linux/drivers/pwm/pwm-lpss.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Intel Low Power Subsystem PWM controller driver
   4 *
   5 * Copyright (C) 2014, Intel Corporation
   6 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
   7 * Author: Chew Kean Ho <kean.ho.chew@intel.com>
   8 * Author: Chang Rebecca Swee Fun <rebecca.swee.fun.chang@intel.com>
   9 * Author: Chew Chiau Ee <chiau.ee.chew@intel.com>
  10 * Author: Alan Cox <alan@linux.intel.com>
  11 */
  12
  13#include <linux/delay.h>
  14#include <linux/io.h>
  15#include <linux/iopoll.h>
  16#include <linux/kernel.h>
  17#include <linux/module.h>
  18#include <linux/pm_runtime.h>
  19#include <linux/time.h>
  20
  21#include "pwm-lpss.h"
  22
  23#define PWM                             0x00000000
  24#define PWM_ENABLE                      BIT(31)
  25#define PWM_SW_UPDATE                   BIT(30)
  26#define PWM_BASE_UNIT_SHIFT             8
  27#define PWM_ON_TIME_DIV_MASK            0x000000ff
  28
  29/* Size of each PWM register space if multiple */
  30#define PWM_SIZE                        0x400
  31
  32static inline struct pwm_lpss_chip *to_lpwm(struct pwm_chip *chip)
  33{
  34        return container_of(chip, struct pwm_lpss_chip, chip);
  35}
  36
  37static inline u32 pwm_lpss_read(const struct pwm_device *pwm)
  38{
  39        struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
  40
  41        return readl(lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
  42}
  43
  44static inline void pwm_lpss_write(const struct pwm_device *pwm, u32 value)
  45{
  46        struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
  47
  48        writel(value, lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM);
  49}
  50
  51static int pwm_lpss_wait_for_update(struct pwm_device *pwm)
  52{
  53        struct pwm_lpss_chip *lpwm = to_lpwm(pwm->chip);
  54        const void __iomem *addr = lpwm->regs + pwm->hwpwm * PWM_SIZE + PWM;
  55        const unsigned int ms = 500 * USEC_PER_MSEC;
  56        u32 val;
  57        int err;
  58
  59        /*
  60         * PWM Configuration register has SW_UPDATE bit that is set when a new
  61         * configuration is written to the register. The bit is automatically
  62         * cleared at the start of the next output cycle by the IP block.
  63         *
  64         * If one writes a new configuration to the register while it still has
  65         * the bit enabled, PWM may freeze. That is, while one can still write
  66         * to the register, it won't have an effect. Thus, we try to sleep long
  67         * enough that the bit gets cleared and make sure the bit is not
  68         * enabled while we update the configuration.
  69         */
  70        err = readl_poll_timeout(addr, val, !(val & PWM_SW_UPDATE), 40, ms);
  71        if (err)
  72                dev_err(pwm->chip->dev, "PWM_SW_UPDATE was not cleared\n");
  73
  74        return err;
  75}
  76
  77static inline int pwm_lpss_is_updating(struct pwm_device *pwm)
  78{
  79        if (pwm_lpss_read(pwm) & PWM_SW_UPDATE) {
  80                dev_err(pwm->chip->dev, "PWM_SW_UPDATE is still set, skipping update\n");
  81                return -EBUSY;
  82        }
  83
  84        return 0;
  85}
  86
  87static void pwm_lpss_prepare(struct pwm_lpss_chip *lpwm, struct pwm_device *pwm,
  88                             int duty_ns, int period_ns)
  89{
  90        unsigned long long on_time_div;
  91        unsigned long c = lpwm->info->clk_rate, base_unit_range;
  92        unsigned long long base_unit, freq = NSEC_PER_SEC;
  93        u32 ctrl;
  94
  95        do_div(freq, period_ns);
  96
  97        /*
  98         * The equation is:
  99         * base_unit = round(base_unit_range * freq / c)
 100         */
 101        base_unit_range = BIT(lpwm->info->base_unit_bits);
 102        freq *= base_unit_range;
 103
 104        base_unit = DIV_ROUND_CLOSEST_ULL(freq, c);
 105        /* base_unit must not be 0 and we also want to avoid overflowing it */
 106        base_unit = clamp_val(base_unit, 1, base_unit_range - 1);
 107
 108        on_time_div = 255ULL * duty_ns;
 109        do_div(on_time_div, period_ns);
 110        on_time_div = 255ULL - on_time_div;
 111
 112        ctrl = pwm_lpss_read(pwm);
 113        ctrl &= ~PWM_ON_TIME_DIV_MASK;
 114        ctrl &= ~((base_unit_range - 1) << PWM_BASE_UNIT_SHIFT);
 115        ctrl |= (u32) base_unit << PWM_BASE_UNIT_SHIFT;
 116        ctrl |= on_time_div;
 117
 118        pwm_lpss_write(pwm, ctrl);
 119        pwm_lpss_write(pwm, ctrl | PWM_SW_UPDATE);
 120}
 121
 122static inline void pwm_lpss_cond_enable(struct pwm_device *pwm, bool cond)
 123{
 124        if (cond)
 125                pwm_lpss_write(pwm, pwm_lpss_read(pwm) | PWM_ENABLE);
 126}
 127
 128static int pwm_lpss_prepare_enable(struct pwm_lpss_chip *lpwm,
 129                                   struct pwm_device *pwm,
 130                                   const struct pwm_state *state)
 131{
 132        int ret;
 133
 134        ret = pwm_lpss_is_updating(pwm);
 135        if (ret)
 136                return ret;
 137
 138        pwm_lpss_prepare(lpwm, pwm, state->duty_cycle, state->period);
 139        pwm_lpss_cond_enable(pwm, lpwm->info->bypass == false);
 140        ret = pwm_lpss_wait_for_update(pwm);
 141        if (ret)
 142                return ret;
 143
 144        pwm_lpss_cond_enable(pwm, lpwm->info->bypass == true);
 145        return 0;
 146}
 147
 148static int pwm_lpss_apply(struct pwm_chip *chip, struct pwm_device *pwm,
 149                          const struct pwm_state *state)
 150{
 151        struct pwm_lpss_chip *lpwm = to_lpwm(chip);
 152        int ret = 0;
 153
 154        if (state->enabled) {
 155                if (!pwm_is_enabled(pwm)) {
 156                        pm_runtime_get_sync(chip->dev);
 157                        ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
 158                        if (ret)
 159                                pm_runtime_put(chip->dev);
 160                } else {
 161                        ret = pwm_lpss_prepare_enable(lpwm, pwm, state);
 162                }
 163        } else if (pwm_is_enabled(pwm)) {
 164                pwm_lpss_write(pwm, pwm_lpss_read(pwm) & ~PWM_ENABLE);
 165                pm_runtime_put(chip->dev);
 166        }
 167
 168        return ret;
 169}
 170
 171static void pwm_lpss_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
 172                               struct pwm_state *state)
 173{
 174        struct pwm_lpss_chip *lpwm = to_lpwm(chip);
 175        unsigned long base_unit_range;
 176        unsigned long long base_unit, freq, on_time_div;
 177        u32 ctrl;
 178
 179        pm_runtime_get_sync(chip->dev);
 180
 181        base_unit_range = BIT(lpwm->info->base_unit_bits);
 182
 183        ctrl = pwm_lpss_read(pwm);
 184        on_time_div = 255 - (ctrl & PWM_ON_TIME_DIV_MASK);
 185        base_unit = (ctrl >> PWM_BASE_UNIT_SHIFT) & (base_unit_range - 1);
 186
 187        freq = base_unit * lpwm->info->clk_rate;
 188        do_div(freq, base_unit_range);
 189        if (freq == 0)
 190                state->period = NSEC_PER_SEC;
 191        else
 192                state->period = NSEC_PER_SEC / (unsigned long)freq;
 193
 194        on_time_div *= state->period;
 195        do_div(on_time_div, 255);
 196        state->duty_cycle = on_time_div;
 197
 198        state->polarity = PWM_POLARITY_NORMAL;
 199        state->enabled = !!(ctrl & PWM_ENABLE);
 200
 201        pm_runtime_put(chip->dev);
 202}
 203
 204static const struct pwm_ops pwm_lpss_ops = {
 205        .apply = pwm_lpss_apply,
 206        .get_state = pwm_lpss_get_state,
 207        .owner = THIS_MODULE,
 208};
 209
 210struct pwm_lpss_chip *pwm_lpss_probe(struct device *dev, struct resource *r,
 211                                     const struct pwm_lpss_boardinfo *info)
 212{
 213        struct pwm_lpss_chip *lpwm;
 214        unsigned long c;
 215        int i, ret;
 216        u32 ctrl;
 217
 218        if (WARN_ON(info->npwm > MAX_PWMS))
 219                return ERR_PTR(-ENODEV);
 220
 221        lpwm = devm_kzalloc(dev, sizeof(*lpwm), GFP_KERNEL);
 222        if (!lpwm)
 223                return ERR_PTR(-ENOMEM);
 224
 225        lpwm->regs = devm_ioremap_resource(dev, r);
 226        if (IS_ERR(lpwm->regs))
 227                return ERR_CAST(lpwm->regs);
 228
 229        lpwm->info = info;
 230
 231        c = lpwm->info->clk_rate;
 232        if (!c)
 233                return ERR_PTR(-EINVAL);
 234
 235        lpwm->chip.dev = dev;
 236        lpwm->chip.ops = &pwm_lpss_ops;
 237        lpwm->chip.base = -1;
 238        lpwm->chip.npwm = info->npwm;
 239
 240        ret = pwmchip_add(&lpwm->chip);
 241        if (ret) {
 242                dev_err(dev, "failed to add PWM chip: %d\n", ret);
 243                return ERR_PTR(ret);
 244        }
 245
 246        for (i = 0; i < lpwm->info->npwm; i++) {
 247                ctrl = pwm_lpss_read(&lpwm->chip.pwms[i]);
 248                if (ctrl & PWM_ENABLE)
 249                        pm_runtime_get(dev);
 250        }
 251
 252        return lpwm;
 253}
 254EXPORT_SYMBOL_GPL(pwm_lpss_probe);
 255
 256int pwm_lpss_remove(struct pwm_lpss_chip *lpwm)
 257{
 258        int i;
 259
 260        for (i = 0; i < lpwm->info->npwm; i++) {
 261                if (pwm_is_enabled(&lpwm->chip.pwms[i]))
 262                        pm_runtime_put(lpwm->chip.dev);
 263        }
 264        return pwmchip_remove(&lpwm->chip);
 265}
 266EXPORT_SYMBOL_GPL(pwm_lpss_remove);
 267
 268MODULE_DESCRIPTION("PWM driver for Intel LPSS");
 269MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
 270MODULE_LICENSE("GPL v2");
 271