pci_name(dev);
3232        res->start = start;
3233        res->end = end;
3234        res->flags = flags;
3235
3236        if (bei <= PCI_EA_BEI_BAR5)
3237                pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3238                           bei, res, prop);
3239        else if (bei == PCI_EA_BEI_ROM)
3240                pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3241                           res, prop);
3242        else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3243                pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3244                           bei - PCI_EA_BEI_VF_BAR0, res, prop);
3245        else
3246                pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3247                           bei, res, prop);
3248
3249out:
3250        return offset + ent_size;
3251}
3252
3253/* Enhanced Allocation Initialization */
3254void pci_ea_init(struct pci_dev *dev)
3255{
3256        int ea;
3257        u8 num_ent;
3258        int offset;
3259        int i;
3260
3261        /* find PCI EA capability in list */
3262        ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3263        if (!ea)
3264                return;
3265
3266        /* determine the number of entries */
3267        pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3268                                        &num_ent);
3269        num_ent &= PCI_EA_NUM_ENT_MASK;
3270
3271        offset = ea + PCI_EA_FIRST_ENT;
3272
3273        /* Skip DWORD 2 for type 1 functions */
3274        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3275                offset += 4;
3276
3277        /* parse each EA entry */
3278        for (i = 0; i < num_ent; ++i)
3279                offset = pci_ea_read(dev, offset);
3280}
3281
3282static void pci_add_saved_cap(struct pci_dev *pci_dev,
3283        struct pci_cap_saved_state *new_cap)
3284{
3285        hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3286}
3287
3288/**
3289 * _pci_add_cap_save_buffer - allocate buffer for saving given
3290 *                            capability registers
3291 * @dev: the PCI device
3292 * @cap: the capability to allocate the buffer for
3293 * @extended: Standard or Extended capability ID
3294 * @size: requested size of the buffer
3295 */
3296static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3297                                    bool extended, unsigned int size)
3298{
3299        int pos;
3300        struct pci_cap_saved_state *save_state;
3301
3302        if (extended)
3303                pos = pci_find_ext_capability(dev, cap);
3304        else
3305                pos = pci_find_capability(dev, cap);
3306
3307        if (!pos)
3308                return 0;
3309
3310        save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3311        if (!save_state)
3312                return -ENOMEM;
3313
3314        save_state->cap.cap_nr = cap;
3315        save_state->cap.cap_extended = extended;
3316        save_state->cap.size = size;
3317        pci_add_saved_cap(dev, save_state);
3318
3319        return 0;
3320}
3321
3322int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3323{
3324        return _pci_add_cap_save_buffer(dev, cap, false, size);
3325}
3326
3327int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3328{
3329        return _pci_add_cap_save_buffer(dev, cap, true, size);
3330}
3331
3332/**
3333 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3334 * @dev: the PCI device
3335 */
3336void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3337{
3338        int error;
3339
3340        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3341                                        PCI_EXP_SAVE_REGS * sizeof(u16));
3342        if (error)
3343                pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3344
3345        error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3346        if (error)
3347                pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3348
3349        error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3350                                            2 * sizeof(u16));
3351        if (error)
3352                pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3353
3354        pci_allocate_vc_save_buffers(dev);
3355}
3356
3357void pci_free_cap_save_buffers(struct pci_dev *dev)
3358{
3359        struct pci_cap_saved_state *tmp;
3360        struct hlist_node *n;
3361
3362        hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3363                kfree(tmp);
3364}
3365
3366/**
3367 * pci_configure_ari - enable or disable ARI forwarding
3368 * @dev: the PCI device
3369 *
3370 * If @dev and its upstream bridge both support ARI, enable ARI in the
3371 * bridge.  Otherwise, disable ARI in the bridge.
3372 */
3373void pci_configure_ari(struct pci_dev *dev)
3374{
3375        u32 cap;
3376        struct pci_dev *bridge;
3377
3378        if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3379                return;
3380
3381        bridge = dev->bus->self;
3382        if (!bridge)
3383                return;
3384
3385        pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3386        if (!(cap & PCI_EXP_DEVCAP2_ARI))
3387                return;
3388
3389        if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3390                pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3391                                         PCI_EXP_DEVCTL2_ARI);
3392                bridge->ari_enabled = 1;
3393        } else {
3394                pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3395                                           PCI_EXP_DEVCTL2_ARI);
3396                bridge->ari_enabled = 0;
3397        }
3398}
3399
3400static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3401{
3402        int pos;
3403        u16 cap, ctrl;
3404
3405        pos = pdev->acs_cap;
3406        if (!pos)
3407                return false;
3408
3409        /*
3410         * Except for egress control, capabilities are either required
3411         * or only required if controllable.  Features missing from the
3412         * capability field can therefore be assumed as hard-wired enabled.
3413         */
3414        pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3415        acs_flags &= (cap | PCI_ACS_EC);
3416
3417        pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3418        return (ctrl & acs_flags) == acs_flags;
3419}
3420
3421/**
3422 * pci_acs_enabled - test ACS against required flags for a given device
3423 * @pdev: device to test
3424 * @acs_flags: required PCI ACS flags
3425 *
3426 * Return true if the device supports the provided flags.  Automatically
3427 * filters out flags that are not implemented on multifunction devices.
3428 *
3429 * Note that this interface checks the effective ACS capabilities of the
3430 * device rather than the actual capabilities.  For instance, most single
3431 * function endpoints are not required to support ACS because they have no
3432 * opportunity for peer-to-peer access.  We therefore return 'true'
3433 * regardless of whether the device exposes an ACS capability.  This makes
3434 * it much easier for callers of this function to ignore the actual type
3435 * or topology of the device when testing ACS support.
3436 */
3437bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3438{
3439        int ret;
3440
3441        ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3442        if (ret >= 0)
3443                return ret > 0;
3444
3445        /*
3446         * Conventional PCI and PCI-X devices never support ACS, either
3447         * effectively or actually.  The shared bus topology implies that
3448         * any device on the bus can receive or snoop DMA.
3449         */
3450        if (!pci_is_pcie(pdev))
3451                return false;
3452
3453        switch (pci_pcie_type(pdev)) {
3454        /*
3455         * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3456         * but since their primary interface is PCI/X, we conservatively
3457         * handle them as we would a non-PCIe device.
3458         */
3459        case PCI_EXP_TYPE_PCIE_BRIDGE:
3460        /*
3461         * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3462         * applicable... must never implement an ACS Extended Capability...".
3463         * This seems arbitrary, but we take a conservative interpretation
3464         * of this statement.
3465         */
3466        case PCI_EXP_TYPE_PCI_BRIDGE:
3467        case PCI_EXP_TYPE_RC_EC:
3468                return false;
3469        /*
3470         * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3471         * implement ACS in order to indicate their peer-to-peer capabilities,
3472         * regardless of whether they are single- or multi-function devices.
3473         */
3474        case PCI_EXP_TYPE_DOWNSTREAM:
3475        case PCI_EXP_TYPE_ROOT_PORT:
3476                return pci_acs_flags_enabled(pdev, acs_flags);
3477        /*
3478         * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3479         * implemented by the remaining PCIe types to indicate peer-to-peer
3480         * capabilities, but only when they are part of a multifunction
3481         * device.  The footnote for section 6.12 indicates the specific
3482         * PCIe types included here.
3483         */
3484        case PCI_EXP_TYPE_ENDPOINT:
3485        case PCI_EXP_TYPE_UPSTREAM:
3486        case PCI_EXP_TYPE_LEG_END:
3487        case PCI_EXP_TYPE_RC_END:
3488                if (!pdev->multifunction)
3489                        break;
3490
3491                return pci_acs_flags_enabled(pdev, acs_flags);
3492        }
3493
3494        /*
3495         * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3496         * to single function devices with the exception of downstream ports.
3497         */
3498        return true;
3499}
3500
3501/**
3502 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3503 * @start: starting downstream device
3504 * @end: ending upstream device or NULL to search to the root bus
3505 * @acs_flags: required flags
3506 *
3507 * Walk up a device tree from start to end testing PCI ACS support.  If
3508 * any step along the way does not support the required flags, return false.
3509 */
3510bool pci_acs_path_enabled(struct pci_dev *start,
3511                          struct pci_dev *end, u16 acs_flags)
3512{
3513        struct pci_dev *pdev, *parent = start;
3514
3515        do {
3516                pdev = parent;
3517
3518                if (!pci_acs_enabled(pdev, acs_flags))
3519                        return false;
3520
3521                if (pci_is_root_bus(pdev->bus))
3522                        return (end == NULL);
3523
3524                parent = pdev->bus->self;
3525        } while (pdev != end);
3526
3527        return true;
3528}
3529
3530/**
3531 * pci_acs_init - Initialize ACS if hardware supports it
3532 * @dev: the PCI device
3533 */
3534void pci_acs_init(struct pci_dev *dev)
3535{
3536        dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3537
3538        /*
3539         * Attempt to enable ACS regardless of capability because some Root
3540         * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3541         * the standard ACS capability but still support ACS via those
3542         * quirks.
3543         */
3544        pci_enable_acs(dev);
3545}
3546
3547/**
3548 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3549 * @pdev: PCI device
3550 * @bar: BAR to find
3551 *
3552 * Helper to find the position of the ctrl register for a BAR.
3553 * Returns -ENOTSUPP if resizable BARs are not supported at all.
3554 * Returns -ENOENT if no ctrl register for the BAR could be found.
3555 */
3556static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3557{
3558        unsigned int pos, nbars, i;
3559        u32 ctrl;
3560
3561        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3562        if (!pos)
3563                return -ENOTSUPP;
3564
3565        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3566        nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3567                    PCI_REBAR_CTRL_NBAR_SHIFT;
3568
3569        for (i = 0; i < nbars; i++, pos += 8) {
3570                int bar_idx;
3571
3572                pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3573                bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3574                if (bar_idx == bar)
3575                        return pos;
3576        }
3577
3578        return -ENOENT;
3579}
3580
3581/**
3582 * pci_rebar_get_possible_sizes - get possible sizes for BAR
3583 * @pdev: PCI device
3584 * @bar: BAR to query
3585 *
3586 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3587 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3588 */
3589u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3590{
3591        int pos;
3592        u32 cap;
3593
3594        pos = pci_rebar_find_pos(pdev, bar);
3595        if (pos < 0)
3596                return 0;
3597
3598        pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3599        return (cap & PCI_REBAR_CAP_SIZES) >> 4;
3600}
3601
3602/**
3603 * pci_rebar_get_current_size - get the current size of a BAR
3604 * @pdev: PCI device
3605 * @bar: BAR to set size to
3606 *
3607 * Read the size of a BAR from the resizable BAR config.
3608 * Returns size if found or negative error code.
3609 */
3610int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3611{
3612        int pos;
3613        u32 ctrl;
3614
3615        pos = pci_rebar_find_pos(pdev, bar);
3616        if (pos < 0)
3617                return pos;
3618
3619        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3620        return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3621}
3622
3623/**
3624 * pci_rebar_set_size - set a new size for a BAR
3625 * @pdev: PCI device
3626 * @bar: BAR to set size to
3627 * @size: new size as defined in the spec (0=1MB, 19=512GB)
3628 *
3629 * Set the new size of a BAR as defined in the spec.
3630 * Returns zero if resizing was successful, error code otherwise.
3631 */
3632int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3633{
3634        int pos;
3635        u32 ctrl;
3636
3637        pos = pci_rebar_find_pos(pdev, bar);
3638        if (pos < 0)
3639                return pos;
3640
3641        pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3642        ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3643        ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3644        pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3645        return 0;
3646}
3647
3648/**
3649 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3650 * @dev: the PCI device
3651 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3652 *      PCI_EXP_DEVCAP2_ATOMIC_COMP32
3653 *      PCI_EXP_DEVCAP2_ATOMIC_COMP64
3654 *      PCI_EXP_DEVCAP2_ATOMIC_COMP128
3655 *
3656 * Return 0 if all upstream bridges support AtomicOp routing, egress
3657 * blocking is disabled on all upstream ports, and the root port supports
3658 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3659 * AtomicOp completion), or negative otherwise.
3660 */
3661int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3662{
3663        struct pci_bus *bus = dev->bus;
3664        struct pci_dev *bridge;
3665        u32 cap, ctl2;
3666
3667        if (!pci_is_pcie(dev))
3668                return -EINVAL;
3669
3670        /*
3671         * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3672         * AtomicOp requesters.  For now, we only support endpoints as
3673         * requesters and root ports as completers.  No endpoints as
3674         * completers, and no peer-to-peer.
3675         */
3676
3677        switch (pci_pcie_type(dev)) {
3678        case PCI_EXP_TYPE_ENDPOINT:
3679        case PCI_EXP_TYPE_LEG_END:
3680        case PCI_EXP_TYPE_RC_END:
3681                break;
3682        default:
3683                return -EINVAL;
3684        }
3685
3686        while (bus->parent) {
3687                bridge = bus->self;
3688
3689                pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3690
3691                switch (pci_pcie_type(bridge)) {
3692                /* Ensure switch ports support AtomicOp routing */
3693                case PCI_EXP_TYPE_UPSTREAM:
3694                case PCI_EXP_TYPE_DOWNSTREAM:
3695                        if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3696                                return -EINVAL;
3697                        break;
3698
3699                /* Ensure root port supports all the sizes we care about */
3700                case PCI_EXP_TYPE_ROOT_PORT:
3701                        if ((cap & cap_mask) != cap_mask)
3702                                return -EINVAL;
3703                        break;
3704                }
3705
3706                /* Ensure upstream ports don't block AtomicOps on egress */
3707                if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3708                        pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3709                                                   &ctl2);
3710                        if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3711                                return -EINVAL;
3712                }
3713
3714                bus = bus->parent;
3715        }
3716
3717        pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3718                                 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3719        return 0;
3720}
3721EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3722
3723/**
3724 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3725 * @dev: the PCI device
3726 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3727 *
3728 * Perform INTx swizzling for a device behind one level of bridge.  This is
3729 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3730 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3731 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3732 * the PCI Express Base Specification, Revision 2.1)
3733 */
3734u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3735{
3736        int slot;
3737
3738        if (pci_ari_enabled(dev->bus))
3739                slot = 0;
3740        else
3741                slot = PCI_SLOT(dev->devfn);
3742
3743        return (((pin - 1) + slot) % 4) + 1;
3744}
3745
3746int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3747{
3748        u8 pin;
3749
3750        pin = dev->pin;
3751        if (!pin)
3752                return -1;
3753
3754        while (!pci_is_root_bus(dev->bus)) {
3755                pin = pci_swizzle_interrupt_pin(dev, pin);
3756                dev = dev->bus->self;
3757        }
3758        *bridge = dev;
3759        return pin;
3760}
3761
3762/**
3763 * pci_common_swizzle - swizzle INTx all the way to root bridge
3764 * @dev: the PCI device
3765 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3766 *
3767 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3768 * bridges all the way up to a PCI root bus.
3769 */
3770u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3771{
3772        u8 pin = *pinp;
3773
3774        while (!pci_is_root_bus(dev->bus)) {
3775                pin = pci_swizzle_interrupt_pin(dev, pin);
3776                dev = dev->bus->self;
3777        }
3778        *pinp = pin;
3779        return PCI_SLOT(dev->devfn);
3780}
3781EXPORT_SYMBOL_GPL(pci_common_swizzle);
3782
3783/**
3784 * pci_release_region - Release a PCI bar
3785 * @pdev: PCI device whose resources were previously reserved by
3786 *        pci_request_region()
3787 * @bar: BAR to release
3788 *
3789 * Releases the PCI I/O and memory resources previously reserved by a
3790 * successful call to pci_request_region().  Call this function only
3791 * after all use of the PCI regions has ceased.
3792 */
3793void pci_release_region(struct pci_dev *pdev, int bar)
3794{
3795        struct pci_devres *dr;
3796
3797        if (pci_resource_len(pdev, bar) == 0)
3798                return;
3799        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3800                release_region(pci_resource_start(pdev, bar),
3801                                pci_resource_len(pdev, bar));
3802        else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3803                release_mem_region(pci_resource_start(pdev, bar),
3804                                pci_resource_len(pdev, bar));
3805
3806        dr = find_pci_dr(pdev);
3807        if (dr)
3808                dr->region_mask &= ~(1 << bar);
3809}
3810EXPORT_SYMBOL(pci_release_region);
3811
3812/**
3813 * __pci_request_region - Reserved PCI I/O and memory resource
3814 * @pdev: PCI device whose resources are to be reserved
3815 * @bar: BAR to be reserved
3816 * @res_name: Name to be associated with resource.
3817 * @exclusive: whether the region access is exclusive or not
3818 *
3819 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3820 * being reserved by owner @res_name.  Do not access any
3821 * address inside the PCI regions unless this call returns
3822 * successfully.
3823 *
3824 * If @exclusive is set, then the region is marked so that userspace
3825 * is explicitly not allowed to map the resource via /dev/mem or
3826 * sysfs MMIO access.
3827 *
3828 * Returns 0 on success, or %EBUSY on error.  A warning
3829 * message is also printed on failure.
3830 */
3831static int __pci_request_region(struct pci_dev *pdev, int bar,
3832                                const char *res_name, int exclusive)
3833{
3834        struct pci_devres *dr;
3835
3836        if (pci_resource_len(pdev, bar) == 0)
3837                return 0;
3838
3839        if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3840                if (!request_region(pci_resource_start(pdev, bar),
3841                            pci_resource_len(pdev, bar), res_name))
3842                        goto err_out;
3843        } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3844                if (!__request_mem_region(pci_resource_start(pdev, bar),
3845                                        pci_resource_len(pdev, bar), res_name,
3846                                        exclusive))
3847                        goto err_out;
3848        }
3849
3850        dr = find_pci_dr(pdev);
3851        if (dr)
3852                dr->region_mask |= 1 << bar;
3853
3854        return 0;
3855
3856err_out:
3857        pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
3858                 &pdev->resource[bar]);
3859        return -EBUSY;
3860}
3861
3862/**
3863 * pci_request_region - Reserve PCI I/O and memory resource
3864 * @pdev: PCI device whose resources are to be reserved
3865 * @bar: BAR to be reserved
3866 * @res_name: Name to be associated with resource
3867 *
3868 * Mark the PCI region associated with PCI device @pdev BAR @bar as
3869 * being reserved by owner @res_name.  Do not access any
3870 * address inside the PCI regions unless this call returns
3871 * successfully.
3872 *
3873 * Returns 0 on success, or %EBUSY on error.  A warning
3874 * message is also printed on failure.
3875 */
3876int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3877{
3878        return __pci_request_region(pdev, bar, res_name, 0);
3879}
3880EXPORT_SYMBOL(pci_request_region);
3881
3882/**
3883 * pci_release_selected_regions - Release selected PCI I/O and memory resources
3884 * @pdev: PCI device whose resources were previously reserved
3885 * @bars: Bitmask of BARs to be released
3886 *
3887 * Release selected PCI I/O and memory resources previously reserved.
3888 * Call this function only after all use of the PCI regions has ceased.
3889 */
3890void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3891{
3892        int i;
3893
3894        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3895                if (bars & (1 << i))
3896                        pci_release_region(pdev, i);
3897}
3898EXPORT_SYMBOL(pci_release_selected_regions);
3899
3900static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3901                                          const char *res_name, int excl)
3902{
3903        int i;
3904
3905        for (i = 0; i < PCI_STD_NUM_BARS; i++)
3906                if (bars & (1 << i))
3907                        if (__pci_request_region(pdev, i, res_name, excl))
3908                                goto err_out;
3909        return 0;
3910
3911err_out:
3912        while (--i >= 0)
3913                if (bars & (1 << i))
3914                        pci_release_region(pdev, i);
3915
3916        return -EBUSY;
3917}
3918
3919
3920/**
3921 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3922 * @pdev: PCI device whose resources are to be reserved
3923 * @bars: Bitmask of BARs to be requested
3924 * @res_name: Name to be associated with resource
3925 */
3926int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3927                                 const char *res_name)
3928{
3929        return __pci_request_selected_regions(pdev, bars, res_name, 0);
3930}
3931EXPORT_SYMBOL(pci_request_selected_regions);
3932
3933int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3934                                           const char *res_name)
3935{
3936        return __pci_request_selected_regions(pdev, bars, res_name,
3937                        IORESOURCE_EXCLUSIVE);
3938}
3939EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3940
3941/**
3942 * pci_release_regions - Release reserved PCI I/O and memory resources
3943 * @pdev: PCI device whose resources were previously reserved by
3944 *        pci_request_regions()
3945 *
3946 * Releases all PCI I/O and memory resources previously reserved by a
3947 * successful call to pci_request_regions().  Call this function only
3948 * after all use of the PCI regions has ceased.
3949 */
3950
3951void pci_release_regions(struct pci_dev *pdev)
3952{
3953        pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
3954}
3955EXPORT_SYMBOL(pci_release_regions);
3956
3957/**
3958 * pci_request_regions - Reserve PCI I/O and memory resources
3959 * @pdev: PCI device whose resources are to be reserved
3960 * @res_name: Name to be associated with resource.
3961 *
3962 * Mark all PCI regions associated with PCI device @pdev as
3963 * being reserved by owner @res_name.  Do not access any
3964 * address inside the PCI regions unless this call returns
3965 * successfully.
3966 *
3967 * Returns 0 on success, or %EBUSY on error.  A warning
3968 * message is also printed on failure.
3969 */
3970int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3971{
3972        return pci_request_selected_regions(pdev,
3973                        ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3974}
3975EXPORT_SYMBOL(pci_request_regions);
3976
3977/**
3978 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
3979 * @pdev: PCI device whose resources are to be reserved
3980 * @res_name: Name to be associated with resource.
3981 *
3982 * Mark all PCI regions associated with PCI device @pdev as being reserved
3983 * by owner @res_name.  Do not access any address inside the PCI regions
3984 * unless this call returns successfully.
3985 *
3986 * pci_request_regions_exclusive() will mark the region so that /dev/mem
3987 * and the sysfs MMIO access will not be allowed.
3988 *
3989 * Returns 0 on success, or %EBUSY on error.  A warning message is also
3990 * printed on failure.
3991 */
3992int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3993{
3994        return pci_request_selected_regions_exclusive(pdev,
3995                                ((1 << PCI_STD_NUM_BARS) - 1), res_name);
3996}
3997EXPORT_SYMBOL(pci_request_regions_exclusive);
3998
3999/*
4000 * Record the PCI IO range (expressed as CPU physical address + size).
4001 * Return a negative value if an error has occurred, zero otherwise
4002 */
4003int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4004                        resource_size_t size)
4005{
4006        int ret = 0;
4007#ifdef PCI_IOBASE
4008        struct logic_pio_hwaddr *range;
4009
4010        if (!size || addr + size < addr)
4011                return -EINVAL;
4012
4013        range = kzalloc(sizeof(*range), GFP_ATOMIC);
4014        if (!range)
4015                return -ENOMEM;
4016
4017        range->fwnode = fwnode;
4018        range->size = size;
4019        range->hw_start = addr;
4020        range->flags = LOGIC_PIO_CPU_MMIO;
4021
4022        ret = logic_pio_register_range(range);
4023        if (ret)
4024                kfree(range);
4025#endif
4026
4027        return ret;
4028}
4029
4030phys_addr_t pci_pio_to_address(unsigned long pio)
4031{
4032        phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4033
4034#ifdef PCI_IOBASE
4035        if (pio >= MMIO_UPPER_LIMIT)
4036                return address;
4037
4038        address = logic_pio_to_hwaddr(pio);
4039#endif
4040
4041        return address;
4042}
4043
4044unsigned long __weak pci_address_to_pio(phys_addr_t address)
4045{
4046#ifdef PCI_IOBASE
4047        return logic_pio_trans_cpuaddr(address);
4048#else
4049        if (address > IO_SPACE_LIMIT)
4050                return (unsigned long)-1;
4051
4052        return (unsigned long) address;
4053#endif
4054}
4055
4056/**
4057 * pci_remap_iospace - Remap the memory mapped I/O space
4058 * @res: Resource describing the I/O space
4059 * @phys_addr: physical address of range to be mapped
4060 *
4061 * Remap the memory mapped I/O space described by the @res and the CPU
4062 * physical address @phys_addr into virtual address space.  Only
4063 * architectures that have memory mapped IO functions defined (and the
4064 * PCI_IOBASE value defined) should call this function.
4065 */
4066int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4067{
4068#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4069        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4070
4071        if (!(res->flags & IORESOURCE_IO))
4072                return -EINVAL;
4073
4074        if (res->end > IO_SPACE_LIMIT)
4075                return -EINVAL;
4076
4077        return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4078                                  pgprot_device(PAGE_KERNEL));
4079#else
4080        /*
4081         * This architecture does not have memory mapped I/O space,
4082         * so this function should never be called
4083         */
4084        WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4085        return -ENODEV;
4086#endif
4087}
4088EXPORT_SYMBOL(pci_remap_iospace);
4089
4090/**
4091 * pci_unmap_iospace - Unmap the memory mapped I/O space
4092 * @res: resource to be unmapped
4093 *
4094 * Unmap the CPU virtual address @res from virtual address space.  Only
4095 * architectures that have memory mapped IO functions defined (and the
4096 * PCI_IOBASE value defined) should call this function.
4097 */
4098void pci_unmap_iospace(struct resource *res)
4099{
4100#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4101        unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4102
4103        unmap_kernel_range(vaddr, resource_size(res));
4104#endif
4105}
4106EXPORT_SYMBOL(pci_unmap_iospace);
4107
4108static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4109{
4110        struct resource **res = ptr;
4111
4112        pci_unmap_iospace(*res);
4113}
4114
4115/**
4116 * devm_pci_remap_iospace - Managed pci_remap_iospace()
4117 * @dev: Generic device to remap IO address for
4118 * @res: Resource describing the I/O space
4119 * @phys_addr: physical address of range to be mapped
4120 *
4121 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4122 * detach.
4123 */
4124int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4125                           phys_addr_t phys_addr)
4126{
4127        const struct resource **ptr;
4128        int error;
4129
4130        ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4131        if (!ptr)
4132                return -ENOMEM;
4133
4134        error = pci_remap_iospace(res, phys_addr);
4135        if (error) {
4136                devres_free(ptr);
4137        } else  {
4138                *ptr = res;
4139                devres_add(dev, ptr);
4140        }
4141
4142        return error;
4143}
4144EXPORT_SYMBOL(devm_pci_remap_iospace);
4145
4146/**
4147 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4148 * @dev: Generic device to remap IO address for
4149 * @offset: Resource address to map
4150 * @size: Size of map
4151 *
4152 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4153 * detach.
4154 */
4155void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4156                                      resource_size_t offset,
4157                                      resource_size_t size)
4158{
4159        void __iomem **ptr, *addr;
4160
4161        ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4162        if (!ptr)
4163                return NULL;
4164
4165        addr = pci_remap_cfgspace(offset, size);
4166        if (addr) {
4167                *ptr = addr;
4168                devres_add(dev, ptr);
4169        } else
4170                devres_free(ptr);
4171
4172        return addr;
4173}
4174EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4175
4176/**
4177 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4178 * @dev: generic device to handle the resource for
4179 * @res: configuration space resource to be handled
4180 *
4181 * Checks that a resource is a valid memory region, requests the memory
4182 * region and ioremaps with pci_remap_cfgspace() API that ensures the
4183 * proper PCI configuration space memory attributes are guaranteed.
4184 *
4185 * All operations are managed and will be undone on driver detach.
4186 *
4187 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4188 * on failure. Usage example::
4189 *
4190 *      res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4191 *      base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4192 *      if (IS_ERR(base))
4193 *              return PTR_ERR(base);
4194 */
4195void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4196                                          struct resource *res)
4197{
4198        resource_size_t size;
4199        const char *name;
4200        void __iomem *dest_ptr;
4201
4202        BUG_ON(!dev);
4203
4204        if (!res || resource_type(res) != IORESOURCE_MEM) {
4205                dev_err(dev, "invalid resource\n");
4206                return IOMEM_ERR_PTR(-EINVAL);
4207        }
4208
4209        size = resource_size(res);
4210
4211        if (res->name)
4212                name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4213                                      res->name);
4214        else
4215                name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4216        if (!name)
4217                return IOMEM_ERR_PTR(-ENOMEM);
4218
4219        if (!devm_request_mem_region(dev, res->start, size, name)) {
4220                dev_err(dev, "can't request region for resource %pR\n", res);
4221                return IOMEM_ERR_PTR(-EBUSY);
4222        }
4223
4224        dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4225        if (!dest_ptr) {
4226                dev_err(dev, "ioremap failed for resource %pR\n", res);
4227                devm_release_mem_region(dev, res->start, size);
4228                dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4229        }
4230
4231        return dest_ptr;
4232}
4233EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4234
4235static void __pci_set_master(struct pci_dev *dev, bool enable)
4236{
4237        u16 old_cmd, cmd;
4238
4239        pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4240        if (enable)
4241                cmd = old_cmd | PCI_COMMAND_MASTER;
4242        else
4243                cmd = old_cmd & ~PCI_COMMAND_MASTER;
4244        if (cmd != old_cmd) {
4245                pci_dbg(dev, "%s bus mastering\n",
4246                        enable ? "enabling" : "disabling");
4247                pci_write_config_word(dev, PCI_COMMAND, cmd);
4248        }
4249        dev->is_busmaster = enable;
4250}
4251
4252/**
4253 * pcibios_setup - process "pci=" kernel boot arguments
4254 * @str: string used to pass in "pci=" kernel boot arguments
4255 *
4256 * Process kernel boot arguments.  This is the default implementation.
4257 * Architecture specific implementations can override this as necessary.
4258 */
4259char * __weak __init pcibios_setup(char *str)
4260{
4261        return str;
4262}
4263
4264/**
4265 * pcibios_set_master - enable PCI bus-mastering for device dev
4266 * @dev: the PCI device to enable
4267 *
4268 * Enables PCI bus-mastering for the device.  This is the default
4269 * implementation.  Architecture specific implementations can override
4270 * this if necessary.
4271 */
4272void __weak pcibios_set_master(struct pci_dev *dev)
4273{
4274        u8 lat;
4275
4276        /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4277        if (pci_is_pcie(dev))
4278                return;
4279
4280        pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4281        if (lat < 16)
4282                lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4283        else if (lat > pcibios_max_latency)
4284                lat = pcibios_max_latency;
4285        else
4286                return;
4287
4288        pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4289}
4290
4291/**
4292 * pci_set_master - enables bus-mastering for device dev
4293 * @dev: the PCI device to enable
4294 *
4295 * Enables bus-mastering on the device and calls pcibios_set_master()
4296 * to do the needed arch specific settings.
4297 */
4298void pci_set_master(struct pci_dev *dev)
4299{
4300        __pci_set_master(dev, true);
4301        pcibios_set_master(dev);
4302}
4303EXPORT_SYMBOL(pci_set_master);
4304
4305/**
4306 * pci_clear_master - disables bus-mastering for device dev
4307 * @dev: the PCI device to disable
4308 */
4309void pci_clear_master(struct pci_dev *dev)
4310{
4311        __pci_set_master(dev, false);
4312}
4313EXPORT_SYMBOL(pci_clear_master);
4314
4315/**
4316 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4317 * @dev: the PCI device for which MWI is to be enabled
4318 *
4319 * Helper function for pci_set_mwi.
4320 * Originally copied from drivers/net/acenic.c.
4321 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4322 *
4323 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4324 */
4325int pci_set_cacheline_size(struct pci_dev *dev)
4326{
4327        u8 cacheline_size;
4328
4329        if (!pci_cache_line_size)
4330                return -EINVAL;
4331
4332        /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4333           equal to or multiple of the right value. */
4334        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4335        if (cacheline_size >= pci_cache_line_size &&
4336            (cacheline_size % pci_cache_line_size) == 0)
4337                return 0;
4338
4339        /* Write the correct value. */
4340        pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4341        /* Read it back. */
4342        pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4343        if (cacheline_size == pci_cache_line_size)
4344                return 0;
4345
4346        pci_dbg(dev, "cache line size of %d is not supported\n",
4347                   pci_cache_line_size << 2);
4348
4349        return -EINVAL;
4350}
4351EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4352
4353/**
4354 * pci_set_mwi - enables memory-write-invalidate PCI transaction
4355 * @dev: the PCI device for which MWI is enabled
4356 *
4357 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4358 *
4359 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4360 */
4361int pci_set_mwi(struct pci_dev *dev)
4362{
4363#ifdef PCI_DISABLE_MWI
4364        return 0;
4365#else
4366        int rc;
4367        u16 cmd;
4368
4369        rc = pci_set_cacheline_size(dev);
4370        if (rc)
4371                return rc;
4372
4373        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4374        if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4375                pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4376                cmd |= PCI_COMMAND_INVALIDATE;
4377                pci_write_config_word(dev, PCI_COMMAND, cmd);
4378        }
4379        return 0;
4380#endif
4381}
4382EXPORT_SYMBOL(pci_set_mwi);
4383
4384/**
4385 * pcim_set_mwi - a device-managed pci_set_mwi()
4386 * @dev: the PCI device for which MWI is enabled
4387 *
4388 * Managed pci_set_mwi().
4389 *
4390 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4391 */
4392int pcim_set_mwi(struct pci_dev *dev)
4393{
4394        struct pci_devres *dr;
4395
4396        dr = find_pci_dr(dev);
4397        if (!dr)
4398                return -ENOMEM;
4399
4400        dr->mwi = 1;
4401        return pci_set_mwi(dev);
4402}
4403EXPORT_SYMBOL(pcim_set_mwi);
4404
4405/**
4406 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4407 * @dev: the PCI device for which MWI is enabled
4408 *
4409 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4410 * Callers are not required to check the return value.
4411 *
4412 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4413 */
4414int pci_try_set_mwi(struct pci_dev *dev)
4415{
4416#ifdef PCI_DISABLE_MWI
4417        return 0;
4418#else
4419        return pci_set_mwi(dev);
4420#endif
4421}
4422EXPORT_SYMBOL(pci_try_set_mwi);
4423
4424/**
4425 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4426 * @dev: the PCI device to disable
4427 *
4428 * Disables PCI Memory-Write-Invalidate transaction on the device
4429 */
4430void pci_clear_mwi(struct pci_dev *dev)
4431{
4432#ifndef PCI_DISABLE_MWI
4433        u16 cmd;
4434
4435        pci_read_config_word(dev, PCI_COMMAND, &cmd);
4436        if (cmd & PCI_COMMAND_INVALIDATE) {
4437                cmd &= ~PCI_COMMAND_INVALIDATE;
4438                pci_write_config_word(dev, PCI_COMMAND, cmd);
4439        }
4440#endif
4441}
4442EXPORT_SYMBOL(pci_clear_mwi);
4443
4444/**
4445 * pci_intx - enables/disables PCI INTx for device dev
4446 * @pdev: the PCI device to operate on
4447 * @enable: boolean: whether to enable or disable PCI INTx
4448 *
4449 * Enables/disables PCI INTx for device @pdev
4450 */
4451void pci_intx(struct pci_dev *pdev, int enable)
4452{
4453        u16 pci_command, new;
4454
4455        pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4456
4457        if (enable)
4458                new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4459        else
4460                new = pci_command | PCI_COMMAND_INTX_DISABLE;
4461
4462        if (new != pci_command) {
4463                struct pci_devres *dr;
4464
4465                pci_write_config_word(pdev, PCI_COMMAND, new);
4466
4467                dr = find_pci_dr(pdev);
4468                if (dr && !dr->restore_intx) {
4469                        dr->restore_intx = 1;
4470                        dr->orig_intx = !enable;
4471                }
4472        }
4473}
4474EXPORT_SYMBOL_GPL(pci_intx);
4475
4476static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4477{
4478        struct pci_bus *bus = dev->bus;
4479        bool mask_updated = true;
4480        u32 cmd_status_dword;
4481        u16 origcmd, newcmd;
4482        unsigned long flags;
4483        bool irq_pending;
4484
4485        /*
4486         * We do a single dword read to retrieve both command and status.
4487         * Document assumptions that make this possible.
4488         */
4489        BUILD_BUG_ON(PCI_COMMAND % 4);
4490        BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4491
4492        raw_spin_lock_irqsave(&pci_lock, flags);
4493
4494        bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4495
4496        irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4497
4498        /*
4499         * Check interrupt status register to see whether our device
4500         * triggered the interrupt (when masking) or the next IRQ is
4501         * already pending (when unmasking).
4502         */
4503        if (mask != irq_pending) {
4504                mask_updated = false;
4505                goto done;
4506        }
4507
4508        origcmd = cmd_status_dword;
4509        newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4510        if (mask)
4511                newcmd |= PCI_COMMAND_INTX_DISABLE;
4512        if (newcmd != origcmd)
4513                bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4514
4515done:
4516        raw_spin_unlock_irqrestore(&pci_lock, flags);
4517
4518        return mask_updated;
4519}
4520
4521/**
4522 * pci_check_and_mask_intx - mask INTx on pending interrupt
4523 * @dev: the PCI device to operate on
4524 *
4525 * Check if the device dev has its INTx line asserted, mask it and return
4526 * true in that case. False is returned if no interrupt was pending.
4527 */
4528bool pci_check_and_mask_intx(struct pci_dev *dev)
4529{
4530        return pci_check_and_set_intx_mask(dev, true);
4531}
4532EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4533
4534/**
4535 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4536 * @dev: the PCI device to operate on
4537 *
4538 * Check if the device dev has its INTx line asserted, unmask it if not and
4539 * return true. False is returned and the mask remains active if there was
4540 * still an interrupt pending.
4541 */
4542bool pci_check_and_unmask_intx(struct pci_dev *dev)
4543{
4544        return pci_check_and_set_intx_mask(dev, false);
4545}
4546EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4547
4548/**
4549 * pci_wait_for_pending_transaction - wait for pending transaction
4550 * @dev: the PCI device to operate on
4551 *
4552 * Return 0 if transaction is pending 1 otherwise.
4553 */
4554int pci_wait_for_pending_transaction(struct pci_dev *dev)
4555{
4556        if (!pci_is_pcie(dev))
4557                return 1;
4558
4559        return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4560                                    PCI_EXP_DEVSTA_TRPND);
4561}
4562EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4563
4564/**
4565 * pcie_has_flr - check if a device supports function level resets
4566 * @dev: device to check
4567 *
4568 * Returns true if the device advertises support for PCIe function level
4569 * resets.
4570 */
4571bool pcie_has_flr(struct pci_dev *dev)
4572{
4573        u32 cap;
4574
4575        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4576                return false;
4577
4578        pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
4579        return cap & PCI_EXP_DEVCAP_FLR;
4580}
4581EXPORT_SYMBOL_GPL(pcie_has_flr);
4582
4583/**
4584 * pcie_flr - initiate a PCIe function level reset
4585 * @dev: device to reset
4586 *
4587 * Initiate a function level reset on @dev.  The caller should ensure the
4588 * device supports FLR before calling this function, e.g. by using the
4589 * pcie_has_flr() helper.
4590 */
4591int pcie_flr(struct pci_dev *dev)
4592{
4593        if (!pci_wait_for_pending_transaction(dev))
4594                pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4595
4596        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4597
4598        if (dev->imm_ready)
4599                return 0;
4600
4601        /*
4602         * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4603         * 100ms, but may silently discard requests while the FLR is in
4604         * progress.  Wait 100ms before trying to access the device.
4605         */
4606        msleep(100);
4607
4608        return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4609}
4610EXPORT_SYMBOL_GPL(pcie_flr);
4611
4612static int pci_af_flr(struct pci_dev *dev, int probe)
4613{
4614        int pos;
4615        u8 cap;
4616
4617        pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4618        if (!pos)
4619                return -ENOTTY;
4620
4621        if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4622                return -ENOTTY;
4623
4624        pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4625        if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4626                return -ENOTTY;
4627
4628        if (probe)
4629                return 0;
4630
4631        /*
4632         * Wait for Transaction Pending bit to clear.  A word-aligned test
4633         * is used, so we use the control offset rather than status and shift
4634         * the test bit to match.
4635         */
4636        if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4637                                 PCI_AF_STATUS_TP << 8))
4638                pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4639
4640        pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4641
4642        if (dev->imm_ready)
4643                return 0;
4644
4645        /*
4646         * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4647         * updated 27 July 2006; a device must complete an FLR within
4648         * 100ms, but may silently discard requests while the FLR is in
4649         * progress.  Wait 100ms before trying to access the device.
4650         */
4651        msleep(100);
4652
4653        return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4654}
4655
4656/**
4657 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4658 * @dev: Device to reset.
4659 * @probe: If set, only check if the device can be reset this way.
4660 *
4661 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4662 * unset, it will be reinitialized internally when going from PCI_D3hot to
4663 * PCI_D0.  If that's the case and the device is not in a low-power state
4664 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4665 *
4666 * NOTE: This causes the caller to sleep for twice the device power transition
4667 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4668 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4669 * Moreover, only devices in D0 can be reset by this function.
4670 */
4671static int pci_pm_reset(struct pci_dev *dev, int probe)
4672{
4673        u16 csr;
4674
4675        if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4676                return -ENOTTY;
4677
4678        pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4679        if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4680                return -ENOTTY;
4681
4682        if (probe)
4683                return 0;
4684
4685        if (dev->current_state != PCI_D0)
4686                return -EINVAL;
4687
4688        csr &= ~PCI_PM_CTRL_STATE_MASK;
4689        csr |= PCI_D3hot;
4690        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4691        pci_dev_d3_sleep(dev);
4692
4693        csr &= ~PCI_PM_CTRL_STATE_MASK;
4694        csr |= PCI_D0;
4695        pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4696        pci_dev_d3_sleep(dev);
4697
4698        return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4699}
4700
4701/**
4702 * pcie_wait_for_link_delay - Wait until link is active or inactive
4703 * @pdev: Bridge device
4704 * @active: waiting for active or inactive?
4705 * @delay: Delay to wait after link has become active (in ms)
4706 *
4707 * Use this to wait till link becomes active or inactive.
4708 */
4709static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4710                                     int delay)
4711{
4712        int timeout = 1000;
4713        bool ret;
4714        u16 lnk_status;
4715
4716        /*
4717         * Some controllers might not implement link active reporting. In this
4718         * case, we wait for 1000 ms + any delay requested by the caller.
4719         */
4720        if (!pdev->link_active_reporting) {
4721                msleep(timeout + delay);
4722                return true;
4723        }
4724
4725        /*
4726         * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4727         * after which we should expect an link active if the reset was
4728         * successful. If so, software must wait a minimum 100ms before sending
4729         * configuration requests to devices downstream this port.
4730         *
4731         * If the link fails to activate, either the device was physically
4732         * removed or the link is permanently failed.
4733         */
4734        if (active)
4735                msleep(20);
4736        for (;;) {
4737                pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status);
4738                ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA);
4739                if (ret == active)
4740                        break;
4741                if (timeout <= 0)
4742                        break;
4743                msleep(10);
4744                timeout -= 10;
4745        }
4746        if (active && ret)
4747                msleep(delay);
4748
4749        return ret == active;
4750}
4751
4752/**
4753 * pcie_wait_for_link - Wait until link is active or inactive
4754 * @pdev: Bridge device
4755 * @active: waiting for active or inactive?
4756 *
4757 * Use this to wait till link becomes active or inactive.
4758 */
4759bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
4760{
4761        return pcie_wait_for_link_delay(pdev, active, 100);
4762}
4763
4764/*
4765 * Find maximum D3cold delay required by all the devices on the bus.  The
4766 * spec says 100 ms, but firmware can lower it and we allow drivers to
4767 * increase it as well.
4768 *
4769 * Called with @pci_bus_sem locked for reading.
4770 */
4771static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
4772{
4773        const struct pci_dev *pdev;
4774        int min_delay = 100;
4775        int max_delay = 0;
4776
4777        list_for_each_entry(pdev, &bus->devices, bus_list) {
4778                if (pdev->d3cold_delay < min_delay)
4779                        min_delay = pdev->d3cold_delay;
4780                if (pdev->d3cold_delay > max_delay)
4781                        max_delay = pdev->d3cold_delay;
4782        }
4783
4784        return max(min_delay, max_delay);
4785}
4786
4787/**
4788 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
4789 * @dev: PCI bridge
4790 *
4791 * Handle necessary delays before access to the devices on the secondary
4792 * side of the bridge are permitted after D3cold to D0 transition.
4793 *
4794 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
4795 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
4796 * 4.3.2.
4797 */
4798void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev)
4799{
4800        struct pci_dev *child;
4801        int delay;
4802
4803        if (pci_dev_is_disconnected(dev))
4804                return;
4805
4806        if (!pci_is_bridge(dev) || !dev->bridge_d3)
4807                return;
4808
4809        down_read(&pci_bus_sem);
4810
4811        /*
4812         * We only deal with devices that are present currently on the bus.
4813         * For any hot-added devices the access delay is handled in pciehp
4814         * board_added(). In case of ACPI hotplug the firmware is expected
4815         * to configure the devices before OS is notified.
4816         */
4817        if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
4818                up_read(&pci_bus_sem);
4819                return;
4820        }
4821
4822        /* Take d3cold_delay requirements into account */
4823        delay = pci_bus_max_d3cold_delay(dev->subordinate);
4824        if (!delay) {
4825                up_read(&pci_bus_sem);
4826                return;
4827        }
4828
4829        child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
4830                                 bus_list);
4831        up_read(&pci_bus_sem);
4832
4833        /*
4834         * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
4835         * accessing the device after reset (that is 1000 ms + 100 ms). In
4836         * practice this should not be needed because we don't do power
4837         * management for them (see pci_bridge_d3_possible()).
4838         */
4839        if (!pci_is_pcie(dev)) {
4840                pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
4841                msleep(1000 + delay);
4842                return;
4843        }
4844
4845        /*
4846         * For PCIe downstream and root ports that do not support speeds
4847         * greater than 5 GT/s need to wait minimum 100 ms. For higher
4848         * speeds (gen3) we need to wait first for the data link layer to
4849         * become active.
4850         *
4851         * However, 100 ms is the minimum and the PCIe spec says the
4852         * software must allow at least 1s before it can determine that the
4853         * device that did not respond is a broken device. There is
4854         * evidence that 100 ms is not always enough, for example certain
4855         * Titan Ridge xHCI controller does not always respond to
4856         * configuration requests if we only wait for 100 ms (see
4857         * https://bugzilla.kernel.org/show_bug.cgi?id=203885).
4858         *
4859         * Therefore we wait for 100 ms and check for the device presence.
4860         * If it is still not present give it an additional 100 ms.
4861         */
4862        if (!pcie_downstream_port(dev))
4863                return;
4864
4865        if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
4866                pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
4867                msleep(delay);
4868        } else {
4869                pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
4870                        delay);
4871                if (!pcie_wait_for_link_delay(dev, true, delay)) {
4872                        /* Did not train, no need to wait any further */
4873                        pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
4874                        return;
4875                }
4876        }
4877
4878        if (!pci_device_is_present(child)) {
4879                pci_dbg(child, "waiting additional %d ms to become accessible\n", delay);
4880                msleep(delay);
4881        }
4882}
4883
4884void pci_reset_secondary_bus(struct pci_dev *dev)
4885{
4886        u16 ctrl;
4887
4888        pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
4889        ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
4890        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4891
4892        /*
4893         * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
4894         * this to 2ms to ensure that we meet the minimum requirement.
4895         */
4896        msleep(2);
4897
4898        ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
4899        pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
4900
4901        /*
4902         * Trhfa for conventional PCI is 2^25 clock cycles.
4903         * Assuming a minimum 33MHz clock this results in a 1s
4904         * delay before we can consider subordinate devices to
4905         * be re-initialized.  PCIe has some ways to shorten this,
4906         * but we don't make use of them yet.
4907         */
4908        ssleep(1);
4909}
4910
4911void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
4912{
4913        pci_reset_secondary_bus(dev);
4914}
4915
4916/**
4917 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
4918 * @dev: Bridge device
4919 *
4920 * Use the bridge control register to assert reset on the secondary bus.
4921 * Devices on the secondary bus are left in power-on state.
4922 */
4923int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
4924{
4925        pcibios_reset_secondary_bus(dev);
4926
4927        return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS);
4928}
4929EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
4930
4931static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
4932{
4933        struct pci_dev *pdev;
4934
4935        if (pci_is_root_bus(dev->bus) || dev->subordinate ||
4936            !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4937                return -ENOTTY;
4938
4939        list_for_each_entry(pdev, &dev->bus->devices, bus_list)
4940                if (pdev != dev)
4941                        return -ENOTTY;
4942
4943        if (probe)
4944                return 0;
4945
4946        return pci_bridge_secondary_bus_reset(dev->bus->self);
4947}
4948
4949static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
4950{
4951        int rc = -ENOTTY;
4952
4953        if (!hotplug || !try_module_get(hotplug->owner))
4954                return rc;
4955
4956        if (hotplug->ops->reset_slot)
4957                rc = hotplug->ops->reset_slot(hotplug, probe);
4958
4959        module_put(hotplug->owner);
4960
4961        return rc;
4962}
4963
4964static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
4965{
4966        if (dev->multifunction || dev->subordinate || !dev->slot ||
4967            dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
4968                return -ENOTTY;
4969
4970        return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
4971}
4972
4973static void pci_dev_lock(struct pci_dev *dev)
4974{
4975        pci_cfg_access_lock(dev);
4976        /* block PM suspend, driver probe, etc. */
4977        device_lock(&dev->dev);
4978}
4979
4980/* Return 1 on successful lock, 0 on contention */
4981static int pci_dev_trylock(struct pci_dev *dev)
4982{
4983        if (pci_cfg_access_trylock(dev)) {
4984                if (device_trylock(&dev->dev))
4985                        return 1;
4986                pci_cfg_access_unlock(dev);
4987        }
4988
4989        return 0;
4990}
4991
4992static void pci_dev_unlock(struct pci_dev *dev)
4993{
4994        device_unlock(&dev->dev);
4995        pci_cfg_access_unlock(dev);
4996}
4997
4998static void pci_dev_save_and_disable(struct pci_dev *dev)
4999{
5000        const struct pci_error_handlers *err_handler =
5001                        dev->driver ? dev->driver->err_handler : NULL;
5002
5003        /*
5004         * dev->driver->err_handler->reset_prepare() is protected against
5005         * races with ->remove() by the device lock, which must be held by
5006         * the caller.
5007         */
5008        if (err_handler && err_handler->reset_prepare)
5009                err_handler->reset_prepare(dev);
5010
5011        /*
5012         * Wake-up device prior to save.  PM registers default to D0 after
5013         * reset and a simple register restore doesn't reliably return
5014         * to a non-D0 state anyway.
5015         */
5016        pci_set_power_state(dev, PCI_D0);
5017
5018        pci_save_state(dev);
5019        /*
5020         * Disable the device by clearing the Command register, except for
5021         * INTx-disable which is set.  This not only disables MMIO and I/O port
5022         * BARs, but also prevents the device from being Bus Master, preventing
5023         * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5024         * compliant devices, INTx-disable prevents legacy interrupts.
5025         */
5026        pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5027}
5028
5029static void pci_dev_restore(struct pci_dev *dev)
5030{
5031        const struct pci_error_handlers *err_handler =
5032                        dev->driver ? dev->driver->err_handler : NULL;
5033
5034        pci_restore_state(dev);
5035
5036        /*
5037         * dev->driver->err_handler->reset_done() is protected against
5038         * races with ->remove() by the device lock, which must be held by
5039         * the caller.
5040         */
5041        if (err_handler && err_handler->reset_done)
5042                err_handler->reset_done(dev);
5043}
5044
5045/**
5046 * __pci_reset_function_locked - reset a PCI device function while holding
5047 * the @dev mutex lock.
5048 * @dev: PCI device to reset
5049 *
5050 * Some devices allow an individual function to be reset without affecting
5051 * other functions in the same device.  The PCI device must be responsive
5052 * to PCI config space in order to use this function.
5053 *
5054 * The device function is presumed to be unused and the caller is holding
5055 * the device mutex lock when this function is called.
5056 *
5057 * Resetting the device will make the contents of PCI configuration space
5058 * random, so any caller of this must be prepared to reinitialise the
5059 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5060 * etc.
5061 *
5062 * Returns 0 if the device function was successfully reset or negative if the
5063 * device doesn't support resetting a single function.
5064 */
5065int __pci_reset_function_locked(struct pci_dev *dev)
5066{
5067        int rc;
5068
5069        might_sleep();
5070
5071        /*
5072         * A reset method returns -ENOTTY if it doesn't support this device
5073         * and we should try the next method.
5074         *
5075         * If it returns 0 (success), we're finished.  If it returns any
5076         * other error, we're also finished: this indicates that further
5077         * reset mechanisms might be broken on the device.
5078         */
5079        rc = pci_dev_specific_reset(dev, 0);
5080        if (rc != -ENOTTY)
5081                return rc;
5082        if (pcie_has_flr(dev)) {
5083                rc = pcie_flr(dev);
5084                if (rc != -ENOTTY)
5085                        return rc;
5086        }
5087        rc = pci_af_flr(dev, 0);
5088        if (rc != -ENOTTY)
5089                return rc;
5090        rc = pci_pm_reset(dev, 0);
5091        if (rc != -ENOTTY)
5092                return rc;
5093        rc = pci_dev_reset_slot_function(dev, 0);
5094        if (rc != -ENOTTY)
5095                return rc;
5096        return pci_parent_bus_reset(dev, 0);
5097}
5098EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5099
5100/**
5101 * pci_probe_reset_function - check whether the device can be safely reset
5102 * @dev: PCI device to reset
5103 *
5104 * Some devices allow an individual function to be reset without affecting
5105 * other functions in the same device.  The PCI device must be responsive
5106 * to PCI config space in order to use this function.
5107 *
5108 * Returns 0 if the device function can be reset or negative if the
5109 * device doesn't support resetting a single function.
5110 */
5111int pci_probe_reset_function(struct pci_dev *dev)
5112{
5113        int rc;
5114
5115        might_sleep();
5116
5117        rc = pci_dev_specific_reset(dev, 1);
5118        if (rc != -ENOTTY)
5119                return rc;
5120        if (pcie_has_flr(dev))
5121                return 0;
5122        rc = pci_af_flr(dev, 1);
5123        if (rc != -ENOTTY)
5124                return rc;
5125        rc = pci_pm_reset(dev, 1);
5126        if (rc != -ENOTTY)
5127                return rc;
5128        rc = pci_dev_reset_slot_function(dev, 1);
5129        if (rc != -ENOTTY)
5130                return rc;
5131
5132        return pci_parent_bus_reset(dev, 1);
5133}
5134
5135/**
5136 * pci_reset_function - quiesce and reset a PCI device function
5137 * @dev: PCI device to reset
5138 *
5139 * Some devices allow an individual function to be reset without affecting
5140 * other functions in the same device.  The PCI device must be responsive
5141 * to PCI config space in order to use this function.
5142 *
5143 * This function does not just reset the PCI portion of a device, but
5144 * clears all the state associated with the device.  This function differs
5145 * from __pci_reset_function_locked() in that it saves and restores device state
5146 * over the reset and takes the PCI device lock.
5147 *
5148 * Returns 0 if the device function was successfully reset or negative if the
5149 * device doesn't support resetting a single function.
5150 */
5151int pci_reset_function(struct pci_dev *dev)
5152{
5153        int rc;
5154
5155        if (!dev->reset_fn)
5156                return -ENOTTY;
5157
5158        pci_dev_lock(dev);
5159        pci_dev_save_and_disable(dev);
5160
5161        rc = __pci_reset_function_locked(dev);
5162
5163        pci_dev_restore(dev);
5164        pci_dev_unlock(dev);
5165
5166        return rc;
5167}
5168EXPORT_SYMBOL_GPL(pci_reset_function);
5169
5170/**
5171 * pci_reset_function_locked - quiesce and reset a PCI device function
5172 * @dev: PCI device to reset
5173 *
5174 * Some devices allow an individual function to be reset without affecting
5175 * other functions in the same device.  The PCI device must be responsive
5176 * to PCI config space in order to use this function.
5177 *
5178 * This function does not just reset the PCI portion of a device, but
5179 * clears all the state associated with the device.  This function differs
5180 * from __pci_reset_function_locked() in that it saves and restores device state
5181 * over the reset.  It also differs from pci_reset_function() in that it
5182 * requires the PCI device lock to be held.
5183 *
5184 * Returns 0 if the device function was successfully reset or negative if the
5185 * device doesn't support resetting a single function.
5186 */
5187int pci_reset_function_locked(struct pci_dev *dev)
5188{
5189        int rc;
5190
5191        if (!dev->reset_fn)
5192                return -ENOTTY;
5193
5194        pci_dev_save_and_disable(dev);
5195
5196        rc = __pci_reset_function_locked(dev);
5197
5198        pci_dev_restore(dev);
5199
5200        return rc;
5201}
5202EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5203
5204/**
5205 * pci_try_reset_function - quiesce and reset a PCI device function
5206 * @dev: PCI device to reset
5207 *
5208 * Same as above, except return -EAGAIN if unable to lock device.
5209 */
5210int pci_try_reset_function(struct pci_dev *dev)
5211{
5212        int rc;
5213
5214        if (!dev->reset_fn)
5215                return -ENOTTY;
5216
5217        if (!pci_dev_trylock(dev))
5218                return -EAGAIN;
5219
5220        pci_dev_save_and_disable(dev);
5221        rc = __pci_reset_function_locked(dev);
5222        pci_dev_restore(dev);
5223        pci_dev_unlock(dev);
5224
5225        return rc;
5226}
5227EXPORT_SYMBOL_GPL(pci_try_reset_function);
5228
5229/* Do any devices on or below this bus prevent a bus reset? */
5230static bool pci_bus_resetable(struct pci_bus *bus)
5231{
5232        struct pci_dev *dev;
5233
5234
5235        if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5236                return false;
5237
5238        list_for_each_entry(dev, &bus->devices, bus_list) {
5239                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5240                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5241                        return false;
5242        }
5243
5244        return true;
5245}
5246
5247/* Lock devices from the top of the tree down */
5248static void pci_bus_lock(struct pci_bus *bus)
5249{
5250        struct pci_dev *dev;
5251
5252        list_for_each_entry(dev, &bus->devices, bus_list) {
5253                pci_dev_lock(dev);
5254                if (dev->subordinate)
5255                        pci_bus_lock(dev->subordinate);
5256        }
5257}
5258
5259/* Unlock devices from the bottom of the tree up */
5260static void pci_bus_unlock(struct pci_bus *bus)
5261{
5262        struct pci_dev *dev;
5263
5264        list_for_each_entry(dev, &bus->devices, bus_list) {
5265                if (dev->subordinate)
5266                        pci_bus_unlock(dev->subordinate);
5267                pci_dev_unlock(dev);
5268        }
5269}
5270
5271/* Return 1 on successful lock, 0 on contention */
5272static int pci_bus_trylock(struct pci_bus *bus)
5273{
5274        struct pci_dev *dev;
5275
5276        list_for_each_entry(dev, &bus->devices, bus_list) {
5277                if (!pci_dev_trylock(dev))
5278                        goto unlock;
5279                if (dev->subordinate) {
5280                        if (!pci_bus_trylock(dev->subordinate)) {
5281                                pci_dev_unlock(dev);
5282                                goto unlock;
5283                        }
5284                }
5285        }
5286        return 1;
5287
5288unlock:
5289        list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5290                if (dev->subordinate)
5291                        pci_bus_unlock(dev->subordinate);
5292                pci_dev_unlock(dev);
5293        }
5294        return 0;
5295}
5296
5297/* Do any devices on or below this slot prevent a bus reset? */
5298static bool pci_slot_resetable(struct pci_slot *slot)
5299{
5300        struct pci_dev *dev;
5301
5302        if (slot->bus->self &&
5303            (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5304                return false;
5305
5306        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5307                if (!dev->slot || dev->slot != slot)
5308                        continue;
5309                if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5310                    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5311                        return false;
5312        }
5313
5314        return true;
5315}
5316
5317/* Lock devices from the top of the tree down */
5318static void pci_slot_lock(struct pci_slot *slot)
5319{
5320        struct pci_dev *dev;
5321
5322        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5323                if (!dev->slot || dev->slot != slot)
5324                        continue;
5325                pci_dev_lock(dev);
5326                if (dev->subordinate)
5327                        pci_bus_lock(dev->subordinate);
5328        }
5329}
5330
5331/* Unlock devices from the bottom of the tree up */
5332static void pci_slot_unlock(struct pci_slot *slot)
5333{
5334        struct pci_dev *dev;
5335
5336        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5337                if (!dev->slot || dev->slot != slot)
5338                        continue;
5339                if (dev->subordinate)
5340                        pci_bus_unlock(dev->subordinate);
5341                pci_dev_unlock(dev);
5342        }
5343}
5344
5345/* Return 1 on successful lock, 0 on contention */
5346static int pci_slot_trylock(struct pci_slot *slot)
5347{
5348        struct pci_dev *dev;
5349
5350        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5351                if (!dev->slot || dev->slot != slot)
5352                        continue;
5353                if (!pci_dev_trylock(dev))
5354                        goto unlock;
5355                if (dev->subordinate) {
5356                        if (!pci_bus_trylock(dev->subordinate)) {
5357                                pci_dev_unlock(dev);
5358                                goto unlock;
5359                        }
5360                }
5361        }
5362        return 1;
5363
5364unlock:
5365        list_for_each_entry_continue_reverse(dev,
5366                                             &slot->bus->devices, bus_list) {
5367                if (!dev->slot || dev->slot != slot)
5368                        continue;
5369                if (dev->subordinate)
5370                        pci_bus_unlock(dev->subordinate);
5371                pci_dev_unlock(dev);
5372        }
5373        return 0;
5374}
5375
5376/*
5377 * Save and disable devices from the top of the tree down while holding
5378 * the @dev mutex lock for the entire tree.
5379 */
5380static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5381{
5382        struct pci_dev *dev;
5383
5384        list_for_each_entry(dev, &bus->devices, bus_list) {
5385                pci_dev_save_and_disable(dev);
5386                if (dev->subordinate)
5387                        pci_bus_save_and_disable_locked(dev->subordinate);
5388        }
5389}
5390
5391/*
5392 * Restore devices from top of the tree down while holding @dev mutex lock
5393 * for the entire tree.  Parent bridges need to be restored before we can
5394 * get to subordinate devices.
5395 */
5396static void pci_bus_restore_locked(struct pci_bus *bus)
5397{
5398        struct pci_dev *dev;
5399
5400        list_for_each_entry(dev, &bus->devices, bus_list) {
5401                pci_dev_restore(dev);
5402                if (dev->subordinate)
5403                        pci_bus_restore_locked(dev->subordinate);
5404        }
5405}
5406
5407/*
5408 * Save and disable devices from the top of the tree down while holding
5409 * the @dev mutex lock for the entire tree.
5410 */
5411static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5412{
5413        struct pci_dev *dev;
5414
5415        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5416                if (!dev->slot || dev->slot != slot)
5417                        continue;
5418                pci_dev_save_and_disable(dev);
5419                if (dev->subordinate)
5420                        pci_bus_save_and_disable_locked(dev->subordinate);
5421        }
5422}
5423
5424/*
5425 * Restore devices from top of the tree down while holding @dev mutex lock
5426 * for the entire tree.  Parent bridges need to be restored before we can
5427 * get to subordinate devices.
5428 */
5429static void pci_slot_restore_locked(struct pci_slot *slot)
5430{
5431        struct pci_dev *dev;
5432
5433        list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5434                if (!dev->slot || dev->slot != slot)
5435                        continue;
5436                pci_dev_restore(dev);
5437                if (dev->subordinate)
5438                        pci_bus_restore_locked(dev->subordinate);
5439        }
5440}
5441
5442static int pci_slot_reset(struct pci_slot *slot, int probe)
5443{
5444        int rc;
5445
5446        if (!slot || !pci_slot_resetable(slot))
5447                return -ENOTTY;
5448
5449        if (!probe)
5450                pci_slot_lock(slot);
5451
5452        might_sleep();
5453
5454        rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5455
5456        if (!probe)
5457                pci_slot_unlock(slot);
5458
5459        return rc;
5460}
5461
5462/**
5463 * pci_probe_reset_slot - probe whether a PCI slot can be reset
5464 * @slot: PCI slot to probe
5465 *
5466 * Return 0 if slot can be reset, negative if a slot reset is not supported.
5467 */
5468int pci_probe_reset_slot(struct pci_slot *slot)
5469{
5470        return pci_slot_reset(slot, 1);
5471}
5472EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5473
5474/**
5475 * __pci_reset_slot - Try to reset a PCI slot
5476 * @slot: PCI slot to reset
5477 *
5478 * A PCI bus may host multiple slots, each slot may support a reset mechanism
5479 * independent of other slots.  For instance, some slots may support slot power
5480 * control.  In the case of a 1:1 bus to slot architecture, this function may
5481 * wrap the bus reset to avoid spurious slot related events such as hotplug.
5482 * Generally a slot reset should be attempted before a bus reset.  All of the
5483 * function of the slot and any subordinate buses behind the slot are reset
5484 * through this function.  PCI config space of all devices in the slot and
5485 * behind the slot is saved before and restored after reset.
5486 *
5487 * Same as above except return -EAGAIN if the slot cannot be locked
5488 */
5489static int __pci_reset_slot(struct pci_slot *slot)
5490{
5491        int rc;
5492
5493        rc = pci_slot_reset(slot, 1);
5494        if (rc)
5495                return rc;
5496
5497        if (pci_slot_trylock(slot)) {
5498                pci_slot_save_and_disable_locked(slot);
5499                might_sleep();
5500                rc = pci_reset_hotplug_slot(slot->hotplug, 0);
5501                pci_slot_restore_locked(slot);
5502                pci_slot_unlock(slot);
5503        } else
5504                rc = -EAGAIN;
5505
5506        return rc;
5507}
5508
5509static int pci_bus_reset(struct pci_bus *bus, int probe)
5510{
5511        int ret;
5512
5513        if (!bus->self || !pci_bus_resetable(bus))
5514                return -ENOTTY;
5515
5516        if (probe)
5517                return 0;
5518
5519        pci_bus_lock(bus);
5520
5521        might_sleep();
5522
5523        ret = pci_bridge_secondary_bus_reset(bus->self);
5524
5525        pci_bus_unlock(bus);
5526
5527        return ret;
5528}
5529
5530/**
5531 * pci_bus_error_reset - reset the bridge's subordinate bus
5532 * @bridge: The parent device that connects to the bus to reset
5533 *
5534 * This function will first try to reset the slots on this bus if the method is
5535 * available. If slot reset fails or is not available, this will fall back to a
5536 * secondary bus reset.
5537 */
5538int pci_bus_error_reset(struct pci_dev *bridge)
5539{
5540        struct pci_bus *bus = bridge->subordinate;
5541        struct pci_slot *slot;
5542
5543        if (!bus)
5544                return -ENOTTY;
5545
5546        mutex_lock(&pci_slot_mutex);
5547        if (list_empty(&bus->slots))
5548                goto bus_reset;
5549
5550        list_for_each_entry(slot, &bus->slots, list)
5551                if (pci_probe_reset_slot(slot))
5552                        goto bus_reset;
5553
5554        list_for_each_entry(slot, &bus->slots, list)
5555                if (pci_slot_reset(slot, 0))
5556                        goto bus_reset;
5557
5558        mutex_unlock(&pci_slot_mutex);
5559        return 0;
5560bus_reset:
5561        mutex_unlock(&pci_slot_mutex);
5562        return pci_bus_reset(bridge->subordinate, 0);
5563}
5564
5565/**
5566 * pci_probe_reset_bus - probe whether a PCI bus can be reset
5567 * @bus: PCI bus to probe
5568 *
5569 * Return 0 if bus can be reset, negative if a bus reset is not supported.
5570 */
5571int pci_probe_reset_bus(struct pci_bus *bus)
5572{
5573        return pci_bus_reset(bus, 1);
5574}
5575EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5576
5577/**
5578 * __pci_reset_bus - Try to reset a PCI bus
5579 * @bus: top level PCI bus to reset
5580 *
5581 * Same as above except return -EAGAIN if the bus cannot be locked
5582 */
5583static int __pci_reset_bus(struct pci_bus *bus)
5584{
5585        int rc;
5586
5587        rc = pci_bus_reset(bus, 1);
5588        if (rc)
5589                return rc;
5590
5591        if (pci_bus_trylock(bus)) {
5592                pci_bus_save_and_disable_locked(bus);
5593                might_sleep();
5594                rc = pci_bridge_secondary_bus_reset(bus->self);
5595                pci_bus_restore_locked(bus);
5596                pci_bus_unlock(bus);
5597        } else
5598                rc = -EAGAIN;
5599
5600        return rc;
5601}
5602
5603/**
5604 * pci_reset_bus - Try to reset a PCI bus
5605 * @pdev: top level PCI device to reset via slot/bus
5606 *
5607 * Same as above except return -EAGAIN if the bus cannot be locked
5608 */
5609int pci_reset_bus(struct pci_dev *pdev)
5610{
5611        return (!pci_probe_reset_slot(pdev->slot)) ?
5612            __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
5613}
5614EXPORT_SYMBOL_GPL(pci_reset_bus);
5615
5616/**
5617 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
5618 * @dev: PCI device to query
5619 *
5620 * Returns mmrbc: maximum designed memory read count in bytes or
5621 * appropriate error value.
5622 */
5623int pcix_get_max_mmrbc(struct pci_dev *dev)
5624{
5625        int cap;
5626        u32 stat;
5627
5628        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5629        if (!cap)
5630                return -EINVAL;
5631
5632        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5633                return -EINVAL;
5634
5635        return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
5636}
5637EXPORT_SYMBOL(pcix_get_max_mmrbc);
5638
5639/**
5640 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
5641 * @dev: PCI device to query
5642 *
5643 * Returns mmrbc: maximum memory read count in bytes or appropriate error
5644 * value.
5645 */
5646int pcix_get_mmrbc(struct pci_dev *dev)
5647{
5648        int cap;
5649        u16 cmd;
5650
5651        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5652        if (!cap)
5653                return -EINVAL;
5654
5655        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5656                return -EINVAL;
5657
5658        return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
5659}
5660EXPORT_SYMBOL(pcix_get_mmrbc);
5661
5662/**
5663 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
5664 * @dev: PCI device to query
5665 * @mmrbc: maximum memory read count in bytes
5666 *    valid values are 512, 1024, 2048, 4096
5667 *
5668 * If possible sets maximum memory read byte count, some bridges have errata
5669 * that prevent this.
5670 */
5671int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
5672{
5673        int cap;
5674        u32 stat, v, o;
5675        u16 cmd;
5676
5677        if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
5678                return -EINVAL;
5679
5680        v = ffs(mmrbc) - 10;
5681
5682        cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
5683        if (!cap)
5684                return -EINVAL;
5685
5686        if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
5687                return -EINVAL;
5688
5689        if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
5690                return -E2BIG;
5691
5692        if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
5693                return -EINVAL;
5694
5695        o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
5696        if (o != v) {
5697                if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
5698                        return -EIO;
5699
5700                cmd &= ~PCI_X_CMD_MAX_READ;
5701                cmd |= v << 2;
5702                if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
5703                        return -EIO;
5704        }
5705        return 0;
5706}
5707EXPORT_SYMBOL(pcix_set_mmrbc);
5708
5709/**
5710 * pcie_get_readrq - get PCI Express read request size
5711 * @dev: PCI device to query
5712 *
5713 * Returns maximum memory read request in bytes or appropriate error value.
5714 */
5715int pcie_get_readrq(struct pci_dev *dev)
5716{
5717        u16 ctl;
5718
5719        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5720
5721        return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5722}
5723EXPORT_SYMBOL(pcie_get_readrq);
5724
5725/**
5726 * pcie_set_readrq - set PCI Express maximum memory read request
5727 * @dev: PCI device to query
5728 * @rq: maximum memory read count in bytes
5729 *    valid values are 128, 256, 512, 1024, 2048, 4096
5730 *
5731 * If possible sets maximum memory read request in bytes
5732 */
5733int pcie_set_readrq(struct pci_dev *dev, int rq)
5734{
5735        u16 v;
5736        int ret;
5737
5738        if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
5739                return -EINVAL;
5740
5741        /*
5742         * If using the "performance" PCIe config, we clamp the read rq
5743         * size to the max packet size to keep the host bridge from
5744         * generating requests larger than we can cope with.
5745         */
5746        if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
5747                int mps = pcie_get_mps(dev);
5748
5749                if (mps < rq)
5750                        rq = mps;
5751        }
5752
5753        v = (ffs(rq) - 8) << 12;
5754
5755        ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5756                                                  PCI_EXP_DEVCTL_READRQ, v);
5757
5758        return pcibios_err_to_errno(ret);
5759}
5760EXPORT_SYMBOL(pcie_set_readrq);
5761
5762/**
5763 * pcie_get_mps - get PCI Express maximum payload size
5764 * @dev: PCI device to query
5765 *
5766 * Returns maximum payload size in bytes
5767 */
5768int pcie_get_mps(struct pci_dev *dev)
5769{
5770        u16 ctl;
5771
5772        pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
5773
5774        return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5775}
5776EXPORT_SYMBOL(pcie_get_mps);
5777
5778/**
5779 * pcie_set_mps - set PCI Express maximum payload size
5780 * @dev: PCI device to query
5781 * @mps: maximum payload size in bytes
5782 *    valid values are 128, 256, 512, 1024, 2048, 4096
5783 *
5784 * If possible sets maximum payload size
5785 */
5786int pcie_set_mps(struct pci_dev *dev, int mps)
5787{
5788        u16 v;
5789        int ret;
5790
5791        if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
5792                return -EINVAL;
5793
5794        v = ffs(mps) - 8;
5795        if (v > dev->pcie_mpss)
5796                return -EINVAL;
5797        v <<= 5;
5798
5799        ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
5800                                                  PCI_EXP_DEVCTL_PAYLOAD, v);
5801
5802        return pcibios_err_to_errno(ret);
5803}
5804EXPORT_SYMBOL(pcie_set_mps);
5805
5806/**
5807 * pcie_bandwidth_available - determine minimum link settings of a PCIe
5808 *                            device and its bandwidth limitation
5809 * @dev: PCI device to query
5810 * @limiting_dev: storage for device causing the bandwidth limitation
5811 * @speed: storage for speed of limiting device
5812 * @width: storage for width of limiting device
5813 *
5814 * Walk up the PCI device chain and find the point where the minimum
5815 * bandwidth is available.  Return the bandwidth available there and (if
5816 * limiting_dev, speed, and width pointers are supplied) information about
5817 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
5818 * raw bandwidth.
5819 */
5820u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
5821                             enum pci_bus_speed *speed,
5822                             enum pcie_link_width *width)
5823{
5824        u16 lnksta;
5825        enum pci_bus_speed next_speed;
5826        enum pcie_link_width next_width;
5827        u32 bw, next_bw;
5828
5829        if (speed)
5830                *speed = PCI_SPEED_UNKNOWN;
5831        if (width)
5832                *width = PCIE_LNK_WIDTH_UNKNOWN;
5833
5834        bw = 0;
5835
5836        while (dev) {
5837                pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
5838
5839                next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
5840                next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
5841                        PCI_EXP_LNKSTA_NLW_SHIFT;
5842
5843                next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
5844
5845                /* Check if current device limits the total bandwidth */
5846                if (!bw || next_bw <= bw) {
5847                        bw = next_bw;
5848
5849                        if (limiting_dev)
5850                                *limiting_dev = dev;
5851                        if (speed)
5852                                *speed = next_speed;
5853                        if (width)
5854                                *width = next_width;
5855                }
5856
5857                dev = pci_upstream_bridge(dev);
5858        }
5859
5860        return bw;
5861}
5862EXPORT_SYMBOL(pcie_bandwidth_available);
5863
5864/**
5865 * pcie_get_speed_cap - query for the PCI device's link speed capability
5866 * @dev: PCI device to query
5867 *
5868 * Query the PCI device speed capability.  Return the maximum link speed
5869 * supported by the device.
5870 */
5871enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
5872{
5873        u32 lnkcap2, lnkcap;
5874
5875        /*
5876         * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
5877         * implementation note there recommends using the Supported Link
5878         * Speeds Vector in Link Capabilities 2 when supported.
5879         *
5880         * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
5881         * should use the Supported Link Speeds field in Link Capabilities,
5882         * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
5883         */
5884        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
5885
5886        /* PCIe r3.0-compliant */
5887        if (lnkcap2)
5888                return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
5889
5890        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5891        if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
5892                return PCIE_SPEED_5_0GT;
5893        else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
5894                return PCIE_SPEED_2_5GT;
5895
5896        return PCI_SPEED_UNKNOWN;
5897}
5898EXPORT_SYMBOL(pcie_get_speed_cap);
5899
5900/**
5901 * pcie_get_width_cap - query for the PCI device's link width capability
5902 * @dev: PCI device to query
5903 *
5904 * Query the PCI device width capability.  Return the maximum link width
5905 * supported by the device.
5906 */
5907enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
5908{
5909        u32 lnkcap;
5910
5911        pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
5912        if (lnkcap)
5913                return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
5914
5915        return PCIE_LNK_WIDTH_UNKNOWN;
5916}
5917EXPORT_SYMBOL(pcie_get_width_cap);
5918
5919/**
5920 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
5921 * @dev: PCI device
5922 * @speed: storage for link speed
5923 * @width: storage for link width
5924 *
5925 * Calculate a PCI device's link bandwidth by querying for its link speed
5926 * and width, multiplying them, and applying encoding overhead.  The result
5927 * is in Mb/s, i.e., megabits/second of raw bandwidth.
5928 */
5929u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
5930                           enum pcie_link_width *width)
5931{
5932        *speed = pcie_get_speed_cap(dev);
5933        *width = pcie_get_width_cap(dev);
5934
5935        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
5936                return 0;
5937
5938        return *width * PCIE_SPEED2MBS_ENC(*speed);
5939}
5940
5941/**
5942 * __pcie_print_link_status - Report the PCI device's link speed and width
5943 * @dev: PCI device to query
5944 * @verbose: Print info even when enough bandwidth is available
5945 *
5946 * If the available bandwidth at the device is less than the device is
5947 * capable of, report the device's maximum possible bandwidth and the
5948 * upstream link that limits its performance.  If @verbose, always print
5949 * the available bandwidth, even if the device isn't constrained.
5950 */
5951void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
5952{
5953        enum pcie_link_width width, width_cap;
5954        enum pci_bus_speed speed, speed_cap;
5955        struct pci_dev *limiting_dev = NULL;
5956        u32 bw_avail, bw_cap;
5957
5958        bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
5959        bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
5960
5961        if (bw_avail >= bw_cap && verbose)
5962                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
5963                         bw_cap / 1000, bw_cap % 1000,
5964                         pci_speed_string(speed_cap), width_cap);
5965        else if (bw_avail < bw_cap)
5966                pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
5967                         bw_avail / 1000, bw_avail % 1000,
5968                         pci_speed_string(speed), width,
5969                         limiting_dev ? pci_name(limiting_dev) : "<unknown>",
5970                         bw_cap / 1000, bw_cap % 1000,
5971                         pci_speed_string(speed_cap), width_cap);
5972}
5973
5974/**
5975 * pcie_print_link_status - Report the PCI device's link speed and width
5976 * @dev: PCI device to query
5977 *
5978 * Report the available bandwidth at the device.
5979 */
5980void pcie_print_link_status(struct pci_dev *dev)
5981{
5982        __pcie_print_link_status(dev, true);
5983}
5984EXPORT_SYMBOL(pcie_print_link_status);
5985
5986/**
5987 * pci_select_bars - Make BAR mask from the type of resource
5988 * @dev: the PCI device for which BAR mask is made
5989 * @flags: resource type mask to be selected
5990 *
5991 * This helper routine makes bar mask from the type of resource.
5992 */
5993int pci_select_bars(struct pci_dev *dev, unsigned long flags)
5994{
5995        int i, bars = 0;
5996        for (i = 0; i < PCI_NUM_RESOURCES; i++)
5997                if (pci_resource_flags(dev, i) & flags)
5998                        bars |= (1 << i);
5999        return bars;
6000}
6001EXPORT_SYMBOL(pci_select_bars);
6002
6003/* Some architectures require additional programming to enable VGA */
6004static arch_set_vga_state_t arch_set_vga_state;
6005
6006void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6007{
6008        arch_set_vga_state = func;      /* NULL disables */
6009}
6010
6011static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6012                                  unsigned int command_bits, u32 flags)
6013{
6014        if (arch_set_vga_state)
6015                return arch_set_vga_state(dev, decode, command_bits,
6016                                                flags);
6017        return 0;
6018}
6019
6020/**
6021 * pci_set_vga_state - set VGA decode state on device and parents if requested
6022 * @dev: the PCI device
6023 * @decode: true = enable decoding, false = disable decoding
6024 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6025 * @flags: traverse ancestors and change bridges
6026 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6027 */
6028int pci_set_vga_state(struct pci_dev *dev, bool decode,
6029                      unsigned int command_bits, u32 flags)
6030{
6031        struct pci_bus *bus;
6032        struct pci_dev *bridge;
6033        u16 cmd;
6034        int rc;
6035
6036        WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6037
6038        /* ARCH specific VGA enables */
6039        rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6040        if (rc)
6041                return rc;
6042
6043        if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6044                pci_read_config_word(dev, PCI_COMMAND, &cmd);
6045                if (decode)
6046                        cmd |= command_bits;
6047                else
6048                        cmd &= ~command_bits;
6049                pci_write_config_word(dev, PCI_COMMAND, cmd);
6050        }
6051
6052        if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6053                return 0;
6054
6055        bus = dev->bus;
6056        while (bus) {
6057                bridge = bus->self;
6058                if (bridge) {
6059                        pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6060                                             &cmd);
6061                        if (decode)
6062                                cmd |= PCI_BRIDGE_CTL_VGA;
6063                        else
6064                                cmd &= ~PCI_BRIDGE_CTL_VGA;
6065                        pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6066                                              cmd);
6067                }
6068                bus = bus->parent;
6069        }
6070        return 0;
6071}
6072
6073#ifdef CONFIG_ACPI
6074bool pci_pr3_present(struct pci_dev *pdev)
6075{
6076        struct acpi_device *adev;
6077
6078        if (acpi_disabled)
6079                return false;
6080
6081        adev = ACPI_COMPANION(&pdev->dev);
6082        if (!adev)
6083                return false;
6084
6085        return adev->power.flags.power_resources &&
6086                acpi_has_method(adev->handle, "_PR3");
6087}
6088EXPORT_SYMBOL_GPL(pci_pr3_present);
6089#endif
6090
6091/**
6092 * pci_add_dma_alias - Add a DMA devfn alias for a device
6093 * @dev: the PCI device for which alias is added
6094 * @devfn_from: alias slot and function
6095 * @nr_devfns: number of subsequent devfns to alias
6096 *
6097 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6098 * which is used to program permissible bus-devfn source addresses for DMA
6099 * requests in an IOMMU.  These aliases factor into IOMMU group creation
6100 * and are useful for devices generating DMA requests beyond or different
6101 * from their logical bus-devfn.  Examples include device quirks where the
6102 * device simply uses the wrong devfn, as well as non-transparent bridges
6103 * where the alias may be a proxy for devices in another domain.
6104 *
6105 * IOMMU group creation is performed during device discovery or addition,
6106 * prior to any potential DMA mapping and therefore prior to driver probing
6107 * (especially for userspace assigned devices where IOMMU group definition
6108 * cannot be left as a userspace activity).  DMA aliases should therefore
6109 * be configured via quirks, such as the PCI fixup header quirk.
6110 */
6111void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, unsigned nr_devfns)
6112{
6113        int devfn_to;
6114
6115        nr_devfns = min(nr_devfns, (unsigned) MAX_NR_DEVFNS - devfn_from);
6116        devfn_to = devfn_from + nr_devfns - 1;
6117
6118        if (!dev->dma_alias_mask)
6119                dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6120        if (!dev->dma_alias_mask) {
6121                pci_warn(dev, "Unable to allocate DMA alias mask\n");
6122                return;
6123        }
6124
6125        bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6126
6127        if (nr_devfns == 1)
6128                pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6129                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6130        else if (nr_devfns > 1)
6131                pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6132                                PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6133                                PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6134}
6135
6136bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6137{
6138        return (dev1->dma_alias_mask &&
6139                test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6140               (dev2->dma_alias_mask &&
6141                test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6142               pci_real_dma_dev(dev1) == dev2 ||
6143               pci_real_dma_dev(dev2) == dev1;
6144}
6145
6146bool pci_device_is_present(struct pci_dev *pdev)
6147{
6148        u32 v;
6149
6150        if (pci_dev_is_disconnected(pdev))
6151                return false;
6152        return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6153}
6154EXPORT_SYMBOL_GPL(pci_device_is_present);
6155
6156void pci_ignore_hotplug(struct pci_dev *dev)
6157{
6158        struct pci_dev *bridge = dev->bus->self;
6159
6160        dev->ignore_hotplug = 1;
6161        /* Propagate the "ignore hotplug" setting to the parent bridge. */
6162        if (bridge)
6163                bridge->ignore_hotplug = 1;
6164}
6165EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6166
6167/**
6168 * pci_real_dma_dev - Get PCI DMA device for PCI device
6169 * @dev: the PCI device that may have a PCI DMA alias
6170 *
6171 * Permits the platform to provide architecture-specific functionality to
6172 * devices needing to alias DMA to another PCI device on another PCI bus. If
6173 * the PCI device is on the same bus, it is recommended to use
6174 * pci_add_dma_alias(). This is the default implementation. Architecture
6175 * implementations can override this.
6176 */
6177struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6178{
6179        return dev;
6180}
6181
6182resource_size_t __weak pcibios_default_alignment(void)
6183{
6184        return 0;
6185}
6186
6187/*
6188 * Arches that don't want to expose struct resource to userland as-is in
6189 * sysfs and /proc can implement their own pci_resource_to_user().
6190 */
6191void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6192                                 const struct resource *rsrc,
6193                                 resource_size_t *start, resource_size_t *end)
6194{
6195        *start = rsrc->start;
6196        *end = rsrc->end;
6197}
6198
6199static char *resource_alignment_param;
6200static DEFINE_SPINLOCK(resource_alignment_lock);
6201
6202/**
6203 * pci_specified_resource_alignment - get resource alignment specified by user.
6204 * @dev: the PCI device to get
6205 * @resize: whether or not to change resources' size when reassigning alignment
6206 *
6207 * RETURNS: Resource alignment if it is specified.
6208 *          Zero if it is not specified.
6209 */
6210static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6211                                                        bool *resize)
6212{
6213        int align_order, count;
6214        resource_size_t align = pcibios_default_alignment();
6215        const char *p;
6216        int ret;
6217
6218        spin_lock(&resource_alignment_lock);
6219        p = resource_alignment_param;
6220        if (!p || !*p)
6221                goto out;
6222        if (pci_has_flag(PCI_PROBE_ONLY)) {
6223                align = 0;
6224                pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6225                goto out;
6226        }
6227
6228        while (*p) {
6229                count = 0;
6230                if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6231                    p[count] == '@') {
6232                        p += count + 1;
6233                        if (align_order > 63) {
6234                                pr_err("PCI: Invalid requested alignment (order %d)\n",
6235                                       align_order);
6236                                align_order = PAGE_SHIFT;
6237                        }
6238                } else {
6239                        align_order = PAGE_SHIFT;
6240                }
6241
6242                ret = pci_dev_str_match(dev, p, &p);
6243                if (ret == 1) {
6244                        *resize = true;
6245                        align = 1ULL << align_order;
6246                        break;
6247                } else if (ret < 0) {
6248                        pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6249                               p);
6250                        break;
6251                }
6252
6253                if (*p != ';' && *p != ',') {
6254                        /* End of param or invalid format */
6255                        break;
6256                }
6257                p++;
6258        }
6259out:
6260        spin_unlock(&resource_alignment_lock);
6261        return align;
6262}
6263
6264static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6265                                           resource_size_t align, bool resize)
6266{
6267        struct resource *r = &dev->resource[bar];
6268        resource_size_t size;
6269
6270        if (!(r->flags & IORESOURCE_MEM))
6271                return;
6272
6273        if (r->flags & IORESOURCE_PCI_FIXED) {
6274                pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6275                         bar, r, (unsigned long long)align);
6276                return;
6277        }
6278
6279        size = resource_size(r);
6280        if (size >= align)
6281                return;
6282
6283        /*
6284         * Increase the alignment of the resource.  There are two ways we
6285         * can do this:
6286         *
6287         * 1) Increase the size of the resource.  BARs are aligned on their
6288         *    size, so when we reallocate space for this resource, we'll
6289         *    allocate it with the larger alignment.  This also prevents
6290         *    assignment of any other BARs inside the alignment region, so
6291         *    if we're requesting page alignment, this means no other BARs
6292         *    will share the page.
6293         *
6294         *    The disadvantage is that this makes the resource larger than
6295         *    the hardware BAR, which may break drivers that compute things
6296         *    based on the resource size, e.g., to find registers at a
6297         *    fixed offset before the end of the BAR.
6298         *
6299         * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6300         *    set r->start to the desired alignment.  By itself this
6301         *    doesn't prevent other BARs being put inside the alignment
6302         *    region, but if we realign *every* resource of every device in
6303         *    the system, none of them will share an alignment region.
6304         *
6305         * When the user has requested alignment for only some devices via
6306         * the "pci=resource_alignment" argument, "resize" is true and we
6307         * use the first method.  Otherwise we assume we're aligning all
6308         * devices and we use the second.
6309         */
6310
6311        pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6312                 bar, r, (unsigned long long)align);
6313
6314        if (resize) {
6315                r->start = 0;
6316                r->end = align - 1;
6317        } else {
6318                r->flags &= ~IORESOURCE_SIZEALIGN;
6319                r->flags |= IORESOURCE_STARTALIGN;
6320                r->start = align;
6321                r->end = r->start + size - 1;
6322        }
6323        r->flags |= IORESOURCE_UNSET;
6324}
6325
6326/*
6327 * This function disables memory decoding and releases memory resources
6328 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6329 * It also rounds up size to specified alignment.
6330 * Later on, the kernel will assign page-aligned memory resource back
6331 * to the device.
6332 */
6333void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6334{
6335        int i;
6336        struct resource *r;
6337        resource_size_t align;
6338        u16 command;
6339        bool resize = false;
6340
6341        /*
6342         * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6343         * 3.4.1.11.  Their resources are allocated from the space
6344         * described by the VF BARx register in the PF's SR-IOV capability.
6345         * We can't influence their alignment here.
6346         */
6347        if (dev->is_virtfn)
6348                return;
6349
6350        /* check if specified PCI is target device to reassign */
6351        align = pci_specified_resource_alignment(dev, &resize);
6352        if (!align)
6353                return;
6354
6355        if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6356            (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6357                pci_warn(dev, "Can't reassign resources to host bridge\n");
6358                return;
6359        }
6360
6361        pci_read_config_word(dev, PCI_COMMAND, &command);
6362        command &= ~PCI_COMMAND_MEMORY;
6363        pci_write_config_word(dev, PCI_COMMAND, command);
6364
6365        for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6366                pci_request_resource_alignment(dev, i, align, resize);
6367
6368        /*
6369         * Need to disable bridge's resource window,
6370         * to enable the kernel to reassign new resource
6371         * window later on.
6372         */
6373        if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6374                for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6375                        r = &dev->resource[i];
6376                        if (!(r->flags & IORESOURCE_MEM))
6377                                continue;
6378                        r->flags |= IORESOURCE_UNSET;
6379                        r->end = resource_size(r) - 1;
6380                        r->start = 0;
6381                }
6382                pci_disable_bridge_window(dev);
6383        }
6384}
6385
6386static ssize_t resource_alignment_show(struct bus_type *bus, char *buf)
6387{
6388        size_t count = 0;
6389
6390        spin_lock(&resource_alignment_lock);
6391        if (resource_alignment_param)
6392                count = scnprintf(buf, PAGE_SIZE, "%s", resource_alignment_param);
6393        spin_unlock(&resource_alignment_lock);
6394
6395        /*
6396         * When set by the command line, resource_alignment_param will not
6397         * have a trailing line feed, which is ugly. So conditionally add
6398         * it here.
6399         */
6400        if (count >= 2 && buf[count - 2] != '\n' && count < PAGE_SIZE - 1) {
6401                buf[count - 1] = '\n';
6402                buf[count++] = 0;
6403        }
6404
6405        return count;
6406}
6407
6408static ssize_t resource_alignment_store(struct bus_type *bus,
6409                                        const char *buf, size_t count)
6410{
6411        char *param = kstrndup(buf, count, GFP_KERNEL);
6412
6413        if (!param)
6414                return -ENOMEM;
6415
6416        spin_lock(&resource_alignment_lock);
6417        kfree(resource_alignment_param);
6418        resource_alignment_param = param;
6419        spin_unlock(&resource_alignment_lock);
6420        return count;
6421}
6422
6423static BUS_ATTR_RW(resource_alignment);
6424
6425static int __init pci_resource_alignment_sysfs_init(void)
6426{
6427        return bus_create_file(&pci_bus_type,
6428                                        &bus_attr_resource_alignment);
6429}
6430late_initcall(pci_resource_alignment_sysfs_init);
6431
6432static void pci_no_domains(void)
6433{
6434#ifdef CONFIG_PCI_DOMAINS
6435        pci_domains_supported = 0;
6436#endif
6437}
6438
6439#ifdef CONFIG_PCI_DOMAINS_GENERIC
6440static atomic_t __domain_nr = ATOMIC_INIT(-1);
6441
6442static int pci_get_new_domain_nr(void)
6443{
6444        return atomic_inc_return(&__domain_nr);
6445}
6446
6447static int of_pci_bus_find_domain_nr(struct device *parent)
6448{
6449        static int use_dt_domains = -1;
6450        int domain = -1;
6451
6452        if (parent)
6453                domain = of_get_pci_domain_nr(parent->of_node);
6454
6455        /*
6456         * Check DT domain and use_dt_domains values.
6457         *
6458         * If DT domain property is valid (domain >= 0) and
6459         * use_dt_domains != 0, the DT assignment is valid since this means
6460         * we have not previously allocated a domain number by using
6461         * pci_get_new_domain_nr(); we should also update use_dt_domains to
6462         * 1, to indicate that we have just assigned a domain number from
6463         * DT.
6464         *
6465         * If DT domain property value is not valid (ie domain < 0), and we
6466         * have not previously assigned a domain number from DT
6467         * (use_dt_domains != 1) we should assign a domain number by
6468         * using the:
6469         *
6470         * pci_get_new_domain_nr()
6471         *
6472         * API and update the use_dt_domains value to keep track of method we
6473         * are using to assign domain numbers (use_dt_domains = 0).
6474         *
6475         * All other combinations imply we have a platform that is trying
6476         * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
6477         * which is a recipe for domain mishandling and it is prevented by
6478         * invalidating the domain value (domain = -1) and printing a
6479         * corresponding error.
6480         */
6481        if (domain >= 0 && use_dt_domains) {
6482                use_dt_domains = 1;
6483        } else if (domain < 0 && use_dt_domains != 1) {
6484                use_dt_domains = 0;
6485                domain = pci_get_new_domain_nr();
6486        } else {
6487                if (parent)
6488                        pr_err("Node %pOF has ", parent->of_node);
6489                pr_err("Inconsistent \"linux,pci-domain\" property in DT\n");
6490                domain = -1;
6491        }
6492
6493        return domain;
6494}
6495
6496int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6497{
6498        return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6499                               acpi_pci_bus_find_domain_nr(bus);
6500}
6501#endif
6502
6503/**
6504 * pci_ext_cfg_avail - can we access extended PCI config space?
6505 *
6506 * Returns 1 if we can access PCI extended config space (offsets
6507 * greater than 0xff). This is the default implementation. Architecture
6508 * implementations can override this.
6509 */
6510int __weak pci_ext_cfg_avail(void)
6511{
6512        return 1;
6513}
6514
6515void __weak pci_fixup_cardbus(struct pci_bus *bus)
6516{
6517}
6518EXPORT_SYMBOL(pci_fixup_cardbus);
6519
6520static int __init pci_setup(char *str)
6521{
6522        while (str) {
6523                char *k = strchr(str, ',');
6524                if (k)
6525                        *k++ = 0;
6526                if (*str && (str = pcibios_setup(str)) && *str) {
6527                        if (!strcmp(str, "nomsi")) {
6528                                pci_no_msi();
6529                        } else if (!strncmp(str, "noats", 5)) {
6530                                pr_info("PCIe: ATS is disabled\n");
6531                                pcie_ats_disabled = true;
6532                        } else if (!strcmp(str, "noaer")) {
6533                                pci_no_aer();
6534                        } else if (!strcmp(str, "earlydump")) {
6535                                pci_early_dump = true;
6536                        } else if (!strncmp(str, "realloc=", 8)) {
6537                                pci_realloc_get_opt(str + 8);
6538                        } else if (!strncmp(str, "realloc", 7)) {
6539                                pci_realloc_get_opt("on");
6540                        } else if (!strcmp(str, "nodomains")) {
6541                                pci_no_domains();
6542                        } else if (!strncmp(str, "noari", 5)) {
6543                                pcie_ari_disabled = true;
6544                        } else if (!strncmp(str, "cbiosize=", 9)) {
6545                                pci_cardbus_io_size = memparse(str + 9, &str);
6546                        } else if (!strncmp(str, "cbmemsize=", 10)) {
6547                                pci_cardbus_mem_size = memparse(str + 10, &str);
6548                        } else if (!strncmp(str, "resource_alignment=", 19)) {
6549                                resource_alignment_param = str + 19;
6550                        } else if (!strncmp(str, "ecrc=", 5)) {
6551                                pcie_ecrc_get_policy(str + 5);
6552                        } else if (!strncmp(str, "hpiosize=", 9)) {
6553                                pci_hotplug_io_size = memparse(str + 9, &str);
6554                        } else if (!strncmp(str, "hpmmiosize=", 11)) {
6555                                pci_hotplug_mmio_size = memparse(str + 11, &str);
6556                        } else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6557                                pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6558                        } else if (!strncmp(str, "hpmemsize=", 10)) {
6559                                pci_hotplug_mmio_size = memparse(str + 10, &str);
6560                                pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
6561                        } else if (!strncmp(str, "hpbussize=", 10)) {
6562                                pci_hotplug_bus_size =
6563                                        simple_strtoul(str + 10, &str, 0);
6564                                if (pci_hotplug_bus_size > 0xff)
6565                                        pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
6566                        } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
6567                                pcie_bus_config = PCIE_BUS_TUNE_OFF;
6568                        } else if (!strncmp(str, "pcie_bus_safe", 13)) {
6569                                pcie_bus_config = PCIE_BUS_SAFE;
6570                        } else if (!strncmp(str, "pcie_bus_perf", 13)) {
6571                                pcie_bus_config = PCIE_BUS_PERFORMANCE;
6572                        } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
6573                                pcie_bus_config = PCIE_BUS_PEER2PEER;
6574                        } else if (!strncmp(str, "pcie_scan_all", 13)) {
6575                                pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
6576                        } else if (!strncmp(str, "disable_acs_redir=", 18)) {
6577                                disable_acs_redir_param = str + 18;
6578                        } else {
6579                                pr_err("PCI: Unknown option `%s'\n", str);
6580                        }
6581                }
6582                str = k;
6583        }
6584        return 0;
6585}
6586early_param("pci", pci_setup);
6587
6588/*
6589 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
6590 * in pci_setup(), above, to point to data in the __initdata section which
6591 * will be freed after the init sequence is complete. We can't allocate memory
6592 * in pci_setup() because some architectures do not have any memory allocation
6593 * service available during an early_param() call. So we allocate memory and
6594 * copy the variable here before the init section is freed.
6595 *
6596 */
6597static int __init pci_realloc_setup_params(void)
6598{
6599        resource_alignment_param = kstrdup(resource_alignment_param,
6600                                           GFP_KERNEL);
6601        disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
6602
6603        return 0;
6604}
6605pure_initcall(pci_realloc_setup_params);
6606