linux/drivers/scsi/advansys.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
   4 *
   5 * Copyright (c) 1995-2000 Advanced System Products, Inc.
   6 * Copyright (c) 2000-2001 ConnectCom Solutions, Inc.
   7 * Copyright (c) 2007 Matthew Wilcox <matthew@wil.cx>
   8 * Copyright (c) 2014 Hannes Reinecke <hare@suse.de>
   9 * All Rights Reserved.
  10 */
  11
  12/*
  13 * As of March 8, 2000 Advanced System Products, Inc. (AdvanSys)
  14 * changed its name to ConnectCom Solutions, Inc.
  15 * On June 18, 2001 Initio Corp. acquired ConnectCom's SCSI assets
  16 */
  17
  18#include <linux/module.h>
  19#include <linux/string.h>
  20#include <linux/kernel.h>
  21#include <linux/types.h>
  22#include <linux/ioport.h>
  23#include <linux/interrupt.h>
  24#include <linux/delay.h>
  25#include <linux/slab.h>
  26#include <linux/mm.h>
  27#include <linux/proc_fs.h>
  28#include <linux/init.h>
  29#include <linux/blkdev.h>
  30#include <linux/isa.h>
  31#include <linux/eisa.h>
  32#include <linux/pci.h>
  33#include <linux/spinlock.h>
  34#include <linux/dma-mapping.h>
  35#include <linux/firmware.h>
  36#include <linux/dmapool.h>
  37
  38#include <asm/io.h>
  39#include <asm/dma.h>
  40
  41#include <scsi/scsi_cmnd.h>
  42#include <scsi/scsi_device.h>
  43#include <scsi/scsi_tcq.h>
  44#include <scsi/scsi.h>
  45#include <scsi/scsi_host.h>
  46
  47#define DRV_NAME "advansys"
  48#define ASC_VERSION "3.5"       /* AdvanSys Driver Version */
  49
  50/* FIXME:
  51 *
  52 *  1. Use scsi_transport_spi
  53 *  2. advansys_info is not safe against multiple simultaneous callers
  54 *  3. Add module_param to override ISA/VLB ioport array
  55 */
  56
  57/* Enable driver /proc statistics. */
  58#define ADVANSYS_STATS
  59
  60/* Enable driver tracing. */
  61#undef ADVANSYS_DEBUG
  62
  63typedef unsigned char uchar;
  64
  65#define isodd_word(val)   ((((uint)val) & (uint)0x0001) != 0)
  66
  67#define PCI_VENDOR_ID_ASP               0x10cd
  68#define PCI_DEVICE_ID_ASP_1200A         0x1100
  69#define PCI_DEVICE_ID_ASP_ABP940        0x1200
  70#define PCI_DEVICE_ID_ASP_ABP940U       0x1300
  71#define PCI_DEVICE_ID_ASP_ABP940UW      0x2300
  72#define PCI_DEVICE_ID_38C0800_REV1      0x2500
  73#define PCI_DEVICE_ID_38C1600_REV1      0x2700
  74
  75#define PortAddr                 unsigned int   /* port address size  */
  76#define inp(port)                inb(port)
  77#define outp(port, byte)         outb((byte), (port))
  78
  79#define inpw(port)               inw(port)
  80#define outpw(port, word)        outw((word), (port))
  81
  82#define ASC_MAX_SG_QUEUE    7
  83#define ASC_MAX_SG_LIST     255
  84
  85#define ASC_CS_TYPE  unsigned short
  86
  87#define ASC_IS_ISA          (0x0001)
  88#define ASC_IS_ISAPNP       (0x0081)
  89#define ASC_IS_EISA         (0x0002)
  90#define ASC_IS_PCI          (0x0004)
  91#define ASC_IS_PCI_ULTRA    (0x0104)
  92#define ASC_IS_PCMCIA       (0x0008)
  93#define ASC_IS_MCA          (0x0020)
  94#define ASC_IS_VL           (0x0040)
  95#define ASC_IS_WIDESCSI_16  (0x0100)
  96#define ASC_IS_WIDESCSI_32  (0x0200)
  97#define ASC_IS_BIG_ENDIAN   (0x8000)
  98
  99#define ASC_CHIP_MIN_VER_VL      (0x01)
 100#define ASC_CHIP_MAX_VER_VL      (0x07)
 101#define ASC_CHIP_MIN_VER_PCI     (0x09)
 102#define ASC_CHIP_MAX_VER_PCI     (0x0F)
 103#define ASC_CHIP_VER_PCI_BIT     (0x08)
 104#define ASC_CHIP_MIN_VER_ISA     (0x11)
 105#define ASC_CHIP_MIN_VER_ISA_PNP (0x21)
 106#define ASC_CHIP_MAX_VER_ISA     (0x27)
 107#define ASC_CHIP_VER_ISA_BIT     (0x30)
 108#define ASC_CHIP_VER_ISAPNP_BIT  (0x20)
 109#define ASC_CHIP_VER_ASYN_BUG    (0x21)
 110#define ASC_CHIP_VER_PCI             0x08
 111#define ASC_CHIP_VER_PCI_ULTRA_3150  (ASC_CHIP_VER_PCI | 0x02)
 112#define ASC_CHIP_VER_PCI_ULTRA_3050  (ASC_CHIP_VER_PCI | 0x03)
 113#define ASC_CHIP_MIN_VER_EISA (0x41)
 114#define ASC_CHIP_MAX_VER_EISA (0x47)
 115#define ASC_CHIP_VER_EISA_BIT (0x40)
 116#define ASC_CHIP_LATEST_VER_EISA   ((ASC_CHIP_MIN_VER_EISA - 1) + 3)
 117#define ASC_MAX_VL_DMA_COUNT    (0x07FFFFFFL)
 118#define ASC_MAX_PCI_DMA_COUNT   (0xFFFFFFFFL)
 119#define ASC_MAX_ISA_DMA_COUNT   (0x00FFFFFFL)
 120
 121#define ASC_SCSI_ID_BITS  3
 122#define ASC_SCSI_TIX_TYPE     uchar
 123#define ASC_ALL_DEVICE_BIT_SET  0xFF
 124#define ASC_SCSI_BIT_ID_TYPE  uchar
 125#define ASC_MAX_TID       7
 126#define ASC_MAX_LUN       7
 127#define ASC_SCSI_WIDTH_BIT_SET  0xFF
 128#define ASC_MAX_SENSE_LEN   32
 129#define ASC_MIN_SENSE_LEN   14
 130#define ASC_SCSI_RESET_HOLD_TIME_US  60
 131
 132/*
 133 * Narrow boards only support 12-byte commands, while wide boards
 134 * extend to 16-byte commands.
 135 */
 136#define ASC_MAX_CDB_LEN     12
 137#define ADV_MAX_CDB_LEN     16
 138
 139#define MS_SDTR_LEN    0x03
 140#define MS_WDTR_LEN    0x02
 141
 142#define ASC_SG_LIST_PER_Q   7
 143#define QS_FREE        0x00
 144#define QS_READY       0x01
 145#define QS_DISC1       0x02
 146#define QS_DISC2       0x04
 147#define QS_BUSY        0x08
 148#define QS_ABORTED     0x40
 149#define QS_DONE        0x80
 150#define QC_NO_CALLBACK   0x01
 151#define QC_SG_SWAP_QUEUE 0x02
 152#define QC_SG_HEAD       0x04
 153#define QC_DATA_IN       0x08
 154#define QC_DATA_OUT      0x10
 155#define QC_URGENT        0x20
 156#define QC_MSG_OUT       0x40
 157#define QC_REQ_SENSE     0x80
 158#define QCSG_SG_XFER_LIST  0x02
 159#define QCSG_SG_XFER_MORE  0x04
 160#define QCSG_SG_XFER_END   0x08
 161#define QD_IN_PROGRESS       0x00
 162#define QD_NO_ERROR          0x01
 163#define QD_ABORTED_BY_HOST   0x02
 164#define QD_WITH_ERROR        0x04
 165#define QD_INVALID_REQUEST   0x80
 166#define QD_INVALID_HOST_NUM  0x81
 167#define QD_INVALID_DEVICE    0x82
 168#define QD_ERR_INTERNAL      0xFF
 169#define QHSTA_NO_ERROR               0x00
 170#define QHSTA_M_SEL_TIMEOUT          0x11
 171#define QHSTA_M_DATA_OVER_RUN        0x12
 172#define QHSTA_M_DATA_UNDER_RUN       0x12
 173#define QHSTA_M_UNEXPECTED_BUS_FREE  0x13
 174#define QHSTA_M_BAD_BUS_PHASE_SEQ    0x14
 175#define QHSTA_D_QDONE_SG_LIST_CORRUPTED 0x21
 176#define QHSTA_D_ASC_DVC_ERROR_CODE_SET  0x22
 177#define QHSTA_D_HOST_ABORT_FAILED       0x23
 178#define QHSTA_D_EXE_SCSI_Q_FAILED       0x24
 179#define QHSTA_D_EXE_SCSI_Q_BUSY_TIMEOUT 0x25
 180#define QHSTA_D_ASPI_NO_BUF_POOL        0x26
 181#define QHSTA_M_WTM_TIMEOUT         0x41
 182#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
 183#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
 184#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
 185#define QHSTA_M_TARGET_STATUS_BUSY  0x45
 186#define QHSTA_M_BAD_TAG_CODE        0x46
 187#define QHSTA_M_BAD_QUEUE_FULL_OR_BUSY  0x47
 188#define QHSTA_M_HUNG_REQ_SCSI_BUS_RESET 0x48
 189#define QHSTA_D_LRAM_CMP_ERROR        0x81
 190#define QHSTA_M_MICRO_CODE_ERROR_HALT 0xA1
 191#define ASC_FLAG_SCSIQ_REQ        0x01
 192#define ASC_FLAG_BIOS_SCSIQ_REQ   0x02
 193#define ASC_FLAG_BIOS_ASYNC_IO    0x04
 194#define ASC_FLAG_SRB_LINEAR_ADDR  0x08
 195#define ASC_FLAG_WIN16            0x10
 196#define ASC_FLAG_WIN32            0x20
 197#define ASC_FLAG_ISA_OVER_16MB    0x40
 198#define ASC_FLAG_DOS_VM_CALLBACK  0x80
 199#define ASC_TAG_FLAG_EXTRA_BYTES               0x10
 200#define ASC_TAG_FLAG_DISABLE_DISCONNECT        0x04
 201#define ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX  0x08
 202#define ASC_TAG_FLAG_DISABLE_CHK_COND_INT_HOST 0x40
 203#define ASC_SCSIQ_CPY_BEG              4
 204#define ASC_SCSIQ_SGHD_CPY_BEG         2
 205#define ASC_SCSIQ_B_FWD                0
 206#define ASC_SCSIQ_B_BWD                1
 207#define ASC_SCSIQ_B_STATUS             2
 208#define ASC_SCSIQ_B_QNO                3
 209#define ASC_SCSIQ_B_CNTL               4
 210#define ASC_SCSIQ_B_SG_QUEUE_CNT       5
 211#define ASC_SCSIQ_D_DATA_ADDR          8
 212#define ASC_SCSIQ_D_DATA_CNT          12
 213#define ASC_SCSIQ_B_SENSE_LEN         20
 214#define ASC_SCSIQ_DONE_INFO_BEG       22
 215#define ASC_SCSIQ_D_SRBPTR            22
 216#define ASC_SCSIQ_B_TARGET_IX         26
 217#define ASC_SCSIQ_B_CDB_LEN           28
 218#define ASC_SCSIQ_B_TAG_CODE          29
 219#define ASC_SCSIQ_W_VM_ID             30
 220#define ASC_SCSIQ_DONE_STATUS         32
 221#define ASC_SCSIQ_HOST_STATUS         33
 222#define ASC_SCSIQ_SCSI_STATUS         34
 223#define ASC_SCSIQ_CDB_BEG             36
 224#define ASC_SCSIQ_DW_REMAIN_XFER_ADDR 56
 225#define ASC_SCSIQ_DW_REMAIN_XFER_CNT  60
 226#define ASC_SCSIQ_B_FIRST_SG_WK_QP    48
 227#define ASC_SCSIQ_B_SG_WK_QP          49
 228#define ASC_SCSIQ_B_SG_WK_IX          50
 229#define ASC_SCSIQ_W_ALT_DC1           52
 230#define ASC_SCSIQ_B_LIST_CNT          6
 231#define ASC_SCSIQ_B_CUR_LIST_CNT      7
 232#define ASC_SGQ_B_SG_CNTL             4
 233#define ASC_SGQ_B_SG_HEAD_QP          5
 234#define ASC_SGQ_B_SG_LIST_CNT         6
 235#define ASC_SGQ_B_SG_CUR_LIST_CNT     7
 236#define ASC_SGQ_LIST_BEG              8
 237#define ASC_DEF_SCSI1_QNG    4
 238#define ASC_MAX_SCSI1_QNG    4
 239#define ASC_DEF_SCSI2_QNG    16
 240#define ASC_MAX_SCSI2_QNG    32
 241#define ASC_TAG_CODE_MASK    0x23
 242#define ASC_STOP_REQ_RISC_STOP      0x01
 243#define ASC_STOP_ACK_RISC_STOP      0x03
 244#define ASC_STOP_CLEAN_UP_BUSY_Q    0x10
 245#define ASC_STOP_CLEAN_UP_DISC_Q    0x20
 246#define ASC_STOP_HOST_REQ_RISC_HALT 0x40
 247#define ASC_TIDLUN_TO_IX(tid, lun)  (ASC_SCSI_TIX_TYPE)((tid) + ((lun)<<ASC_SCSI_ID_BITS))
 248#define ASC_TID_TO_TARGET_ID(tid)   (ASC_SCSI_BIT_ID_TYPE)(0x01 << (tid))
 249#define ASC_TIX_TO_TARGET_ID(tix)   (0x01 << ((tix) & ASC_MAX_TID))
 250#define ASC_TIX_TO_TID(tix)         ((tix) & ASC_MAX_TID)
 251#define ASC_TID_TO_TIX(tid)         ((tid) & ASC_MAX_TID)
 252#define ASC_TIX_TO_LUN(tix)         (((tix) >> ASC_SCSI_ID_BITS) & ASC_MAX_LUN)
 253#define ASC_QNO_TO_QADDR(q_no)      ((ASC_QADR_BEG)+((int)(q_no) << 6))
 254
 255typedef struct asc_scsiq_1 {
 256        uchar status;
 257        uchar q_no;
 258        uchar cntl;
 259        uchar sg_queue_cnt;
 260        uchar target_id;
 261        uchar target_lun;
 262        __le32 data_addr;
 263        __le32 data_cnt;
 264        __le32 sense_addr;
 265        uchar sense_len;
 266        uchar extra_bytes;
 267} ASC_SCSIQ_1;
 268
 269typedef struct asc_scsiq_2 {
 270        u32 srb_tag;
 271        uchar target_ix;
 272        uchar flag;
 273        uchar cdb_len;
 274        uchar tag_code;
 275        ushort vm_id;
 276} ASC_SCSIQ_2;
 277
 278typedef struct asc_scsiq_3 {
 279        uchar done_stat;
 280        uchar host_stat;
 281        uchar scsi_stat;
 282        uchar scsi_msg;
 283} ASC_SCSIQ_3;
 284
 285typedef struct asc_scsiq_4 {
 286        uchar cdb[ASC_MAX_CDB_LEN];
 287        uchar y_first_sg_list_qp;
 288        uchar y_working_sg_qp;
 289        uchar y_working_sg_ix;
 290        uchar y_res;
 291        ushort x_req_count;
 292        ushort x_reconnect_rtn;
 293        __le32 x_saved_data_addr;
 294        __le32 x_saved_data_cnt;
 295} ASC_SCSIQ_4;
 296
 297typedef struct asc_q_done_info {
 298        ASC_SCSIQ_2 d2;
 299        ASC_SCSIQ_3 d3;
 300        uchar q_status;
 301        uchar q_no;
 302        uchar cntl;
 303        uchar sense_len;
 304        uchar extra_bytes;
 305        uchar res;
 306        u32 remain_bytes;
 307} ASC_QDONE_INFO;
 308
 309typedef struct asc_sg_list {
 310        __le32 addr;
 311        __le32 bytes;
 312} ASC_SG_LIST;
 313
 314typedef struct asc_sg_head {
 315        ushort entry_cnt;
 316        ushort queue_cnt;
 317        ushort entry_to_copy;
 318        ushort res;
 319        ASC_SG_LIST sg_list[];
 320} ASC_SG_HEAD;
 321
 322typedef struct asc_scsi_q {
 323        ASC_SCSIQ_1 q1;
 324        ASC_SCSIQ_2 q2;
 325        uchar *cdbptr;
 326        ASC_SG_HEAD *sg_head;
 327        ushort remain_sg_entry_cnt;
 328        ushort next_sg_index;
 329} ASC_SCSI_Q;
 330
 331typedef struct asc_scsi_bios_req_q {
 332        ASC_SCSIQ_1 r1;
 333        ASC_SCSIQ_2 r2;
 334        uchar *cdbptr;
 335        ASC_SG_HEAD *sg_head;
 336        uchar *sense_ptr;
 337        ASC_SCSIQ_3 r3;
 338        uchar cdb[ASC_MAX_CDB_LEN];
 339        uchar sense[ASC_MIN_SENSE_LEN];
 340} ASC_SCSI_BIOS_REQ_Q;
 341
 342typedef struct asc_risc_q {
 343        uchar fwd;
 344        uchar bwd;
 345        ASC_SCSIQ_1 i1;
 346        ASC_SCSIQ_2 i2;
 347        ASC_SCSIQ_3 i3;
 348        ASC_SCSIQ_4 i4;
 349} ASC_RISC_Q;
 350
 351typedef struct asc_sg_list_q {
 352        uchar seq_no;
 353        uchar q_no;
 354        uchar cntl;
 355        uchar sg_head_qp;
 356        uchar sg_list_cnt;
 357        uchar sg_cur_list_cnt;
 358} ASC_SG_LIST_Q;
 359
 360typedef struct asc_risc_sg_list_q {
 361        uchar fwd;
 362        uchar bwd;
 363        ASC_SG_LIST_Q sg;
 364        ASC_SG_LIST sg_list[7];
 365} ASC_RISC_SG_LIST_Q;
 366
 367#define ASCQ_ERR_Q_STATUS             0x0D
 368#define ASCQ_ERR_CUR_QNG              0x17
 369#define ASCQ_ERR_SG_Q_LINKS           0x18
 370#define ASCQ_ERR_ISR_RE_ENTRY         0x1A
 371#define ASCQ_ERR_CRITICAL_RE_ENTRY    0x1B
 372#define ASCQ_ERR_ISR_ON_CRITICAL      0x1C
 373
 374/*
 375 * Warning code values are set in ASC_DVC_VAR  'warn_code'.
 376 */
 377#define ASC_WARN_NO_ERROR             0x0000
 378#define ASC_WARN_IO_PORT_ROTATE       0x0001
 379#define ASC_WARN_EEPROM_CHKSUM        0x0002
 380#define ASC_WARN_IRQ_MODIFIED         0x0004
 381#define ASC_WARN_AUTO_CONFIG          0x0008
 382#define ASC_WARN_CMD_QNG_CONFLICT     0x0010
 383#define ASC_WARN_EEPROM_RECOVER       0x0020
 384#define ASC_WARN_CFG_MSW_RECOVER      0x0040
 385
 386/*
 387 * Error code values are set in {ASC/ADV}_DVC_VAR  'err_code'.
 388 */
 389#define ASC_IERR_NO_CARRIER             0x0001  /* No more carrier memory */
 390#define ASC_IERR_MCODE_CHKSUM           0x0002  /* micro code check sum error */
 391#define ASC_IERR_SET_PC_ADDR            0x0004
 392#define ASC_IERR_START_STOP_CHIP        0x0008  /* start/stop chip failed */
 393#define ASC_IERR_ILLEGAL_CONNECTION     0x0010  /* Illegal cable connection */
 394#define ASC_IERR_SINGLE_END_DEVICE      0x0020  /* SE device on DIFF bus */
 395#define ASC_IERR_REVERSED_CABLE         0x0040  /* Narrow flat cable reversed */
 396#define ASC_IERR_SET_SCSI_ID            0x0080  /* set SCSI ID failed */
 397#define ASC_IERR_HVD_DEVICE             0x0100  /* HVD device on LVD port */
 398#define ASC_IERR_BAD_SIGNATURE          0x0200  /* signature not found */
 399#define ASC_IERR_NO_BUS_TYPE            0x0400
 400#define ASC_IERR_BIST_PRE_TEST          0x0800  /* BIST pre-test error */
 401#define ASC_IERR_BIST_RAM_TEST          0x1000  /* BIST RAM test error */
 402#define ASC_IERR_BAD_CHIPTYPE           0x2000  /* Invalid chip_type setting */
 403
 404#define ASC_DEF_MAX_TOTAL_QNG   (0xF0)
 405#define ASC_MIN_TAG_Q_PER_DVC   (0x04)
 406#define ASC_MIN_FREE_Q        (0x02)
 407#define ASC_MIN_TOTAL_QNG     ((ASC_MAX_SG_QUEUE)+(ASC_MIN_FREE_Q))
 408#define ASC_MAX_TOTAL_QNG 240
 409#define ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG 16
 410#define ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG   8
 411#define ASC_MAX_PCI_INRAM_TOTAL_QNG  20
 412#define ASC_MAX_INRAM_TAG_QNG   16
 413#define ASC_IOADR_GAP   0x10
 414#define ASC_SYN_MAX_OFFSET         0x0F
 415#define ASC_DEF_SDTR_OFFSET        0x0F
 416#define ASC_SDTR_ULTRA_PCI_10MB_INDEX  0x02
 417#define ASYN_SDTR_DATA_FIX_PCI_REV_AB 0x41
 418
 419/* The narrow chip only supports a limited selection of transfer rates.
 420 * These are encoded in the range 0..7 or 0..15 depending whether the chip
 421 * is Ultra-capable or not.  These tables let us convert from one to the other.
 422 */
 423static const unsigned char asc_syn_xfer_period[8] = {
 424        25, 30, 35, 40, 50, 60, 70, 85
 425};
 426
 427static const unsigned char asc_syn_ultra_xfer_period[16] = {
 428        12, 19, 25, 32, 38, 44, 50, 57, 63, 69, 75, 82, 88, 94, 100, 107
 429};
 430
 431typedef struct ext_msg {
 432        uchar msg_type;
 433        uchar msg_len;
 434        uchar msg_req;
 435        union {
 436                struct {
 437                        uchar sdtr_xfer_period;
 438                        uchar sdtr_req_ack_offset;
 439                } sdtr;
 440                struct {
 441                        uchar wdtr_width;
 442                } wdtr;
 443                struct {
 444                        uchar mdp_b3;
 445                        uchar mdp_b2;
 446                        uchar mdp_b1;
 447                        uchar mdp_b0;
 448                } mdp;
 449        } u_ext_msg;
 450        uchar res;
 451} EXT_MSG;
 452
 453#define xfer_period     u_ext_msg.sdtr.sdtr_xfer_period
 454#define req_ack_offset  u_ext_msg.sdtr.sdtr_req_ack_offset
 455#define wdtr_width      u_ext_msg.wdtr.wdtr_width
 456#define mdp_b3          u_ext_msg.mdp_b3
 457#define mdp_b2          u_ext_msg.mdp_b2
 458#define mdp_b1          u_ext_msg.mdp_b1
 459#define mdp_b0          u_ext_msg.mdp_b0
 460
 461typedef struct asc_dvc_cfg {
 462        ASC_SCSI_BIT_ID_TYPE can_tagged_qng;
 463        ASC_SCSI_BIT_ID_TYPE cmd_qng_enabled;
 464        ASC_SCSI_BIT_ID_TYPE disc_enable;
 465        ASC_SCSI_BIT_ID_TYPE sdtr_enable;
 466        uchar chip_scsi_id;
 467        uchar isa_dma_speed;
 468        uchar isa_dma_channel;
 469        uchar chip_version;
 470        ushort mcode_date;
 471        ushort mcode_version;
 472        uchar max_tag_qng[ASC_MAX_TID + 1];
 473        uchar sdtr_period_offset[ASC_MAX_TID + 1];
 474        uchar adapter_info[6];
 475} ASC_DVC_CFG;
 476
 477#define ASC_DEF_DVC_CNTL       0xFFFF
 478#define ASC_DEF_CHIP_SCSI_ID   7
 479#define ASC_DEF_ISA_DMA_SPEED  4
 480#define ASC_INIT_STATE_BEG_GET_CFG   0x0001
 481#define ASC_INIT_STATE_END_GET_CFG   0x0002
 482#define ASC_INIT_STATE_BEG_SET_CFG   0x0004
 483#define ASC_INIT_STATE_END_SET_CFG   0x0008
 484#define ASC_INIT_STATE_BEG_LOAD_MC   0x0010
 485#define ASC_INIT_STATE_END_LOAD_MC   0x0020
 486#define ASC_INIT_STATE_BEG_INQUIRY   0x0040
 487#define ASC_INIT_STATE_END_INQUIRY   0x0080
 488#define ASC_INIT_RESET_SCSI_DONE     0x0100
 489#define ASC_INIT_STATE_WITHOUT_EEP   0x8000
 490#define ASC_BUG_FIX_IF_NOT_DWB       0x0001
 491#define ASC_BUG_FIX_ASYN_USE_SYN     0x0002
 492#define ASC_MIN_TAGGED_CMD  7
 493#define ASC_MAX_SCSI_RESET_WAIT      30
 494#define ASC_OVERRUN_BSIZE               64
 495
 496struct asc_dvc_var;             /* Forward Declaration. */
 497
 498typedef struct asc_dvc_var {
 499        PortAddr iop_base;
 500        ushort err_code;
 501        ushort dvc_cntl;
 502        ushort bug_fix_cntl;
 503        ushort bus_type;
 504        ASC_SCSI_BIT_ID_TYPE init_sdtr;
 505        ASC_SCSI_BIT_ID_TYPE sdtr_done;
 506        ASC_SCSI_BIT_ID_TYPE use_tagged_qng;
 507        ASC_SCSI_BIT_ID_TYPE unit_not_ready;
 508        ASC_SCSI_BIT_ID_TYPE queue_full_or_busy;
 509        ASC_SCSI_BIT_ID_TYPE start_motor;
 510        uchar *overrun_buf;
 511        dma_addr_t overrun_dma;
 512        uchar scsi_reset_wait;
 513        uchar chip_no;
 514        bool is_in_int;
 515        uchar max_total_qng;
 516        uchar cur_total_qng;
 517        uchar in_critical_cnt;
 518        uchar last_q_shortage;
 519        ushort init_state;
 520        uchar cur_dvc_qng[ASC_MAX_TID + 1];
 521        uchar max_dvc_qng[ASC_MAX_TID + 1];
 522        ASC_SCSI_Q *scsiq_busy_head[ASC_MAX_TID + 1];
 523        ASC_SCSI_Q *scsiq_busy_tail[ASC_MAX_TID + 1];
 524        const uchar *sdtr_period_tbl;
 525        ASC_DVC_CFG *cfg;
 526        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer_always;
 527        char redo_scam;
 528        ushort res2;
 529        uchar dos_int13_table[ASC_MAX_TID + 1];
 530        unsigned int max_dma_count;
 531        ASC_SCSI_BIT_ID_TYPE no_scam;
 532        ASC_SCSI_BIT_ID_TYPE pci_fix_asyn_xfer;
 533        uchar min_sdtr_index;
 534        uchar max_sdtr_index;
 535        struct asc_board *drv_ptr;
 536        unsigned int uc_break;
 537} ASC_DVC_VAR;
 538
 539typedef struct asc_dvc_inq_info {
 540        uchar type[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 541} ASC_DVC_INQ_INFO;
 542
 543typedef struct asc_cap_info {
 544        u32 lba;
 545        u32 blk_size;
 546} ASC_CAP_INFO;
 547
 548typedef struct asc_cap_info_array {
 549        ASC_CAP_INFO cap_info[ASC_MAX_TID + 1][ASC_MAX_LUN + 1];
 550} ASC_CAP_INFO_ARRAY;
 551
 552#define ASC_MCNTL_NO_SEL_TIMEOUT  (ushort)0x0001
 553#define ASC_MCNTL_NULL_TARGET     (ushort)0x0002
 554#define ASC_CNTL_INITIATOR         (ushort)0x0001
 555#define ASC_CNTL_BIOS_GT_1GB       (ushort)0x0002
 556#define ASC_CNTL_BIOS_GT_2_DISK    (ushort)0x0004
 557#define ASC_CNTL_BIOS_REMOVABLE    (ushort)0x0008
 558#define ASC_CNTL_NO_SCAM           (ushort)0x0010
 559#define ASC_CNTL_INT_MULTI_Q       (ushort)0x0080
 560#define ASC_CNTL_NO_LUN_SUPPORT    (ushort)0x0040
 561#define ASC_CNTL_NO_VERIFY_COPY    (ushort)0x0100
 562#define ASC_CNTL_RESET_SCSI        (ushort)0x0200
 563#define ASC_CNTL_INIT_INQUIRY      (ushort)0x0400
 564#define ASC_CNTL_INIT_VERBOSE      (ushort)0x0800
 565#define ASC_CNTL_SCSI_PARITY       (ushort)0x1000
 566#define ASC_CNTL_BURST_MODE        (ushort)0x2000
 567#define ASC_CNTL_SDTR_ENABLE_ULTRA (ushort)0x4000
 568#define ASC_EEP_DVC_CFG_BEG_VL    2
 569#define ASC_EEP_MAX_DVC_ADDR_VL   15
 570#define ASC_EEP_DVC_CFG_BEG      32
 571#define ASC_EEP_MAX_DVC_ADDR     45
 572#define ASC_EEP_MAX_RETRY        20
 573
 574/*
 575 * These macros keep the chip SCSI id and ISA DMA speed
 576 * bitfields in board order. C bitfields aren't portable
 577 * between big and little-endian platforms so they are
 578 * not used.
 579 */
 580
 581#define ASC_EEP_GET_CHIP_ID(cfg)    ((cfg)->id_speed & 0x0f)
 582#define ASC_EEP_GET_DMA_SPD(cfg)    (((cfg)->id_speed & 0xf0) >> 4)
 583#define ASC_EEP_SET_CHIP_ID(cfg, sid) \
 584   ((cfg)->id_speed = ((cfg)->id_speed & 0xf0) | ((sid) & ASC_MAX_TID))
 585#define ASC_EEP_SET_DMA_SPD(cfg, spd) \
 586   ((cfg)->id_speed = ((cfg)->id_speed & 0x0f) | ((spd) & 0x0f) << 4)
 587
 588typedef struct asceep_config {
 589        ushort cfg_lsw;
 590        ushort cfg_msw;
 591        uchar init_sdtr;
 592        uchar disc_enable;
 593        uchar use_cmd_qng;
 594        uchar start_motor;
 595        uchar max_total_qng;
 596        uchar max_tag_qng;
 597        uchar bios_scan;
 598        uchar power_up_wait;
 599        uchar no_scam;
 600        uchar id_speed;         /* low order 4 bits is chip scsi id */
 601        /* high order 4 bits is isa dma speed */
 602        uchar dos_int13_table[ASC_MAX_TID + 1];
 603        uchar adapter_info[6];
 604        ushort cntl;
 605        ushort chksum;
 606} ASCEEP_CONFIG;
 607
 608#define ASC_EEP_CMD_READ          0x80
 609#define ASC_EEP_CMD_WRITE         0x40
 610#define ASC_EEP_CMD_WRITE_ABLE    0x30
 611#define ASC_EEP_CMD_WRITE_DISABLE 0x00
 612#define ASCV_MSGOUT_BEG         0x0000
 613#define ASCV_MSGOUT_SDTR_PERIOD (ASCV_MSGOUT_BEG+3)
 614#define ASCV_MSGOUT_SDTR_OFFSET (ASCV_MSGOUT_BEG+4)
 615#define ASCV_BREAK_SAVED_CODE   (ushort)0x0006
 616#define ASCV_MSGIN_BEG          (ASCV_MSGOUT_BEG+8)
 617#define ASCV_MSGIN_SDTR_PERIOD  (ASCV_MSGIN_BEG+3)
 618#define ASCV_MSGIN_SDTR_OFFSET  (ASCV_MSGIN_BEG+4)
 619#define ASCV_SDTR_DATA_BEG      (ASCV_MSGIN_BEG+8)
 620#define ASCV_SDTR_DONE_BEG      (ASCV_SDTR_DATA_BEG+8)
 621#define ASCV_MAX_DVC_QNG_BEG    (ushort)0x0020
 622#define ASCV_BREAK_ADDR           (ushort)0x0028
 623#define ASCV_BREAK_NOTIFY_COUNT   (ushort)0x002A
 624#define ASCV_BREAK_CONTROL        (ushort)0x002C
 625#define ASCV_BREAK_HIT_COUNT      (ushort)0x002E
 626
 627#define ASCV_ASCDVC_ERR_CODE_W  (ushort)0x0030
 628#define ASCV_MCODE_CHKSUM_W   (ushort)0x0032
 629#define ASCV_MCODE_SIZE_W     (ushort)0x0034
 630#define ASCV_STOP_CODE_B      (ushort)0x0036
 631#define ASCV_DVC_ERR_CODE_B   (ushort)0x0037
 632#define ASCV_OVERRUN_PADDR_D  (ushort)0x0038
 633#define ASCV_OVERRUN_BSIZE_D  (ushort)0x003C
 634#define ASCV_HALTCODE_W       (ushort)0x0040
 635#define ASCV_CHKSUM_W         (ushort)0x0042
 636#define ASCV_MC_DATE_W        (ushort)0x0044
 637#define ASCV_MC_VER_W         (ushort)0x0046
 638#define ASCV_NEXTRDY_B        (ushort)0x0048
 639#define ASCV_DONENEXT_B       (ushort)0x0049
 640#define ASCV_USE_TAGGED_QNG_B (ushort)0x004A
 641#define ASCV_SCSIBUSY_B       (ushort)0x004B
 642#define ASCV_Q_DONE_IN_PROGRESS_B  (ushort)0x004C
 643#define ASCV_CURCDB_B         (ushort)0x004D
 644#define ASCV_RCLUN_B          (ushort)0x004E
 645#define ASCV_BUSY_QHEAD_B     (ushort)0x004F
 646#define ASCV_DISC1_QHEAD_B    (ushort)0x0050
 647#define ASCV_DISC_ENABLE_B    (ushort)0x0052
 648#define ASCV_CAN_TAGGED_QNG_B (ushort)0x0053
 649#define ASCV_HOSTSCSI_ID_B    (ushort)0x0055
 650#define ASCV_MCODE_CNTL_B     (ushort)0x0056
 651#define ASCV_NULL_TARGET_B    (ushort)0x0057
 652#define ASCV_FREE_Q_HEAD_W    (ushort)0x0058
 653#define ASCV_DONE_Q_TAIL_W    (ushort)0x005A
 654#define ASCV_FREE_Q_HEAD_B    (ushort)(ASCV_FREE_Q_HEAD_W+1)
 655#define ASCV_DONE_Q_TAIL_B    (ushort)(ASCV_DONE_Q_TAIL_W+1)
 656#define ASCV_HOST_FLAG_B      (ushort)0x005D
 657#define ASCV_TOTAL_READY_Q_B  (ushort)0x0064
 658#define ASCV_VER_SERIAL_B     (ushort)0x0065
 659#define ASCV_HALTCODE_SAVED_W (ushort)0x0066
 660#define ASCV_WTM_FLAG_B       (ushort)0x0068
 661#define ASCV_RISC_FLAG_B      (ushort)0x006A
 662#define ASCV_REQ_SG_LIST_QP   (ushort)0x006B
 663#define ASC_HOST_FLAG_IN_ISR        0x01
 664#define ASC_HOST_FLAG_ACK_INT       0x02
 665#define ASC_RISC_FLAG_GEN_INT      0x01
 666#define ASC_RISC_FLAG_REQ_SG_LIST  0x02
 667#define IOP_CTRL         (0x0F)
 668#define IOP_STATUS       (0x0E)
 669#define IOP_INT_ACK      IOP_STATUS
 670#define IOP_REG_IFC      (0x0D)
 671#define IOP_SYN_OFFSET    (0x0B)
 672#define IOP_EXTRA_CONTROL (0x0D)
 673#define IOP_REG_PC        (0x0C)
 674#define IOP_RAM_ADDR      (0x0A)
 675#define IOP_RAM_DATA      (0x08)
 676#define IOP_EEP_DATA      (0x06)
 677#define IOP_EEP_CMD       (0x07)
 678#define IOP_VERSION       (0x03)
 679#define IOP_CONFIG_HIGH   (0x04)
 680#define IOP_CONFIG_LOW    (0x02)
 681#define IOP_SIG_BYTE      (0x01)
 682#define IOP_SIG_WORD      (0x00)
 683#define IOP_REG_DC1      (0x0E)
 684#define IOP_REG_DC0      (0x0C)
 685#define IOP_REG_SB       (0x0B)
 686#define IOP_REG_DA1      (0x0A)
 687#define IOP_REG_DA0      (0x08)
 688#define IOP_REG_SC       (0x09)
 689#define IOP_DMA_SPEED    (0x07)
 690#define IOP_REG_FLAG     (0x07)
 691#define IOP_FIFO_H       (0x06)
 692#define IOP_FIFO_L       (0x04)
 693#define IOP_REG_ID       (0x05)
 694#define IOP_REG_QP       (0x03)
 695#define IOP_REG_IH       (0x02)
 696#define IOP_REG_IX       (0x01)
 697#define IOP_REG_AX       (0x00)
 698#define IFC_REG_LOCK      (0x00)
 699#define IFC_REG_UNLOCK    (0x09)
 700#define IFC_WR_EN_FILTER  (0x10)
 701#define IFC_RD_NO_EEPROM  (0x10)
 702#define IFC_SLEW_RATE     (0x20)
 703#define IFC_ACT_NEG       (0x40)
 704#define IFC_INP_FILTER    (0x80)
 705#define IFC_INIT_DEFAULT  (IFC_ACT_NEG | IFC_REG_UNLOCK)
 706#define SC_SEL   (uchar)(0x80)
 707#define SC_BSY   (uchar)(0x40)
 708#define SC_ACK   (uchar)(0x20)
 709#define SC_REQ   (uchar)(0x10)
 710#define SC_ATN   (uchar)(0x08)
 711#define SC_IO    (uchar)(0x04)
 712#define SC_CD    (uchar)(0x02)
 713#define SC_MSG   (uchar)(0x01)
 714#define SEC_SCSI_CTL         (uchar)(0x80)
 715#define SEC_ACTIVE_NEGATE    (uchar)(0x40)
 716#define SEC_SLEW_RATE        (uchar)(0x20)
 717#define SEC_ENABLE_FILTER    (uchar)(0x10)
 718#define ASC_HALT_EXTMSG_IN     (ushort)0x8000
 719#define ASC_HALT_CHK_CONDITION (ushort)0x8100
 720#define ASC_HALT_SS_QUEUE_FULL (ushort)0x8200
 721#define ASC_HALT_DISABLE_ASYN_USE_SYN_FIX  (ushort)0x8300
 722#define ASC_HALT_ENABLE_ASYN_USE_SYN_FIX   (ushort)0x8400
 723#define ASC_HALT_SDTR_REJECTED (ushort)0x4000
 724#define ASC_HALT_HOST_COPY_SG_LIST_TO_RISC ( ushort )0x2000
 725#define ASC_MAX_QNO        0xF8
 726#define ASC_DATA_SEC_BEG   (ushort)0x0080
 727#define ASC_DATA_SEC_END   (ushort)0x0080
 728#define ASC_CODE_SEC_BEG   (ushort)0x0080
 729#define ASC_CODE_SEC_END   (ushort)0x0080
 730#define ASC_QADR_BEG       (0x4000)
 731#define ASC_QADR_USED      (ushort)(ASC_MAX_QNO * 64)
 732#define ASC_QADR_END       (ushort)0x7FFF
 733#define ASC_QLAST_ADR      (ushort)0x7FC0
 734#define ASC_QBLK_SIZE      0x40
 735#define ASC_BIOS_DATA_QBEG 0xF8
 736#define ASC_MIN_ACTIVE_QNO 0x01
 737#define ASC_QLINK_END      0xFF
 738#define ASC_EEPROM_WORDS   0x10
 739#define ASC_MAX_MGS_LEN    0x10
 740#define ASC_BIOS_ADDR_DEF  0xDC00
 741#define ASC_BIOS_SIZE      0x3800
 742#define ASC_BIOS_RAM_OFF   0x3800
 743#define ASC_BIOS_RAM_SIZE  0x800
 744#define ASC_BIOS_MIN_ADDR  0xC000
 745#define ASC_BIOS_MAX_ADDR  0xEC00
 746#define ASC_BIOS_BANK_SIZE 0x0400
 747#define ASC_MCODE_START_ADDR  0x0080
 748#define ASC_CFG0_HOST_INT_ON    0x0020
 749#define ASC_CFG0_BIOS_ON        0x0040
 750#define ASC_CFG0_VERA_BURST_ON  0x0080
 751#define ASC_CFG0_SCSI_PARITY_ON 0x0800
 752#define ASC_CFG1_SCSI_TARGET_ON 0x0080
 753#define ASC_CFG1_LRAM_8BITS_ON  0x0800
 754#define ASC_CFG_MSW_CLR_MASK    0x3080
 755#define CSW_TEST1             (ASC_CS_TYPE)0x8000
 756#define CSW_AUTO_CONFIG       (ASC_CS_TYPE)0x4000
 757#define CSW_RESERVED1         (ASC_CS_TYPE)0x2000
 758#define CSW_IRQ_WRITTEN       (ASC_CS_TYPE)0x1000
 759#define CSW_33MHZ_SELECTED    (ASC_CS_TYPE)0x0800
 760#define CSW_TEST2             (ASC_CS_TYPE)0x0400
 761#define CSW_TEST3             (ASC_CS_TYPE)0x0200
 762#define CSW_RESERVED2         (ASC_CS_TYPE)0x0100
 763#define CSW_DMA_DONE          (ASC_CS_TYPE)0x0080
 764#define CSW_FIFO_RDY          (ASC_CS_TYPE)0x0040
 765#define CSW_EEP_READ_DONE     (ASC_CS_TYPE)0x0020
 766#define CSW_HALTED            (ASC_CS_TYPE)0x0010
 767#define CSW_SCSI_RESET_ACTIVE (ASC_CS_TYPE)0x0008
 768#define CSW_PARITY_ERR        (ASC_CS_TYPE)0x0004
 769#define CSW_SCSI_RESET_LATCH  (ASC_CS_TYPE)0x0002
 770#define CSW_INT_PENDING       (ASC_CS_TYPE)0x0001
 771#define CIW_CLR_SCSI_RESET_INT (ASC_CS_TYPE)0x1000
 772#define CIW_INT_ACK      (ASC_CS_TYPE)0x0100
 773#define CIW_TEST1        (ASC_CS_TYPE)0x0200
 774#define CIW_TEST2        (ASC_CS_TYPE)0x0400
 775#define CIW_SEL_33MHZ    (ASC_CS_TYPE)0x0800
 776#define CIW_IRQ_ACT      (ASC_CS_TYPE)0x1000
 777#define CC_CHIP_RESET   (uchar)0x80
 778#define CC_SCSI_RESET   (uchar)0x40
 779#define CC_HALT         (uchar)0x20
 780#define CC_SINGLE_STEP  (uchar)0x10
 781#define CC_DMA_ABLE     (uchar)0x08
 782#define CC_TEST         (uchar)0x04
 783#define CC_BANK_ONE     (uchar)0x02
 784#define CC_DIAG         (uchar)0x01
 785#define ASC_1000_ID0W      0x04C1
 786#define ASC_1000_ID0W_FIX  0x00C1
 787#define ASC_1000_ID1B      0x25
 788#define ASC_EISA_REV_IOP_MASK  (0x0C83)
 789#define ASC_EISA_CFG_IOP_MASK  (0x0C86)
 790#define ASC_GET_EISA_SLOT(iop)  (PortAddr)((iop) & 0xF000)
 791#define INS_HALTINT        (ushort)0x6281
 792#define INS_HALT           (ushort)0x6280
 793#define INS_SINT           (ushort)0x6200
 794#define INS_RFLAG_WTM      (ushort)0x7380
 795#define ASC_MC_SAVE_CODE_WSIZE  0x500
 796#define ASC_MC_SAVE_DATA_WSIZE  0x40
 797
 798typedef struct asc_mc_saved {
 799        ushort data[ASC_MC_SAVE_DATA_WSIZE];
 800        ushort code[ASC_MC_SAVE_CODE_WSIZE];
 801} ASC_MC_SAVED;
 802
 803#define AscGetQDoneInProgress(port)         AscReadLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B)
 804#define AscPutQDoneInProgress(port, val)    AscWriteLramByte((port), ASCV_Q_DONE_IN_PROGRESS_B, val)
 805#define AscGetVarFreeQHead(port)            AscReadLramWord((port), ASCV_FREE_Q_HEAD_W)
 806#define AscGetVarDoneQTail(port)            AscReadLramWord((port), ASCV_DONE_Q_TAIL_W)
 807#define AscPutVarFreeQHead(port, val)       AscWriteLramWord((port), ASCV_FREE_Q_HEAD_W, val)
 808#define AscPutVarDoneQTail(port, val)       AscWriteLramWord((port), ASCV_DONE_Q_TAIL_W, val)
 809#define AscGetRiscVarFreeQHead(port)        AscReadLramByte((port), ASCV_NEXTRDY_B)
 810#define AscGetRiscVarDoneQTail(port)        AscReadLramByte((port), ASCV_DONENEXT_B)
 811#define AscPutRiscVarFreeQHead(port, val)   AscWriteLramByte((port), ASCV_NEXTRDY_B, val)
 812#define AscPutRiscVarDoneQTail(port, val)   AscWriteLramByte((port), ASCV_DONENEXT_B, val)
 813#define AscPutMCodeSDTRDoneAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id), (data))
 814#define AscGetMCodeSDTRDoneAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DONE_BEG+(ushort)id))
 815#define AscPutMCodeInitSDTRAtID(port, id, data)  AscWriteLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id), data)
 816#define AscGetMCodeInitSDTRAtID(port, id)        AscReadLramByte((port), (ushort)((ushort)ASCV_SDTR_DATA_BEG+(ushort)id))
 817#define AscGetChipSignatureByte(port)     (uchar)inp((port)+IOP_SIG_BYTE)
 818#define AscGetChipSignatureWord(port)     (ushort)inpw((port)+IOP_SIG_WORD)
 819#define AscGetChipVerNo(port)             (uchar)inp((port)+IOP_VERSION)
 820#define AscGetChipCfgLsw(port)            (ushort)inpw((port)+IOP_CONFIG_LOW)
 821#define AscGetChipCfgMsw(port)            (ushort)inpw((port)+IOP_CONFIG_HIGH)
 822#define AscSetChipCfgLsw(port, data)      outpw((port)+IOP_CONFIG_LOW, data)
 823#define AscSetChipCfgMsw(port, data)      outpw((port)+IOP_CONFIG_HIGH, data)
 824#define AscGetChipEEPCmd(port)            (uchar)inp((port)+IOP_EEP_CMD)
 825#define AscSetChipEEPCmd(port, data)      outp((port)+IOP_EEP_CMD, data)
 826#define AscGetChipEEPData(port)           (ushort)inpw((port)+IOP_EEP_DATA)
 827#define AscSetChipEEPData(port, data)     outpw((port)+IOP_EEP_DATA, data)
 828#define AscGetChipLramAddr(port)          (ushort)inpw((PortAddr)((port)+IOP_RAM_ADDR))
 829#define AscSetChipLramAddr(port, addr)    outpw((PortAddr)((port)+IOP_RAM_ADDR), addr)
 830#define AscGetChipLramData(port)          (ushort)inpw((port)+IOP_RAM_DATA)
 831#define AscSetChipLramData(port, data)    outpw((port)+IOP_RAM_DATA, data)
 832#define AscGetChipIFC(port)               (uchar)inp((port)+IOP_REG_IFC)
 833#define AscSetChipIFC(port, data)          outp((port)+IOP_REG_IFC, data)
 834#define AscGetChipStatus(port)            (ASC_CS_TYPE)inpw((port)+IOP_STATUS)
 835#define AscSetChipStatus(port, cs_val)    outpw((port)+IOP_STATUS, cs_val)
 836#define AscGetChipControl(port)           (uchar)inp((port)+IOP_CTRL)
 837#define AscSetChipControl(port, cc_val)   outp((port)+IOP_CTRL, cc_val)
 838#define AscGetChipSyn(port)               (uchar)inp((port)+IOP_SYN_OFFSET)
 839#define AscSetChipSyn(port, data)         outp((port)+IOP_SYN_OFFSET, data)
 840#define AscSetPCAddr(port, data)          outpw((port)+IOP_REG_PC, data)
 841#define AscGetPCAddr(port)                (ushort)inpw((port)+IOP_REG_PC)
 842#define AscIsIntPending(port)             (AscGetChipStatus(port) & (CSW_INT_PENDING | CSW_SCSI_RESET_LATCH))
 843#define AscGetChipScsiID(port)            ((AscGetChipCfgLsw(port) >> 8) & ASC_MAX_TID)
 844#define AscGetExtraControl(port)          (uchar)inp((port)+IOP_EXTRA_CONTROL)
 845#define AscSetExtraControl(port, data)    outp((port)+IOP_EXTRA_CONTROL, data)
 846#define AscReadChipAX(port)               (ushort)inpw((port)+IOP_REG_AX)
 847#define AscWriteChipAX(port, data)        outpw((port)+IOP_REG_AX, data)
 848#define AscReadChipIX(port)               (uchar)inp((port)+IOP_REG_IX)
 849#define AscWriteChipIX(port, data)        outp((port)+IOP_REG_IX, data)
 850#define AscReadChipIH(port)               (ushort)inpw((port)+IOP_REG_IH)
 851#define AscWriteChipIH(port, data)        outpw((port)+IOP_REG_IH, data)
 852#define AscReadChipQP(port)               (uchar)inp((port)+IOP_REG_QP)
 853#define AscWriteChipQP(port, data)        outp((port)+IOP_REG_QP, data)
 854#define AscReadChipFIFO_L(port)           (ushort)inpw((port)+IOP_REG_FIFO_L)
 855#define AscWriteChipFIFO_L(port, data)    outpw((port)+IOP_REG_FIFO_L, data)
 856#define AscReadChipFIFO_H(port)           (ushort)inpw((port)+IOP_REG_FIFO_H)
 857#define AscWriteChipFIFO_H(port, data)    outpw((port)+IOP_REG_FIFO_H, data)
 858#define AscReadChipDmaSpeed(port)         (uchar)inp((port)+IOP_DMA_SPEED)
 859#define AscWriteChipDmaSpeed(port, data)  outp((port)+IOP_DMA_SPEED, data)
 860#define AscReadChipDA0(port)              (ushort)inpw((port)+IOP_REG_DA0)
 861#define AscWriteChipDA0(port)             outpw((port)+IOP_REG_DA0, data)
 862#define AscReadChipDA1(port)              (ushort)inpw((port)+IOP_REG_DA1)
 863#define AscWriteChipDA1(port)             outpw((port)+IOP_REG_DA1, data)
 864#define AscReadChipDC0(port)              (ushort)inpw((port)+IOP_REG_DC0)
 865#define AscWriteChipDC0(port)             outpw((port)+IOP_REG_DC0, data)
 866#define AscReadChipDC1(port)              (ushort)inpw((port)+IOP_REG_DC1)
 867#define AscWriteChipDC1(port)             outpw((port)+IOP_REG_DC1, data)
 868#define AscReadChipDvcID(port)            (uchar)inp((port)+IOP_REG_ID)
 869#define AscWriteChipDvcID(port, data)     outp((port)+IOP_REG_ID, data)
 870
 871#define AdvPortAddr  void __iomem *     /* Virtual memory address size */
 872
 873/*
 874 * Define Adv Library required memory access macros.
 875 */
 876#define ADV_MEM_READB(addr) readb(addr)
 877#define ADV_MEM_READW(addr) readw(addr)
 878#define ADV_MEM_WRITEB(addr, byte) writeb(byte, addr)
 879#define ADV_MEM_WRITEW(addr, word) writew(word, addr)
 880#define ADV_MEM_WRITEDW(addr, dword) writel(dword, addr)
 881
 882/*
 883 * Define total number of simultaneous maximum element scatter-gather
 884 * request blocks per wide adapter. ASC_DEF_MAX_HOST_QNG (253) is the
 885 * maximum number of outstanding commands per wide host adapter. Each
 886 * command uses one or more ADV_SG_BLOCK each with 15 scatter-gather
 887 * elements. Allow each command to have at least one ADV_SG_BLOCK structure.
 888 * This allows about 15 commands to have the maximum 17 ADV_SG_BLOCK
 889 * structures or 255 scatter-gather elements.
 890 */
 891#define ADV_TOT_SG_BLOCK        ASC_DEF_MAX_HOST_QNG
 892
 893/*
 894 * Define maximum number of scatter-gather elements per request.
 895 */
 896#define ADV_MAX_SG_LIST         255
 897#define NO_OF_SG_PER_BLOCK              15
 898
 899#define ADV_EEP_DVC_CFG_BEGIN           (0x00)
 900#define ADV_EEP_DVC_CFG_END             (0x15)
 901#define ADV_EEP_DVC_CTL_BEGIN           (0x16)  /* location of OEM name */
 902#define ADV_EEP_MAX_WORD_ADDR           (0x1E)
 903
 904#define ADV_EEP_DELAY_MS                100
 905
 906#define ADV_EEPROM_BIG_ENDIAN          0x8000   /* EEPROM Bit 15 */
 907#define ADV_EEPROM_BIOS_ENABLE         0x4000   /* EEPROM Bit 14 */
 908/*
 909 * For the ASC3550 Bit 13 is Termination Polarity control bit.
 910 * For later ICs Bit 13 controls whether the CIS (Card Information
 911 * Service Section) is loaded from EEPROM.
 912 */
 913#define ADV_EEPROM_TERM_POL            0x2000   /* EEPROM Bit 13 */
 914#define ADV_EEPROM_CIS_LD              0x2000   /* EEPROM Bit 13 */
 915/*
 916 * ASC38C1600 Bit 11
 917 *
 918 * If EEPROM Bit 11 is 0 for Function 0, then Function 0 will specify
 919 * INT A in the PCI Configuration Space Int Pin field. If it is 1, then
 920 * Function 0 will specify INT B.
 921 *
 922 * If EEPROM Bit 11 is 0 for Function 1, then Function 1 will specify
 923 * INT B in the PCI Configuration Space Int Pin field. If it is 1, then
 924 * Function 1 will specify INT A.
 925 */
 926#define ADV_EEPROM_INTAB               0x0800   /* EEPROM Bit 11 */
 927
 928typedef struct adveep_3550_config {
 929        /* Word Offset, Description */
 930
 931        ushort cfg_lsw;         /* 00 power up initialization */
 932        /*  bit 13 set - Term Polarity Control */
 933        /*  bit 14 set - BIOS Enable */
 934        /*  bit 15 set - Big Endian Mode */
 935        ushort cfg_msw;         /* 01 unused      */
 936        ushort disc_enable;     /* 02 disconnect enable */
 937        ushort wdtr_able;       /* 03 Wide DTR able */
 938        ushort sdtr_able;       /* 04 Synchronous DTR able */
 939        ushort start_motor;     /* 05 send start up motor */
 940        ushort tagqng_able;     /* 06 tag queuing able */
 941        ushort bios_scan;       /* 07 BIOS device control */
 942        ushort scam_tolerant;   /* 08 no scam */
 943
 944        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
 945        uchar bios_boot_delay;  /*    power up wait */
 946
 947        uchar scsi_reset_delay; /* 10 reset delay */
 948        uchar bios_id_lun;      /*    first boot device scsi id & lun */
 949        /*    high nibble is lun */
 950        /*    low nibble is scsi id */
 951
 952        uchar termination;      /* 11 0 - automatic */
 953        /*    1 - low off / high off */
 954        /*    2 - low off / high on */
 955        /*    3 - low on  / high on */
 956        /*    There is no low on  / high off */
 957
 958        uchar reserved1;        /*    reserved byte (not used) */
 959
 960        ushort bios_ctrl;       /* 12 BIOS control bits */
 961        /*  bit 0  BIOS don't act as initiator. */
 962        /*  bit 1  BIOS > 1 GB support */
 963        /*  bit 2  BIOS > 2 Disk Support */
 964        /*  bit 3  BIOS don't support removables */
 965        /*  bit 4  BIOS support bootable CD */
 966        /*  bit 5  BIOS scan enabled */
 967        /*  bit 6  BIOS support multiple LUNs */
 968        /*  bit 7  BIOS display of message */
 969        /*  bit 8  SCAM disabled */
 970        /*  bit 9  Reset SCSI bus during init. */
 971        /*  bit 10 */
 972        /*  bit 11 No verbose initialization. */
 973        /*  bit 12 SCSI parity enabled */
 974        /*  bit 13 */
 975        /*  bit 14 */
 976        /*  bit 15 */
 977        ushort ultra_able;      /* 13 ULTRA speed able */
 978        ushort reserved2;       /* 14 reserved */
 979        uchar max_host_qng;     /* 15 maximum host queuing */
 980        uchar max_dvc_qng;      /*    maximum per device queuing */
 981        ushort dvc_cntl;        /* 16 control bit for driver */
 982        ushort bug_fix;         /* 17 control bit for bug fix */
 983        ushort serial_number_word1;     /* 18 Board serial number word 1 */
 984        ushort serial_number_word2;     /* 19 Board serial number word 2 */
 985        ushort serial_number_word3;     /* 20 Board serial number word 3 */
 986        ushort check_sum;       /* 21 EEP check sum */
 987        uchar oem_name[16];     /* 22 OEM name */
 988        ushort dvc_err_code;    /* 30 last device driver error code */
 989        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
 990        ushort adv_err_addr;    /* 32 last uc error address */
 991        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
 992        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
 993        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
 994        ushort num_of_err;      /* 36 number of error */
 995} ADVEEP_3550_CONFIG;
 996
 997typedef struct adveep_38C0800_config {
 998        /* Word Offset, Description */
 999
1000        ushort cfg_lsw;         /* 00 power up initialization */
1001        /*  bit 13 set - Load CIS */
1002        /*  bit 14 set - BIOS Enable */
1003        /*  bit 15 set - Big Endian Mode */
1004        ushort cfg_msw;         /* 01 unused      */
1005        ushort disc_enable;     /* 02 disconnect enable */
1006        ushort wdtr_able;       /* 03 Wide DTR able */
1007        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1008        ushort start_motor;     /* 05 send start up motor */
1009        ushort tagqng_able;     /* 06 tag queuing able */
1010        ushort bios_scan;       /* 07 BIOS device control */
1011        ushort scam_tolerant;   /* 08 no scam */
1012
1013        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1014        uchar bios_boot_delay;  /*    power up wait */
1015
1016        uchar scsi_reset_delay; /* 10 reset delay */
1017        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1018        /*    high nibble is lun */
1019        /*    low nibble is scsi id */
1020
1021        uchar termination_se;   /* 11 0 - automatic */
1022        /*    1 - low off / high off */
1023        /*    2 - low off / high on */
1024        /*    3 - low on  / high on */
1025        /*    There is no low on  / high off */
1026
1027        uchar termination_lvd;  /* 11 0 - automatic */
1028        /*    1 - low off / high off */
1029        /*    2 - low off / high on */
1030        /*    3 - low on  / high on */
1031        /*    There is no low on  / high off */
1032
1033        ushort bios_ctrl;       /* 12 BIOS control bits */
1034        /*  bit 0  BIOS don't act as initiator. */
1035        /*  bit 1  BIOS > 1 GB support */
1036        /*  bit 2  BIOS > 2 Disk Support */
1037        /*  bit 3  BIOS don't support removables */
1038        /*  bit 4  BIOS support bootable CD */
1039        /*  bit 5  BIOS scan enabled */
1040        /*  bit 6  BIOS support multiple LUNs */
1041        /*  bit 7  BIOS display of message */
1042        /*  bit 8  SCAM disabled */
1043        /*  bit 9  Reset SCSI bus during init. */
1044        /*  bit 10 */
1045        /*  bit 11 No verbose initialization. */
1046        /*  bit 12 SCSI parity enabled */
1047        /*  bit 13 */
1048        /*  bit 14 */
1049        /*  bit 15 */
1050        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1051        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1052        uchar max_host_qng;     /* 15 maximum host queueing */
1053        uchar max_dvc_qng;      /*    maximum per device queuing */
1054        ushort dvc_cntl;        /* 16 control bit for driver */
1055        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1056        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1057        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1058        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1059        ushort check_sum;       /* 21 EEP check sum */
1060        uchar oem_name[16];     /* 22 OEM name */
1061        ushort dvc_err_code;    /* 30 last device driver error code */
1062        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1063        ushort adv_err_addr;    /* 32 last uc error address */
1064        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1065        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1066        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1067        ushort reserved36;      /* 36 reserved */
1068        ushort reserved37;      /* 37 reserved */
1069        ushort reserved38;      /* 38 reserved */
1070        ushort reserved39;      /* 39 reserved */
1071        ushort reserved40;      /* 40 reserved */
1072        ushort reserved41;      /* 41 reserved */
1073        ushort reserved42;      /* 42 reserved */
1074        ushort reserved43;      /* 43 reserved */
1075        ushort reserved44;      /* 44 reserved */
1076        ushort reserved45;      /* 45 reserved */
1077        ushort reserved46;      /* 46 reserved */
1078        ushort reserved47;      /* 47 reserved */
1079        ushort reserved48;      /* 48 reserved */
1080        ushort reserved49;      /* 49 reserved */
1081        ushort reserved50;      /* 50 reserved */
1082        ushort reserved51;      /* 51 reserved */
1083        ushort reserved52;      /* 52 reserved */
1084        ushort reserved53;      /* 53 reserved */
1085        ushort reserved54;      /* 54 reserved */
1086        ushort reserved55;      /* 55 reserved */
1087        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1088        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1089        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1090        ushort subsysid;        /* 59 SubSystem ID */
1091        ushort reserved60;      /* 60 reserved */
1092        ushort reserved61;      /* 61 reserved */
1093        ushort reserved62;      /* 62 reserved */
1094        ushort reserved63;      /* 63 reserved */
1095} ADVEEP_38C0800_CONFIG;
1096
1097typedef struct adveep_38C1600_config {
1098        /* Word Offset, Description */
1099
1100        ushort cfg_lsw;         /* 00 power up initialization */
1101        /*  bit 11 set - Func. 0 INTB, Func. 1 INTA */
1102        /*       clear - Func. 0 INTA, Func. 1 INTB */
1103        /*  bit 13 set - Load CIS */
1104        /*  bit 14 set - BIOS Enable */
1105        /*  bit 15 set - Big Endian Mode */
1106        ushort cfg_msw;         /* 01 unused */
1107        ushort disc_enable;     /* 02 disconnect enable */
1108        ushort wdtr_able;       /* 03 Wide DTR able */
1109        ushort sdtr_speed1;     /* 04 SDTR Speed TID 0-3 */
1110        ushort start_motor;     /* 05 send start up motor */
1111        ushort tagqng_able;     /* 06 tag queuing able */
1112        ushort bios_scan;       /* 07 BIOS device control */
1113        ushort scam_tolerant;   /* 08 no scam */
1114
1115        uchar adapter_scsi_id;  /* 09 Host Adapter ID */
1116        uchar bios_boot_delay;  /*    power up wait */
1117
1118        uchar scsi_reset_delay; /* 10 reset delay */
1119        uchar bios_id_lun;      /*    first boot device scsi id & lun */
1120        /*    high nibble is lun */
1121        /*    low nibble is scsi id */
1122
1123        uchar termination_se;   /* 11 0 - automatic */
1124        /*    1 - low off / high off */
1125        /*    2 - low off / high on */
1126        /*    3 - low on  / high on */
1127        /*    There is no low on  / high off */
1128
1129        uchar termination_lvd;  /* 11 0 - automatic */
1130        /*    1 - low off / high off */
1131        /*    2 - low off / high on */
1132        /*    3 - low on  / high on */
1133        /*    There is no low on  / high off */
1134
1135        ushort bios_ctrl;       /* 12 BIOS control bits */
1136        /*  bit 0  BIOS don't act as initiator. */
1137        /*  bit 1  BIOS > 1 GB support */
1138        /*  bit 2  BIOS > 2 Disk Support */
1139        /*  bit 3  BIOS don't support removables */
1140        /*  bit 4  BIOS support bootable CD */
1141        /*  bit 5  BIOS scan enabled */
1142        /*  bit 6  BIOS support multiple LUNs */
1143        /*  bit 7  BIOS display of message */
1144        /*  bit 8  SCAM disabled */
1145        /*  bit 9  Reset SCSI bus during init. */
1146        /*  bit 10 Basic Integrity Checking disabled */
1147        /*  bit 11 No verbose initialization. */
1148        /*  bit 12 SCSI parity enabled */
1149        /*  bit 13 AIPP (Asyn. Info. Ph. Prot.) dis. */
1150        /*  bit 14 */
1151        /*  bit 15 */
1152        ushort sdtr_speed2;     /* 13 SDTR speed TID 4-7 */
1153        ushort sdtr_speed3;     /* 14 SDTR speed TID 8-11 */
1154        uchar max_host_qng;     /* 15 maximum host queueing */
1155        uchar max_dvc_qng;      /*    maximum per device queuing */
1156        ushort dvc_cntl;        /* 16 control bit for driver */
1157        ushort sdtr_speed4;     /* 17 SDTR speed 4 TID 12-15 */
1158        ushort serial_number_word1;     /* 18 Board serial number word 1 */
1159        ushort serial_number_word2;     /* 19 Board serial number word 2 */
1160        ushort serial_number_word3;     /* 20 Board serial number word 3 */
1161        ushort check_sum;       /* 21 EEP check sum */
1162        uchar oem_name[16];     /* 22 OEM name */
1163        ushort dvc_err_code;    /* 30 last device driver error code */
1164        ushort adv_err_code;    /* 31 last uc and Adv Lib error code */
1165        ushort adv_err_addr;    /* 32 last uc error address */
1166        ushort saved_dvc_err_code;      /* 33 saved last dev. driver error code   */
1167        ushort saved_adv_err_code;      /* 34 saved last uc and Adv Lib error code */
1168        ushort saved_adv_err_addr;      /* 35 saved last uc error address         */
1169        ushort reserved36;      /* 36 reserved */
1170        ushort reserved37;      /* 37 reserved */
1171        ushort reserved38;      /* 38 reserved */
1172        ushort reserved39;      /* 39 reserved */
1173        ushort reserved40;      /* 40 reserved */
1174        ushort reserved41;      /* 41 reserved */
1175        ushort reserved42;      /* 42 reserved */
1176        ushort reserved43;      /* 43 reserved */
1177        ushort reserved44;      /* 44 reserved */
1178        ushort reserved45;      /* 45 reserved */
1179        ushort reserved46;      /* 46 reserved */
1180        ushort reserved47;      /* 47 reserved */
1181        ushort reserved48;      /* 48 reserved */
1182        ushort reserved49;      /* 49 reserved */
1183        ushort reserved50;      /* 50 reserved */
1184        ushort reserved51;      /* 51 reserved */
1185        ushort reserved52;      /* 52 reserved */
1186        ushort reserved53;      /* 53 reserved */
1187        ushort reserved54;      /* 54 reserved */
1188        ushort reserved55;      /* 55 reserved */
1189        ushort cisptr_lsw;      /* 56 CIS PTR LSW */
1190        ushort cisprt_msw;      /* 57 CIS PTR MSW */
1191        ushort subsysvid;       /* 58 SubSystem Vendor ID */
1192        ushort subsysid;        /* 59 SubSystem ID */
1193        ushort reserved60;      /* 60 reserved */
1194        ushort reserved61;      /* 61 reserved */
1195        ushort reserved62;      /* 62 reserved */
1196        ushort reserved63;      /* 63 reserved */
1197} ADVEEP_38C1600_CONFIG;
1198
1199/*
1200 * EEPROM Commands
1201 */
1202#define ASC_EEP_CMD_DONE             0x0200
1203
1204/* bios_ctrl */
1205#define BIOS_CTRL_BIOS               0x0001
1206#define BIOS_CTRL_EXTENDED_XLAT      0x0002
1207#define BIOS_CTRL_GT_2_DISK          0x0004
1208#define BIOS_CTRL_BIOS_REMOVABLE     0x0008
1209#define BIOS_CTRL_BOOTABLE_CD        0x0010
1210#define BIOS_CTRL_MULTIPLE_LUN       0x0040
1211#define BIOS_CTRL_DISPLAY_MSG        0x0080
1212#define BIOS_CTRL_NO_SCAM            0x0100
1213#define BIOS_CTRL_RESET_SCSI_BUS     0x0200
1214#define BIOS_CTRL_INIT_VERBOSE       0x0800
1215#define BIOS_CTRL_SCSI_PARITY        0x1000
1216#define BIOS_CTRL_AIPP_DIS           0x2000
1217
1218#define ADV_3550_MEMSIZE   0x2000       /* 8 KB Internal Memory */
1219
1220#define ADV_38C0800_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1221
1222/*
1223 * XXX - Since ASC38C1600 Rev.3 has a local RAM failure issue, there is
1224 * a special 16K Adv Library and Microcode version. After the issue is
1225 * resolved, should restore 32K support.
1226 *
1227 * #define ADV_38C1600_MEMSIZE  0x8000L   * 32 KB Internal Memory *
1228 */
1229#define ADV_38C1600_MEMSIZE  0x4000     /* 16 KB Internal Memory */
1230
1231/*
1232 * Byte I/O register address from base of 'iop_base'.
1233 */
1234#define IOPB_INTR_STATUS_REG    0x00
1235#define IOPB_CHIP_ID_1          0x01
1236#define IOPB_INTR_ENABLES       0x02
1237#define IOPB_CHIP_TYPE_REV      0x03
1238#define IOPB_RES_ADDR_4         0x04
1239#define IOPB_RES_ADDR_5         0x05
1240#define IOPB_RAM_DATA           0x06
1241#define IOPB_RES_ADDR_7         0x07
1242#define IOPB_FLAG_REG           0x08
1243#define IOPB_RES_ADDR_9         0x09
1244#define IOPB_RISC_CSR           0x0A
1245#define IOPB_RES_ADDR_B         0x0B
1246#define IOPB_RES_ADDR_C         0x0C
1247#define IOPB_RES_ADDR_D         0x0D
1248#define IOPB_SOFT_OVER_WR       0x0E
1249#define IOPB_RES_ADDR_F         0x0F
1250#define IOPB_MEM_CFG            0x10
1251#define IOPB_RES_ADDR_11        0x11
1252#define IOPB_GPIO_DATA          0x12
1253#define IOPB_RES_ADDR_13        0x13
1254#define IOPB_FLASH_PAGE         0x14
1255#define IOPB_RES_ADDR_15        0x15
1256#define IOPB_GPIO_CNTL          0x16
1257#define IOPB_RES_ADDR_17        0x17
1258#define IOPB_FLASH_DATA         0x18
1259#define IOPB_RES_ADDR_19        0x19
1260#define IOPB_RES_ADDR_1A        0x1A
1261#define IOPB_RES_ADDR_1B        0x1B
1262#define IOPB_RES_ADDR_1C        0x1C
1263#define IOPB_RES_ADDR_1D        0x1D
1264#define IOPB_RES_ADDR_1E        0x1E
1265#define IOPB_RES_ADDR_1F        0x1F
1266#define IOPB_DMA_CFG0           0x20
1267#define IOPB_DMA_CFG1           0x21
1268#define IOPB_TICKLE             0x22
1269#define IOPB_DMA_REG_WR         0x23
1270#define IOPB_SDMA_STATUS        0x24
1271#define IOPB_SCSI_BYTE_CNT      0x25
1272#define IOPB_HOST_BYTE_CNT      0x26
1273#define IOPB_BYTE_LEFT_TO_XFER  0x27
1274#define IOPB_BYTE_TO_XFER_0     0x28
1275#define IOPB_BYTE_TO_XFER_1     0x29
1276#define IOPB_BYTE_TO_XFER_2     0x2A
1277#define IOPB_BYTE_TO_XFER_3     0x2B
1278#define IOPB_ACC_GRP            0x2C
1279#define IOPB_RES_ADDR_2D        0x2D
1280#define IOPB_DEV_ID             0x2E
1281#define IOPB_RES_ADDR_2F        0x2F
1282#define IOPB_SCSI_DATA          0x30
1283#define IOPB_RES_ADDR_31        0x31
1284#define IOPB_RES_ADDR_32        0x32
1285#define IOPB_SCSI_DATA_HSHK     0x33
1286#define IOPB_SCSI_CTRL          0x34
1287#define IOPB_RES_ADDR_35        0x35
1288#define IOPB_RES_ADDR_36        0x36
1289#define IOPB_RES_ADDR_37        0x37
1290#define IOPB_RAM_BIST           0x38
1291#define IOPB_PLL_TEST           0x39
1292#define IOPB_PCI_INT_CFG        0x3A
1293#define IOPB_RES_ADDR_3B        0x3B
1294#define IOPB_RFIFO_CNT          0x3C
1295#define IOPB_RES_ADDR_3D        0x3D
1296#define IOPB_RES_ADDR_3E        0x3E
1297#define IOPB_RES_ADDR_3F        0x3F
1298
1299/*
1300 * Word I/O register address from base of 'iop_base'.
1301 */
1302#define IOPW_CHIP_ID_0          0x00    /* CID0  */
1303#define IOPW_CTRL_REG           0x02    /* CC    */
1304#define IOPW_RAM_ADDR           0x04    /* LA    */
1305#define IOPW_RAM_DATA           0x06    /* LD    */
1306#define IOPW_RES_ADDR_08        0x08
1307#define IOPW_RISC_CSR           0x0A    /* CSR   */
1308#define IOPW_SCSI_CFG0          0x0C    /* CFG0  */
1309#define IOPW_SCSI_CFG1          0x0E    /* CFG1  */
1310#define IOPW_RES_ADDR_10        0x10
1311#define IOPW_SEL_MASK           0x12    /* SM    */
1312#define IOPW_RES_ADDR_14        0x14
1313#define IOPW_FLASH_ADDR         0x16    /* FA    */
1314#define IOPW_RES_ADDR_18        0x18
1315#define IOPW_EE_CMD             0x1A    /* EC    */
1316#define IOPW_EE_DATA            0x1C    /* ED    */
1317#define IOPW_SFIFO_CNT          0x1E    /* SFC   */
1318#define IOPW_RES_ADDR_20        0x20
1319#define IOPW_Q_BASE             0x22    /* QB    */
1320#define IOPW_QP                 0x24    /* QP    */
1321#define IOPW_IX                 0x26    /* IX    */
1322#define IOPW_SP                 0x28    /* SP    */
1323#define IOPW_PC                 0x2A    /* PC    */
1324#define IOPW_RES_ADDR_2C        0x2C
1325#define IOPW_RES_ADDR_2E        0x2E
1326#define IOPW_SCSI_DATA          0x30    /* SD    */
1327#define IOPW_SCSI_DATA_HSHK     0x32    /* SDH   */
1328#define IOPW_SCSI_CTRL          0x34    /* SC    */
1329#define IOPW_HSHK_CFG           0x36    /* HCFG  */
1330#define IOPW_SXFR_STATUS        0x36    /* SXS   */
1331#define IOPW_SXFR_CNTL          0x38    /* SXL   */
1332#define IOPW_SXFR_CNTH          0x3A    /* SXH   */
1333#define IOPW_RES_ADDR_3C        0x3C
1334#define IOPW_RFIFO_DATA         0x3E    /* RFD   */
1335
1336/*
1337 * Doubleword I/O register address from base of 'iop_base'.
1338 */
1339#define IOPDW_RES_ADDR_0         0x00
1340#define IOPDW_RAM_DATA           0x04
1341#define IOPDW_RES_ADDR_8         0x08
1342#define IOPDW_RES_ADDR_C         0x0C
1343#define IOPDW_RES_ADDR_10        0x10
1344#define IOPDW_COMMA              0x14
1345#define IOPDW_COMMB              0x18
1346#define IOPDW_RES_ADDR_1C        0x1C
1347#define IOPDW_SDMA_ADDR0         0x20
1348#define IOPDW_SDMA_ADDR1         0x24
1349#define IOPDW_SDMA_COUNT         0x28
1350#define IOPDW_SDMA_ERROR         0x2C
1351#define IOPDW_RDMA_ADDR0         0x30
1352#define IOPDW_RDMA_ADDR1         0x34
1353#define IOPDW_RDMA_COUNT         0x38
1354#define IOPDW_RDMA_ERROR         0x3C
1355
1356#define ADV_CHIP_ID_BYTE         0x25
1357#define ADV_CHIP_ID_WORD         0x04C1
1358
1359#define ADV_INTR_ENABLE_HOST_INTR                   0x01
1360#define ADV_INTR_ENABLE_SEL_INTR                    0x02
1361#define ADV_INTR_ENABLE_DPR_INTR                    0x04
1362#define ADV_INTR_ENABLE_RTA_INTR                    0x08
1363#define ADV_INTR_ENABLE_RMA_INTR                    0x10
1364#define ADV_INTR_ENABLE_RST_INTR                    0x20
1365#define ADV_INTR_ENABLE_DPE_INTR                    0x40
1366#define ADV_INTR_ENABLE_GLOBAL_INTR                 0x80
1367
1368#define ADV_INTR_STATUS_INTRA            0x01
1369#define ADV_INTR_STATUS_INTRB            0x02
1370#define ADV_INTR_STATUS_INTRC            0x04
1371
1372#define ADV_RISC_CSR_STOP           (0x0000)
1373#define ADV_RISC_TEST_COND          (0x2000)
1374#define ADV_RISC_CSR_RUN            (0x4000)
1375#define ADV_RISC_CSR_SINGLE_STEP    (0x8000)
1376
1377#define ADV_CTRL_REG_HOST_INTR      0x0100
1378#define ADV_CTRL_REG_SEL_INTR       0x0200
1379#define ADV_CTRL_REG_DPR_INTR       0x0400
1380#define ADV_CTRL_REG_RTA_INTR       0x0800
1381#define ADV_CTRL_REG_RMA_INTR       0x1000
1382#define ADV_CTRL_REG_RES_BIT14      0x2000
1383#define ADV_CTRL_REG_DPE_INTR       0x4000
1384#define ADV_CTRL_REG_POWER_DONE     0x8000
1385#define ADV_CTRL_REG_ANY_INTR       0xFF00
1386
1387#define ADV_CTRL_REG_CMD_RESET             0x00C6
1388#define ADV_CTRL_REG_CMD_WR_IO_REG         0x00C5
1389#define ADV_CTRL_REG_CMD_RD_IO_REG         0x00C4
1390#define ADV_CTRL_REG_CMD_WR_PCI_CFG_SPACE  0x00C3
1391#define ADV_CTRL_REG_CMD_RD_PCI_CFG_SPACE  0x00C2
1392
1393#define ADV_TICKLE_NOP                      0x00
1394#define ADV_TICKLE_A                        0x01
1395#define ADV_TICKLE_B                        0x02
1396#define ADV_TICKLE_C                        0x03
1397
1398#define AdvIsIntPending(port) \
1399    (AdvReadWordRegister(port, IOPW_CTRL_REG) & ADV_CTRL_REG_HOST_INTR)
1400
1401/*
1402 * SCSI_CFG0 Register bit definitions
1403 */
1404#define TIMER_MODEAB    0xC000  /* Watchdog, Second, and Select. Timer Ctrl. */
1405#define PARITY_EN       0x2000  /* Enable SCSI Parity Error detection */
1406#define EVEN_PARITY     0x1000  /* Select Even Parity */
1407#define WD_LONG         0x0800  /* Watchdog Interval, 1: 57 min, 0: 13 sec */
1408#define QUEUE_128       0x0400  /* Queue Size, 1: 128 byte, 0: 64 byte */
1409#define PRIM_MODE       0x0100  /* Primitive SCSI mode */
1410#define SCAM_EN         0x0080  /* Enable SCAM selection */
1411#define SEL_TMO_LONG    0x0040  /* Sel/Resel Timeout, 1: 400 ms, 0: 1.6 ms */
1412#define CFRM_ID         0x0020  /* SCAM id sel. confirm., 1: fast, 0: 6.4 ms */
1413#define OUR_ID_EN       0x0010  /* Enable OUR_ID bits */
1414#define OUR_ID          0x000F  /* SCSI ID */
1415
1416/*
1417 * SCSI_CFG1 Register bit definitions
1418 */
1419#define BIG_ENDIAN      0x8000  /* Enable Big Endian Mode MIO:15, EEP:15 */
1420#define TERM_POL        0x2000  /* Terminator Polarity Ctrl. MIO:13, EEP:13 */
1421#define SLEW_RATE       0x1000  /* SCSI output buffer slew rate */
1422#define FILTER_SEL      0x0C00  /* Filter Period Selection */
1423#define  FLTR_DISABLE    0x0000 /* Input Filtering Disabled */
1424#define  FLTR_11_TO_20NS 0x0800 /* Input Filtering 11ns to 20ns */
1425#define  FLTR_21_TO_39NS 0x0C00 /* Input Filtering 21ns to 39ns */
1426#define ACTIVE_DBL      0x0200  /* Disable Active Negation */
1427#define DIFF_MODE       0x0100  /* SCSI differential Mode (Read-Only) */
1428#define DIFF_SENSE      0x0080  /* 1: No SE cables, 0: SE cable (Read-Only) */
1429#define TERM_CTL_SEL    0x0040  /* Enable TERM_CTL_H and TERM_CTL_L */
1430#define TERM_CTL        0x0030  /* External SCSI Termination Bits */
1431#define  TERM_CTL_H      0x0020 /* Enable External SCSI Upper Termination */
1432#define  TERM_CTL_L      0x0010 /* Enable External SCSI Lower Termination */
1433#define CABLE_DETECT    0x000F  /* External SCSI Cable Connection Status */
1434
1435/*
1436 * Addendum for ASC-38C0800 Chip
1437 *
1438 * The ASC-38C1600 Chip uses the same definitions except that the
1439 * bus mode override bits [12:10] have been moved to byte register
1440 * offset 0xE (IOPB_SOFT_OVER_WR) bits [12:10]. The [12:10] bits in
1441 * SCSI_CFG1 are read-only and always available. Bit 14 (DIS_TERM_DRV)
1442 * is not needed. The [12:10] bits in IOPB_SOFT_OVER_WR are write-only.
1443 * Also each ASC-38C1600 function or channel uses only cable bits [5:4]
1444 * and [1:0]. Bits [14], [7:6], [3:2] are unused.
1445 */
1446#define DIS_TERM_DRV    0x4000  /* 1: Read c_det[3:0], 0: cannot read */
1447#define HVD_LVD_SE      0x1C00  /* Device Detect Bits */
1448#define  HVD             0x1000 /* HVD Device Detect */
1449#define  LVD             0x0800 /* LVD Device Detect */
1450#define  SE              0x0400 /* SE Device Detect */
1451#define TERM_LVD        0x00C0  /* LVD Termination Bits */
1452#define  TERM_LVD_HI     0x0080 /* Enable LVD Upper Termination */
1453#define  TERM_LVD_LO     0x0040 /* Enable LVD Lower Termination */
1454#define TERM_SE         0x0030  /* SE Termination Bits */
1455#define  TERM_SE_HI      0x0020 /* Enable SE Upper Termination */
1456#define  TERM_SE_LO      0x0010 /* Enable SE Lower Termination */
1457#define C_DET_LVD       0x000C  /* LVD Cable Detect Bits */
1458#define  C_DET3          0x0008 /* Cable Detect for LVD External Wide */
1459#define  C_DET2          0x0004 /* Cable Detect for LVD Internal Wide */
1460#define C_DET_SE        0x0003  /* SE Cable Detect Bits */
1461#define  C_DET1          0x0002 /* Cable Detect for SE Internal Wide */
1462#define  C_DET0          0x0001 /* Cable Detect for SE Internal Narrow */
1463
1464#define CABLE_ILLEGAL_A 0x7
1465    /* x 0 0 0  | on  on | Illegal (all 3 connectors are used) */
1466
1467#define CABLE_ILLEGAL_B 0xB
1468    /* 0 x 0 0  | on  on | Illegal (all 3 connectors are used) */
1469
1470/*
1471 * MEM_CFG Register bit definitions
1472 */
1473#define BIOS_EN         0x40    /* BIOS Enable MIO:14,EEP:14 */
1474#define FAST_EE_CLK     0x20    /* Diagnostic Bit */
1475#define RAM_SZ          0x1C    /* Specify size of RAM to RISC */
1476#define  RAM_SZ_2KB      0x00   /* 2 KB */
1477#define  RAM_SZ_4KB      0x04   /* 4 KB */
1478#define  RAM_SZ_8KB      0x08   /* 8 KB */
1479#define  RAM_SZ_16KB     0x0C   /* 16 KB */
1480#define  RAM_SZ_32KB     0x10   /* 32 KB */
1481#define  RAM_SZ_64KB     0x14   /* 64 KB */
1482
1483/*
1484 * DMA_CFG0 Register bit definitions
1485 *
1486 * This register is only accessible to the host.
1487 */
1488#define BC_THRESH_ENB   0x80    /* PCI DMA Start Conditions */
1489#define FIFO_THRESH     0x70    /* PCI DMA FIFO Threshold */
1490#define  FIFO_THRESH_16B  0x00  /* 16 bytes */
1491#define  FIFO_THRESH_32B  0x20  /* 32 bytes */
1492#define  FIFO_THRESH_48B  0x30  /* 48 bytes */
1493#define  FIFO_THRESH_64B  0x40  /* 64 bytes */
1494#define  FIFO_THRESH_80B  0x50  /* 80 bytes (default) */
1495#define  FIFO_THRESH_96B  0x60  /* 96 bytes */
1496#define  FIFO_THRESH_112B 0x70  /* 112 bytes */
1497#define START_CTL       0x0C    /* DMA start conditions */
1498#define  START_CTL_TH    0x00   /* Wait threshold level (default) */
1499#define  START_CTL_ID    0x04   /* Wait SDMA/SBUS idle */
1500#define  START_CTL_THID  0x08   /* Wait threshold and SDMA/SBUS idle */
1501#define  START_CTL_EMFU  0x0C   /* Wait SDMA FIFO empty/full */
1502#define READ_CMD        0x03    /* Memory Read Method */
1503#define  READ_CMD_MR     0x00   /* Memory Read */
1504#define  READ_CMD_MRL    0x02   /* Memory Read Long */
1505#define  READ_CMD_MRM    0x03   /* Memory Read Multiple (default) */
1506
1507/*
1508 * ASC-38C0800 RAM BIST Register bit definitions
1509 */
1510#define RAM_TEST_MODE         0x80
1511#define PRE_TEST_MODE         0x40
1512#define NORMAL_MODE           0x00
1513#define RAM_TEST_DONE         0x10
1514#define RAM_TEST_STATUS       0x0F
1515#define  RAM_TEST_HOST_ERROR   0x08
1516#define  RAM_TEST_INTRAM_ERROR 0x04
1517#define  RAM_TEST_RISC_ERROR   0x02
1518#define  RAM_TEST_SCSI_ERROR   0x01
1519#define  RAM_TEST_SUCCESS      0x00
1520#define PRE_TEST_VALUE        0x05
1521#define NORMAL_VALUE          0x00
1522
1523/*
1524 * ASC38C1600 Definitions
1525 *
1526 * IOPB_PCI_INT_CFG Bit Field Definitions
1527 */
1528
1529#define INTAB_LD        0x80    /* Value loaded from EEPROM Bit 11. */
1530
1531/*
1532 * Bit 1 can be set to change the interrupt for the Function to operate in
1533 * Totem Pole mode. By default Bit 1 is 0 and the interrupt operates in
1534 * Open Drain mode. Both functions of the ASC38C1600 must be set to the same
1535 * mode, otherwise the operating mode is undefined.
1536 */
1537#define TOTEMPOLE       0x02
1538
1539/*
1540 * Bit 0 can be used to change the Int Pin for the Function. The value is
1541 * 0 by default for both Functions with Function 0 using INT A and Function
1542 * B using INT B. For Function 0 if set, INT B is used. For Function 1 if set,
1543 * INT A is used.
1544 *
1545 * EEPROM Word 0 Bit 11 for each Function may change the initial Int Pin
1546 * value specified in the PCI Configuration Space.
1547 */
1548#define INTAB           0x01
1549
1550/*
1551 * Adv Library Status Definitions
1552 */
1553#define ADV_TRUE        1
1554#define ADV_FALSE       0
1555#define ADV_SUCCESS     1
1556#define ADV_BUSY        0
1557#define ADV_ERROR       (-1)
1558
1559/*
1560 * ADV_DVC_VAR 'warn_code' values
1561 */
1562#define ASC_WARN_BUSRESET_ERROR         0x0001  /* SCSI Bus Reset error */
1563#define ASC_WARN_EEPROM_CHKSUM          0x0002  /* EEP check sum error */
1564#define ASC_WARN_EEPROM_TERMINATION     0x0004  /* EEP termination bad field */
1565#define ASC_WARN_ERROR                  0xFFFF  /* ADV_ERROR return */
1566
1567#define ADV_MAX_TID                     15      /* max. target identifier */
1568#define ADV_MAX_LUN                     7       /* max. logical unit number */
1569
1570/*
1571 * Fixed locations of microcode operating variables.
1572 */
1573#define ASC_MC_CODE_BEGIN_ADDR          0x0028  /* microcode start address */
1574#define ASC_MC_CODE_END_ADDR            0x002A  /* microcode end address */
1575#define ASC_MC_CODE_CHK_SUM             0x002C  /* microcode code checksum */
1576#define ASC_MC_VERSION_DATE             0x0038  /* microcode version */
1577#define ASC_MC_VERSION_NUM              0x003A  /* microcode number */
1578#define ASC_MC_BIOSMEM                  0x0040  /* BIOS RISC Memory Start */
1579#define ASC_MC_BIOSLEN                  0x0050  /* BIOS RISC Memory Length */
1580#define ASC_MC_BIOS_SIGNATURE           0x0058  /* BIOS Signature 0x55AA */
1581#define ASC_MC_BIOS_VERSION             0x005A  /* BIOS Version (2 bytes) */
1582#define ASC_MC_SDTR_SPEED1              0x0090  /* SDTR Speed for TID 0-3 */
1583#define ASC_MC_SDTR_SPEED2              0x0092  /* SDTR Speed for TID 4-7 */
1584#define ASC_MC_SDTR_SPEED3              0x0094  /* SDTR Speed for TID 8-11 */
1585#define ASC_MC_SDTR_SPEED4              0x0096  /* SDTR Speed for TID 12-15 */
1586#define ASC_MC_CHIP_TYPE                0x009A
1587#define ASC_MC_INTRB_CODE               0x009B
1588#define ASC_MC_WDTR_ABLE                0x009C
1589#define ASC_MC_SDTR_ABLE                0x009E
1590#define ASC_MC_TAGQNG_ABLE              0x00A0
1591#define ASC_MC_DISC_ENABLE              0x00A2
1592#define ASC_MC_IDLE_CMD_STATUS          0x00A4
1593#define ASC_MC_IDLE_CMD                 0x00A6
1594#define ASC_MC_IDLE_CMD_PARAMETER       0x00A8
1595#define ASC_MC_DEFAULT_SCSI_CFG0        0x00AC
1596#define ASC_MC_DEFAULT_SCSI_CFG1        0x00AE
1597#define ASC_MC_DEFAULT_MEM_CFG          0x00B0
1598#define ASC_MC_DEFAULT_SEL_MASK         0x00B2
1599#define ASC_MC_SDTR_DONE                0x00B6
1600#define ASC_MC_NUMBER_OF_QUEUED_CMD     0x00C0
1601#define ASC_MC_NUMBER_OF_MAX_CMD        0x00D0
1602#define ASC_MC_DEVICE_HSHK_CFG_TABLE    0x0100
1603#define ASC_MC_CONTROL_FLAG             0x0122  /* Microcode control flag. */
1604#define ASC_MC_WDTR_DONE                0x0124
1605#define ASC_MC_CAM_MODE_MASK            0x015E  /* CAM mode TID bitmask. */
1606#define ASC_MC_ICQ                      0x0160
1607#define ASC_MC_IRQ                      0x0164
1608#define ASC_MC_PPR_ABLE                 0x017A
1609
1610/*
1611 * BIOS LRAM variable absolute offsets.
1612 */
1613#define BIOS_CODESEG    0x54
1614#define BIOS_CODELEN    0x56
1615#define BIOS_SIGNATURE  0x58
1616#define BIOS_VERSION    0x5A
1617
1618/*
1619 * Microcode Control Flags
1620 *
1621 * Flags set by the Adv Library in RISC variable 'control_flag' (0x122)
1622 * and handled by the microcode.
1623 */
1624#define CONTROL_FLAG_IGNORE_PERR        0x0001  /* Ignore DMA Parity Errors */
1625#define CONTROL_FLAG_ENABLE_AIPP        0x0002  /* Enabled AIPP checking. */
1626
1627/*
1628 * ASC_MC_DEVICE_HSHK_CFG_TABLE microcode table or HSHK_CFG register format
1629 */
1630#define HSHK_CFG_WIDE_XFR       0x8000
1631#define HSHK_CFG_RATE           0x0F00
1632#define HSHK_CFG_OFFSET         0x001F
1633
1634#define ASC_DEF_MAX_HOST_QNG    0xFD    /* Max. number of host commands (253) */
1635#define ASC_DEF_MIN_HOST_QNG    0x10    /* Min. number of host commands (16) */
1636#define ASC_DEF_MAX_DVC_QNG     0x3F    /* Max. number commands per device (63) */
1637#define ASC_DEF_MIN_DVC_QNG     0x04    /* Min. number commands per device (4) */
1638
1639#define ASC_QC_DATA_CHECK  0x01 /* Require ASC_QC_DATA_OUT set or clear. */
1640#define ASC_QC_DATA_OUT    0x02 /* Data out DMA transfer. */
1641#define ASC_QC_START_MOTOR 0x04 /* Send auto-start motor before request. */
1642#define ASC_QC_NO_OVERRUN  0x08 /* Don't report overrun. */
1643#define ASC_QC_FREEZE_TIDQ 0x10 /* Freeze TID queue after request. XXX TBD */
1644
1645#define ASC_QSC_NO_DISC     0x01        /* Don't allow disconnect for request. */
1646#define ASC_QSC_NO_TAGMSG   0x02        /* Don't allow tag queuing for request. */
1647#define ASC_QSC_NO_SYNC     0x04        /* Don't use Synch. transfer on request. */
1648#define ASC_QSC_NO_WIDE     0x08        /* Don't use Wide transfer on request. */
1649#define ASC_QSC_REDO_DTR    0x10        /* Renegotiate WDTR/SDTR before request. */
1650/*
1651 * Note: If a Tag Message is to be sent and neither ASC_QSC_HEAD_TAG or
1652 * ASC_QSC_ORDERED_TAG is set, then a Simple Tag Message (0x20) is used.
1653 */
1654#define ASC_QSC_HEAD_TAG    0x40        /* Use Head Tag Message (0x21). */
1655#define ASC_QSC_ORDERED_TAG 0x80        /* Use Ordered Tag Message (0x22). */
1656
1657/*
1658 * All fields here are accessed by the board microcode and need to be
1659 * little-endian.
1660 */
1661typedef struct adv_carr_t {
1662        __le32 carr_va; /* Carrier Virtual Address */
1663        __le32 carr_pa; /* Carrier Physical Address */
1664        __le32 areq_vpa;        /* ADV_SCSI_REQ_Q Virtual or Physical Address */
1665        /*
1666         * next_vpa [31:4]            Carrier Virtual or Physical Next Pointer
1667         *
1668         * next_vpa [3:1]             Reserved Bits
1669         * next_vpa [0]               Done Flag set in Response Queue.
1670         */
1671        __le32 next_vpa;
1672} ADV_CARR_T;
1673
1674/*
1675 * Mask used to eliminate low 4 bits of carrier 'next_vpa' field.
1676 */
1677#define ADV_NEXT_VPA_MASK       0xFFFFFFF0
1678
1679#define ADV_RQ_DONE             0x00000001
1680#define ADV_RQ_GOOD             0x00000002
1681#define ADV_CQ_STOPPER          0x00000000
1682
1683#define ADV_GET_CARRP(carrp) ((carrp) & ADV_NEXT_VPA_MASK)
1684
1685/*
1686 * Each carrier is 64 bytes, and we need three additional
1687 * carrier for icq, irq, and the termination carrier.
1688 */
1689#define ADV_CARRIER_COUNT (ASC_DEF_MAX_HOST_QNG + 3)
1690
1691#define ADV_CARRIER_BUFSIZE \
1692        (ADV_CARRIER_COUNT * sizeof(ADV_CARR_T))
1693
1694#define ADV_CHIP_ASC3550          0x01  /* Ultra-Wide IC */
1695#define ADV_CHIP_ASC38C0800       0x02  /* Ultra2-Wide/LVD IC */
1696#define ADV_CHIP_ASC38C1600       0x03  /* Ultra3-Wide/LVD2 IC */
1697
1698/*
1699 * Adapter temporary configuration structure
1700 *
1701 * This structure can be discarded after initialization. Don't add
1702 * fields here needed after initialization.
1703 *
1704 * Field naming convention:
1705 *
1706 *  *_enable indicates the field enables or disables a feature. The
1707 *  value of the field is never reset.
1708 */
1709typedef struct adv_dvc_cfg {
1710        ushort disc_enable;     /* enable disconnection */
1711        uchar chip_version;     /* chip version */
1712        uchar termination;      /* Term. Ctrl. bits 6-5 of SCSI_CFG1 register */
1713        ushort control_flag;    /* Microcode Control Flag */
1714        ushort mcode_date;      /* Microcode date */
1715        ushort mcode_version;   /* Microcode version */
1716        ushort serial1;         /* EEPROM serial number word 1 */
1717        ushort serial2;         /* EEPROM serial number word 2 */
1718        ushort serial3;         /* EEPROM serial number word 3 */
1719} ADV_DVC_CFG;
1720
1721struct adv_dvc_var;
1722struct adv_scsi_req_q;
1723
1724typedef struct adv_sg_block {
1725        uchar reserved1;
1726        uchar reserved2;
1727        uchar reserved3;
1728        uchar sg_cnt;           /* Valid entries in block. */
1729        __le32 sg_ptr;  /* Pointer to next sg block. */
1730        struct {
1731                __le32 sg_addr; /* SG element address. */
1732                __le32 sg_count;        /* SG element count. */
1733        } sg_list[NO_OF_SG_PER_BLOCK];
1734} ADV_SG_BLOCK;
1735
1736/*
1737 * ADV_SCSI_REQ_Q - microcode request structure
1738 *
1739 * All fields in this structure up to byte 60 are used by the microcode.
1740 * The microcode makes assumptions about the size and ordering of fields
1741 * in this structure. Do not change the structure definition here without
1742 * coordinating the change with the microcode.
1743 *
1744 * All fields accessed by microcode must be maintained in little_endian
1745 * order.
1746 */
1747typedef struct adv_scsi_req_q {
1748        uchar cntl;             /* Ucode flags and state (ASC_MC_QC_*). */
1749        uchar target_cmd;
1750        uchar target_id;        /* Device target identifier. */
1751        uchar target_lun;       /* Device target logical unit number. */
1752        __le32 data_addr;       /* Data buffer physical address. */
1753        __le32 data_cnt;        /* Data count. Ucode sets to residual. */
1754        __le32 sense_addr;
1755        __le32 carr_pa;
1756        uchar mflag;
1757        uchar sense_len;
1758        uchar cdb_len;          /* SCSI CDB length. Must <= 16 bytes. */
1759        uchar scsi_cntl;
1760        uchar done_status;      /* Completion status. */
1761        uchar scsi_status;      /* SCSI status byte. */
1762        uchar host_status;      /* Ucode host status. */
1763        uchar sg_working_ix;
1764        uchar cdb[12];          /* SCSI CDB bytes 0-11. */
1765        __le32 sg_real_addr;    /* SG list physical address. */
1766        __le32 scsiq_rptr;
1767        uchar cdb16[4];         /* SCSI CDB bytes 12-15. */
1768        __le32 scsiq_ptr;
1769        __le32 carr_va;
1770        /*
1771         * End of microcode structure - 60 bytes. The rest of the structure
1772         * is used by the Adv Library and ignored by the microcode.
1773         */
1774        u32 srb_tag;
1775        ADV_SG_BLOCK *sg_list_ptr;      /* SG list virtual address. */
1776} ADV_SCSI_REQ_Q;
1777
1778/*
1779 * The following two structures are used to process Wide Board requests.
1780 *
1781 * The ADV_SCSI_REQ_Q structure in adv_req_t is passed to the Adv Library
1782 * and microcode with the ADV_SCSI_REQ_Q field 'srb_tag' set to the
1783 * SCSI request tag. The adv_req_t structure 'cmndp' field in turn points
1784 * to the Mid-Level SCSI request structure.
1785 *
1786 * Zero or more ADV_SG_BLOCK are used with each ADV_SCSI_REQ_Q. Each
1787 * ADV_SG_BLOCK structure holds 15 scatter-gather elements. Under Linux
1788 * up to 255 scatter-gather elements may be used per request or
1789 * ADV_SCSI_REQ_Q.
1790 *
1791 * Both structures must be 32 byte aligned.
1792 */
1793typedef struct adv_sgblk {
1794        ADV_SG_BLOCK sg_block;  /* Sgblock structure. */
1795        dma_addr_t sg_addr;     /* Physical address */
1796        struct adv_sgblk *next_sgblkp;  /* Next scatter-gather structure. */
1797} adv_sgblk_t;
1798
1799typedef struct adv_req {
1800        ADV_SCSI_REQ_Q scsi_req_q;      /* Adv Library request structure. */
1801        uchar align[24];        /* Request structure padding. */
1802        struct scsi_cmnd *cmndp;        /* Mid-Level SCSI command pointer. */
1803        dma_addr_t req_addr;
1804        adv_sgblk_t *sgblkp;    /* Adv Library scatter-gather pointer. */
1805} adv_req_t __aligned(32);
1806
1807/*
1808 * Adapter operation variable structure.
1809 *
1810 * One structure is required per host adapter.
1811 *
1812 * Field naming convention:
1813 *
1814 *  *_able indicates both whether a feature should be enabled or disabled
1815 *  and whether a device isi capable of the feature. At initialization
1816 *  this field may be set, but later if a device is found to be incapable
1817 *  of the feature, the field is cleared.
1818 */
1819typedef struct adv_dvc_var {
1820        AdvPortAddr iop_base;   /* I/O port address */
1821        ushort err_code;        /* fatal error code */
1822        ushort bios_ctrl;       /* BIOS control word, EEPROM word 12 */
1823        ushort wdtr_able;       /* try WDTR for a device */
1824        ushort sdtr_able;       /* try SDTR for a device */
1825        ushort ultra_able;      /* try SDTR Ultra speed for a device */
1826        ushort sdtr_speed1;     /* EEPROM SDTR Speed for TID 0-3   */
1827        ushort sdtr_speed2;     /* EEPROM SDTR Speed for TID 4-7   */
1828        ushort sdtr_speed3;     /* EEPROM SDTR Speed for TID 8-11  */
1829        ushort sdtr_speed4;     /* EEPROM SDTR Speed for TID 12-15 */
1830        ushort tagqng_able;     /* try tagged queuing with a device */
1831        ushort ppr_able;        /* PPR message capable per TID bitmask. */
1832        uchar max_dvc_qng;      /* maximum number of tagged commands per device */
1833        ushort start_motor;     /* start motor command allowed */
1834        uchar scsi_reset_wait;  /* delay in seconds after scsi bus reset */
1835        uchar chip_no;          /* should be assigned by caller */
1836        uchar max_host_qng;     /* maximum number of Q'ed command allowed */
1837        ushort no_scam;         /* scam_tolerant of EEPROM */
1838        struct asc_board *drv_ptr;      /* driver pointer to private structure */
1839        uchar chip_scsi_id;     /* chip SCSI target ID */
1840        uchar chip_type;
1841        uchar bist_err_code;
1842        ADV_CARR_T *carrier;
1843        ADV_CARR_T *carr_freelist;      /* Carrier free list. */
1844        dma_addr_t carrier_addr;
1845        ADV_CARR_T *icq_sp;     /* Initiator command queue stopper pointer. */
1846        ADV_CARR_T *irq_sp;     /* Initiator response queue stopper pointer. */
1847        ushort carr_pending_cnt;        /* Count of pending carriers. */
1848        /*
1849         * Note: The following fields will not be used after initialization. The
1850         * driver may discard the buffer after initialization is done.
1851         */
1852        ADV_DVC_CFG *cfg;       /* temporary configuration structure  */
1853} ADV_DVC_VAR;
1854
1855/*
1856 * Microcode idle loop commands
1857 */
1858#define IDLE_CMD_COMPLETED           0
1859#define IDLE_CMD_STOP_CHIP           0x0001
1860#define IDLE_CMD_STOP_CHIP_SEND_INT  0x0002
1861#define IDLE_CMD_SEND_INT            0x0004
1862#define IDLE_CMD_ABORT               0x0008
1863#define IDLE_CMD_DEVICE_RESET        0x0010
1864#define IDLE_CMD_SCSI_RESET_START    0x0020     /* Assert SCSI Bus Reset */
1865#define IDLE_CMD_SCSI_RESET_END      0x0040     /* Deassert SCSI Bus Reset */
1866#define IDLE_CMD_SCSIREQ             0x0080
1867
1868#define IDLE_CMD_STATUS_SUCCESS      0x0001
1869#define IDLE_CMD_STATUS_FAILURE      0x0002
1870
1871/*
1872 * AdvSendIdleCmd() flag definitions.
1873 */
1874#define ADV_NOWAIT     0x01
1875
1876/*
1877 * Wait loop time out values.
1878 */
1879#define SCSI_WAIT_100_MSEC           100UL      /* 100 milliseconds */
1880#define SCSI_US_PER_MSEC             1000       /* microseconds per millisecond */
1881#define SCSI_MAX_RETRY               10 /* retry count */
1882
1883#define ADV_ASYNC_RDMA_FAILURE          0x01    /* Fatal RDMA failure. */
1884#define ADV_ASYNC_SCSI_BUS_RESET_DET    0x02    /* Detected SCSI Bus Reset. */
1885#define ADV_ASYNC_CARRIER_READY_FAILURE 0x03    /* Carrier Ready failure. */
1886#define ADV_RDMA_IN_CARR_AND_Q_INVALID  0x04    /* RDMAed-in data invalid. */
1887
1888#define ADV_HOST_SCSI_BUS_RESET      0x80       /* Host Initiated SCSI Bus Reset. */
1889
1890/* Read byte from a register. */
1891#define AdvReadByteRegister(iop_base, reg_off) \
1892     (ADV_MEM_READB((iop_base) + (reg_off)))
1893
1894/* Write byte to a register. */
1895#define AdvWriteByteRegister(iop_base, reg_off, byte) \
1896     (ADV_MEM_WRITEB((iop_base) + (reg_off), (byte)))
1897
1898/* Read word (2 bytes) from a register. */
1899#define AdvReadWordRegister(iop_base, reg_off) \
1900     (ADV_MEM_READW((iop_base) + (reg_off)))
1901
1902/* Write word (2 bytes) to a register. */
1903#define AdvWriteWordRegister(iop_base, reg_off, word) \
1904     (ADV_MEM_WRITEW((iop_base) + (reg_off), (word)))
1905
1906/* Write dword (4 bytes) to a register. */
1907#define AdvWriteDWordRegister(iop_base, reg_off, dword) \
1908     (ADV_MEM_WRITEDW((iop_base) + (reg_off), (dword)))
1909
1910/* Read byte from LRAM. */
1911#define AdvReadByteLram(iop_base, addr, byte) \
1912do { \
1913    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1914    (byte) = ADV_MEM_READB((iop_base) + IOPB_RAM_DATA); \
1915} while (0)
1916
1917/* Write byte to LRAM. */
1918#define AdvWriteByteLram(iop_base, addr, byte) \
1919    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1920     ADV_MEM_WRITEB((iop_base) + IOPB_RAM_DATA, (byte)))
1921
1922/* Read word (2 bytes) from LRAM. */
1923#define AdvReadWordLram(iop_base, addr, word) \
1924do { \
1925    ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)); \
1926    (word) = (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA)); \
1927} while (0)
1928
1929/* Write word (2 bytes) to LRAM. */
1930#define AdvWriteWordLram(iop_base, addr, word) \
1931    (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1932     ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1933
1934/* Write little-endian double word (4 bytes) to LRAM */
1935/* Because of unspecified C language ordering don't use auto-increment. */
1936#define AdvWriteDWordLramNoSwap(iop_base, addr, dword) \
1937    ((ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr)), \
1938      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1939                     cpu_to_le16((ushort) ((dword) & 0xFFFF)))), \
1940     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_ADDR, (addr) + 2), \
1941      ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, \
1942                     cpu_to_le16((ushort) ((dword >> 16) & 0xFFFF)))))
1943
1944/* Read word (2 bytes) from LRAM assuming that the address is already set. */
1945#define AdvReadWordAutoIncLram(iop_base) \
1946     (ADV_MEM_READW((iop_base) + IOPW_RAM_DATA))
1947
1948/* Write word (2 bytes) to LRAM assuming that the address is already set. */
1949#define AdvWriteWordAutoIncLram(iop_base, word) \
1950     (ADV_MEM_WRITEW((iop_base) + IOPW_RAM_DATA, (word)))
1951
1952/*
1953 * Define macro to check for Condor signature.
1954 *
1955 * Evaluate to ADV_TRUE if a Condor chip is found the specified port
1956 * address 'iop_base'. Otherwise evalue to ADV_FALSE.
1957 */
1958#define AdvFindSignature(iop_base) \
1959    (((AdvReadByteRegister((iop_base), IOPB_CHIP_ID_1) == \
1960    ADV_CHIP_ID_BYTE) && \
1961     (AdvReadWordRegister((iop_base), IOPW_CHIP_ID_0) == \
1962    ADV_CHIP_ID_WORD)) ?  ADV_TRUE : ADV_FALSE)
1963
1964/*
1965 * Define macro to Return the version number of the chip at 'iop_base'.
1966 *
1967 * The second parameter 'bus_type' is currently unused.
1968 */
1969#define AdvGetChipVersion(iop_base, bus_type) \
1970    AdvReadByteRegister((iop_base), IOPB_CHIP_TYPE_REV)
1971
1972/*
1973 * Abort an SRB in the chip's RISC Memory. The 'srb_tag' argument must
1974 * match the ADV_SCSI_REQ_Q 'srb_tag' field.
1975 *
1976 * If the request has not yet been sent to the device it will simply be
1977 * aborted from RISC memory. If the request is disconnected it will be
1978 * aborted on reselection by sending an Abort Message to the target ID.
1979 *
1980 * Return value:
1981 *      ADV_TRUE(1) - Queue was successfully aborted.
1982 *      ADV_FALSE(0) - Queue was not found on the active queue list.
1983 */
1984#define AdvAbortQueue(asc_dvc, srb_tag) \
1985     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_ABORT, \
1986                    (ADV_DCNT) (srb_tag))
1987
1988/*
1989 * Send a Bus Device Reset Message to the specified target ID.
1990 *
1991 * All outstanding commands will be purged if sending the
1992 * Bus Device Reset Message is successful.
1993 *
1994 * Return Value:
1995 *      ADV_TRUE(1) - All requests on the target are purged.
1996 *      ADV_FALSE(0) - Couldn't issue Bus Device Reset Message; Requests
1997 *                     are not purged.
1998 */
1999#define AdvResetDevice(asc_dvc, target_id) \
2000     AdvSendIdleCmd((asc_dvc), (ushort) IDLE_CMD_DEVICE_RESET,  \
2001                    (ADV_DCNT) (target_id))
2002
2003/*
2004 * SCSI Wide Type definition.
2005 */
2006#define ADV_SCSI_BIT_ID_TYPE   ushort
2007
2008/*
2009 * AdvInitScsiTarget() 'cntl_flag' options.
2010 */
2011#define ADV_SCAN_LUN           0x01
2012#define ADV_CAPINFO_NOLUN      0x02
2013
2014/*
2015 * Convert target id to target id bit mask.
2016 */
2017#define ADV_TID_TO_TIDMASK(tid)   (0x01 << ((tid) & ADV_MAX_TID))
2018
2019/*
2020 * ADV_SCSI_REQ_Q 'done_status' and 'host_status' return values.
2021 */
2022
2023#define QD_NO_STATUS         0x00       /* Request not completed yet. */
2024#define QD_NO_ERROR          0x01
2025#define QD_ABORTED_BY_HOST   0x02
2026#define QD_WITH_ERROR        0x04
2027
2028#define QHSTA_NO_ERROR              0x00
2029#define QHSTA_M_SEL_TIMEOUT         0x11
2030#define QHSTA_M_DATA_OVER_RUN       0x12
2031#define QHSTA_M_UNEXPECTED_BUS_FREE 0x13
2032#define QHSTA_M_QUEUE_ABORTED       0x15
2033#define QHSTA_M_SXFR_SDMA_ERR       0x16        /* SXFR_STATUS SCSI DMA Error */
2034#define QHSTA_M_SXFR_SXFR_PERR      0x17        /* SXFR_STATUS SCSI Bus Parity Error */
2035#define QHSTA_M_RDMA_PERR           0x18        /* RISC PCI DMA parity error */
2036#define QHSTA_M_SXFR_OFF_UFLW       0x19        /* SXFR_STATUS Offset Underflow */
2037#define QHSTA_M_SXFR_OFF_OFLW       0x20        /* SXFR_STATUS Offset Overflow */
2038#define QHSTA_M_SXFR_WD_TMO         0x21        /* SXFR_STATUS Watchdog Timeout */
2039#define QHSTA_M_SXFR_DESELECTED     0x22        /* SXFR_STATUS Deselected */
2040/* Note: QHSTA_M_SXFR_XFR_OFLW is identical to QHSTA_M_DATA_OVER_RUN. */
2041#define QHSTA_M_SXFR_XFR_OFLW       0x12        /* SXFR_STATUS Transfer Overflow */
2042#define QHSTA_M_SXFR_XFR_PH_ERR     0x24        /* SXFR_STATUS Transfer Phase Error */
2043#define QHSTA_M_SXFR_UNKNOWN_ERROR  0x25        /* SXFR_STATUS Unknown Error */
2044#define QHSTA_M_SCSI_BUS_RESET      0x30        /* Request aborted from SBR */
2045#define QHSTA_M_SCSI_BUS_RESET_UNSOL 0x31       /* Request aborted from unsol. SBR */
2046#define QHSTA_M_BUS_DEVICE_RESET    0x32        /* Request aborted from BDR */
2047#define QHSTA_M_DIRECTION_ERR       0x35        /* Data Phase mismatch */
2048#define QHSTA_M_DIRECTION_ERR_HUNG  0x36        /* Data Phase mismatch and bus hang */
2049#define QHSTA_M_WTM_TIMEOUT         0x41
2050#define QHSTA_M_BAD_CMPL_STATUS_IN  0x42
2051#define QHSTA_M_NO_AUTO_REQ_SENSE   0x43
2052#define QHSTA_M_AUTO_REQ_SENSE_FAIL 0x44
2053#define QHSTA_M_INVALID_DEVICE      0x45        /* Bad target ID */
2054#define QHSTA_M_FROZEN_TIDQ         0x46        /* TID Queue frozen. */
2055#define QHSTA_M_SGBACKUP_ERROR      0x47        /* Scatter-Gather backup error */
2056
2057/* Return the address that is aligned at the next doubleword >= to 'addr'. */
2058#define ADV_32BALIGN(addr)     (((ulong) (addr) + 0x1F) & ~0x1F)
2059
2060/*
2061 * Total contiguous memory needed for driver SG blocks.
2062 *
2063 * ADV_MAX_SG_LIST must be defined by a driver. It is the maximum
2064 * number of scatter-gather elements the driver supports in a
2065 * single request.
2066 */
2067
2068#define ADV_SG_LIST_MAX_BYTE_SIZE \
2069         (sizeof(ADV_SG_BLOCK) * \
2070          ((ADV_MAX_SG_LIST + (NO_OF_SG_PER_BLOCK - 1))/NO_OF_SG_PER_BLOCK))
2071
2072/* struct asc_board flags */
2073#define ASC_IS_WIDE_BOARD       0x04    /* AdvanSys Wide Board */
2074
2075#define ASC_NARROW_BOARD(boardp) (((boardp)->flags & ASC_IS_WIDE_BOARD) == 0)
2076
2077#define NO_ISA_DMA              0xff    /* No ISA DMA Channel Used */
2078
2079#define ASC_INFO_SIZE           128     /* advansys_info() line size */
2080
2081/* Asc Library return codes */
2082#define ASC_TRUE        1
2083#define ASC_FALSE       0
2084#define ASC_NOERROR     1
2085#define ASC_BUSY        0
2086#define ASC_ERROR       (-1)
2087
2088/* struct scsi_cmnd function return codes */
2089#define STATUS_BYTE(byte)   (byte)
2090#define MSG_BYTE(byte)      ((byte) << 8)
2091#define HOST_BYTE(byte)     ((byte) << 16)
2092#define DRIVER_BYTE(byte)   ((byte) << 24)
2093
2094#define ASC_STATS(shost, counter) ASC_STATS_ADD(shost, counter, 1)
2095#ifndef ADVANSYS_STATS
2096#define ASC_STATS_ADD(shost, counter, count)
2097#else /* ADVANSYS_STATS */
2098#define ASC_STATS_ADD(shost, counter, count) \
2099        (((struct asc_board *) shost_priv(shost))->asc_stats.counter += (count))
2100#endif /* ADVANSYS_STATS */
2101
2102/* If the result wraps when calculating tenths, return 0. */
2103#define ASC_TENTHS(num, den) \
2104    (((10 * ((num)/(den))) > (((num) * 10)/(den))) ? \
2105    0 : ((((num) * 10)/(den)) - (10 * ((num)/(den)))))
2106
2107/*
2108 * Display a message to the console.
2109 */
2110#define ASC_PRINT(s) \
2111    { \
2112        printk("advansys: "); \
2113        printk(s); \
2114    }
2115
2116#define ASC_PRINT1(s, a1) \
2117    { \
2118        printk("advansys: "); \
2119        printk((s), (a1)); \
2120    }
2121
2122#define ASC_PRINT2(s, a1, a2) \
2123    { \
2124        printk("advansys: "); \
2125        printk((s), (a1), (a2)); \
2126    }
2127
2128#define ASC_PRINT3(s, a1, a2, a3) \
2129    { \
2130        printk("advansys: "); \
2131        printk((s), (a1), (a2), (a3)); \
2132    }
2133
2134#define ASC_PRINT4(s, a1, a2, a3, a4) \
2135    { \
2136        printk("advansys: "); \
2137        printk((s), (a1), (a2), (a3), (a4)); \
2138    }
2139
2140#ifndef ADVANSYS_DEBUG
2141
2142#define ASC_DBG(lvl, s...)
2143#define ASC_DBG_PRT_SCSI_HOST(lvl, s)
2144#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp)
2145#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2146#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone)
2147#define ADV_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp)
2148#define ASC_DBG_PRT_HEX(lvl, name, start, length)
2149#define ASC_DBG_PRT_CDB(lvl, cdb, len)
2150#define ASC_DBG_PRT_SENSE(lvl, sense, len)
2151#define ASC_DBG_PRT_INQUIRY(lvl, inq, len)
2152
2153#else /* ADVANSYS_DEBUG */
2154
2155/*
2156 * Debugging Message Levels:
2157 * 0: Errors Only
2158 * 1: High-Level Tracing
2159 * 2-N: Verbose Tracing
2160 */
2161
2162#define ASC_DBG(lvl, format, arg...) {                                  \
2163        if (asc_dbglvl >= (lvl))                                        \
2164                printk(KERN_DEBUG "%s: %s: " format, DRV_NAME,          \
2165                        __func__ , ## arg);                             \
2166}
2167
2168#define ASC_DBG_PRT_SCSI_HOST(lvl, s) \
2169    { \
2170        if (asc_dbglvl >= (lvl)) { \
2171            asc_prt_scsi_host(s); \
2172        } \
2173    }
2174
2175#define ASC_DBG_PRT_ASC_SCSI_Q(lvl, scsiqp) \
2176    { \
2177        if (asc_dbglvl >= (lvl)) { \
2178            asc_prt_asc_scsi_q(scsiqp); \
2179        } \
2180    }
2181
2182#define ASC_DBG_PRT_ASC_QDONE_INFO(lvl, qdone) \
2183    { \
2184        if (asc_dbglvl >= (lvl)) { \
2185            asc_prt_asc_qdone_info(qdone); \
2186        } \
2187    }
2188
2189#define ASC_DBG_PRT_ADV_SCSI_REQ_Q(lvl, scsiqp) \
2190    { \
2191        if (asc_dbglvl >= (lvl)) { \
2192            asc_prt_adv_scsi_req_q(scsiqp); \
2193        } \
2194    }
2195
2196#define ASC_DBG_PRT_HEX(lvl, name, start, length) \
2197    { \
2198        if (asc_dbglvl >= (lvl)) { \
2199            asc_prt_hex((name), (start), (length)); \
2200        } \
2201    }
2202
2203#define ASC_DBG_PRT_CDB(lvl, cdb, len) \
2204        ASC_DBG_PRT_HEX((lvl), "CDB", (uchar *) (cdb), (len));
2205
2206#define ASC_DBG_PRT_SENSE(lvl, sense, len) \
2207        ASC_DBG_PRT_HEX((lvl), "SENSE", (uchar *) (sense), (len));
2208
2209#define ASC_DBG_PRT_INQUIRY(lvl, inq, len) \
2210        ASC_DBG_PRT_HEX((lvl), "INQUIRY", (uchar *) (inq), (len));
2211#endif /* ADVANSYS_DEBUG */
2212
2213#ifdef ADVANSYS_STATS
2214
2215/* Per board statistics structure */
2216struct asc_stats {
2217        /* Driver Entrypoint Statistics */
2218        unsigned int queuecommand;      /* # calls to advansys_queuecommand() */
2219        unsigned int reset;             /* # calls to advansys_eh_bus_reset() */
2220        unsigned int biosparam; /* # calls to advansys_biosparam() */
2221        unsigned int interrupt; /* # advansys_interrupt() calls */
2222        unsigned int callback;  /* # calls to asc/adv_isr_callback() */
2223        unsigned int done;              /* # calls to request's scsi_done function */
2224        unsigned int build_error;       /* # asc/adv_build_req() ASC_ERROR returns. */
2225        unsigned int adv_build_noreq;   /* # adv_build_req() adv_req_t alloc. fail. */
2226        unsigned int adv_build_nosg;    /* # adv_build_req() adv_sgblk_t alloc. fail. */
2227        /* AscExeScsiQueue()/AdvExeScsiQueue() Statistics */
2228        unsigned int exe_noerror;       /* # ASC_NOERROR returns. */
2229        unsigned int exe_busy;  /* # ASC_BUSY returns. */
2230        unsigned int exe_error; /* # ASC_ERROR returns. */
2231        unsigned int exe_unknown;       /* # unknown returns. */
2232        /* Data Transfer Statistics */
2233        unsigned int xfer_cnt;  /* # I/O requests received */
2234        unsigned int xfer_elem; /* # scatter-gather elements */
2235        unsigned int xfer_sect; /* # 512-byte blocks */
2236};
2237#endif /* ADVANSYS_STATS */
2238
2239/*
2240 * Structure allocated for each board.
2241 *
2242 * This structure is allocated by scsi_host_alloc() at the end
2243 * of the 'Scsi_Host' structure starting at the 'hostdata'
2244 * field. It is guaranteed to be allocated from DMA-able memory.
2245 */
2246struct asc_board {
2247        struct device *dev;
2248        struct Scsi_Host *shost;
2249        uint flags;             /* Board flags */
2250        unsigned int irq;
2251        union {
2252                ASC_DVC_VAR asc_dvc_var;        /* Narrow board */
2253                ADV_DVC_VAR adv_dvc_var;        /* Wide board */
2254        } dvc_var;
2255        union {
2256                ASC_DVC_CFG asc_dvc_cfg;        /* Narrow board */
2257                ADV_DVC_CFG adv_dvc_cfg;        /* Wide board */
2258        } dvc_cfg;
2259        ushort asc_n_io_port;   /* Number I/O ports. */
2260        ADV_SCSI_BIT_ID_TYPE init_tidmask;      /* Target init./valid mask */
2261        ushort reqcnt[ADV_MAX_TID + 1]; /* Starvation request count */
2262        ADV_SCSI_BIT_ID_TYPE queue_full;        /* Queue full mask */
2263        ushort queue_full_cnt[ADV_MAX_TID + 1]; /* Queue full count */
2264        union {
2265                ASCEEP_CONFIG asc_eep;  /* Narrow EEPROM config. */
2266                ADVEEP_3550_CONFIG adv_3550_eep;        /* 3550 EEPROM config. */
2267                ADVEEP_38C0800_CONFIG adv_38C0800_eep;  /* 38C0800 EEPROM config. */
2268                ADVEEP_38C1600_CONFIG adv_38C1600_eep;  /* 38C1600 EEPROM config. */
2269        } eep_config;
2270        /* /proc/scsi/advansys/[0...] */
2271#ifdef ADVANSYS_STATS
2272        struct asc_stats asc_stats;     /* Board statistics */
2273#endif                          /* ADVANSYS_STATS */
2274        /*
2275         * The following fields are used only for Narrow Boards.
2276         */
2277        uchar sdtr_data[ASC_MAX_TID + 1];       /* SDTR information */
2278        /*
2279         * The following fields are used only for Wide Boards.
2280         */
2281        void __iomem *ioremap_addr;     /* I/O Memory remap address. */
2282        ushort ioport;          /* I/O Port address. */
2283        adv_req_t *adv_reqp;    /* Request structures. */
2284        dma_addr_t adv_reqp_addr;
2285        size_t adv_reqp_size;
2286        struct dma_pool *adv_sgblk_pool;        /* Scatter-gather structures. */
2287        ushort bios_signature;  /* BIOS Signature. */
2288        ushort bios_version;    /* BIOS Version. */
2289        ushort bios_codeseg;    /* BIOS Code Segment. */
2290        ushort bios_codelen;    /* BIOS Code Segment Length. */
2291};
2292
2293#define asc_dvc_to_board(asc_dvc) container_of(asc_dvc, struct asc_board, \
2294                                                        dvc_var.asc_dvc_var)
2295#define adv_dvc_to_board(adv_dvc) container_of(adv_dvc, struct asc_board, \
2296                                                        dvc_var.adv_dvc_var)
2297#define adv_dvc_to_pdev(adv_dvc) to_pci_dev(adv_dvc_to_board(adv_dvc)->dev)
2298
2299#ifdef ADVANSYS_DEBUG
2300static int asc_dbglvl = 3;
2301
2302/*
2303 * asc_prt_asc_dvc_var()
2304 */
2305static void asc_prt_asc_dvc_var(ASC_DVC_VAR *h)
2306{
2307        printk("ASC_DVC_VAR at addr 0x%lx\n", (ulong)h);
2308
2309        printk(" iop_base 0x%x, err_code 0x%x, dvc_cntl 0x%x, bug_fix_cntl "
2310               "%d,\n", h->iop_base, h->err_code, h->dvc_cntl, h->bug_fix_cntl);
2311
2312        printk(" bus_type %d, init_sdtr 0x%x,\n", h->bus_type,
2313                (unsigned)h->init_sdtr);
2314
2315        printk(" sdtr_done 0x%x, use_tagged_qng 0x%x, unit_not_ready 0x%x, "
2316               "chip_no 0x%x,\n", (unsigned)h->sdtr_done,
2317               (unsigned)h->use_tagged_qng, (unsigned)h->unit_not_ready,
2318               (unsigned)h->chip_no);
2319
2320        printk(" queue_full_or_busy 0x%x, start_motor 0x%x, scsi_reset_wait "
2321               "%u,\n", (unsigned)h->queue_full_or_busy,
2322               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2323
2324        printk(" is_in_int %u, max_total_qng %u, cur_total_qng %u, "
2325               "in_critical_cnt %u,\n", (unsigned)h->is_in_int,
2326               (unsigned)h->max_total_qng, (unsigned)h->cur_total_qng,
2327               (unsigned)h->in_critical_cnt);
2328
2329        printk(" last_q_shortage %u, init_state 0x%x, no_scam 0x%x, "
2330               "pci_fix_asyn_xfer 0x%x,\n", (unsigned)h->last_q_shortage,
2331               (unsigned)h->init_state, (unsigned)h->no_scam,
2332               (unsigned)h->pci_fix_asyn_xfer);
2333
2334        printk(" cfg 0x%lx\n", (ulong)h->cfg);
2335}
2336
2337/*
2338 * asc_prt_asc_dvc_cfg()
2339 */
2340static void asc_prt_asc_dvc_cfg(ASC_DVC_CFG *h)
2341{
2342        printk("ASC_DVC_CFG at addr 0x%lx\n", (ulong)h);
2343
2344        printk(" can_tagged_qng 0x%x, cmd_qng_enabled 0x%x,\n",
2345               h->can_tagged_qng, h->cmd_qng_enabled);
2346        printk(" disc_enable 0x%x, sdtr_enable 0x%x,\n",
2347               h->disc_enable, h->sdtr_enable);
2348
2349        printk(" chip_scsi_id %d, isa_dma_speed %d, isa_dma_channel %d, "
2350                "chip_version %d,\n", h->chip_scsi_id, h->isa_dma_speed,
2351                h->isa_dma_channel, h->chip_version);
2352
2353        printk(" mcode_date 0x%x, mcode_version %d\n",
2354                h->mcode_date, h->mcode_version);
2355}
2356
2357/*
2358 * asc_prt_adv_dvc_var()
2359 *
2360 * Display an ADV_DVC_VAR structure.
2361 */
2362static void asc_prt_adv_dvc_var(ADV_DVC_VAR *h)
2363{
2364        printk(" ADV_DVC_VAR at addr 0x%lx\n", (ulong)h);
2365
2366        printk("  iop_base 0x%lx, err_code 0x%x, ultra_able 0x%x\n",
2367               (ulong)h->iop_base, h->err_code, (unsigned)h->ultra_able);
2368
2369        printk("  sdtr_able 0x%x, wdtr_able 0x%x\n",
2370               (unsigned)h->sdtr_able, (unsigned)h->wdtr_able);
2371
2372        printk("  start_motor 0x%x, scsi_reset_wait 0x%x\n",
2373               (unsigned)h->start_motor, (unsigned)h->scsi_reset_wait);
2374
2375        printk("  max_host_qng %u, max_dvc_qng %u, carr_freelist 0x%p\n",
2376               (unsigned)h->max_host_qng, (unsigned)h->max_dvc_qng,
2377               h->carr_freelist);
2378
2379        printk("  icq_sp 0x%p, irq_sp 0x%p\n", h->icq_sp, h->irq_sp);
2380
2381        printk("  no_scam 0x%x, tagqng_able 0x%x\n",
2382               (unsigned)h->no_scam, (unsigned)h->tagqng_able);
2383
2384        printk("  chip_scsi_id 0x%x, cfg 0x%lx\n",
2385               (unsigned)h->chip_scsi_id, (ulong)h->cfg);
2386}
2387
2388/*
2389 * asc_prt_adv_dvc_cfg()
2390 *
2391 * Display an ADV_DVC_CFG structure.
2392 */
2393static void asc_prt_adv_dvc_cfg(ADV_DVC_CFG *h)
2394{
2395        printk(" ADV_DVC_CFG at addr 0x%lx\n", (ulong)h);
2396
2397        printk("  disc_enable 0x%x, termination 0x%x\n",
2398               h->disc_enable, h->termination);
2399
2400        printk("  chip_version 0x%x, mcode_date 0x%x\n",
2401               h->chip_version, h->mcode_date);
2402
2403        printk("  mcode_version 0x%x, control_flag 0x%x\n",
2404               h->mcode_version, h->control_flag);
2405}
2406
2407/*
2408 * asc_prt_scsi_host()
2409 */
2410static void asc_prt_scsi_host(struct Scsi_Host *s)
2411{
2412        struct asc_board *boardp = shost_priv(s);
2413
2414        printk("Scsi_Host at addr 0x%p, device %s\n", s, dev_name(boardp->dev));
2415        printk(" host_busy %d, host_no %d,\n",
2416               scsi_host_busy(s), s->host_no);
2417
2418        printk(" base 0x%lx, io_port 0x%lx, irq %d,\n",
2419               (ulong)s->base, (ulong)s->io_port, boardp->irq);
2420
2421        printk(" dma_channel %d, this_id %d, can_queue %d,\n",
2422               s->dma_channel, s->this_id, s->can_queue);
2423
2424        printk(" cmd_per_lun %d, sg_tablesize %d, unchecked_isa_dma %d\n",
2425               s->cmd_per_lun, s->sg_tablesize, s->unchecked_isa_dma);
2426
2427        if (ASC_NARROW_BOARD(boardp)) {
2428                asc_prt_asc_dvc_var(&boardp->dvc_var.asc_dvc_var);
2429                asc_prt_asc_dvc_cfg(&boardp->dvc_cfg.asc_dvc_cfg);
2430        } else {
2431                asc_prt_adv_dvc_var(&boardp->dvc_var.adv_dvc_var);
2432                asc_prt_adv_dvc_cfg(&boardp->dvc_cfg.adv_dvc_cfg);
2433        }
2434}
2435
2436/*
2437 * asc_prt_hex()
2438 *
2439 * Print hexadecimal output in 4 byte groupings 32 bytes
2440 * or 8 double-words per line.
2441 */
2442static void asc_prt_hex(char *f, uchar *s, int l)
2443{
2444        int i;
2445        int j;
2446        int k;
2447        int m;
2448
2449        printk("%s: (%d bytes)\n", f, l);
2450
2451        for (i = 0; i < l; i += 32) {
2452
2453                /* Display a maximum of 8 double-words per line. */
2454                if ((k = (l - i) / 4) >= 8) {
2455                        k = 8;
2456                        m = 0;
2457                } else {
2458                        m = (l - i) % 4;
2459                }
2460
2461                for (j = 0; j < k; j++) {
2462                        printk(" %2.2X%2.2X%2.2X%2.2X",
2463                               (unsigned)s[i + (j * 4)],
2464                               (unsigned)s[i + (j * 4) + 1],
2465                               (unsigned)s[i + (j * 4) + 2],
2466                               (unsigned)s[i + (j * 4) + 3]);
2467                }
2468
2469                switch (m) {
2470                case 0:
2471                default:
2472                        break;
2473                case 1:
2474                        printk(" %2.2X", (unsigned)s[i + (j * 4)]);
2475                        break;
2476                case 2:
2477                        printk(" %2.2X%2.2X",
2478                               (unsigned)s[i + (j * 4)],
2479                               (unsigned)s[i + (j * 4) + 1]);
2480                        break;
2481                case 3:
2482                        printk(" %2.2X%2.2X%2.2X",
2483                               (unsigned)s[i + (j * 4) + 1],
2484                               (unsigned)s[i + (j * 4) + 2],
2485                               (unsigned)s[i + (j * 4) + 3]);
2486                        break;
2487                }
2488
2489                printk("\n");
2490        }
2491}
2492
2493/*
2494 * asc_prt_asc_scsi_q()
2495 */
2496static void asc_prt_asc_scsi_q(ASC_SCSI_Q *q)
2497{
2498        ASC_SG_HEAD *sgp;
2499        int i;
2500
2501        printk("ASC_SCSI_Q at addr 0x%lx\n", (ulong)q);
2502
2503        printk
2504            (" target_ix 0x%x, target_lun %u, srb_tag 0x%x, tag_code 0x%x,\n",
2505             q->q2.target_ix, q->q1.target_lun, q->q2.srb_tag,
2506             q->q2.tag_code);
2507
2508        printk
2509            (" data_addr 0x%lx, data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2510             (ulong)le32_to_cpu(q->q1.data_addr),
2511             (ulong)le32_to_cpu(q->q1.data_cnt),
2512             (ulong)le32_to_cpu(q->q1.sense_addr), q->q1.sense_len);
2513
2514        printk(" cdbptr 0x%lx, cdb_len %u, sg_head 0x%lx, sg_queue_cnt %u\n",
2515               (ulong)q->cdbptr, q->q2.cdb_len,
2516               (ulong)q->sg_head, q->q1.sg_queue_cnt);
2517
2518        if (q->sg_head) {
2519                sgp = q->sg_head;
2520                printk("ASC_SG_HEAD at addr 0x%lx\n", (ulong)sgp);
2521                printk(" entry_cnt %u, queue_cnt %u\n", sgp->entry_cnt,
2522                       sgp->queue_cnt);
2523                for (i = 0; i < sgp->entry_cnt; i++) {
2524                        printk(" [%u]: addr 0x%lx, bytes %lu\n",
2525                               i, (ulong)le32_to_cpu(sgp->sg_list[i].addr),
2526                               (ulong)le32_to_cpu(sgp->sg_list[i].bytes));
2527                }
2528
2529        }
2530}
2531
2532/*
2533 * asc_prt_asc_qdone_info()
2534 */
2535static void asc_prt_asc_qdone_info(ASC_QDONE_INFO *q)
2536{
2537        printk("ASC_QDONE_INFO at addr 0x%lx\n", (ulong)q);
2538        printk(" srb_tag 0x%x, target_ix %u, cdb_len %u, tag_code %u,\n",
2539               q->d2.srb_tag, q->d2.target_ix, q->d2.cdb_len,
2540               q->d2.tag_code);
2541        printk
2542            (" done_stat 0x%x, host_stat 0x%x, scsi_stat 0x%x, scsi_msg 0x%x\n",
2543             q->d3.done_stat, q->d3.host_stat, q->d3.scsi_stat, q->d3.scsi_msg);
2544}
2545
2546/*
2547 * asc_prt_adv_sgblock()
2548 *
2549 * Display an ADV_SG_BLOCK structure.
2550 */
2551static void asc_prt_adv_sgblock(int sgblockno, ADV_SG_BLOCK *b)
2552{
2553        int i;
2554
2555        printk(" ADV_SG_BLOCK at addr 0x%lx (sgblockno %d)\n",
2556               (ulong)b, sgblockno);
2557        printk("  sg_cnt %u, sg_ptr 0x%x\n",
2558               b->sg_cnt, (u32)le32_to_cpu(b->sg_ptr));
2559        BUG_ON(b->sg_cnt > NO_OF_SG_PER_BLOCK);
2560        if (b->sg_ptr != 0)
2561                BUG_ON(b->sg_cnt != NO_OF_SG_PER_BLOCK);
2562        for (i = 0; i < b->sg_cnt; i++) {
2563                printk("  [%u]: sg_addr 0x%x, sg_count 0x%x\n",
2564                       i, (u32)le32_to_cpu(b->sg_list[i].sg_addr),
2565                       (u32)le32_to_cpu(b->sg_list[i].sg_count));
2566        }
2567}
2568
2569/*
2570 * asc_prt_adv_scsi_req_q()
2571 *
2572 * Display an ADV_SCSI_REQ_Q structure.
2573 */
2574static void asc_prt_adv_scsi_req_q(ADV_SCSI_REQ_Q *q)
2575{
2576        int sg_blk_cnt;
2577        struct adv_sg_block *sg_ptr;
2578        adv_sgblk_t *sgblkp;
2579
2580        printk("ADV_SCSI_REQ_Q at addr 0x%lx\n", (ulong)q);
2581
2582        printk("  target_id %u, target_lun %u, srb_tag 0x%x\n",
2583               q->target_id, q->target_lun, q->srb_tag);
2584
2585        printk("  cntl 0x%x, data_addr 0x%lx\n",
2586               q->cntl, (ulong)le32_to_cpu(q->data_addr));
2587
2588        printk("  data_cnt %lu, sense_addr 0x%lx, sense_len %u,\n",
2589               (ulong)le32_to_cpu(q->data_cnt),
2590               (ulong)le32_to_cpu(q->sense_addr), q->sense_len);
2591
2592        printk
2593            ("  cdb_len %u, done_status 0x%x, host_status 0x%x, scsi_status 0x%x\n",
2594             q->cdb_len, q->done_status, q->host_status, q->scsi_status);
2595
2596        printk("  sg_working_ix 0x%x, target_cmd %u\n",
2597               q->sg_working_ix, q->target_cmd);
2598
2599        printk("  scsiq_rptr 0x%lx, sg_real_addr 0x%lx, sg_list_ptr 0x%lx\n",
2600               (ulong)le32_to_cpu(q->scsiq_rptr),
2601               (ulong)le32_to_cpu(q->sg_real_addr), (ulong)q->sg_list_ptr);
2602
2603        /* Display the request's ADV_SG_BLOCK structures. */
2604        if (q->sg_list_ptr != NULL) {
2605                sgblkp = container_of(q->sg_list_ptr, adv_sgblk_t, sg_block);
2606                sg_blk_cnt = 0;
2607                while (sgblkp) {
2608                        sg_ptr = &sgblkp->sg_block;
2609                        asc_prt_adv_sgblock(sg_blk_cnt, sg_ptr);
2610                        if (sg_ptr->sg_ptr == 0) {
2611                                break;
2612                        }
2613                        sgblkp = sgblkp->next_sgblkp;
2614                        sg_blk_cnt++;
2615                }
2616        }
2617}
2618#endif /* ADVANSYS_DEBUG */
2619
2620/*
2621 * advansys_info()
2622 *
2623 * Return suitable for printing on the console with the argument
2624 * adapter's configuration information.
2625 *
2626 * Note: The information line should not exceed ASC_INFO_SIZE bytes,
2627 * otherwise the static 'info' array will be overrun.
2628 */
2629static const char *advansys_info(struct Scsi_Host *shost)
2630{
2631        static char info[ASC_INFO_SIZE];
2632        struct asc_board *boardp = shost_priv(shost);
2633        ASC_DVC_VAR *asc_dvc_varp;
2634        ADV_DVC_VAR *adv_dvc_varp;
2635        char *busname;
2636        char *widename = NULL;
2637
2638        if (ASC_NARROW_BOARD(boardp)) {
2639                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2640                ASC_DBG(1, "begin\n");
2641                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2642                        if ((asc_dvc_varp->bus_type & ASC_IS_ISAPNP) ==
2643                            ASC_IS_ISAPNP) {
2644                                busname = "ISA PnP";
2645                        } else {
2646                                busname = "ISA";
2647                        }
2648                        sprintf(info,
2649                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X, DMA 0x%X",
2650                                ASC_VERSION, busname,
2651                                (ulong)shost->io_port,
2652                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2653                                boardp->irq, shost->dma_channel);
2654                } else {
2655                        if (asc_dvc_varp->bus_type & ASC_IS_VL) {
2656                                busname = "VL";
2657                        } else if (asc_dvc_varp->bus_type & ASC_IS_EISA) {
2658                                busname = "EISA";
2659                        } else if (asc_dvc_varp->bus_type & ASC_IS_PCI) {
2660                                if ((asc_dvc_varp->bus_type & ASC_IS_PCI_ULTRA)
2661                                    == ASC_IS_PCI_ULTRA) {
2662                                        busname = "PCI Ultra";
2663                                } else {
2664                                        busname = "PCI";
2665                                }
2666                        } else {
2667                                busname = "?";
2668                                shost_printk(KERN_ERR, shost, "unknown bus "
2669                                        "type %d\n", asc_dvc_varp->bus_type);
2670                        }
2671                        sprintf(info,
2672                                "AdvanSys SCSI %s: %s: IO 0x%lX-0x%lX, IRQ 0x%X",
2673                                ASC_VERSION, busname, (ulong)shost->io_port,
2674                                (ulong)shost->io_port + ASC_IOADR_GAP - 1,
2675                                boardp->irq);
2676                }
2677        } else {
2678                /*
2679                 * Wide Adapter Information
2680                 *
2681                 * Memory-mapped I/O is used instead of I/O space to access
2682                 * the adapter, but display the I/O Port range. The Memory
2683                 * I/O address is displayed through the driver /proc file.
2684                 */
2685                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2686                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2687                        widename = "Ultra-Wide";
2688                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2689                        widename = "Ultra2-Wide";
2690                } else {
2691                        widename = "Ultra3-Wide";
2692                }
2693                sprintf(info,
2694                        "AdvanSys SCSI %s: PCI %s: PCIMEM 0x%lX-0x%lX, IRQ 0x%X",
2695                        ASC_VERSION, widename, (ulong)adv_dvc_varp->iop_base,
2696                        (ulong)adv_dvc_varp->iop_base + boardp->asc_n_io_port - 1, boardp->irq);
2697        }
2698        BUG_ON(strlen(info) >= ASC_INFO_SIZE);
2699        ASC_DBG(1, "end\n");
2700        return info;
2701}
2702
2703#ifdef CONFIG_PROC_FS
2704
2705/*
2706 * asc_prt_board_devices()
2707 *
2708 * Print driver information for devices attached to the board.
2709 */
2710static void asc_prt_board_devices(struct seq_file *m, struct Scsi_Host *shost)
2711{
2712        struct asc_board *boardp = shost_priv(shost);
2713        int chip_scsi_id;
2714        int i;
2715
2716        seq_printf(m,
2717                   "\nDevice Information for AdvanSys SCSI Host %d:\n",
2718                   shost->host_no);
2719
2720        if (ASC_NARROW_BOARD(boardp)) {
2721                chip_scsi_id = boardp->dvc_cfg.asc_dvc_cfg.chip_scsi_id;
2722        } else {
2723                chip_scsi_id = boardp->dvc_var.adv_dvc_var.chip_scsi_id;
2724        }
2725
2726        seq_puts(m, "Target IDs Detected:");
2727        for (i = 0; i <= ADV_MAX_TID; i++) {
2728                if (boardp->init_tidmask & ADV_TID_TO_TIDMASK(i))
2729                        seq_printf(m, " %X,", i);
2730        }
2731        seq_printf(m, " (%X=Host Adapter)\n", chip_scsi_id);
2732}
2733
2734/*
2735 * Display Wide Board BIOS Information.
2736 */
2737static void asc_prt_adv_bios(struct seq_file *m, struct Scsi_Host *shost)
2738{
2739        struct asc_board *boardp = shost_priv(shost);
2740        ushort major, minor, letter;
2741
2742        seq_puts(m, "\nROM BIOS Version: ");
2743
2744        /*
2745         * If the BIOS saved a valid signature, then fill in
2746         * the BIOS code segment base address.
2747         */
2748        if (boardp->bios_signature != 0x55AA) {
2749                seq_puts(m, "Disabled or Pre-3.1\n"
2750                        "BIOS either disabled or Pre-3.1. If it is pre-3.1, then a newer version\n"
2751                        "can be found at the ConnectCom FTP site: ftp://ftp.connectcom.net/pub\n");
2752        } else {
2753                major = (boardp->bios_version >> 12) & 0xF;
2754                minor = (boardp->bios_version >> 8) & 0xF;
2755                letter = (boardp->bios_version & 0xFF);
2756
2757                seq_printf(m, "%d.%d%c\n",
2758                                   major, minor,
2759                                   letter >= 26 ? '?' : letter + 'A');
2760                /*
2761                 * Current available ROM BIOS release is 3.1I for UW
2762                 * and 3.2I for U2W. This code doesn't differentiate
2763                 * UW and U2W boards.
2764                 */
2765                if (major < 3 || (major <= 3 && minor < 1) ||
2766                    (major <= 3 && minor <= 1 && letter < ('I' - 'A'))) {
2767                        seq_puts(m, "Newer version of ROM BIOS is available at the ConnectCom FTP site:\n"
2768                                "ftp://ftp.connectcom.net/pub\n");
2769                }
2770        }
2771}
2772
2773/*
2774 * Add serial number to information bar if signature AAh
2775 * is found in at bit 15-9 (7 bits) of word 1.
2776 *
2777 * Serial Number consists fo 12 alpha-numeric digits.
2778 *
2779 *       1 - Product type (A,B,C,D..)  Word0: 15-13 (3 bits)
2780 *       2 - MFG Location (A,B,C,D..)  Word0: 12-10 (3 bits)
2781 *     3-4 - Product ID (0-99)         Word0: 9-0 (10 bits)
2782 *       5 - Product revision (A-J)    Word0:  "         "
2783 *
2784 *           Signature                 Word1: 15-9 (7 bits)
2785 *       6 - Year (0-9)                Word1: 8-6 (3 bits) & Word2: 15 (1 bit)
2786 *     7-8 - Week of the year (1-52)   Word1: 5-0 (6 bits)
2787 *
2788 *    9-12 - Serial Number (A001-Z999) Word2: 14-0 (15 bits)
2789 *
2790 * Note 1: Only production cards will have a serial number.
2791 *
2792 * Note 2: Signature is most significant 7 bits (0xFE).
2793 *
2794 * Returns ASC_TRUE if serial number found, otherwise returns ASC_FALSE.
2795 */
2796static int asc_get_eeprom_string(ushort *serialnum, uchar *cp)
2797{
2798        ushort w, num;
2799
2800        if ((serialnum[1] & 0xFE00) != ((ushort)0xAA << 8)) {
2801                return ASC_FALSE;
2802        } else {
2803                /*
2804                 * First word - 6 digits.
2805                 */
2806                w = serialnum[0];
2807
2808                /* Product type - 1st digit. */
2809                if ((*cp = 'A' + ((w & 0xE000) >> 13)) == 'H') {
2810                        /* Product type is P=Prototype */
2811                        *cp += 0x8;
2812                }
2813                cp++;
2814
2815                /* Manufacturing location - 2nd digit. */
2816                *cp++ = 'A' + ((w & 0x1C00) >> 10);
2817
2818                /* Product ID - 3rd, 4th digits. */
2819                num = w & 0x3FF;
2820                *cp++ = '0' + (num / 100);
2821                num %= 100;
2822                *cp++ = '0' + (num / 10);
2823
2824                /* Product revision - 5th digit. */
2825                *cp++ = 'A' + (num % 10);
2826
2827                /*
2828                 * Second word
2829                 */
2830                w = serialnum[1];
2831
2832                /*
2833                 * Year - 6th digit.
2834                 *
2835                 * If bit 15 of third word is set, then the
2836                 * last digit of the year is greater than 7.
2837                 */
2838                if (serialnum[2] & 0x8000) {
2839                        *cp++ = '8' + ((w & 0x1C0) >> 6);
2840                } else {
2841                        *cp++ = '0' + ((w & 0x1C0) >> 6);
2842                }
2843
2844                /* Week of year - 7th, 8th digits. */
2845                num = w & 0x003F;
2846                *cp++ = '0' + num / 10;
2847                num %= 10;
2848                *cp++ = '0' + num;
2849
2850                /*
2851                 * Third word
2852                 */
2853                w = serialnum[2] & 0x7FFF;
2854
2855                /* Serial number - 9th digit. */
2856                *cp++ = 'A' + (w / 1000);
2857
2858                /* 10th, 11th, 12th digits. */
2859                num = w % 1000;
2860                *cp++ = '0' + num / 100;
2861                num %= 100;
2862                *cp++ = '0' + num / 10;
2863                num %= 10;
2864                *cp++ = '0' + num;
2865
2866                *cp = '\0';     /* Null Terminate the string. */
2867                return ASC_TRUE;
2868        }
2869}
2870
2871/*
2872 * asc_prt_asc_board_eeprom()
2873 *
2874 * Print board EEPROM configuration.
2875 */
2876static void asc_prt_asc_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2877{
2878        struct asc_board *boardp = shost_priv(shost);
2879        ASCEEP_CONFIG *ep;
2880        int i;
2881        uchar serialstr[13];
2882#ifdef CONFIG_ISA
2883        ASC_DVC_VAR *asc_dvc_varp;
2884        int isa_dma_speed[] = { 10, 8, 7, 6, 5, 4, 3, 2 };
2885
2886        asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
2887#endif /* CONFIG_ISA */
2888        ep = &boardp->eep_config.asc_eep;
2889
2890        seq_printf(m,
2891                   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2892                   shost->host_no);
2893
2894        if (asc_get_eeprom_string((ushort *)&ep->adapter_info[0], serialstr)
2895            == ASC_TRUE)
2896                seq_printf(m, " Serial Number: %s\n", serialstr);
2897        else if (ep->adapter_info[5] == 0xBB)
2898                seq_puts(m,
2899                         " Default Settings Used for EEPROM-less Adapter.\n");
2900        else
2901                seq_puts(m, " Serial Number Signature Not Present.\n");
2902
2903        seq_printf(m,
2904                   " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2905                   ASC_EEP_GET_CHIP_ID(ep), ep->max_total_qng,
2906                   ep->max_tag_qng);
2907
2908        seq_printf(m,
2909                   " cntl 0x%x, no_scam 0x%x\n", ep->cntl, ep->no_scam);
2910
2911        seq_puts(m, " Target ID:           ");
2912        for (i = 0; i <= ASC_MAX_TID; i++)
2913                seq_printf(m, " %d", i);
2914
2915        seq_puts(m, "\n Disconnects:         ");
2916        for (i = 0; i <= ASC_MAX_TID; i++)
2917                seq_printf(m, " %c",
2918                           (ep->disc_enable & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2919
2920        seq_puts(m, "\n Command Queuing:     ");
2921        for (i = 0; i <= ASC_MAX_TID; i++)
2922                seq_printf(m, " %c",
2923                           (ep->use_cmd_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2924
2925        seq_puts(m, "\n Start Motor:         ");
2926        for (i = 0; i <= ASC_MAX_TID; i++)
2927                seq_printf(m, " %c",
2928                           (ep->start_motor & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2929
2930        seq_puts(m, "\n Synchronous Transfer:");
2931        for (i = 0; i <= ASC_MAX_TID; i++)
2932                seq_printf(m, " %c",
2933                           (ep->init_sdtr & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
2934        seq_putc(m, '\n');
2935
2936#ifdef CONFIG_ISA
2937        if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
2938                seq_printf(m,
2939                           " Host ISA DMA speed:   %d MB/S\n",
2940                           isa_dma_speed[ASC_EEP_GET_DMA_SPD(ep)]);
2941        }
2942#endif /* CONFIG_ISA */
2943}
2944
2945/*
2946 * asc_prt_adv_board_eeprom()
2947 *
2948 * Print board EEPROM configuration.
2949 */
2950static void asc_prt_adv_board_eeprom(struct seq_file *m, struct Scsi_Host *shost)
2951{
2952        struct asc_board *boardp = shost_priv(shost);
2953        ADV_DVC_VAR *adv_dvc_varp;
2954        int i;
2955        char *termstr;
2956        uchar serialstr[13];
2957        ADVEEP_3550_CONFIG *ep_3550 = NULL;
2958        ADVEEP_38C0800_CONFIG *ep_38C0800 = NULL;
2959        ADVEEP_38C1600_CONFIG *ep_38C1600 = NULL;
2960        ushort word;
2961        ushort *wordp;
2962        ushort sdtr_speed = 0;
2963
2964        adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
2965        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2966                ep_3550 = &boardp->eep_config.adv_3550_eep;
2967        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2968                ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
2969        } else {
2970                ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
2971        }
2972
2973        seq_printf(m,
2974                   "\nEEPROM Settings for AdvanSys SCSI Host %d:\n",
2975                   shost->host_no);
2976
2977        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
2978                wordp = &ep_3550->serial_number_word1;
2979        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
2980                wordp = &ep_38C0800->serial_number_word1;
2981        } else {
2982                wordp = &ep_38C1600->serial_number_word1;
2983        }
2984
2985        if (asc_get_eeprom_string(wordp, serialstr) == ASC_TRUE)
2986                seq_printf(m, " Serial Number: %s\n", serialstr);
2987        else
2988                seq_puts(m, " Serial Number Signature Not Present.\n");
2989
2990        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
2991                seq_printf(m,
2992                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2993                           ep_3550->adapter_scsi_id,
2994                           ep_3550->max_host_qng, ep_3550->max_dvc_qng);
2995        else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
2996                seq_printf(m,
2997                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
2998                           ep_38C0800->adapter_scsi_id,
2999                           ep_38C0800->max_host_qng,
3000                           ep_38C0800->max_dvc_qng);
3001        else
3002                seq_printf(m,
3003                           " Host SCSI ID: %u, Host Queue Size: %u, Device Queue Size: %u\n",
3004                           ep_38C1600->adapter_scsi_id,
3005                           ep_38C1600->max_host_qng,
3006                           ep_38C1600->max_dvc_qng);
3007        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3008                word = ep_3550->termination;
3009        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3010                word = ep_38C0800->termination_lvd;
3011        } else {
3012                word = ep_38C1600->termination_lvd;
3013        }
3014        switch (word) {
3015        case 1:
3016                termstr = "Low Off/High Off";
3017                break;
3018        case 2:
3019                termstr = "Low Off/High On";
3020                break;
3021        case 3:
3022                termstr = "Low On/High On";
3023                break;
3024        default:
3025        case 0:
3026                termstr = "Automatic";
3027                break;
3028        }
3029
3030        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550)
3031                seq_printf(m,
3032                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3033                           ep_3550->termination, termstr,
3034                           ep_3550->bios_ctrl);
3035        else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800)
3036                seq_printf(m,
3037                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3038                           ep_38C0800->termination_lvd, termstr,
3039                           ep_38C0800->bios_ctrl);
3040        else
3041                seq_printf(m,
3042                           " termination: %u (%s), bios_ctrl: 0x%x\n",
3043                           ep_38C1600->termination_lvd, termstr,
3044                           ep_38C1600->bios_ctrl);
3045
3046        seq_puts(m, " Target ID:           ");
3047        for (i = 0; i <= ADV_MAX_TID; i++)
3048                seq_printf(m, " %X", i);
3049        seq_putc(m, '\n');
3050
3051        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3052                word = ep_3550->disc_enable;
3053        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3054                word = ep_38C0800->disc_enable;
3055        } else {
3056                word = ep_38C1600->disc_enable;
3057        }
3058        seq_puts(m, " Disconnects:         ");
3059        for (i = 0; i <= ADV_MAX_TID; i++)
3060                seq_printf(m, " %c",
3061                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3062        seq_putc(m, '\n');
3063
3064        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3065                word = ep_3550->tagqng_able;
3066        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3067                word = ep_38C0800->tagqng_able;
3068        } else {
3069                word = ep_38C1600->tagqng_able;
3070        }
3071        seq_puts(m, " Command Queuing:     ");
3072        for (i = 0; i <= ADV_MAX_TID; i++)
3073                seq_printf(m, " %c",
3074                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3075        seq_putc(m, '\n');
3076
3077        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3078                word = ep_3550->start_motor;
3079        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3080                word = ep_38C0800->start_motor;
3081        } else {
3082                word = ep_38C1600->start_motor;
3083        }
3084        seq_puts(m, " Start Motor:         ");
3085        for (i = 0; i <= ADV_MAX_TID; i++)
3086                seq_printf(m, " %c",
3087                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3088        seq_putc(m, '\n');
3089
3090        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3091                seq_puts(m, " Synchronous Transfer:");
3092                for (i = 0; i <= ADV_MAX_TID; i++)
3093                        seq_printf(m, " %c",
3094                                   (ep_3550->sdtr_able & ADV_TID_TO_TIDMASK(i)) ?
3095                                   'Y' : 'N');
3096                seq_putc(m, '\n');
3097        }
3098
3099        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3100                seq_puts(m, " Ultra Transfer:      ");
3101                for (i = 0; i <= ADV_MAX_TID; i++)
3102                        seq_printf(m, " %c",
3103                                   (ep_3550->ultra_able & ADV_TID_TO_TIDMASK(i))
3104                                   ? 'Y' : 'N');
3105                seq_putc(m, '\n');
3106        }
3107
3108        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
3109                word = ep_3550->wdtr_able;
3110        } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
3111                word = ep_38C0800->wdtr_able;
3112        } else {
3113                word = ep_38C1600->wdtr_able;
3114        }
3115        seq_puts(m, " Wide Transfer:       ");
3116        for (i = 0; i <= ADV_MAX_TID; i++)
3117                seq_printf(m, " %c",
3118                           (word & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3119        seq_putc(m, '\n');
3120
3121        if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800 ||
3122            adv_dvc_varp->chip_type == ADV_CHIP_ASC38C1600) {
3123                seq_puts(m, " Synchronous Transfer Speed (Mhz):\n  ");
3124                for (i = 0; i <= ADV_MAX_TID; i++) {
3125                        char *speed_str;
3126
3127                        if (i == 0) {
3128                                sdtr_speed = adv_dvc_varp->sdtr_speed1;
3129                        } else if (i == 4) {
3130                                sdtr_speed = adv_dvc_varp->sdtr_speed2;
3131                        } else if (i == 8) {
3132                                sdtr_speed = adv_dvc_varp->sdtr_speed3;
3133                        } else if (i == 12) {
3134                                sdtr_speed = adv_dvc_varp->sdtr_speed4;
3135                        }
3136                        switch (sdtr_speed & ADV_MAX_TID) {
3137                        case 0:
3138                                speed_str = "Off";
3139                                break;
3140                        case 1:
3141                                speed_str = "  5";
3142                                break;
3143                        case 2:
3144                                speed_str = " 10";
3145                                break;
3146                        case 3:
3147                                speed_str = " 20";
3148                                break;
3149                        case 4:
3150                                speed_str = " 40";
3151                                break;
3152                        case 5:
3153                                speed_str = " 80";
3154                                break;
3155                        default:
3156                                speed_str = "Unk";
3157                                break;
3158                        }
3159                        seq_printf(m, "%X:%s ", i, speed_str);
3160                        if (i == 7)
3161                                seq_puts(m, "\n  ");
3162                        sdtr_speed >>= 4;
3163                }
3164                seq_putc(m, '\n');
3165        }
3166}
3167
3168/*
3169 * asc_prt_driver_conf()
3170 */
3171static void asc_prt_driver_conf(struct seq_file *m, struct Scsi_Host *shost)
3172{
3173        struct asc_board *boardp = shost_priv(shost);
3174
3175        seq_printf(m,
3176                "\nLinux Driver Configuration and Information for AdvanSys SCSI Host %d:\n",
3177                shost->host_no);
3178
3179        seq_printf(m,
3180                   " host_busy %d, max_id %u, max_lun %llu, max_channel %u\n",
3181                   scsi_host_busy(shost), shost->max_id,
3182                   shost->max_lun, shost->max_channel);
3183
3184        seq_printf(m,
3185                   " unique_id %d, can_queue %d, this_id %d, sg_tablesize %u, cmd_per_lun %u\n",
3186                   shost->unique_id, shost->can_queue, shost->this_id,
3187                   shost->sg_tablesize, shost->cmd_per_lun);
3188
3189        seq_printf(m,
3190                   " unchecked_isa_dma %d\n",
3191                   shost->unchecked_isa_dma);
3192
3193        seq_printf(m,
3194                   " flags 0x%x, last_reset 0x%lx, jiffies 0x%lx, asc_n_io_port 0x%x\n",
3195                   boardp->flags, shost->last_reset, jiffies,
3196                   boardp->asc_n_io_port);
3197
3198        seq_printf(m, " io_port 0x%lx\n", shost->io_port);
3199}
3200
3201/*
3202 * asc_prt_asc_board_info()
3203 *
3204 * Print dynamic board configuration information.
3205 */
3206static void asc_prt_asc_board_info(struct seq_file *m, struct Scsi_Host *shost)
3207{
3208        struct asc_board *boardp = shost_priv(shost);
3209        int chip_scsi_id;
3210        ASC_DVC_VAR *v;
3211        ASC_DVC_CFG *c;
3212        int i;
3213        int renegotiate = 0;
3214
3215        v = &boardp->dvc_var.asc_dvc_var;
3216        c = &boardp->dvc_cfg.asc_dvc_cfg;
3217        chip_scsi_id = c->chip_scsi_id;
3218
3219        seq_printf(m,
3220                   "\nAsc Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3221                   shost->host_no);
3222
3223        seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3224                   "mcode_version 0x%x, err_code %u\n",
3225                   c->chip_version, c->mcode_date, c->mcode_version,
3226                   v->err_code);
3227
3228        /* Current number of commands waiting for the host. */
3229        seq_printf(m,
3230                   " Total Command Pending: %d\n", v->cur_total_qng);
3231
3232        seq_puts(m, " Command Queuing:");
3233        for (i = 0; i <= ASC_MAX_TID; i++) {
3234                if ((chip_scsi_id == i) ||
3235                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3236                        continue;
3237                }
3238                seq_printf(m, " %X:%c",
3239                           i,
3240                           (v->use_tagged_qng & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3241        }
3242
3243        /* Current number of commands waiting for a device. */
3244        seq_puts(m, "\n Command Queue Pending:");
3245        for (i = 0; i <= ASC_MAX_TID; i++) {
3246                if ((chip_scsi_id == i) ||
3247                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3248                        continue;
3249                }
3250                seq_printf(m, " %X:%u", i, v->cur_dvc_qng[i]);
3251        }
3252
3253        /* Current limit on number of commands that can be sent to a device. */
3254        seq_puts(m, "\n Command Queue Limit:");
3255        for (i = 0; i <= ASC_MAX_TID; i++) {
3256                if ((chip_scsi_id == i) ||
3257                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3258                        continue;
3259                }
3260                seq_printf(m, " %X:%u", i, v->max_dvc_qng[i]);
3261        }
3262
3263        /* Indicate whether the device has returned queue full status. */
3264        seq_puts(m, "\n Command Queue Full:");
3265        for (i = 0; i <= ASC_MAX_TID; i++) {
3266                if ((chip_scsi_id == i) ||
3267                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3268                        continue;
3269                }
3270                if (boardp->queue_full & ADV_TID_TO_TIDMASK(i))
3271                        seq_printf(m, " %X:Y-%d",
3272                                   i, boardp->queue_full_cnt[i]);
3273                else
3274                        seq_printf(m, " %X:N", i);
3275        }
3276
3277        seq_puts(m, "\n Synchronous Transfer:");
3278        for (i = 0; i <= ASC_MAX_TID; i++) {
3279                if ((chip_scsi_id == i) ||
3280                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3281                        continue;
3282                }
3283                seq_printf(m, " %X:%c",
3284                           i,
3285                           (v->sdtr_done & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3286        }
3287        seq_putc(m, '\n');
3288
3289        for (i = 0; i <= ASC_MAX_TID; i++) {
3290                uchar syn_period_ix;
3291
3292                if ((chip_scsi_id == i) ||
3293                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3294                    ((v->init_sdtr & ADV_TID_TO_TIDMASK(i)) == 0)) {
3295                        continue;
3296                }
3297
3298                seq_printf(m, "  %X:", i);
3299
3300                if ((boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET) == 0) {
3301                        seq_puts(m, " Asynchronous");
3302                } else {
3303                        syn_period_ix =
3304                            (boardp->sdtr_data[i] >> 4) & (v->max_sdtr_index -
3305                                                           1);
3306
3307                        seq_printf(m,
3308                                   " Transfer Period Factor: %d (%d.%d Mhz),",
3309                                   v->sdtr_period_tbl[syn_period_ix],
3310                                   250 / v->sdtr_period_tbl[syn_period_ix],
3311                                   ASC_TENTHS(250,
3312                                              v->sdtr_period_tbl[syn_period_ix]));
3313
3314                        seq_printf(m, " REQ/ACK Offset: %d",
3315                                   boardp->sdtr_data[i] & ASC_SYN_MAX_OFFSET);
3316                }
3317
3318                if ((v->sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3319                        seq_puts(m, "*\n");
3320                        renegotiate = 1;
3321                } else {
3322                        seq_putc(m, '\n');
3323                }
3324        }
3325
3326        if (renegotiate) {
3327                seq_puts(m, " * = Re-negotiation pending before next command.\n");
3328        }
3329}
3330
3331/*
3332 * asc_prt_adv_board_info()
3333 *
3334 * Print dynamic board configuration information.
3335 */
3336static void asc_prt_adv_board_info(struct seq_file *m, struct Scsi_Host *shost)
3337{
3338        struct asc_board *boardp = shost_priv(shost);
3339        int i;
3340        ADV_DVC_VAR *v;
3341        ADV_DVC_CFG *c;
3342        AdvPortAddr iop_base;
3343        ushort chip_scsi_id;
3344        ushort lramword;
3345        uchar lrambyte;
3346        ushort tagqng_able;
3347        ushort sdtr_able, wdtr_able;
3348        ushort wdtr_done, sdtr_done;
3349        ushort period = 0;
3350        int renegotiate = 0;
3351
3352        v = &boardp->dvc_var.adv_dvc_var;
3353        c = &boardp->dvc_cfg.adv_dvc_cfg;
3354        iop_base = v->iop_base;
3355        chip_scsi_id = v->chip_scsi_id;
3356
3357        seq_printf(m,
3358                   "\nAdv Library Configuration and Statistics for AdvanSys SCSI Host %d:\n",
3359                   shost->host_no);
3360
3361        seq_printf(m,
3362                   " iop_base 0x%lx, cable_detect: %X, err_code %u\n",
3363                   (unsigned long)v->iop_base,
3364                   AdvReadWordRegister(iop_base,IOPW_SCSI_CFG1) & CABLE_DETECT,
3365                   v->err_code);
3366
3367        seq_printf(m, " chip_version %u, mcode_date 0x%x, "
3368                   "mcode_version 0x%x\n", c->chip_version,
3369                   c->mcode_date, c->mcode_version);
3370
3371        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
3372        seq_puts(m, " Queuing Enabled:");
3373        for (i = 0; i <= ADV_MAX_TID; i++) {
3374                if ((chip_scsi_id == i) ||
3375                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3376                        continue;
3377                }
3378
3379                seq_printf(m, " %X:%c",
3380                           i,
3381                           (tagqng_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3382        }
3383
3384        seq_puts(m, "\n Queue Limit:");
3385        for (i = 0; i <= ADV_MAX_TID; i++) {
3386                if ((chip_scsi_id == i) ||
3387                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3388                        continue;
3389                }
3390
3391                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + i,
3392                                lrambyte);
3393
3394                seq_printf(m, " %X:%d", i, lrambyte);
3395        }
3396
3397        seq_puts(m, "\n Command Pending:");
3398        for (i = 0; i <= ADV_MAX_TID; i++) {
3399                if ((chip_scsi_id == i) ||
3400                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3401                        continue;
3402                }
3403
3404                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_QUEUED_CMD + i,
3405                                lrambyte);
3406
3407                seq_printf(m, " %X:%d", i, lrambyte);
3408        }
3409        seq_putc(m, '\n');
3410
3411        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
3412        seq_puts(m, " Wide Enabled:");
3413        for (i = 0; i <= ADV_MAX_TID; i++) {
3414                if ((chip_scsi_id == i) ||
3415                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3416                        continue;
3417                }
3418
3419                seq_printf(m, " %X:%c",
3420                           i,
3421                           (wdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3422        }
3423        seq_putc(m, '\n');
3424
3425        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, wdtr_done);
3426        seq_puts(m, " Transfer Bit Width:");
3427        for (i = 0; i <= ADV_MAX_TID; i++) {
3428                if ((chip_scsi_id == i) ||
3429                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3430                        continue;
3431                }
3432
3433                AdvReadWordLram(iop_base,
3434                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3435                                lramword);
3436
3437                seq_printf(m, " %X:%d",
3438                           i, (lramword & 0x8000) ? 16 : 8);
3439
3440                if ((wdtr_able & ADV_TID_TO_TIDMASK(i)) &&
3441                    (wdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3442                        seq_putc(m, '*');
3443                        renegotiate = 1;
3444                }
3445        }
3446        seq_putc(m, '\n');
3447
3448        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
3449        seq_puts(m, " Synchronous Enabled:");
3450        for (i = 0; i <= ADV_MAX_TID; i++) {
3451                if ((chip_scsi_id == i) ||
3452                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0)) {
3453                        continue;
3454                }
3455
3456                seq_printf(m, " %X:%c",
3457                           i,
3458                           (sdtr_able & ADV_TID_TO_TIDMASK(i)) ? 'Y' : 'N');
3459        }
3460        seq_putc(m, '\n');
3461
3462        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, sdtr_done);
3463        for (i = 0; i <= ADV_MAX_TID; i++) {
3464
3465                AdvReadWordLram(iop_base,
3466                                ASC_MC_DEVICE_HSHK_CFG_TABLE + (2 * i),
3467                                lramword);
3468                lramword &= ~0x8000;
3469
3470                if ((chip_scsi_id == i) ||
3471                    ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(i)) == 0) ||
3472                    ((sdtr_able & ADV_TID_TO_TIDMASK(i)) == 0)) {
3473                        continue;
3474                }
3475
3476                seq_printf(m, "  %X:", i);
3477
3478                if ((lramword & 0x1F) == 0) {   /* Check for REQ/ACK Offset 0. */
3479                        seq_puts(m, " Asynchronous");
3480                } else {
3481                        seq_puts(m, " Transfer Period Factor: ");
3482
3483                        if ((lramword & 0x1F00) == 0x1100) {    /* 80 Mhz */
3484                                seq_puts(m, "9 (80.0 Mhz),");
3485                        } else if ((lramword & 0x1F00) == 0x1000) {     /* 40 Mhz */
3486                                seq_puts(m, "10 (40.0 Mhz),");
3487                        } else {        /* 20 Mhz or below. */
3488
3489                                period = (((lramword >> 8) * 25) + 50) / 4;
3490
3491                                if (period == 0) {      /* Should never happen. */
3492                                        seq_printf(m, "%d (? Mhz), ", period);
3493                                } else {
3494                                        seq_printf(m,
3495                                                   "%d (%d.%d Mhz),",
3496                                                   period, 250 / period,
3497                                                   ASC_TENTHS(250, period));
3498                                }
3499                        }
3500
3501                        seq_printf(m, " REQ/ACK Offset: %d",
3502                                   lramword & 0x1F);
3503                }
3504
3505                if ((sdtr_done & ADV_TID_TO_TIDMASK(i)) == 0) {
3506                        seq_puts(m, "*\n");
3507                        renegotiate = 1;
3508                } else {
3509                        seq_putc(m, '\n');
3510                }
3511        }
3512
3513        if (renegotiate) {
3514                seq_puts(m, " * = Re-negotiation pending before next command.\n");
3515        }
3516}
3517
3518#ifdef ADVANSYS_STATS
3519/*
3520 * asc_prt_board_stats()
3521 */
3522static void asc_prt_board_stats(struct seq_file *m, struct Scsi_Host *shost)
3523{
3524        struct asc_board *boardp = shost_priv(shost);
3525        struct asc_stats *s = &boardp->asc_stats;
3526
3527        seq_printf(m,
3528                   "\nLinux Driver Statistics for AdvanSys SCSI Host %d:\n",
3529                   shost->host_no);
3530
3531        seq_printf(m,
3532                   " queuecommand %u, reset %u, biosparam %u, interrupt %u\n",
3533                   s->queuecommand, s->reset, s->biosparam,
3534                   s->interrupt);
3535
3536        seq_printf(m,
3537                   " callback %u, done %u, build_error %u, build_noreq %u, build_nosg %u\n",
3538                   s->callback, s->done, s->build_error,
3539                   s->adv_build_noreq, s->adv_build_nosg);
3540
3541        seq_printf(m,
3542                   " exe_noerror %u, exe_busy %u, exe_error %u, exe_unknown %u\n",
3543                   s->exe_noerror, s->exe_busy, s->exe_error,
3544                   s->exe_unknown);
3545
3546        /*
3547         * Display data transfer statistics.
3548         */
3549        if (s->xfer_cnt > 0) {
3550                seq_printf(m, " xfer_cnt %u, xfer_elem %u, ",
3551                           s->xfer_cnt, s->xfer_elem);
3552
3553                seq_printf(m, "xfer_bytes %u.%01u kb\n",
3554                           s->xfer_sect / 2, ASC_TENTHS(s->xfer_sect, 2));
3555
3556                /* Scatter gather transfer statistics */
3557                seq_printf(m, " avg_num_elem %u.%01u, ",
3558                           s->xfer_elem / s->xfer_cnt,
3559                           ASC_TENTHS(s->xfer_elem, s->xfer_cnt));
3560
3561                seq_printf(m, "avg_elem_size %u.%01u kb, ",
3562                           (s->xfer_sect / 2) / s->xfer_elem,
3563                           ASC_TENTHS((s->xfer_sect / 2), s->xfer_elem));
3564
3565                seq_printf(m, "avg_xfer_size %u.%01u kb\n",
3566                           (s->xfer_sect / 2) / s->xfer_cnt,
3567                           ASC_TENTHS((s->xfer_sect / 2), s->xfer_cnt));
3568        }
3569}
3570#endif /* ADVANSYS_STATS */
3571
3572/*
3573 * advansys_show_info() - /proc/scsi/advansys/{0,1,2,3,...}
3574 *
3575 * m: seq_file to print into
3576 * shost: Scsi_Host
3577 *
3578 * Return the number of bytes read from or written to a
3579 * /proc/scsi/advansys/[0...] file.
3580 */
3581static int
3582advansys_show_info(struct seq_file *m, struct Scsi_Host *shost)
3583{
3584        struct asc_board *boardp = shost_priv(shost);
3585
3586        ASC_DBG(1, "begin\n");
3587
3588        /*
3589         * User read of /proc/scsi/advansys/[0...] file.
3590         */
3591
3592        /*
3593         * Get board configuration information.
3594         *
3595         * advansys_info() returns the board string from its own static buffer.
3596         */
3597        /* Copy board information. */
3598        seq_printf(m, "%s\n", (char *)advansys_info(shost));
3599        /*
3600         * Display Wide Board BIOS Information.
3601         */
3602        if (!ASC_NARROW_BOARD(boardp))
3603                asc_prt_adv_bios(m, shost);
3604
3605        /*
3606         * Display driver information for each device attached to the board.
3607         */
3608        asc_prt_board_devices(m, shost);
3609
3610        /*
3611         * Display EEPROM configuration for the board.
3612         */
3613        if (ASC_NARROW_BOARD(boardp))
3614                asc_prt_asc_board_eeprom(m, shost);
3615        else
3616                asc_prt_adv_board_eeprom(m, shost);
3617
3618        /*
3619         * Display driver configuration and information for the board.
3620         */
3621        asc_prt_driver_conf(m, shost);
3622
3623#ifdef ADVANSYS_STATS
3624        /*
3625         * Display driver statistics for the board.
3626         */
3627        asc_prt_board_stats(m, shost);
3628#endif /* ADVANSYS_STATS */
3629
3630        /*
3631         * Display Asc Library dynamic configuration information
3632         * for the board.
3633         */
3634        if (ASC_NARROW_BOARD(boardp))
3635                asc_prt_asc_board_info(m, shost);
3636        else
3637                asc_prt_adv_board_info(m, shost);
3638        return 0;
3639}
3640#endif /* CONFIG_PROC_FS */
3641
3642static void asc_scsi_done(struct scsi_cmnd *scp)
3643{
3644        scsi_dma_unmap(scp);
3645        ASC_STATS(scp->device->host, done);
3646        scp->scsi_done(scp);
3647}
3648
3649static void AscSetBank(PortAddr iop_base, uchar bank)
3650{
3651        uchar val;
3652
3653        val = AscGetChipControl(iop_base) &
3654            (~
3655             (CC_SINGLE_STEP | CC_TEST | CC_DIAG | CC_SCSI_RESET |
3656              CC_CHIP_RESET));
3657        if (bank == 1) {
3658                val |= CC_BANK_ONE;
3659        } else if (bank == 2) {
3660                val |= CC_DIAG | CC_BANK_ONE;
3661        } else {
3662                val &= ~CC_BANK_ONE;
3663        }
3664        AscSetChipControl(iop_base, val);
3665}
3666
3667static void AscSetChipIH(PortAddr iop_base, ushort ins_code)
3668{
3669        AscSetBank(iop_base, 1);
3670        AscWriteChipIH(iop_base, ins_code);
3671        AscSetBank(iop_base, 0);
3672}
3673
3674static int AscStartChip(PortAddr iop_base)
3675{
3676        AscSetChipControl(iop_base, 0);
3677        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3678                return (0);
3679        }
3680        return (1);
3681}
3682
3683static bool AscStopChip(PortAddr iop_base)
3684{
3685        uchar cc_val;
3686
3687        cc_val =
3688            AscGetChipControl(iop_base) &
3689            (~(CC_SINGLE_STEP | CC_TEST | CC_DIAG));
3690        AscSetChipControl(iop_base, (uchar)(cc_val | CC_HALT));
3691        AscSetChipIH(iop_base, INS_HALT);
3692        AscSetChipIH(iop_base, INS_RFLAG_WTM);
3693        if ((AscGetChipStatus(iop_base) & CSW_HALTED) == 0) {
3694                return false;
3695        }
3696        return true;
3697}
3698
3699static bool AscIsChipHalted(PortAddr iop_base)
3700{
3701        if ((AscGetChipStatus(iop_base) & CSW_HALTED) != 0) {
3702                if ((AscGetChipControl(iop_base) & CC_HALT) != 0) {
3703                        return true;
3704                }
3705        }
3706        return false;
3707}
3708
3709static bool AscResetChipAndScsiBus(ASC_DVC_VAR *asc_dvc)
3710{
3711        PortAddr iop_base;
3712        int i = 10;
3713
3714        iop_base = asc_dvc->iop_base;
3715        while ((AscGetChipStatus(iop_base) & CSW_SCSI_RESET_ACTIVE)
3716               && (i-- > 0)) {
3717                mdelay(100);
3718        }
3719        AscStopChip(iop_base);
3720        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_SCSI_RESET | CC_HALT);
3721        udelay(60);
3722        AscSetChipIH(iop_base, INS_RFLAG_WTM);
3723        AscSetChipIH(iop_base, INS_HALT);
3724        AscSetChipControl(iop_base, CC_CHIP_RESET | CC_HALT);
3725        AscSetChipControl(iop_base, CC_HALT);
3726        mdelay(200);
3727        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
3728        AscSetChipStatus(iop_base, 0);
3729        return (AscIsChipHalted(iop_base));
3730}
3731
3732static int AscFindSignature(PortAddr iop_base)
3733{
3734        ushort sig_word;
3735
3736        ASC_DBG(1, "AscGetChipSignatureByte(0x%x) 0x%x\n",
3737                 iop_base, AscGetChipSignatureByte(iop_base));
3738        if (AscGetChipSignatureByte(iop_base) == (uchar)ASC_1000_ID1B) {
3739                ASC_DBG(1, "AscGetChipSignatureWord(0x%x) 0x%x\n",
3740                         iop_base, AscGetChipSignatureWord(iop_base));
3741                sig_word = AscGetChipSignatureWord(iop_base);
3742                if ((sig_word == (ushort)ASC_1000_ID0W) ||
3743                    (sig_word == (ushort)ASC_1000_ID0W_FIX)) {
3744                        return (1);
3745                }
3746        }
3747        return (0);
3748}
3749
3750static void AscEnableInterrupt(PortAddr iop_base)
3751{
3752        ushort cfg;
3753
3754        cfg = AscGetChipCfgLsw(iop_base);
3755        AscSetChipCfgLsw(iop_base, cfg | ASC_CFG0_HOST_INT_ON);
3756}
3757
3758static void AscDisableInterrupt(PortAddr iop_base)
3759{
3760        ushort cfg;
3761
3762        cfg = AscGetChipCfgLsw(iop_base);
3763        AscSetChipCfgLsw(iop_base, cfg & (~ASC_CFG0_HOST_INT_ON));
3764}
3765
3766static uchar AscReadLramByte(PortAddr iop_base, ushort addr)
3767{
3768        unsigned char byte_data;
3769        unsigned short word_data;
3770
3771        if (isodd_word(addr)) {
3772                AscSetChipLramAddr(iop_base, addr - 1);
3773                word_data = AscGetChipLramData(iop_base);
3774                byte_data = (word_data >> 8) & 0xFF;
3775        } else {
3776                AscSetChipLramAddr(iop_base, addr);
3777                word_data = AscGetChipLramData(iop_base);
3778                byte_data = word_data & 0xFF;
3779        }
3780        return byte_data;
3781}
3782
3783static ushort AscReadLramWord(PortAddr iop_base, ushort addr)
3784{
3785        ushort word_data;
3786
3787        AscSetChipLramAddr(iop_base, addr);
3788        word_data = AscGetChipLramData(iop_base);
3789        return (word_data);
3790}
3791
3792static void
3793AscMemWordSetLram(PortAddr iop_base, ushort s_addr, ushort set_wval, int words)
3794{
3795        int i;
3796
3797        AscSetChipLramAddr(iop_base, s_addr);
3798        for (i = 0; i < words; i++) {
3799                AscSetChipLramData(iop_base, set_wval);
3800        }
3801}
3802
3803static void AscWriteLramWord(PortAddr iop_base, ushort addr, ushort word_val)
3804{
3805        AscSetChipLramAddr(iop_base, addr);
3806        AscSetChipLramData(iop_base, word_val);
3807}
3808
3809static void AscWriteLramByte(PortAddr iop_base, ushort addr, uchar byte_val)
3810{
3811        ushort word_data;
3812
3813        if (isodd_word(addr)) {
3814                addr--;
3815                word_data = AscReadLramWord(iop_base, addr);
3816                word_data &= 0x00FF;
3817                word_data |= (((ushort)byte_val << 8) & 0xFF00);
3818        } else {
3819                word_data = AscReadLramWord(iop_base, addr);
3820                word_data &= 0xFF00;
3821                word_data |= ((ushort)byte_val & 0x00FF);
3822        }
3823        AscWriteLramWord(iop_base, addr, word_data);
3824}
3825
3826/*
3827 * Copy 2 bytes to LRAM.
3828 *
3829 * The source data is assumed to be in little-endian order in memory
3830 * and is maintained in little-endian order when written to LRAM.
3831 */
3832static void
3833AscMemWordCopyPtrToLram(PortAddr iop_base, ushort s_addr,
3834                        const uchar *s_buffer, int words)
3835{
3836        int i;
3837
3838        AscSetChipLramAddr(iop_base, s_addr);
3839        for (i = 0; i < 2 * words; i += 2) {
3840                /*
3841                 * On a little-endian system the second argument below
3842                 * produces a little-endian ushort which is written to
3843                 * LRAM in little-endian order. On a big-endian system
3844                 * the second argument produces a big-endian ushort which
3845                 * is "transparently" byte-swapped by outpw() and written
3846                 * in little-endian order to LRAM.
3847                 */
3848                outpw(iop_base + IOP_RAM_DATA,
3849                      ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);
3850        }
3851}
3852
3853/*
3854 * Copy 4 bytes to LRAM.
3855 *
3856 * The source data is assumed to be in little-endian order in memory
3857 * and is maintained in little-endian order when written to LRAM.
3858 */
3859static void
3860AscMemDWordCopyPtrToLram(PortAddr iop_base,
3861                         ushort s_addr, uchar *s_buffer, int dwords)
3862{
3863        int i;
3864
3865        AscSetChipLramAddr(iop_base, s_addr);
3866        for (i = 0; i < 4 * dwords; i += 4) {
3867                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 1] << 8) | s_buffer[i]);   /* LSW */
3868                outpw(iop_base + IOP_RAM_DATA, ((ushort)s_buffer[i + 3] << 8) | s_buffer[i + 2]);       /* MSW */
3869        }
3870}
3871
3872/*
3873 * Copy 2 bytes from LRAM.
3874 *
3875 * The source data is assumed to be in little-endian order in LRAM
3876 * and is maintained in little-endian order when written to memory.
3877 */
3878static void
3879AscMemWordCopyPtrFromLram(PortAddr iop_base,
3880                          ushort s_addr, uchar *d_buffer, int words)
3881{
3882        int i;
3883        ushort word;
3884
3885        AscSetChipLramAddr(iop_base, s_addr);
3886        for (i = 0; i < 2 * words; i += 2) {
3887                word = inpw(iop_base + IOP_RAM_DATA);
3888                d_buffer[i] = word & 0xff;
3889                d_buffer[i + 1] = (word >> 8) & 0xff;
3890        }
3891}
3892
3893static u32 AscMemSumLramWord(PortAddr iop_base, ushort s_addr, int words)
3894{
3895        u32 sum = 0;
3896        int i;
3897
3898        for (i = 0; i < words; i++, s_addr += 2) {
3899                sum += AscReadLramWord(iop_base, s_addr);
3900        }
3901        return (sum);
3902}
3903
3904static void AscInitLram(ASC_DVC_VAR *asc_dvc)
3905{
3906        uchar i;
3907        ushort s_addr;
3908        PortAddr iop_base;
3909
3910        iop_base = asc_dvc->iop_base;
3911        AscMemWordSetLram(iop_base, ASC_QADR_BEG, 0,
3912                          (ushort)(((int)(asc_dvc->max_total_qng + 2 + 1) *
3913                                    64) >> 1));
3914        i = ASC_MIN_ACTIVE_QNO;
3915        s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
3916        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3917                         (uchar)(i + 1));
3918        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3919                         (uchar)(asc_dvc->max_total_qng));
3920        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3921                         (uchar)i);
3922        i++;
3923        s_addr += ASC_QBLK_SIZE;
3924        for (; i < asc_dvc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
3925                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3926                                 (uchar)(i + 1));
3927                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3928                                 (uchar)(i - 1));
3929                AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3930                                 (uchar)i);
3931        }
3932        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_FWD),
3933                         (uchar)ASC_QLINK_END);
3934        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_BWD),
3935                         (uchar)(asc_dvc->max_total_qng - 1));
3936        AscWriteLramByte(iop_base, (ushort)(s_addr + ASC_SCSIQ_B_QNO),
3937                         (uchar)asc_dvc->max_total_qng);
3938        i++;
3939        s_addr += ASC_QBLK_SIZE;
3940        for (; i <= (uchar)(asc_dvc->max_total_qng + 3);
3941             i++, s_addr += ASC_QBLK_SIZE) {
3942                AscWriteLramByte(iop_base,
3943                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_FWD), i);
3944                AscWriteLramByte(iop_base,
3945                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_BWD), i);
3946                AscWriteLramByte(iop_base,
3947                                 (ushort)(s_addr + (ushort)ASC_SCSIQ_B_QNO), i);
3948        }
3949}
3950
3951static u32
3952AscLoadMicroCode(PortAddr iop_base, ushort s_addr,
3953                 const uchar *mcode_buf, ushort mcode_size)
3954{
3955        u32 chksum;
3956        ushort mcode_word_size;
3957        ushort mcode_chksum;
3958
3959        /* Write the microcode buffer starting at LRAM address 0. */
3960        mcode_word_size = (ushort)(mcode_size >> 1);
3961        AscMemWordSetLram(iop_base, s_addr, 0, mcode_word_size);
3962        AscMemWordCopyPtrToLram(iop_base, s_addr, mcode_buf, mcode_word_size);
3963
3964        chksum = AscMemSumLramWord(iop_base, s_addr, mcode_word_size);
3965        ASC_DBG(1, "chksum 0x%lx\n", (ulong)chksum);
3966        mcode_chksum = (ushort)AscMemSumLramWord(iop_base,
3967                                                 (ushort)ASC_CODE_SEC_BEG,
3968                                                 (ushort)((mcode_size -
3969                                                           s_addr - (ushort)
3970                                                           ASC_CODE_SEC_BEG) /
3971                                                          2));
3972        ASC_DBG(1, "mcode_chksum 0x%lx\n", (ulong)mcode_chksum);
3973        AscWriteLramWord(iop_base, ASCV_MCODE_CHKSUM_W, mcode_chksum);
3974        AscWriteLramWord(iop_base, ASCV_MCODE_SIZE_W, mcode_size);
3975        return chksum;
3976}
3977
3978static void AscInitQLinkVar(ASC_DVC_VAR *asc_dvc)
3979{
3980        PortAddr iop_base;
3981        int i;
3982        ushort lram_addr;
3983
3984        iop_base = asc_dvc->iop_base;
3985        AscPutRiscVarFreeQHead(iop_base, 1);
3986        AscPutRiscVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3987        AscPutVarFreeQHead(iop_base, 1);
3988        AscPutVarDoneQTail(iop_base, asc_dvc->max_total_qng);
3989        AscWriteLramByte(iop_base, ASCV_BUSY_QHEAD_B,
3990                         (uchar)((int)asc_dvc->max_total_qng + 1));
3991        AscWriteLramByte(iop_base, ASCV_DISC1_QHEAD_B,
3992                         (uchar)((int)asc_dvc->max_total_qng + 2));
3993        AscWriteLramByte(iop_base, (ushort)ASCV_TOTAL_READY_Q_B,
3994                         asc_dvc->max_total_qng);
3995        AscWriteLramWord(iop_base, ASCV_ASCDVC_ERR_CODE_W, 0);
3996        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
3997        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, 0);
3998        AscWriteLramByte(iop_base, ASCV_SCSIBUSY_B, 0);
3999        AscWriteLramByte(iop_base, ASCV_WTM_FLAG_B, 0);
4000        AscPutQDoneInProgress(iop_base, 0);
4001        lram_addr = ASC_QADR_BEG;
4002        for (i = 0; i < 32; i++, lram_addr += 2) {
4003                AscWriteLramWord(iop_base, lram_addr, 0);
4004        }
4005}
4006
4007static int AscInitMicroCodeVar(ASC_DVC_VAR *asc_dvc)
4008{
4009        int i;
4010        int warn_code;
4011        PortAddr iop_base;
4012        __le32 phy_addr;
4013        __le32 phy_size;
4014        struct asc_board *board = asc_dvc_to_board(asc_dvc);
4015
4016        iop_base = asc_dvc->iop_base;
4017        warn_code = 0;
4018        for (i = 0; i <= ASC_MAX_TID; i++) {
4019                AscPutMCodeInitSDTRAtID(iop_base, i,
4020                                        asc_dvc->cfg->sdtr_period_offset[i]);
4021        }
4022
4023        AscInitQLinkVar(asc_dvc);
4024        AscWriteLramByte(iop_base, ASCV_DISC_ENABLE_B,
4025                         asc_dvc->cfg->disc_enable);
4026        AscWriteLramByte(iop_base, ASCV_HOSTSCSI_ID_B,
4027                         ASC_TID_TO_TARGET_ID(asc_dvc->cfg->chip_scsi_id));
4028
4029        /* Ensure overrun buffer is aligned on an 8 byte boundary. */
4030        BUG_ON((unsigned long)asc_dvc->overrun_buf & 7);
4031        asc_dvc->overrun_dma = dma_map_single(board->dev, asc_dvc->overrun_buf,
4032                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4033        if (dma_mapping_error(board->dev, asc_dvc->overrun_dma)) {
4034                warn_code = -ENOMEM;
4035                goto err_dma_map;
4036        }
4037        phy_addr = cpu_to_le32(asc_dvc->overrun_dma);
4038        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_PADDR_D,
4039                                 (uchar *)&phy_addr, 1);
4040        phy_size = cpu_to_le32(ASC_OVERRUN_BSIZE);
4041        AscMemDWordCopyPtrToLram(iop_base, ASCV_OVERRUN_BSIZE_D,
4042                                 (uchar *)&phy_size, 1);
4043
4044        asc_dvc->cfg->mcode_date =
4045            AscReadLramWord(iop_base, (ushort)ASCV_MC_DATE_W);
4046        asc_dvc->cfg->mcode_version =
4047            AscReadLramWord(iop_base, (ushort)ASCV_MC_VER_W);
4048
4049        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
4050        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
4051                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
4052                warn_code = -EINVAL;
4053                goto err_mcode_start;
4054        }
4055        if (AscStartChip(iop_base) != 1) {
4056                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
4057                warn_code = -EIO;
4058                goto err_mcode_start;
4059        }
4060
4061        return warn_code;
4062
4063err_mcode_start:
4064        dma_unmap_single(board->dev, asc_dvc->overrun_dma,
4065                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
4066err_dma_map:
4067        asc_dvc->overrun_dma = 0;
4068        return warn_code;
4069}
4070
4071static int AscInitAsc1000Driver(ASC_DVC_VAR *asc_dvc)
4072{
4073        const struct firmware *fw;
4074        const char fwname[] = "advansys/mcode.bin";
4075        int err;
4076        unsigned long chksum;
4077        int warn_code;
4078        PortAddr iop_base;
4079
4080        iop_base = asc_dvc->iop_base;
4081        warn_code = 0;
4082        if ((asc_dvc->dvc_cntl & ASC_CNTL_RESET_SCSI) &&
4083            !(asc_dvc->init_state & ASC_INIT_RESET_SCSI_DONE)) {
4084                AscResetChipAndScsiBus(asc_dvc);
4085                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
4086        }
4087        asc_dvc->init_state |= ASC_INIT_STATE_BEG_LOAD_MC;
4088        if (asc_dvc->err_code != 0)
4089                return ASC_ERROR;
4090        if (!AscFindSignature(asc_dvc->iop_base)) {
4091                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
4092                return warn_code;
4093        }
4094        AscDisableInterrupt(iop_base);
4095        AscInitLram(asc_dvc);
4096
4097        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4098        if (err) {
4099                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4100                       fwname, err);
4101                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4102                return err;
4103        }
4104        if (fw->size < 4) {
4105                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4106                       fw->size, fwname);
4107                release_firmware(fw);
4108                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4109                return -EINVAL;
4110        }
4111        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4112                 (fw->data[1] << 8) | fw->data[0];
4113        ASC_DBG(1, "_asc_mcode_chksum 0x%lx\n", (ulong)chksum);
4114        if (AscLoadMicroCode(iop_base, 0, &fw->data[4],
4115                             fw->size - 4) != chksum) {
4116                asc_dvc->err_code |= ASC_IERR_MCODE_CHKSUM;
4117                release_firmware(fw);
4118                return warn_code;
4119        }
4120        release_firmware(fw);
4121        warn_code |= AscInitMicroCodeVar(asc_dvc);
4122        if (!asc_dvc->overrun_dma)
4123                return warn_code;
4124        asc_dvc->init_state |= ASC_INIT_STATE_END_LOAD_MC;
4125        AscEnableInterrupt(iop_base);
4126        return warn_code;
4127}
4128
4129/*
4130 * Load the Microcode
4131 *
4132 * Write the microcode image to RISC memory starting at address 0.
4133 *
4134 * The microcode is stored compressed in the following format:
4135 *
4136 *  254 word (508 byte) table indexed by byte code followed
4137 *  by the following byte codes:
4138 *
4139 *    1-Byte Code:
4140 *      00: Emit word 0 in table.
4141 *      01: Emit word 1 in table.
4142 *      .
4143 *      FD: Emit word 253 in table.
4144 *
4145 *    Multi-Byte Code:
4146 *      FE WW WW: (3 byte code) Word to emit is the next word WW WW.
4147 *      FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
4148 *
4149 * Returns 0 or an error if the checksum doesn't match
4150 */
4151static int AdvLoadMicrocode(AdvPortAddr iop_base, const unsigned char *buf,
4152                            int size, int memsize, int chksum)
4153{
4154        int i, j, end, len = 0;
4155        u32 sum;
4156
4157        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4158
4159        for (i = 253 * 2; i < size; i++) {
4160                if (buf[i] == 0xff) {
4161                        unsigned short word = (buf[i + 3] << 8) | buf[i + 2];
4162                        for (j = 0; j < buf[i + 1]; j++) {
4163                                AdvWriteWordAutoIncLram(iop_base, word);
4164                                len += 2;
4165                        }
4166                        i += 3;
4167                } else if (buf[i] == 0xfe) {
4168                        unsigned short word = (buf[i + 2] << 8) | buf[i + 1];
4169                        AdvWriteWordAutoIncLram(iop_base, word);
4170                        i += 2;
4171                        len += 2;
4172                } else {
4173                        unsigned int off = buf[i] * 2;
4174                        unsigned short word = (buf[off + 1] << 8) | buf[off];
4175                        AdvWriteWordAutoIncLram(iop_base, word);
4176                        len += 2;
4177                }
4178        }
4179
4180        end = len;
4181
4182        while (len < memsize) {
4183                AdvWriteWordAutoIncLram(iop_base, 0);
4184                len += 2;
4185        }
4186
4187        /* Verify the microcode checksum. */
4188        sum = 0;
4189        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, 0);
4190
4191        for (len = 0; len < end; len += 2) {
4192                sum += AdvReadWordAutoIncLram(iop_base);
4193        }
4194
4195        if (sum != chksum)
4196                return ASC_IERR_MCODE_CHKSUM;
4197
4198        return 0;
4199}
4200
4201static void AdvBuildCarrierFreelist(struct adv_dvc_var *adv_dvc)
4202{
4203        off_t carr_offset = 0, next_offset;
4204        dma_addr_t carr_paddr;
4205        int carr_num = ADV_CARRIER_BUFSIZE / sizeof(ADV_CARR_T), i;
4206
4207        for (i = 0; i < carr_num; i++) {
4208                carr_offset = i * sizeof(ADV_CARR_T);
4209                /* Get physical address of the carrier 'carrp'. */
4210                carr_paddr = adv_dvc->carrier_addr + carr_offset;
4211
4212                adv_dvc->carrier[i].carr_pa = cpu_to_le32(carr_paddr);
4213                adv_dvc->carrier[i].carr_va = cpu_to_le32(carr_offset);
4214                adv_dvc->carrier[i].areq_vpa = 0;
4215                next_offset = carr_offset + sizeof(ADV_CARR_T);
4216                if (i == carr_num)
4217                        next_offset = ~0;
4218                adv_dvc->carrier[i].next_vpa = cpu_to_le32(next_offset);
4219        }
4220        /*
4221         * We cannot have a carrier with 'carr_va' of '0', as
4222         * a reference to this carrier would be interpreted as
4223         * list termination.
4224         * So start at carrier 1 with the freelist.
4225         */
4226        adv_dvc->carr_freelist = &adv_dvc->carrier[1];
4227}
4228
4229static ADV_CARR_T *adv_get_carrier(struct adv_dvc_var *adv_dvc, u32 offset)
4230{
4231        int index;
4232
4233        BUG_ON(offset > ADV_CARRIER_BUFSIZE);
4234
4235        index = offset / sizeof(ADV_CARR_T);
4236        return &adv_dvc->carrier[index];
4237}
4238
4239static ADV_CARR_T *adv_get_next_carrier(struct adv_dvc_var *adv_dvc)
4240{
4241        ADV_CARR_T *carrp = adv_dvc->carr_freelist;
4242        u32 next_vpa = le32_to_cpu(carrp->next_vpa);
4243
4244        if (next_vpa == 0 || next_vpa == ~0) {
4245                ASC_DBG(1, "invalid vpa offset 0x%x\n", next_vpa);
4246                return NULL;
4247        }
4248
4249        adv_dvc->carr_freelist = adv_get_carrier(adv_dvc, next_vpa);
4250        /*
4251         * insert stopper carrier to terminate list
4252         */
4253        carrp->next_vpa = cpu_to_le32(ADV_CQ_STOPPER);
4254
4255        return carrp;
4256}
4257
4258/*
4259 * 'offset' is the index in the request pointer array
4260 */
4261static adv_req_t * adv_get_reqp(struct adv_dvc_var *adv_dvc, u32 offset)
4262{
4263        struct asc_board *boardp = adv_dvc->drv_ptr;
4264
4265        BUG_ON(offset > adv_dvc->max_host_qng);
4266        return &boardp->adv_reqp[offset];
4267}
4268
4269/*
4270 * Send an idle command to the chip and wait for completion.
4271 *
4272 * Command completion is polled for once per microsecond.
4273 *
4274 * The function can be called from anywhere including an interrupt handler.
4275 * But the function is not re-entrant, so it uses the DvcEnter/LeaveCritical()
4276 * functions to prevent reentrancy.
4277 *
4278 * Return Values:
4279 *   ADV_TRUE - command completed successfully
4280 *   ADV_FALSE - command failed
4281 *   ADV_ERROR - command timed out
4282 */
4283static int
4284AdvSendIdleCmd(ADV_DVC_VAR *asc_dvc,
4285               ushort idle_cmd, u32 idle_cmd_parameter)
4286{
4287        int result, i, j;
4288        AdvPortAddr iop_base;
4289
4290        iop_base = asc_dvc->iop_base;
4291
4292        /*
4293         * Clear the idle command status which is set by the microcode
4294         * to a non-zero value to indicate when the command is completed.
4295         * The non-zero result is one of the IDLE_CMD_STATUS_* values
4296         */
4297        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS, (ushort)0);
4298
4299        /*
4300         * Write the idle command value after the idle command parameter
4301         * has been written to avoid a race condition. If the order is not
4302         * followed, the microcode may process the idle command before the
4303         * parameters have been written to LRAM.
4304         */
4305        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IDLE_CMD_PARAMETER,
4306                                cpu_to_le32(idle_cmd_parameter));
4307        AdvWriteWordLram(iop_base, ASC_MC_IDLE_CMD, idle_cmd);
4308
4309        /*
4310         * Tickle the RISC to tell it to process the idle command.
4311         */
4312        AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_B);
4313        if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
4314                /*
4315                 * Clear the tickle value. In the ASC-3550 the RISC flag
4316                 * command 'clr_tickle_b' does not work unless the host
4317                 * value is cleared.
4318                 */
4319                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_NOP);
4320        }
4321
4322        /* Wait for up to 100 millisecond for the idle command to timeout. */
4323        for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
4324                /* Poll once each microsecond for command completion. */
4325                for (j = 0; j < SCSI_US_PER_MSEC; j++) {
4326                        AdvReadWordLram(iop_base, ASC_MC_IDLE_CMD_STATUS,
4327                                        result);
4328                        if (result != 0)
4329                                return result;
4330                        udelay(1);
4331                }
4332        }
4333
4334        BUG();          /* The idle command should never timeout. */
4335        return ADV_ERROR;
4336}
4337
4338/*
4339 * Reset SCSI Bus and purge all outstanding requests.
4340 *
4341 * Return Value:
4342 *      ADV_TRUE(1) -   All requests are purged and SCSI Bus is reset.
4343 *      ADV_FALSE(0) -  Microcode command failed.
4344 *      ADV_ERROR(-1) - Microcode command timed-out. Microcode or IC
4345 *                      may be hung which requires driver recovery.
4346 */
4347static int AdvResetSB(ADV_DVC_VAR *asc_dvc)
4348{
4349        int status;
4350
4351        /*
4352         * Send the SCSI Bus Reset idle start idle command which asserts
4353         * the SCSI Bus Reset signal.
4354         */
4355        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_START, 0L);
4356        if (status != ADV_TRUE) {
4357                return status;
4358        }
4359
4360        /*
4361         * Delay for the specified SCSI Bus Reset hold time.
4362         *
4363         * The hold time delay is done on the host because the RISC has no
4364         * microsecond accurate timer.
4365         */
4366        udelay(ASC_SCSI_RESET_HOLD_TIME_US);
4367
4368        /*
4369         * Send the SCSI Bus Reset end idle command which de-asserts
4370         * the SCSI Bus Reset signal and purges any pending requests.
4371         */
4372        status = AdvSendIdleCmd(asc_dvc, (ushort)IDLE_CMD_SCSI_RESET_END, 0L);
4373        if (status != ADV_TRUE) {
4374                return status;
4375        }
4376
4377        mdelay(asc_dvc->scsi_reset_wait * 1000);        /* XXX: msleep? */
4378
4379        return status;
4380}
4381
4382/*
4383 * Initialize the ASC-3550.
4384 *
4385 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4386 *
4387 * For a non-fatal error return a warning code. If there are no warnings
4388 * then 0 is returned.
4389 *
4390 * Needed after initialization for error recovery.
4391 */
4392static int AdvInitAsc3550Driver(ADV_DVC_VAR *asc_dvc)
4393{
4394        const struct firmware *fw;
4395        const char fwname[] = "advansys/3550.bin";
4396        AdvPortAddr iop_base;
4397        ushort warn_code;
4398        int begin_addr;
4399        int end_addr;
4400        ushort code_sum;
4401        int word;
4402        int i;
4403        int err;
4404        unsigned long chksum;
4405        ushort scsi_cfg1;
4406        uchar tid;
4407        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4408        ushort wdtr_able = 0, sdtr_able, tagqng_able;
4409        uchar max_cmd[ADV_MAX_TID + 1];
4410
4411        /* If there is already an error, don't continue. */
4412        if (asc_dvc->err_code != 0)
4413                return ADV_ERROR;
4414
4415        /*
4416         * The caller must set 'chip_type' to ADV_CHIP_ASC3550.
4417         */
4418        if (asc_dvc->chip_type != ADV_CHIP_ASC3550) {
4419                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4420                return ADV_ERROR;
4421        }
4422
4423        warn_code = 0;
4424        iop_base = asc_dvc->iop_base;
4425
4426        /*
4427         * Save the RISC memory BIOS region before writing the microcode.
4428         * The BIOS may already be loaded and using its RISC LRAM region
4429         * so its region must be saved and restored.
4430         *
4431         * Note: This code makes the assumption, which is currently true,
4432         * that a chip reset does not clear RISC LRAM.
4433         */
4434        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4435                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4436                                bios_mem[i]);
4437        }
4438
4439        /*
4440         * Save current per TID negotiated values.
4441         */
4442        if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] == 0x55AA) {
4443                ushort bios_version, major, minor;
4444
4445                bios_version =
4446                    bios_mem[(ASC_MC_BIOS_VERSION - ASC_MC_BIOSMEM) / 2];
4447                major = (bios_version >> 12) & 0xF;
4448                minor = (bios_version >> 8) & 0xF;
4449                if (major < 3 || (major == 3 && minor == 1)) {
4450                        /* BIOS 3.1 and earlier location of 'wdtr_able' variable. */
4451                        AdvReadWordLram(iop_base, 0x120, wdtr_able);
4452                } else {
4453                        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4454                }
4455        }
4456        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4457        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4458        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4459                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4460                                max_cmd[tid]);
4461        }
4462
4463        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4464        if (err) {
4465                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4466                       fwname, err);
4467                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4468                return err;
4469        }
4470        if (fw->size < 4) {
4471                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4472                       fw->size, fwname);
4473                release_firmware(fw);
4474                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4475                return -EINVAL;
4476        }
4477        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4478                 (fw->data[1] << 8) | fw->data[0];
4479        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4480                                             fw->size - 4, ADV_3550_MEMSIZE,
4481                                             chksum);
4482        release_firmware(fw);
4483        if (asc_dvc->err_code)
4484                return ADV_ERROR;
4485
4486        /*
4487         * Restore the RISC memory BIOS region.
4488         */
4489        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4490                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4491                                 bios_mem[i]);
4492        }
4493
4494        /*
4495         * Calculate and write the microcode code checksum to the microcode
4496         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4497         */
4498        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4499        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
4500        code_sum = 0;
4501        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
4502        for (word = begin_addr; word < end_addr; word += 2) {
4503                code_sum += AdvReadWordAutoIncLram(iop_base);
4504        }
4505        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
4506
4507        /*
4508         * Read and save microcode version and date.
4509         */
4510        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
4511                        asc_dvc->cfg->mcode_date);
4512        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
4513                        asc_dvc->cfg->mcode_version);
4514
4515        /*
4516         * Set the chip type to indicate the ASC3550.
4517         */
4518        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC3550);
4519
4520        /*
4521         * If the PCI Configuration Command Register "Parity Error Response
4522         * Control" Bit was clear (0), then set the microcode variable
4523         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
4524         * to ignore DMA parity errors.
4525         */
4526        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
4527                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4528                word |= CONTROL_FLAG_IGNORE_PERR;
4529                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
4530        }
4531
4532        /*
4533         * For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a FIFO
4534         * threshold of 128 bytes. This register is only accessible to the host.
4535         */
4536        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
4537                             START_CTL_EMFU | READ_CMD_MRM);
4538
4539        /*
4540         * Microcode operating variables for WDTR, SDTR, and command tag
4541         * queuing will be set in slave_configure() based on what a
4542         * device reports it is capable of in Inquiry byte 7.
4543         *
4544         * If SCSI Bus Resets have been disabled, then directly set
4545         * SDTR and WDTR from the EEPROM configuration. This will allow
4546         * the BIOS and warm boot to work without a SCSI bus hang on
4547         * the Inquiry caused by host and target mismatched DTR values.
4548         * Without the SCSI Bus Reset, before an Inquiry a device can't
4549         * be assumed to be in Asynchronous, Narrow mode.
4550         */
4551        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
4552                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
4553                                 asc_dvc->wdtr_able);
4554                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
4555                                 asc_dvc->sdtr_able);
4556        }
4557
4558        /*
4559         * Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
4560         * SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
4561         * bitmask. These values determine the maximum SDTR speed negotiated
4562         * with a device.
4563         *
4564         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
4565         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
4566         * without determining here whether the device supports SDTR.
4567         *
4568         * 4-bit speed  SDTR speed name
4569         * ===========  ===============
4570         * 0000b (0x0)  SDTR disabled
4571         * 0001b (0x1)  5 Mhz
4572         * 0010b (0x2)  10 Mhz
4573         * 0011b (0x3)  20 Mhz (Ultra)
4574         * 0100b (0x4)  40 Mhz (LVD/Ultra2)
4575         * 0101b (0x5)  80 Mhz (LVD2/Ultra3)
4576         * 0110b (0x6)  Undefined
4577         * .
4578         * 1111b (0xF)  Undefined
4579         */
4580        word = 0;
4581        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4582                if (ADV_TID_TO_TIDMASK(tid) & asc_dvc->ultra_able) {
4583                        /* Set Ultra speed for TID 'tid'. */
4584                        word |= (0x3 << (4 * (tid % 4)));
4585                } else {
4586                        /* Set Fast speed for TID 'tid'. */
4587                        word |= (0x2 << (4 * (tid % 4)));
4588                }
4589                if (tid == 3) { /* Check if done with sdtr_speed1. */
4590                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, word);
4591                        word = 0;
4592                } else if (tid == 7) {  /* Check if done with sdtr_speed2. */
4593                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, word);
4594                        word = 0;
4595                } else if (tid == 11) { /* Check if done with sdtr_speed3. */
4596                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, word);
4597                        word = 0;
4598                } else if (tid == 15) { /* Check if done with sdtr_speed4. */
4599                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, word);
4600                        /* End of loop. */
4601                }
4602        }
4603
4604        /*
4605         * Set microcode operating variable for the disconnect per TID bitmask.
4606         */
4607        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
4608                         asc_dvc->cfg->disc_enable);
4609
4610        /*
4611         * Set SCSI_CFG0 Microcode Default Value.
4612         *
4613         * The microcode will set the SCSI_CFG0 register using this value
4614         * after it is started below.
4615         */
4616        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
4617                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
4618                         asc_dvc->chip_scsi_id);
4619
4620        /*
4621         * Determine SCSI_CFG1 Microcode Default Value.
4622         *
4623         * The microcode will set the SCSI_CFG1 register using this value
4624         * after it is started below.
4625         */
4626
4627        /* Read current SCSI_CFG1 Register value. */
4628        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
4629
4630        /*
4631         * If all three connectors are in use, return an error.
4632         */
4633        if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
4634            (scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
4635                asc_dvc->err_code |= ASC_IERR_ILLEGAL_CONNECTION;
4636                return ADV_ERROR;
4637        }
4638
4639        /*
4640         * If the internal narrow cable is reversed all of the SCSI_CTRL
4641         * register signals will be set. Check for and return an error if
4642         * this condition is found.
4643         */
4644        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
4645                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
4646                return ADV_ERROR;
4647        }
4648
4649        /*
4650         * If this is a differential board and a single-ended device
4651         * is attached to one of the connectors, return an error.
4652         */
4653        if ((scsi_cfg1 & DIFF_MODE) && (scsi_cfg1 & DIFF_SENSE) == 0) {
4654                asc_dvc->err_code |= ASC_IERR_SINGLE_END_DEVICE;
4655                return ADV_ERROR;
4656        }
4657
4658        /*
4659         * If automatic termination control is enabled, then set the
4660         * termination value based on a table listed in a_condor.h.
4661         *
4662         * If manual termination was specified with an EEPROM setting
4663         * then 'termination' was set-up in AdvInitFrom3550EEPROM() and
4664         * is ready to be 'ored' into SCSI_CFG1.
4665         */
4666        if (asc_dvc->cfg->termination == 0) {
4667                /*
4668                 * The software always controls termination by setting TERM_CTL_SEL.
4669                 * If TERM_CTL_SEL were set to 0, the hardware would set termination.
4670                 */
4671                asc_dvc->cfg->termination |= TERM_CTL_SEL;
4672
4673                switch (scsi_cfg1 & CABLE_DETECT) {
4674                        /* TERM_CTL_H: on, TERM_CTL_L: on */
4675                case 0x3:
4676                case 0x7:
4677                case 0xB:
4678                case 0xD:
4679                case 0xE:
4680                case 0xF:
4681                        asc_dvc->cfg->termination |= (TERM_CTL_H | TERM_CTL_L);
4682                        break;
4683
4684                        /* TERM_CTL_H: on, TERM_CTL_L: off */
4685                case 0x1:
4686                case 0x5:
4687                case 0x9:
4688                case 0xA:
4689                case 0xC:
4690                        asc_dvc->cfg->termination |= TERM_CTL_H;
4691                        break;
4692
4693                        /* TERM_CTL_H: off, TERM_CTL_L: off */
4694                case 0x2:
4695                case 0x6:
4696                        break;
4697                }
4698        }
4699
4700        /*
4701         * Clear any set TERM_CTL_H and TERM_CTL_L bits.
4702         */
4703        scsi_cfg1 &= ~TERM_CTL;
4704
4705        /*
4706         * Invert the TERM_CTL_H and TERM_CTL_L bits and then
4707         * set 'scsi_cfg1'. The TERM_POL bit does not need to be
4708         * referenced, because the hardware internally inverts
4709         * the Termination High and Low bits if TERM_POL is set.
4710         */
4711        scsi_cfg1 |= (TERM_CTL_SEL | (~asc_dvc->cfg->termination & TERM_CTL));
4712
4713        /*
4714         * Set SCSI_CFG1 Microcode Default Value
4715         *
4716         * Set filter value and possibly modified termination control
4717         * bits in the Microcode SCSI_CFG1 Register Value.
4718         *
4719         * The microcode will set the SCSI_CFG1 register using this value
4720         * after it is started below.
4721         */
4722        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1,
4723                         FLTR_DISABLE | scsi_cfg1);
4724
4725        /*
4726         * Set MEM_CFG Microcode Default Value
4727         *
4728         * The microcode will set the MEM_CFG register using this value
4729         * after it is started below.
4730         *
4731         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
4732         * are defined.
4733         *
4734         * ASC-3550 has 8KB internal memory.
4735         */
4736        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
4737                         BIOS_EN | RAM_SZ_8KB);
4738
4739        /*
4740         * Set SEL_MASK Microcode Default Value
4741         *
4742         * The microcode will set the SEL_MASK register using this value
4743         * after it is started below.
4744         */
4745        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
4746                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
4747
4748        AdvBuildCarrierFreelist(asc_dvc);
4749
4750        /*
4751         * Set-up the Host->RISC Initiator Command Queue (ICQ).
4752         */
4753
4754        asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
4755        if (!asc_dvc->icq_sp) {
4756                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4757                return ADV_ERROR;
4758        }
4759
4760        /*
4761         * Set RISC ICQ physical address start value.
4762         */
4763        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
4764
4765        /*
4766         * Set-up the RISC->Host Initiator Response Queue (IRQ).
4767         */
4768        asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
4769        if (!asc_dvc->irq_sp) {
4770                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
4771                return ADV_ERROR;
4772        }
4773
4774        /*
4775         * Set RISC IRQ physical address start value.
4776         */
4777        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
4778        asc_dvc->carr_pending_cnt = 0;
4779
4780        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
4781                             (ADV_INTR_ENABLE_HOST_INTR |
4782                              ADV_INTR_ENABLE_GLOBAL_INTR));
4783
4784        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
4785        AdvWriteWordRegister(iop_base, IOPW_PC, word);
4786
4787        /* finally, finally, gentlemen, start your engine */
4788        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
4789
4790        /*
4791         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
4792         * Resets should be performed. The RISC has to be running
4793         * to issue a SCSI Bus Reset.
4794         */
4795        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
4796                /*
4797                 * If the BIOS Signature is present in memory, restore the
4798                 * BIOS Handshake Configuration Table and do not perform
4799                 * a SCSI Bus Reset.
4800                 */
4801                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
4802                    0x55AA) {
4803                        /*
4804                         * Restore per TID negotiated values.
4805                         */
4806                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4807                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4808                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
4809                                         tagqng_able);
4810                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4811                                AdvWriteByteLram(iop_base,
4812                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
4813                                                 max_cmd[tid]);
4814                        }
4815                } else {
4816                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
4817                                warn_code = ASC_WARN_BUSRESET_ERROR;
4818                        }
4819                }
4820        }
4821
4822        return warn_code;
4823}
4824
4825/*
4826 * Initialize the ASC-38C0800.
4827 *
4828 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
4829 *
4830 * For a non-fatal error return a warning code. If there are no warnings
4831 * then 0 is returned.
4832 *
4833 * Needed after initialization for error recovery.
4834 */
4835static int AdvInitAsc38C0800Driver(ADV_DVC_VAR *asc_dvc)
4836{
4837        const struct firmware *fw;
4838        const char fwname[] = "advansys/38C0800.bin";
4839        AdvPortAddr iop_base;
4840        ushort warn_code;
4841        int begin_addr;
4842        int end_addr;
4843        ushort code_sum;
4844        int word;
4845        int i;
4846        int err;
4847        unsigned long chksum;
4848        ushort scsi_cfg1;
4849        uchar byte;
4850        uchar tid;
4851        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
4852        ushort wdtr_able, sdtr_able, tagqng_able;
4853        uchar max_cmd[ADV_MAX_TID + 1];
4854
4855        /* If there is already an error, don't continue. */
4856        if (asc_dvc->err_code != 0)
4857                return ADV_ERROR;
4858
4859        /*
4860         * The caller must set 'chip_type' to ADV_CHIP_ASC38C0800.
4861         */
4862        if (asc_dvc->chip_type != ADV_CHIP_ASC38C0800) {
4863                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
4864                return ADV_ERROR;
4865        }
4866
4867        warn_code = 0;
4868        iop_base = asc_dvc->iop_base;
4869
4870        /*
4871         * Save the RISC memory BIOS region before writing the microcode.
4872         * The BIOS may already be loaded and using its RISC LRAM region
4873         * so its region must be saved and restored.
4874         *
4875         * Note: This code makes the assumption, which is currently true,
4876         * that a chip reset does not clear RISC LRAM.
4877         */
4878        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4879                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4880                                bios_mem[i]);
4881        }
4882
4883        /*
4884         * Save current per TID negotiated values.
4885         */
4886        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
4887        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
4888        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
4889        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
4890                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
4891                                max_cmd[tid]);
4892        }
4893
4894        /*
4895         * RAM BIST (RAM Built-In Self Test)
4896         *
4897         * Address : I/O base + offset 0x38h register (byte).
4898         * Function: Bit 7-6(RW) : RAM mode
4899         *                          Normal Mode   : 0x00
4900         *                          Pre-test Mode : 0x40
4901         *                          RAM Test Mode : 0x80
4902         *           Bit 5       : unused
4903         *           Bit 4(RO)   : Done bit
4904         *           Bit 3-0(RO) : Status
4905         *                          Host Error    : 0x08
4906         *                          Int_RAM Error : 0x04
4907         *                          RISC Error    : 0x02
4908         *                          SCSI Error    : 0x01
4909         *                          No Error      : 0x00
4910         *
4911         * Note: RAM BIST code should be put right here, before loading the
4912         * microcode and after saving the RISC memory BIOS region.
4913         */
4914
4915        /*
4916         * LRAM Pre-test
4917         *
4918         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
4919         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
4920         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
4921         * to NORMAL_MODE, return an error too.
4922         */
4923        for (i = 0; i < 2; i++) {
4924                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
4925                mdelay(10);     /* Wait for 10ms before reading back. */
4926                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4927                if ((byte & RAM_TEST_DONE) == 0
4928                    || (byte & 0x0F) != PRE_TEST_VALUE) {
4929                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4930                        return ADV_ERROR;
4931                }
4932
4933                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4934                mdelay(10);     /* Wait for 10ms before reading back. */
4935                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
4936                    != NORMAL_VALUE) {
4937                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
4938                        return ADV_ERROR;
4939                }
4940        }
4941
4942        /*
4943         * LRAM Test - It takes about 1.5 ms to run through the test.
4944         *
4945         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
4946         * If Done bit not set or Status not 0, save register byte, set the
4947         * err_code, and return an error.
4948         */
4949        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
4950        mdelay(10);     /* Wait for 10ms before checking status. */
4951
4952        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
4953        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
4954                /* Get here if Done bit not set or Status not 0. */
4955                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
4956                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
4957                return ADV_ERROR;
4958        }
4959
4960        /* We need to reset back to normal mode after LRAM test passes. */
4961        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
4962
4963        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
4964        if (err) {
4965                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
4966                       fwname, err);
4967                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4968                return err;
4969        }
4970        if (fw->size < 4) {
4971                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
4972                       fw->size, fwname);
4973                release_firmware(fw);
4974                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
4975                return -EINVAL;
4976        }
4977        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
4978                 (fw->data[1] << 8) | fw->data[0];
4979        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
4980                                             fw->size - 4, ADV_38C0800_MEMSIZE,
4981                                             chksum);
4982        release_firmware(fw);
4983        if (asc_dvc->err_code)
4984                return ADV_ERROR;
4985
4986        /*
4987         * Restore the RISC memory BIOS region.
4988         */
4989        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
4990                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
4991                                 bios_mem[i]);
4992        }
4993
4994        /*
4995         * Calculate and write the microcode code checksum to the microcode
4996         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
4997         */
4998        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
4999        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5000        code_sum = 0;
5001        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5002        for (word = begin_addr; word < end_addr; word += 2) {
5003                code_sum += AdvReadWordAutoIncLram(iop_base);
5004        }
5005        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5006
5007        /*
5008         * Read microcode version and date.
5009         */
5010        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5011                        asc_dvc->cfg->mcode_date);
5012        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5013                        asc_dvc->cfg->mcode_version);
5014
5015        /*
5016         * Set the chip type to indicate the ASC38C0800.
5017         */
5018        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C0800);
5019
5020        /*
5021         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5022         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5023         * cable detection and then we are able to read C_DET[3:0].
5024         *
5025         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5026         * Microcode Default Value' section below.
5027         */
5028        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5029        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5030                             scsi_cfg1 | DIS_TERM_DRV);
5031
5032        /*
5033         * If the PCI Configuration Command Register "Parity Error Response
5034         * Control" Bit was clear (0), then set the microcode variable
5035         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5036         * to ignore DMA parity errors.
5037         */
5038        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5039                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5040                word |= CONTROL_FLAG_IGNORE_PERR;
5041                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5042        }
5043
5044        /*
5045         * For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and START_CTL_TH [3:2]
5046         * bits for the default FIFO threshold.
5047         *
5048         * Note: ASC-38C0800 FIFO threshold has been changed to 256 bytes.
5049         *
5050         * For DMA Errata #4 set the BC_THRESH_ENB bit.
5051         */
5052        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5053                             BC_THRESH_ENB | FIFO_THRESH_80B | START_CTL_TH |
5054                             READ_CMD_MRM);
5055
5056        /*
5057         * Microcode operating variables for WDTR, SDTR, and command tag
5058         * queuing will be set in slave_configure() based on what a
5059         * device reports it is capable of in Inquiry byte 7.
5060         *
5061         * If SCSI Bus Resets have been disabled, then directly set
5062         * SDTR and WDTR from the EEPROM configuration. This will allow
5063         * the BIOS and warm boot to work without a SCSI bus hang on
5064         * the Inquiry caused by host and target mismatched DTR values.
5065         * Without the SCSI Bus Reset, before an Inquiry a device can't
5066         * be assumed to be in Asynchronous, Narrow mode.
5067         */
5068        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5069                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5070                                 asc_dvc->wdtr_able);
5071                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5072                                 asc_dvc->sdtr_able);
5073        }
5074
5075        /*
5076         * Set microcode operating variables for DISC and SDTR_SPEED1,
5077         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5078         * configuration values.
5079         *
5080         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5081         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5082         * without determining here whether the device supports SDTR.
5083         */
5084        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5085                         asc_dvc->cfg->disc_enable);
5086        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5087        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5088        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5089        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5090
5091        /*
5092         * Set SCSI_CFG0 Microcode Default Value.
5093         *
5094         * The microcode will set the SCSI_CFG0 register using this value
5095         * after it is started below.
5096         */
5097        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5098                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5099                         asc_dvc->chip_scsi_id);
5100
5101        /*
5102         * Determine SCSI_CFG1 Microcode Default Value.
5103         *
5104         * The microcode will set the SCSI_CFG1 register using this value
5105         * after it is started below.
5106         */
5107
5108        /* Read current SCSI_CFG1 Register value. */
5109        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5110
5111        /*
5112         * If the internal narrow cable is reversed all of the SCSI_CTRL
5113         * register signals will be set. Check for and return an error if
5114         * this condition is found.
5115         */
5116        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5117                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5118                return ADV_ERROR;
5119        }
5120
5121        /*
5122         * All kind of combinations of devices attached to one of four
5123         * connectors are acceptable except HVD device attached. For example,
5124         * LVD device can be attached to SE connector while SE device attached
5125         * to LVD connector.  If LVD device attached to SE connector, it only
5126         * runs up to Ultra speed.
5127         *
5128         * If an HVD device is attached to one of LVD connectors, return an
5129         * error.  However, there is no way to detect HVD device attached to
5130         * SE connectors.
5131         */
5132        if (scsi_cfg1 & HVD) {
5133                asc_dvc->err_code = ASC_IERR_HVD_DEVICE;
5134                return ADV_ERROR;
5135        }
5136
5137        /*
5138         * If either SE or LVD automatic termination control is enabled, then
5139         * set the termination value based on a table listed in a_condor.h.
5140         *
5141         * If manual termination was specified with an EEPROM setting then
5142         * 'termination' was set-up in AdvInitFrom38C0800EEPROM() and is ready
5143         * to be 'ored' into SCSI_CFG1.
5144         */
5145        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5146                /* SE automatic termination control is enabled. */
5147                switch (scsi_cfg1 & C_DET_SE) {
5148                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5149                case 0x1:
5150                case 0x2:
5151                case 0x3:
5152                        asc_dvc->cfg->termination |= TERM_SE;
5153                        break;
5154
5155                        /* TERM_SE_HI: on, TERM_SE_LO: off */
5156                case 0x0:
5157                        asc_dvc->cfg->termination |= TERM_SE_HI;
5158                        break;
5159                }
5160        }
5161
5162        if ((asc_dvc->cfg->termination & TERM_LVD) == 0) {
5163                /* LVD automatic termination control is enabled. */
5164                switch (scsi_cfg1 & C_DET_LVD) {
5165                        /* TERM_LVD_HI: on, TERM_LVD_LO: on */
5166                case 0x4:
5167                case 0x8:
5168                case 0xC:
5169                        asc_dvc->cfg->termination |= TERM_LVD;
5170                        break;
5171
5172                        /* TERM_LVD_HI: off, TERM_LVD_LO: off */
5173                case 0x0:
5174                        break;
5175                }
5176        }
5177
5178        /*
5179         * Clear any set TERM_SE and TERM_LVD bits.
5180         */
5181        scsi_cfg1 &= (~TERM_SE & ~TERM_LVD);
5182
5183        /*
5184         * Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
5185         */
5186        scsi_cfg1 |= (~asc_dvc->cfg->termination & 0xF0);
5187
5188        /*
5189         * Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and HVD/LVD/SE
5190         * bits and set possibly modified termination control bits in the
5191         * Microcode SCSI_CFG1 Register Value.
5192         */
5193        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL & ~HVD_LVD_SE);
5194
5195        /*
5196         * Set SCSI_CFG1 Microcode Default Value
5197         *
5198         * Set possibly modified termination control and reset DIS_TERM_DRV
5199         * bits in the Microcode SCSI_CFG1 Register Value.
5200         *
5201         * The microcode will set the SCSI_CFG1 register using this value
5202         * after it is started below.
5203         */
5204        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5205
5206        /*
5207         * Set MEM_CFG Microcode Default Value
5208         *
5209         * The microcode will set the MEM_CFG register using this value
5210         * after it is started below.
5211         *
5212         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5213         * are defined.
5214         *
5215         * ASC-38C0800 has 16KB internal memory.
5216         */
5217        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5218                         BIOS_EN | RAM_SZ_16KB);
5219
5220        /*
5221         * Set SEL_MASK Microcode Default Value
5222         *
5223         * The microcode will set the SEL_MASK register using this value
5224         * after it is started below.
5225         */
5226        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5227                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5228
5229        AdvBuildCarrierFreelist(asc_dvc);
5230
5231        /*
5232         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5233         */
5234
5235        asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5236        if (!asc_dvc->icq_sp) {
5237                ASC_DBG(0, "Failed to get ICQ carrier\n");
5238                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5239                return ADV_ERROR;
5240        }
5241
5242        /*
5243         * Set RISC ICQ physical address start value.
5244         * carr_pa is LE, must be native before write
5245         */
5246        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5247
5248        /*
5249         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5250         */
5251        asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5252        if (!asc_dvc->irq_sp) {
5253                ASC_DBG(0, "Failed to get IRQ carrier\n");
5254                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5255                return ADV_ERROR;
5256        }
5257
5258        /*
5259         * Set RISC IRQ physical address start value.
5260         *
5261         * carr_pa is LE, must be native before write *
5262         */
5263        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5264        asc_dvc->carr_pending_cnt = 0;
5265
5266        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5267                             (ADV_INTR_ENABLE_HOST_INTR |
5268                              ADV_INTR_ENABLE_GLOBAL_INTR));
5269
5270        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5271        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5272
5273        /* finally, finally, gentlemen, start your engine */
5274        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5275
5276        /*
5277         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5278         * Resets should be performed. The RISC has to be running
5279         * to issue a SCSI Bus Reset.
5280         */
5281        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5282                /*
5283                 * If the BIOS Signature is present in memory, restore the
5284                 * BIOS Handshake Configuration Table and do not perform
5285                 * a SCSI Bus Reset.
5286                 */
5287                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5288                    0x55AA) {
5289                        /*
5290                         * Restore per TID negotiated values.
5291                         */
5292                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5293                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5294                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5295                                         tagqng_able);
5296                        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5297                                AdvWriteByteLram(iop_base,
5298                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5299                                                 max_cmd[tid]);
5300                        }
5301                } else {
5302                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5303                                warn_code = ASC_WARN_BUSRESET_ERROR;
5304                        }
5305                }
5306        }
5307
5308        return warn_code;
5309}
5310
5311/*
5312 * Initialize the ASC-38C1600.
5313 *
5314 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
5315 *
5316 * For a non-fatal error return a warning code. If there are no warnings
5317 * then 0 is returned.
5318 *
5319 * Needed after initialization for error recovery.
5320 */
5321static int AdvInitAsc38C1600Driver(ADV_DVC_VAR *asc_dvc)
5322{
5323        const struct firmware *fw;
5324        const char fwname[] = "advansys/38C1600.bin";
5325        AdvPortAddr iop_base;
5326        ushort warn_code;
5327        int begin_addr;
5328        int end_addr;
5329        ushort code_sum;
5330        long word;
5331        int i;
5332        int err;
5333        unsigned long chksum;
5334        ushort scsi_cfg1;
5335        uchar byte;
5336        uchar tid;
5337        ushort bios_mem[ASC_MC_BIOSLEN / 2];    /* BIOS RISC Memory 0x40-0x8F. */
5338        ushort wdtr_able, sdtr_able, ppr_able, tagqng_able;
5339        uchar max_cmd[ASC_MAX_TID + 1];
5340
5341        /* If there is already an error, don't continue. */
5342        if (asc_dvc->err_code != 0) {
5343                return ADV_ERROR;
5344        }
5345
5346        /*
5347         * The caller must set 'chip_type' to ADV_CHIP_ASC38C1600.
5348         */
5349        if (asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
5350                asc_dvc->err_code = ASC_IERR_BAD_CHIPTYPE;
5351                return ADV_ERROR;
5352        }
5353
5354        warn_code = 0;
5355        iop_base = asc_dvc->iop_base;
5356
5357        /*
5358         * Save the RISC memory BIOS region before writing the microcode.
5359         * The BIOS may already be loaded and using its RISC LRAM region
5360         * so its region must be saved and restored.
5361         *
5362         * Note: This code makes the assumption, which is currently true,
5363         * that a chip reset does not clear RISC LRAM.
5364         */
5365        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5366                AdvReadWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5367                                bios_mem[i]);
5368        }
5369
5370        /*
5371         * Save current per TID negotiated values.
5372         */
5373        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5374        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5375        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5376        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5377        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5378                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5379                                max_cmd[tid]);
5380        }
5381
5382        /*
5383         * RAM BIST (Built-In Self Test)
5384         *
5385         * Address : I/O base + offset 0x38h register (byte).
5386         * Function: Bit 7-6(RW) : RAM mode
5387         *                          Normal Mode   : 0x00
5388         *                          Pre-test Mode : 0x40
5389         *                          RAM Test Mode : 0x80
5390         *           Bit 5       : unused
5391         *           Bit 4(RO)   : Done bit
5392         *           Bit 3-0(RO) : Status
5393         *                          Host Error    : 0x08
5394         *                          Int_RAM Error : 0x04
5395         *                          RISC Error    : 0x02
5396         *                          SCSI Error    : 0x01
5397         *                          No Error      : 0x00
5398         *
5399         * Note: RAM BIST code should be put right here, before loading the
5400         * microcode and after saving the RISC memory BIOS region.
5401         */
5402
5403        /*
5404         * LRAM Pre-test
5405         *
5406         * Write PRE_TEST_MODE (0x40) to register and wait for 10 milliseconds.
5407         * If Done bit not set or low nibble not PRE_TEST_VALUE (0x05), return
5408         * an error. Reset to NORMAL_MODE (0x00) and do again. If cannot reset
5409         * to NORMAL_MODE, return an error too.
5410         */
5411        for (i = 0; i < 2; i++) {
5412                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, PRE_TEST_MODE);
5413                mdelay(10);     /* Wait for 10ms before reading back. */
5414                byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5415                if ((byte & RAM_TEST_DONE) == 0
5416                    || (byte & 0x0F) != PRE_TEST_VALUE) {
5417                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5418                        return ADV_ERROR;
5419                }
5420
5421                AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5422                mdelay(10);     /* Wait for 10ms before reading back. */
5423                if (AdvReadByteRegister(iop_base, IOPB_RAM_BIST)
5424                    != NORMAL_VALUE) {
5425                        asc_dvc->err_code = ASC_IERR_BIST_PRE_TEST;
5426                        return ADV_ERROR;
5427                }
5428        }
5429
5430        /*
5431         * LRAM Test - It takes about 1.5 ms to run through the test.
5432         *
5433         * Write RAM_TEST_MODE (0x80) to register and wait for 10 milliseconds.
5434         * If Done bit not set or Status not 0, save register byte, set the
5435         * err_code, and return an error.
5436         */
5437        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, RAM_TEST_MODE);
5438        mdelay(10);     /* Wait for 10ms before checking status. */
5439
5440        byte = AdvReadByteRegister(iop_base, IOPB_RAM_BIST);
5441        if ((byte & RAM_TEST_DONE) == 0 || (byte & RAM_TEST_STATUS) != 0) {
5442                /* Get here if Done bit not set or Status not 0. */
5443                asc_dvc->bist_err_code = byte;  /* for BIOS display message */
5444                asc_dvc->err_code = ASC_IERR_BIST_RAM_TEST;
5445                return ADV_ERROR;
5446        }
5447
5448        /* We need to reset back to normal mode after LRAM test passes. */
5449        AdvWriteByteRegister(iop_base, IOPB_RAM_BIST, NORMAL_MODE);
5450
5451        err = request_firmware(&fw, fwname, asc_dvc->drv_ptr->dev);
5452        if (err) {
5453                printk(KERN_ERR "Failed to load image \"%s\" err %d\n",
5454                       fwname, err);
5455                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5456                return err;
5457        }
5458        if (fw->size < 4) {
5459                printk(KERN_ERR "Bogus length %zu in image \"%s\"\n",
5460                       fw->size, fwname);
5461                release_firmware(fw);
5462                asc_dvc->err_code = ASC_IERR_MCODE_CHKSUM;
5463                return -EINVAL;
5464        }
5465        chksum = (fw->data[3] << 24) | (fw->data[2] << 16) |
5466                 (fw->data[1] << 8) | fw->data[0];
5467        asc_dvc->err_code = AdvLoadMicrocode(iop_base, &fw->data[4],
5468                                             fw->size - 4, ADV_38C1600_MEMSIZE,
5469                                             chksum);
5470        release_firmware(fw);
5471        if (asc_dvc->err_code)
5472                return ADV_ERROR;
5473
5474        /*
5475         * Restore the RISC memory BIOS region.
5476         */
5477        for (i = 0; i < ASC_MC_BIOSLEN / 2; i++) {
5478                AdvWriteWordLram(iop_base, ASC_MC_BIOSMEM + (2 * i),
5479                                 bios_mem[i]);
5480        }
5481
5482        /*
5483         * Calculate and write the microcode code checksum to the microcode
5484         * code checksum location ASC_MC_CODE_CHK_SUM (0x2C).
5485         */
5486        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, begin_addr);
5487        AdvReadWordLram(iop_base, ASC_MC_CODE_END_ADDR, end_addr);
5488        code_sum = 0;
5489        AdvWriteWordRegister(iop_base, IOPW_RAM_ADDR, begin_addr);
5490        for (word = begin_addr; word < end_addr; word += 2) {
5491                code_sum += AdvReadWordAutoIncLram(iop_base);
5492        }
5493        AdvWriteWordLram(iop_base, ASC_MC_CODE_CHK_SUM, code_sum);
5494
5495        /*
5496         * Read microcode version and date.
5497         */
5498        AdvReadWordLram(iop_base, ASC_MC_VERSION_DATE,
5499                        asc_dvc->cfg->mcode_date);
5500        AdvReadWordLram(iop_base, ASC_MC_VERSION_NUM,
5501                        asc_dvc->cfg->mcode_version);
5502
5503        /*
5504         * Set the chip type to indicate the ASC38C1600.
5505         */
5506        AdvWriteWordLram(iop_base, ASC_MC_CHIP_TYPE, ADV_CHIP_ASC38C1600);
5507
5508        /*
5509         * Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
5510         * When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
5511         * cable detection and then we are able to read C_DET[3:0].
5512         *
5513         * Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
5514         * Microcode Default Value' section below.
5515         */
5516        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5517        AdvWriteWordRegister(iop_base, IOPW_SCSI_CFG1,
5518                             scsi_cfg1 | DIS_TERM_DRV);
5519
5520        /*
5521         * If the PCI Configuration Command Register "Parity Error Response
5522         * Control" Bit was clear (0), then set the microcode variable
5523         * 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
5524         * to ignore DMA parity errors.
5525         */
5526        if (asc_dvc->cfg->control_flag & CONTROL_FLAG_IGNORE_PERR) {
5527                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5528                word |= CONTROL_FLAG_IGNORE_PERR;
5529                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5530        }
5531
5532        /*
5533         * If the BIOS control flag AIPP (Asynchronous Information
5534         * Phase Protection) disable bit is not set, then set the firmware
5535         * 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to enable
5536         * AIPP checking and encoding.
5537         */
5538        if ((asc_dvc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
5539                AdvReadWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5540                word |= CONTROL_FLAG_ENABLE_AIPP;
5541                AdvWriteWordLram(iop_base, ASC_MC_CONTROL_FLAG, word);
5542        }
5543
5544        /*
5545         * For ASC-38C1600 use DMA_CFG0 default values: FIFO_THRESH_80B [6:4],
5546         * and START_CTL_TH [3:2].
5547         */
5548        AdvWriteByteRegister(iop_base, IOPB_DMA_CFG0,
5549                             FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
5550
5551        /*
5552         * Microcode operating variables for WDTR, SDTR, and command tag
5553         * queuing will be set in slave_configure() based on what a
5554         * device reports it is capable of in Inquiry byte 7.
5555         *
5556         * If SCSI Bus Resets have been disabled, then directly set
5557         * SDTR and WDTR from the EEPROM configuration. This will allow
5558         * the BIOS and warm boot to work without a SCSI bus hang on
5559         * the Inquiry caused by host and target mismatched DTR values.
5560         * Without the SCSI Bus Reset, before an Inquiry a device can't
5561         * be assumed to be in Asynchronous, Narrow mode.
5562         */
5563        if ((asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
5564                AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE,
5565                                 asc_dvc->wdtr_able);
5566                AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE,
5567                                 asc_dvc->sdtr_able);
5568        }
5569
5570        /*
5571         * Set microcode operating variables for DISC and SDTR_SPEED1,
5572         * SDTR_SPEED2, SDTR_SPEED3, and SDTR_SPEED4 based on the EEPROM
5573         * configuration values.
5574         *
5575         * The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
5576         * SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
5577         * without determining here whether the device supports SDTR.
5578         */
5579        AdvWriteWordLram(iop_base, ASC_MC_DISC_ENABLE,
5580                         asc_dvc->cfg->disc_enable);
5581        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED1, asc_dvc->sdtr_speed1);
5582        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED2, asc_dvc->sdtr_speed2);
5583        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED3, asc_dvc->sdtr_speed3);
5584        AdvWriteWordLram(iop_base, ASC_MC_SDTR_SPEED4, asc_dvc->sdtr_speed4);
5585
5586        /*
5587         * Set SCSI_CFG0 Microcode Default Value.
5588         *
5589         * The microcode will set the SCSI_CFG0 register using this value
5590         * after it is started below.
5591         */
5592        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG0,
5593                         PARITY_EN | QUEUE_128 | SEL_TMO_LONG | OUR_ID_EN |
5594                         asc_dvc->chip_scsi_id);
5595
5596        /*
5597         * Calculate SCSI_CFG1 Microcode Default Value.
5598         *
5599         * The microcode will set the SCSI_CFG1 register using this value
5600         * after it is started below.
5601         *
5602         * Each ASC-38C1600 function has only two cable detect bits.
5603         * The bus mode override bits are in IOPB_SOFT_OVER_WR.
5604         */
5605        scsi_cfg1 = AdvReadWordRegister(iop_base, IOPW_SCSI_CFG1);
5606
5607        /*
5608         * If the cable is reversed all of the SCSI_CTRL register signals
5609         * will be set. Check for and return an error if this condition is
5610         * found.
5611         */
5612        if ((AdvReadWordRegister(iop_base, IOPW_SCSI_CTRL) & 0x3F07) == 0x3F07) {
5613                asc_dvc->err_code |= ASC_IERR_REVERSED_CABLE;
5614                return ADV_ERROR;
5615        }
5616
5617        /*
5618         * Each ASC-38C1600 function has two connectors. Only an HVD device
5619         * can not be connected to either connector. An LVD device or SE device
5620         * may be connected to either connecor. If an SE device is connected,
5621         * then at most Ultra speed (20 Mhz) can be used on both connectors.
5622         *
5623         * If an HVD device is attached, return an error.
5624         */
5625        if (scsi_cfg1 & HVD) {
5626                asc_dvc->err_code |= ASC_IERR_HVD_DEVICE;
5627                return ADV_ERROR;
5628        }
5629
5630        /*
5631         * Each function in the ASC-38C1600 uses only the SE cable detect and
5632         * termination because there are two connectors for each function. Each
5633         * function may use either LVD or SE mode. Corresponding the SE automatic
5634         * termination control EEPROM bits are used for each function. Each
5635         * function has its own EEPROM. If SE automatic control is enabled for
5636         * the function, then set the termination value based on a table listed
5637         * in a_condor.h.
5638         *
5639         * If manual termination is specified in the EEPROM for the function,
5640         * then 'termination' was set-up in AscInitFrom38C1600EEPROM() and is
5641         * ready to be 'ored' into SCSI_CFG1.
5642         */
5643        if ((asc_dvc->cfg->termination & TERM_SE) == 0) {
5644                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
5645                /* SE automatic termination control is enabled. */
5646                switch (scsi_cfg1 & C_DET_SE) {
5647                        /* TERM_SE_HI: on, TERM_SE_LO: on */
5648                case 0x1:
5649                case 0x2:
5650                case 0x3:
5651                        asc_dvc->cfg->termination |= TERM_SE;
5652                        break;
5653
5654                case 0x0:
5655                        if (PCI_FUNC(pdev->devfn) == 0) {
5656                                /* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
5657                        } else {
5658                                /* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
5659                                asc_dvc->cfg->termination |= TERM_SE_HI;
5660                        }
5661                        break;
5662                }
5663        }
5664
5665        /*
5666         * Clear any set TERM_SE bits.
5667         */
5668        scsi_cfg1 &= ~TERM_SE;
5669
5670        /*
5671         * Invert the TERM_SE bits and then set 'scsi_cfg1'.
5672         */
5673        scsi_cfg1 |= (~asc_dvc->cfg->termination & TERM_SE);
5674
5675        /*
5676         * Clear Big Endian and Terminator Polarity bits and set possibly
5677         * modified termination control bits in the Microcode SCSI_CFG1
5678         * Register Value.
5679         *
5680         * Big Endian bit is not used even on big endian machines.
5681         */
5682        scsi_cfg1 &= (~BIG_ENDIAN & ~DIS_TERM_DRV & ~TERM_POL);
5683
5684        /*
5685         * Set SCSI_CFG1 Microcode Default Value
5686         *
5687         * Set possibly modified termination control bits in the Microcode
5688         * SCSI_CFG1 Register Value.
5689         *
5690         * The microcode will set the SCSI_CFG1 register using this value
5691         * after it is started below.
5692         */
5693        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
5694
5695        /*
5696         * Set MEM_CFG Microcode Default Value
5697         *
5698         * The microcode will set the MEM_CFG register using this value
5699         * after it is started below.
5700         *
5701         * MEM_CFG may be accessed as a word or byte, but only bits 0-7
5702         * are defined.
5703         *
5704         * ASC-38C1600 has 32KB internal memory.
5705         *
5706         * XXX - Since ASC38C1600 Rev.3 has a Local RAM failure issue, we come
5707         * out a special 16K Adv Library and Microcode version. After the issue
5708         * resolved, we should turn back to the 32K support. Both a_condor.h and
5709         * mcode.sas files also need to be updated.
5710         *
5711         * AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5712         *  BIOS_EN | RAM_SZ_32KB);
5713         */
5714        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_MEM_CFG,
5715                         BIOS_EN | RAM_SZ_16KB);
5716
5717        /*
5718         * Set SEL_MASK Microcode Default Value
5719         *
5720         * The microcode will set the SEL_MASK register using this value
5721         * after it is started below.
5722         */
5723        AdvWriteWordLram(iop_base, ASC_MC_DEFAULT_SEL_MASK,
5724                         ADV_TID_TO_TIDMASK(asc_dvc->chip_scsi_id));
5725
5726        AdvBuildCarrierFreelist(asc_dvc);
5727
5728        /*
5729         * Set-up the Host->RISC Initiator Command Queue (ICQ).
5730         */
5731        asc_dvc->icq_sp = adv_get_next_carrier(asc_dvc);
5732        if (!asc_dvc->icq_sp) {
5733                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5734                return ADV_ERROR;
5735        }
5736
5737        /*
5738         * Set RISC ICQ physical address start value. Initialize the
5739         * COMMA register to the same value otherwise the RISC will
5740         * prematurely detect a command is available.
5741         */
5742        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_ICQ, asc_dvc->icq_sp->carr_pa);
5743        AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
5744                              le32_to_cpu(asc_dvc->icq_sp->carr_pa));
5745
5746        /*
5747         * Set-up the RISC->Host Initiator Response Queue (IRQ).
5748         */
5749        asc_dvc->irq_sp = adv_get_next_carrier(asc_dvc);
5750        if (!asc_dvc->irq_sp) {
5751                asc_dvc->err_code |= ASC_IERR_NO_CARRIER;
5752                return ADV_ERROR;
5753        }
5754
5755        /*
5756         * Set RISC IRQ physical address start value.
5757         */
5758        AdvWriteDWordLramNoSwap(iop_base, ASC_MC_IRQ, asc_dvc->irq_sp->carr_pa);
5759        asc_dvc->carr_pending_cnt = 0;
5760
5761        AdvWriteByteRegister(iop_base, IOPB_INTR_ENABLES,
5762                             (ADV_INTR_ENABLE_HOST_INTR |
5763                              ADV_INTR_ENABLE_GLOBAL_INTR));
5764        AdvReadWordLram(iop_base, ASC_MC_CODE_BEGIN_ADDR, word);
5765        AdvWriteWordRegister(iop_base, IOPW_PC, word);
5766
5767        /* finally, finally, gentlemen, start your engine */
5768        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_RUN);
5769
5770        /*
5771         * Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
5772         * Resets should be performed. The RISC has to be running
5773         * to issue a SCSI Bus Reset.
5774         */
5775        if (asc_dvc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) {
5776                /*
5777                 * If the BIOS Signature is present in memory, restore the
5778                 * per TID microcode operating variables.
5779                 */
5780                if (bios_mem[(ASC_MC_BIOS_SIGNATURE - ASC_MC_BIOSMEM) / 2] ==
5781                    0x55AA) {
5782                        /*
5783                         * Restore per TID negotiated values.
5784                         */
5785                        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5786                        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5787                        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5788                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
5789                                         tagqng_able);
5790                        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
5791                                AdvWriteByteLram(iop_base,
5792                                                 ASC_MC_NUMBER_OF_MAX_CMD + tid,
5793                                                 max_cmd[tid]);
5794                        }
5795                } else {
5796                        if (AdvResetSB(asc_dvc) != ADV_TRUE) {
5797                                warn_code = ASC_WARN_BUSRESET_ERROR;
5798                        }
5799                }
5800        }
5801
5802        return warn_code;
5803}
5804
5805/*
5806 * Reset chip and SCSI Bus.
5807 *
5808 * Return Value:
5809 *      ADV_TRUE(1) -   Chip re-initialization and SCSI Bus Reset successful.
5810 *      ADV_FALSE(0) -  Chip re-initialization and SCSI Bus Reset failure.
5811 */
5812static int AdvResetChipAndSB(ADV_DVC_VAR *asc_dvc)
5813{
5814        int status;
5815        ushort wdtr_able, sdtr_able, tagqng_able;
5816        ushort ppr_able = 0;
5817        uchar tid, max_cmd[ADV_MAX_TID + 1];
5818        AdvPortAddr iop_base;
5819        ushort bios_sig;
5820
5821        iop_base = asc_dvc->iop_base;
5822
5823        /*
5824         * Save current per TID negotiated values.
5825         */
5826        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5827        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5828        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5829                AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5830        }
5831        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5832        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5833                AdvReadByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5834                                max_cmd[tid]);
5835        }
5836
5837        /*
5838         * Force the AdvInitAsc3550/38C0800Driver() function to
5839         * perform a SCSI Bus Reset by clearing the BIOS signature word.
5840         * The initialization functions assumes a SCSI Bus Reset is not
5841         * needed if the BIOS signature word is present.
5842         */
5843        AdvReadWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5844        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, 0);
5845
5846        /*
5847         * Stop chip and reset it.
5848         */
5849        AdvWriteWordRegister(iop_base, IOPW_RISC_CSR, ADV_RISC_CSR_STOP);
5850        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG, ADV_CTRL_REG_CMD_RESET);
5851        mdelay(100);
5852        AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
5853                             ADV_CTRL_REG_CMD_WR_IO_REG);
5854
5855        /*
5856         * Reset Adv Library error code, if any, and try
5857         * re-initializing the chip.
5858         */
5859        asc_dvc->err_code = 0;
5860        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5861                status = AdvInitAsc38C1600Driver(asc_dvc);
5862        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
5863                status = AdvInitAsc38C0800Driver(asc_dvc);
5864        } else {
5865                status = AdvInitAsc3550Driver(asc_dvc);
5866        }
5867
5868        /* Translate initialization return value to status value. */
5869        if (status == 0) {
5870                status = ADV_TRUE;
5871        } else {
5872                status = ADV_FALSE;
5873        }
5874
5875        /*
5876         * Restore the BIOS signature word.
5877         */
5878        AdvWriteWordLram(iop_base, ASC_MC_BIOS_SIGNATURE, bios_sig);
5879
5880        /*
5881         * Restore per TID negotiated values.
5882         */
5883        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, wdtr_able);
5884        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, sdtr_able);
5885        if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
5886                AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, ppr_able);
5887        }
5888        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE, tagqng_able);
5889        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
5890                AdvWriteByteLram(iop_base, ASC_MC_NUMBER_OF_MAX_CMD + tid,
5891                                 max_cmd[tid]);
5892        }
5893
5894        return status;
5895}
5896
5897/*
5898 * adv_async_callback() - Adv Library asynchronous event callback function.
5899 */
5900static void adv_async_callback(ADV_DVC_VAR *adv_dvc_varp, uchar code)
5901{
5902        switch (code) {
5903        case ADV_ASYNC_SCSI_BUS_RESET_DET:
5904                /*
5905                 * The firmware detected a SCSI Bus reset.
5906                 */
5907                ASC_DBG(0, "ADV_ASYNC_SCSI_BUS_RESET_DET\n");
5908                break;
5909
5910        case ADV_ASYNC_RDMA_FAILURE:
5911                /*
5912                 * Handle RDMA failure by resetting the SCSI Bus and
5913                 * possibly the chip if it is unresponsive. Log the error
5914                 * with a unique code.
5915                 */
5916                ASC_DBG(0, "ADV_ASYNC_RDMA_FAILURE\n");
5917                AdvResetChipAndSB(adv_dvc_varp);
5918                break;
5919
5920        case ADV_HOST_SCSI_BUS_RESET:
5921                /*
5922                 * Host generated SCSI bus reset occurred.
5923                 */
5924                ASC_DBG(0, "ADV_HOST_SCSI_BUS_RESET\n");
5925                break;
5926
5927        default:
5928                ASC_DBG(0, "unknown code 0x%x\n", code);
5929                break;
5930        }
5931}
5932
5933/*
5934 * adv_isr_callback() - Second Level Interrupt Handler called by AdvISR().
5935 *
5936 * Callback function for the Wide SCSI Adv Library.
5937 */
5938static void adv_isr_callback(ADV_DVC_VAR *adv_dvc_varp, ADV_SCSI_REQ_Q *scsiqp)
5939{
5940        struct asc_board *boardp = adv_dvc_varp->drv_ptr;
5941        adv_req_t *reqp;
5942        adv_sgblk_t *sgblkp;
5943        struct scsi_cmnd *scp;
5944        u32 resid_cnt;
5945        dma_addr_t sense_addr;
5946
5947        ASC_DBG(1, "adv_dvc_varp 0x%p, scsiqp 0x%p\n",
5948                adv_dvc_varp, scsiqp);
5949        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
5950
5951        /*
5952         * Get the adv_req_t structure for the command that has been
5953         * completed. The adv_req_t structure actually contains the
5954         * completed ADV_SCSI_REQ_Q structure.
5955         */
5956        scp = scsi_host_find_tag(boardp->shost, scsiqp->srb_tag);
5957
5958        ASC_DBG(1, "scp 0x%p\n", scp);
5959        if (scp == NULL) {
5960                ASC_PRINT
5961                    ("adv_isr_callback: scp is NULL; adv_req_t dropped.\n");
5962                return;
5963        }
5964        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
5965
5966        reqp = (adv_req_t *)scp->host_scribble;
5967        ASC_DBG(1, "reqp 0x%lx\n", (ulong)reqp);
5968        if (reqp == NULL) {
5969                ASC_PRINT("adv_isr_callback: reqp is NULL\n");
5970                return;
5971        }
5972        /*
5973         * Remove backreferences to avoid duplicate
5974         * command completions.
5975         */
5976        scp->host_scribble = NULL;
5977        reqp->cmndp = NULL;
5978
5979        ASC_STATS(boardp->shost, callback);
5980        ASC_DBG(1, "shost 0x%p\n", boardp->shost);
5981
5982        sense_addr = le32_to_cpu(scsiqp->sense_addr);
5983        dma_unmap_single(boardp->dev, sense_addr,
5984                         SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
5985
5986        /*
5987         * 'done_status' contains the command's ending status.
5988         */
5989        switch (scsiqp->done_status) {
5990        case QD_NO_ERROR:
5991                ASC_DBG(2, "QD_NO_ERROR\n");
5992                scp->result = 0;
5993
5994                /*
5995                 * Check for an underrun condition.
5996                 *
5997                 * If there was no error and an underrun condition, then
5998                 * then return the number of underrun bytes.
5999                 */
6000                resid_cnt = le32_to_cpu(scsiqp->data_cnt);
6001                if (scsi_bufflen(scp) != 0 && resid_cnt != 0 &&
6002                    resid_cnt <= scsi_bufflen(scp)) {
6003                        ASC_DBG(1, "underrun condition %lu bytes\n",
6004                                 (ulong)resid_cnt);
6005                        scsi_set_resid(scp, resid_cnt);
6006                }
6007                break;
6008
6009        case QD_WITH_ERROR:
6010                ASC_DBG(2, "QD_WITH_ERROR\n");
6011                switch (scsiqp->host_status) {
6012                case QHSTA_NO_ERROR:
6013                        if (scsiqp->scsi_status == SAM_STAT_CHECK_CONDITION) {
6014                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6015                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6016                                                  SCSI_SENSE_BUFFERSIZE);
6017                                /*
6018                                 * Note: The 'status_byte()' macro used by
6019                                 * target drivers defined in scsi.h shifts the
6020                                 * status byte returned by host drivers right
6021                                 * by 1 bit.  This is why target drivers also
6022                                 * use right shifted status byte definitions.
6023                                 * For instance target drivers use
6024                                 * CHECK_CONDITION, defined to 0x1, instead of
6025                                 * the SCSI defined check condition value of
6026                                 * 0x2. Host drivers are supposed to return
6027                                 * the status byte as it is defined by SCSI.
6028                                 */
6029                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6030                                    STATUS_BYTE(scsiqp->scsi_status);
6031                        } else {
6032                                scp->result = STATUS_BYTE(scsiqp->scsi_status);
6033                        }
6034                        break;
6035
6036                default:
6037                        /* Some other QHSTA error occurred. */
6038                        ASC_DBG(1, "host_status 0x%x\n", scsiqp->host_status);
6039                        scp->result = HOST_BYTE(DID_BAD_TARGET);
6040                        break;
6041                }
6042                break;
6043
6044        case QD_ABORTED_BY_HOST:
6045                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6046                scp->result =
6047                    HOST_BYTE(DID_ABORT) | STATUS_BYTE(scsiqp->scsi_status);
6048                break;
6049
6050        default:
6051                ASC_DBG(1, "done_status 0x%x\n", scsiqp->done_status);
6052                scp->result =
6053                    HOST_BYTE(DID_ERROR) | STATUS_BYTE(scsiqp->scsi_status);
6054                break;
6055        }
6056
6057        /*
6058         * If the 'init_tidmask' bit isn't already set for the target and the
6059         * current request finished normally, then set the bit for the target
6060         * to indicate that a device is present.
6061         */
6062        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6063            scsiqp->done_status == QD_NO_ERROR &&
6064            scsiqp->host_status == QHSTA_NO_ERROR) {
6065                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6066        }
6067
6068        asc_scsi_done(scp);
6069
6070        /*
6071         * Free all 'adv_sgblk_t' structures allocated for the request.
6072         */
6073        while ((sgblkp = reqp->sgblkp) != NULL) {
6074                /* Remove 'sgblkp' from the request list. */
6075                reqp->sgblkp = sgblkp->next_sgblkp;
6076
6077                dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
6078                              sgblkp->sg_addr);
6079        }
6080
6081        ASC_DBG(1, "done\n");
6082}
6083
6084/*
6085 * Adv Library Interrupt Service Routine
6086 *
6087 *  This function is called by a driver's interrupt service routine.
6088 *  The function disables and re-enables interrupts.
6089 *
6090 *  When a microcode idle command is completed, the ADV_DVC_VAR
6091 *  'idle_cmd_done' field is set to ADV_TRUE.
6092 *
6093 *  Note: AdvISR() can be called when interrupts are disabled or even
6094 *  when there is no hardware interrupt condition present. It will
6095 *  always check for completed idle commands and microcode requests.
6096 *  This is an important feature that shouldn't be changed because it
6097 *  allows commands to be completed from polling mode loops.
6098 *
6099 * Return:
6100 *   ADV_TRUE(1) - interrupt was pending
6101 *   ADV_FALSE(0) - no interrupt was pending
6102 */
6103static int AdvISR(ADV_DVC_VAR *asc_dvc)
6104{
6105        AdvPortAddr iop_base;
6106        uchar int_stat;
6107        ADV_CARR_T *free_carrp;
6108        __le32 irq_next_vpa;
6109        ADV_SCSI_REQ_Q *scsiq;
6110        adv_req_t *reqp;
6111
6112        iop_base = asc_dvc->iop_base;
6113
6114        /* Reading the register clears the interrupt. */
6115        int_stat = AdvReadByteRegister(iop_base, IOPB_INTR_STATUS_REG);
6116
6117        if ((int_stat & (ADV_INTR_STATUS_INTRA | ADV_INTR_STATUS_INTRB |
6118                         ADV_INTR_STATUS_INTRC)) == 0) {
6119                return ADV_FALSE;
6120        }
6121
6122        /*
6123         * Notify the driver of an asynchronous microcode condition by
6124         * calling the adv_async_callback function. The function
6125         * is passed the microcode ASC_MC_INTRB_CODE byte value.
6126         */
6127        if (int_stat & ADV_INTR_STATUS_INTRB) {
6128                uchar intrb_code;
6129
6130                AdvReadByteLram(iop_base, ASC_MC_INTRB_CODE, intrb_code);
6131
6132                if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
6133                    asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
6134                        if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
6135                            asc_dvc->carr_pending_cnt != 0) {
6136                                AdvWriteByteRegister(iop_base, IOPB_TICKLE,
6137                                                     ADV_TICKLE_A);
6138                                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
6139                                        AdvWriteByteRegister(iop_base,
6140                                                             IOPB_TICKLE,
6141                                                             ADV_TICKLE_NOP);
6142                                }
6143                        }
6144                }
6145
6146                adv_async_callback(asc_dvc, intrb_code);
6147        }
6148
6149        /*
6150         * Check if the IRQ stopper carrier contains a completed request.
6151         */
6152        while (((irq_next_vpa =
6153                 le32_to_cpu(asc_dvc->irq_sp->next_vpa)) & ADV_RQ_DONE) != 0) {
6154                /*
6155                 * Get a pointer to the newly completed ADV_SCSI_REQ_Q structure.
6156                 * The RISC will have set 'areq_vpa' to a virtual address.
6157                 *
6158                 * The firmware will have copied the ADV_SCSI_REQ_Q.scsiq_ptr
6159                 * field to the carrier ADV_CARR_T.areq_vpa field. The conversion
6160                 * below complements the conversion of ADV_SCSI_REQ_Q.scsiq_ptr'
6161                 * in AdvExeScsiQueue().
6162                 */
6163                u32 pa_offset = le32_to_cpu(asc_dvc->irq_sp->areq_vpa);
6164                ASC_DBG(1, "irq_sp %p areq_vpa %u\n",
6165                        asc_dvc->irq_sp, pa_offset);
6166                reqp = adv_get_reqp(asc_dvc, pa_offset);
6167                scsiq = &reqp->scsi_req_q;
6168
6169                /*
6170                 * Request finished with good status and the queue was not
6171                 * DMAed to host memory by the firmware. Set all status fields
6172                 * to indicate good status.
6173                 */
6174                if ((irq_next_vpa & ADV_RQ_GOOD) != 0) {
6175                        scsiq->done_status = QD_NO_ERROR;
6176                        scsiq->host_status = scsiq->scsi_status = 0;
6177                        scsiq->data_cnt = 0L;
6178                }
6179
6180                /*
6181                 * Advance the stopper pointer to the next carrier
6182                 * ignoring the lower four bits. Free the previous
6183                 * stopper carrier.
6184                 */
6185                free_carrp = asc_dvc->irq_sp;
6186                asc_dvc->irq_sp = adv_get_carrier(asc_dvc,
6187                                                  ADV_GET_CARRP(irq_next_vpa));
6188
6189                free_carrp->next_vpa = asc_dvc->carr_freelist->carr_va;
6190                asc_dvc->carr_freelist = free_carrp;
6191                asc_dvc->carr_pending_cnt--;
6192
6193                /*
6194                 * Clear request microcode control flag.
6195                 */
6196                scsiq->cntl = 0;
6197
6198                /*
6199                 * Notify the driver of the completed request by passing
6200                 * the ADV_SCSI_REQ_Q pointer to its callback function.
6201                 */
6202                adv_isr_callback(asc_dvc, scsiq);
6203                /*
6204                 * Note: After the driver callback function is called, 'scsiq'
6205                 * can no longer be referenced.
6206                 *
6207                 * Fall through and continue processing other completed
6208                 * requests...
6209                 */
6210        }
6211        return ADV_TRUE;
6212}
6213
6214static int AscSetLibErrorCode(ASC_DVC_VAR *asc_dvc, ushort err_code)
6215{
6216        if (asc_dvc->err_code == 0) {
6217                asc_dvc->err_code = err_code;
6218                AscWriteLramWord(asc_dvc->iop_base, ASCV_ASCDVC_ERR_CODE_W,
6219                                 err_code);
6220        }
6221        return err_code;
6222}
6223
6224static void AscAckInterrupt(PortAddr iop_base)
6225{
6226        uchar host_flag;
6227        uchar risc_flag;
6228        ushort loop;
6229
6230        loop = 0;
6231        do {
6232                risc_flag = AscReadLramByte(iop_base, ASCV_RISC_FLAG_B);
6233                if (loop++ > 0x7FFF) {
6234                        break;
6235                }
6236        } while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
6237        host_flag =
6238            AscReadLramByte(iop_base,
6239                            ASCV_HOST_FLAG_B) & (~ASC_HOST_FLAG_ACK_INT);
6240        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
6241                         (uchar)(host_flag | ASC_HOST_FLAG_ACK_INT));
6242        AscSetChipStatus(iop_base, CIW_INT_ACK);
6243        loop = 0;
6244        while (AscGetChipStatus(iop_base) & CSW_INT_PENDING) {
6245                AscSetChipStatus(iop_base, CIW_INT_ACK);
6246                if (loop++ > 3) {
6247                        break;
6248                }
6249        }
6250        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
6251}
6252
6253static uchar AscGetSynPeriodIndex(ASC_DVC_VAR *asc_dvc, uchar syn_time)
6254{
6255        const uchar *period_table;
6256        int max_index;
6257        int min_index;
6258        int i;
6259
6260        period_table = asc_dvc->sdtr_period_tbl;
6261        max_index = (int)asc_dvc->max_sdtr_index;
6262        min_index = (int)asc_dvc->min_sdtr_index;
6263        if ((syn_time <= period_table[max_index])) {
6264                for (i = min_index; i < (max_index - 1); i++) {
6265                        if (syn_time <= period_table[i]) {
6266                                return (uchar)i;
6267                        }
6268                }
6269                return (uchar)max_index;
6270        } else {
6271                return (uchar)(max_index + 1);
6272        }
6273}
6274
6275static uchar
6276AscMsgOutSDTR(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar sdtr_offset)
6277{
6278        PortAddr iop_base = asc_dvc->iop_base;
6279        uchar sdtr_period_index = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6280        EXT_MSG sdtr_buf = {
6281                .msg_type = EXTENDED_MESSAGE,
6282                .msg_len = MS_SDTR_LEN,
6283                .msg_req = EXTENDED_SDTR,
6284                .xfer_period = sdtr_period,
6285                .req_ack_offset = sdtr_offset,
6286        };
6287        sdtr_offset &= ASC_SYN_MAX_OFFSET;
6288
6289        if (sdtr_period_index <= asc_dvc->max_sdtr_index) {
6290                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6291                                        (uchar *)&sdtr_buf,
6292                                        sizeof(EXT_MSG) >> 1);
6293                return ((sdtr_period_index << 4) | sdtr_offset);
6294        } else {
6295                sdtr_buf.req_ack_offset = 0;
6296                AscMemWordCopyPtrToLram(iop_base, ASCV_MSGOUT_BEG,
6297                                        (uchar *)&sdtr_buf,
6298                                        sizeof(EXT_MSG) >> 1);
6299                return 0;
6300        }
6301}
6302
6303static uchar
6304AscCalSDTRData(ASC_DVC_VAR *asc_dvc, uchar sdtr_period, uchar syn_offset)
6305{
6306        uchar byte;
6307        uchar sdtr_period_ix;
6308
6309        sdtr_period_ix = AscGetSynPeriodIndex(asc_dvc, sdtr_period);
6310        if (sdtr_period_ix > asc_dvc->max_sdtr_index)
6311                return 0xFF;
6312        byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
6313        return byte;
6314}
6315
6316static bool AscSetChipSynRegAtID(PortAddr iop_base, uchar id, uchar sdtr_data)
6317{
6318        ASC_SCSI_BIT_ID_TYPE org_id;
6319        int i;
6320        bool sta = true;
6321
6322        AscSetBank(iop_base, 1);
6323        org_id = AscReadChipDvcID(iop_base);
6324        for (i = 0; i <= ASC_MAX_TID; i++) {
6325                if (org_id == (0x01 << i))
6326                        break;
6327        }
6328        org_id = (ASC_SCSI_BIT_ID_TYPE) i;
6329        AscWriteChipDvcID(iop_base, id);
6330        if (AscReadChipDvcID(iop_base) == (0x01 << id)) {
6331                AscSetBank(iop_base, 0);
6332                AscSetChipSyn(iop_base, sdtr_data);
6333                if (AscGetChipSyn(iop_base) != sdtr_data) {
6334                        sta = false;
6335                }
6336        } else {
6337                sta = false;
6338        }
6339        AscSetBank(iop_base, 1);
6340        AscWriteChipDvcID(iop_base, org_id);
6341        AscSetBank(iop_base, 0);
6342        return (sta);
6343}
6344
6345static void AscSetChipSDTR(PortAddr iop_base, uchar sdtr_data, uchar tid_no)
6346{
6347        AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
6348        AscPutMCodeSDTRDoneAtID(iop_base, tid_no, sdtr_data);
6349}
6350
6351static void AscIsrChipHalted(ASC_DVC_VAR *asc_dvc)
6352{
6353        EXT_MSG ext_msg;
6354        EXT_MSG out_msg;
6355        ushort halt_q_addr;
6356        bool sdtr_accept;
6357        ushort int_halt_code;
6358        ASC_SCSI_BIT_ID_TYPE scsi_busy;
6359        ASC_SCSI_BIT_ID_TYPE target_id;
6360        PortAddr iop_base;
6361        uchar tag_code;
6362        uchar q_status;
6363        uchar halt_qp;
6364        uchar sdtr_data;
6365        uchar target_ix;
6366        uchar q_cntl, tid_no;
6367        uchar cur_dvc_qng;
6368        uchar asyn_sdtr;
6369        uchar scsi_status;
6370        struct asc_board *boardp;
6371
6372        BUG_ON(!asc_dvc->drv_ptr);
6373        boardp = asc_dvc->drv_ptr;
6374
6375        iop_base = asc_dvc->iop_base;
6376        int_halt_code = AscReadLramWord(iop_base, ASCV_HALTCODE_W);
6377
6378        halt_qp = AscReadLramByte(iop_base, ASCV_CURCDB_B);
6379        halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
6380        target_ix = AscReadLramByte(iop_base,
6381                                    (ushort)(halt_q_addr +
6382                                             (ushort)ASC_SCSIQ_B_TARGET_IX));
6383        q_cntl = AscReadLramByte(iop_base,
6384                            (ushort)(halt_q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6385        tid_no = ASC_TIX_TO_TID(target_ix);
6386        target_id = (uchar)ASC_TID_TO_TARGET_ID(tid_no);
6387        if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6388                asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
6389        } else {
6390                asyn_sdtr = 0;
6391        }
6392        if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
6393                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6394                        AscSetChipSDTR(iop_base, 0, tid_no);
6395                        boardp->sdtr_data[tid_no] = 0;
6396                }
6397                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6398                return;
6399        } else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
6400                if (asc_dvc->pci_fix_asyn_xfer & target_id) {
6401                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6402                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6403                }
6404                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6405                return;
6406        } else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
6407                AscMemWordCopyPtrFromLram(iop_base,
6408                                          ASCV_MSGIN_BEG,
6409                                          (uchar *)&ext_msg,
6410                                          sizeof(EXT_MSG) >> 1);
6411
6412                if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6413                    ext_msg.msg_req == EXTENDED_SDTR &&
6414                    ext_msg.msg_len == MS_SDTR_LEN) {
6415                        sdtr_accept = true;
6416                        if ((ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET)) {
6417
6418                                sdtr_accept = false;
6419                                ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
6420                        }
6421                        if ((ext_msg.xfer_period <
6422                             asc_dvc->sdtr_period_tbl[asc_dvc->min_sdtr_index])
6423                            || (ext_msg.xfer_period >
6424                                asc_dvc->sdtr_period_tbl[asc_dvc->
6425                                                         max_sdtr_index])) {
6426                                sdtr_accept = false;
6427                                ext_msg.xfer_period =
6428                                    asc_dvc->sdtr_period_tbl[asc_dvc->
6429                                                             min_sdtr_index];
6430                        }
6431                        if (sdtr_accept) {
6432                                sdtr_data =
6433                                    AscCalSDTRData(asc_dvc, ext_msg.xfer_period,
6434                                                   ext_msg.req_ack_offset);
6435                                if (sdtr_data == 0xFF) {
6436
6437                                        q_cntl |= QC_MSG_OUT;
6438                                        asc_dvc->init_sdtr &= ~target_id;
6439                                        asc_dvc->sdtr_done &= ~target_id;
6440                                        AscSetChipSDTR(iop_base, asyn_sdtr,
6441                                                       tid_no);
6442                                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6443                                }
6444                        }
6445                        if (ext_msg.req_ack_offset == 0) {
6446
6447                                q_cntl &= ~QC_MSG_OUT;
6448                                asc_dvc->init_sdtr &= ~target_id;
6449                                asc_dvc->sdtr_done &= ~target_id;
6450                                AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6451                        } else {
6452                                if (sdtr_accept && (q_cntl & QC_MSG_OUT)) {
6453                                        q_cntl &= ~QC_MSG_OUT;
6454                                        asc_dvc->sdtr_done |= target_id;
6455                                        asc_dvc->init_sdtr |= target_id;
6456                                        asc_dvc->pci_fix_asyn_xfer &=
6457                                            ~target_id;
6458                                        sdtr_data =
6459                                            AscCalSDTRData(asc_dvc,
6460                                                           ext_msg.xfer_period,
6461                                                           ext_msg.
6462                                                           req_ack_offset);
6463                                        AscSetChipSDTR(iop_base, sdtr_data,
6464                                                       tid_no);
6465                                        boardp->sdtr_data[tid_no] = sdtr_data;
6466                                } else {
6467                                        q_cntl |= QC_MSG_OUT;
6468                                        AscMsgOutSDTR(asc_dvc,
6469                                                      ext_msg.xfer_period,
6470                                                      ext_msg.req_ack_offset);
6471                                        asc_dvc->pci_fix_asyn_xfer &=
6472                                            ~target_id;
6473                                        sdtr_data =
6474                                            AscCalSDTRData(asc_dvc,
6475                                                           ext_msg.xfer_period,
6476                                                           ext_msg.
6477                                                           req_ack_offset);
6478                                        AscSetChipSDTR(iop_base, sdtr_data,
6479                                                       tid_no);
6480                                        boardp->sdtr_data[tid_no] = sdtr_data;
6481                                        asc_dvc->sdtr_done |= target_id;
6482                                        asc_dvc->init_sdtr |= target_id;
6483                                }
6484                        }
6485
6486                        AscWriteLramByte(iop_base,
6487                                         (ushort)(halt_q_addr +
6488                                                  (ushort)ASC_SCSIQ_B_CNTL),
6489                                         q_cntl);
6490                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6491                        return;
6492                } else if (ext_msg.msg_type == EXTENDED_MESSAGE &&
6493                           ext_msg.msg_req == EXTENDED_WDTR &&
6494                           ext_msg.msg_len == MS_WDTR_LEN) {
6495
6496                        ext_msg.wdtr_width = 0;
6497                        AscMemWordCopyPtrToLram(iop_base,
6498                                                ASCV_MSGOUT_BEG,
6499                                                (uchar *)&ext_msg,
6500                                                sizeof(EXT_MSG) >> 1);
6501                        q_cntl |= QC_MSG_OUT;
6502                        AscWriteLramByte(iop_base,
6503                                         (ushort)(halt_q_addr +
6504                                                  (ushort)ASC_SCSIQ_B_CNTL),
6505                                         q_cntl);
6506                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6507                        return;
6508                } else {
6509
6510                        ext_msg.msg_type = MESSAGE_REJECT;
6511                        AscMemWordCopyPtrToLram(iop_base,
6512                                                ASCV_MSGOUT_BEG,
6513                                                (uchar *)&ext_msg,
6514                                                sizeof(EXT_MSG) >> 1);
6515                        q_cntl |= QC_MSG_OUT;
6516                        AscWriteLramByte(iop_base,
6517                                         (ushort)(halt_q_addr +
6518                                                  (ushort)ASC_SCSIQ_B_CNTL),
6519                                         q_cntl);
6520                        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6521                        return;
6522                }
6523        } else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
6524
6525                q_cntl |= QC_REQ_SENSE;
6526
6527                if ((asc_dvc->init_sdtr & target_id) != 0) {
6528
6529                        asc_dvc->sdtr_done &= ~target_id;
6530
6531                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
6532                        q_cntl |= QC_MSG_OUT;
6533                        AscMsgOutSDTR(asc_dvc,
6534                                      asc_dvc->
6535                                      sdtr_period_tbl[(sdtr_data >> 4) &
6536                                                      (uchar)(asc_dvc->
6537                                                              max_sdtr_index -
6538                                                              1)],
6539                                      (uchar)(sdtr_data & (uchar)
6540                                              ASC_SYN_MAX_OFFSET));
6541                }
6542
6543                AscWriteLramByte(iop_base,
6544                                 (ushort)(halt_q_addr +
6545                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6546
6547                tag_code = AscReadLramByte(iop_base,
6548                                           (ushort)(halt_q_addr + (ushort)
6549                                                    ASC_SCSIQ_B_TAG_CODE));
6550                tag_code &= 0xDC;
6551                if ((asc_dvc->pci_fix_asyn_xfer & target_id)
6552                    && !(asc_dvc->pci_fix_asyn_xfer_always & target_id)
6553                    ) {
6554
6555                        tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT
6556                                     | ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
6557
6558                }
6559                AscWriteLramByte(iop_base,
6560                                 (ushort)(halt_q_addr +
6561                                          (ushort)ASC_SCSIQ_B_TAG_CODE),
6562                                 tag_code);
6563
6564                q_status = AscReadLramByte(iop_base,
6565                                           (ushort)(halt_q_addr + (ushort)
6566                                                    ASC_SCSIQ_B_STATUS));
6567                q_status |= (QS_READY | QS_BUSY);
6568                AscWriteLramByte(iop_base,
6569                                 (ushort)(halt_q_addr +
6570                                          (ushort)ASC_SCSIQ_B_STATUS),
6571                                 q_status);
6572
6573                scsi_busy = AscReadLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B);
6574                scsi_busy &= ~target_id;
6575                AscWriteLramByte(iop_base, (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6576
6577                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6578                return;
6579        } else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
6580
6581                AscMemWordCopyPtrFromLram(iop_base,
6582                                          ASCV_MSGOUT_BEG,
6583                                          (uchar *)&out_msg,
6584                                          sizeof(EXT_MSG) >> 1);
6585
6586                if ((out_msg.msg_type == EXTENDED_MESSAGE) &&
6587                    (out_msg.msg_len == MS_SDTR_LEN) &&
6588                    (out_msg.msg_req == EXTENDED_SDTR)) {
6589
6590                        asc_dvc->init_sdtr &= ~target_id;
6591                        asc_dvc->sdtr_done &= ~target_id;
6592                        AscSetChipSDTR(iop_base, asyn_sdtr, tid_no);
6593                        boardp->sdtr_data[tid_no] = asyn_sdtr;
6594                }
6595                q_cntl &= ~QC_MSG_OUT;
6596                AscWriteLramByte(iop_base,
6597                                 (ushort)(halt_q_addr +
6598                                          (ushort)ASC_SCSIQ_B_CNTL), q_cntl);
6599                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6600                return;
6601        } else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
6602
6603                scsi_status = AscReadLramByte(iop_base,
6604                                              (ushort)((ushort)halt_q_addr +
6605                                                       (ushort)
6606                                                       ASC_SCSIQ_SCSI_STATUS));
6607                cur_dvc_qng =
6608                    AscReadLramByte(iop_base,
6609                                    (ushort)((ushort)ASC_QADR_BEG +
6610                                             (ushort)target_ix));
6611                if ((cur_dvc_qng > 0) && (asc_dvc->cur_dvc_qng[tid_no] > 0)) {
6612
6613                        scsi_busy = AscReadLramByte(iop_base,
6614                                                    (ushort)ASCV_SCSIBUSY_B);
6615                        scsi_busy |= target_id;
6616                        AscWriteLramByte(iop_base,
6617                                         (ushort)ASCV_SCSIBUSY_B, scsi_busy);
6618                        asc_dvc->queue_full_or_busy |= target_id;
6619
6620                        if (scsi_status == SAM_STAT_TASK_SET_FULL) {
6621                                if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
6622                                        cur_dvc_qng -= 1;
6623                                        asc_dvc->max_dvc_qng[tid_no] =
6624                                            cur_dvc_qng;
6625
6626                                        AscWriteLramByte(iop_base,
6627                                                         (ushort)((ushort)
6628                                                                  ASCV_MAX_DVC_QNG_BEG
6629                                                                  + (ushort)
6630                                                                  tid_no),
6631                                                         cur_dvc_qng);
6632
6633                                        /*
6634                                         * Set the device queue depth to the
6635                                         * number of active requests when the
6636                                         * QUEUE FULL condition was encountered.
6637                                         */
6638                                        boardp->queue_full |= target_id;
6639                                        boardp->queue_full_cnt[tid_no] =
6640                                            cur_dvc_qng;
6641                                }
6642                        }
6643                }
6644                AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0);
6645                return;
6646        }
6647        return;
6648}
6649
6650/*
6651 * void
6652 * DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6653 *
6654 * Calling/Exit State:
6655 *    none
6656 *
6657 * Description:
6658 *     Input an ASC_QDONE_INFO structure from the chip
6659 */
6660static void
6661DvcGetQinfo(PortAddr iop_base, ushort s_addr, uchar *inbuf, int words)
6662{
6663        int i;
6664        ushort word;
6665
6666        AscSetChipLramAddr(iop_base, s_addr);
6667        for (i = 0; i < 2 * words; i += 2) {
6668                if (i == 10) {
6669                        continue;
6670                }
6671                word = inpw(iop_base + IOP_RAM_DATA);
6672                inbuf[i] = word & 0xff;
6673                inbuf[i + 1] = (word >> 8) & 0xff;
6674        }
6675        ASC_DBG_PRT_HEX(2, "DvcGetQinfo", inbuf, 2 * words);
6676}
6677
6678static uchar
6679_AscCopyLramScsiDoneQ(PortAddr iop_base,
6680                      ushort q_addr,
6681                      ASC_QDONE_INFO *scsiq, unsigned int max_dma_count)
6682{
6683        ushort _val;
6684        uchar sg_queue_cnt;
6685
6686        DvcGetQinfo(iop_base,
6687                    q_addr + ASC_SCSIQ_DONE_INFO_BEG,
6688                    (uchar *)scsiq,
6689                    (sizeof(ASC_SCSIQ_2) + sizeof(ASC_SCSIQ_3)) / 2);
6690
6691        _val = AscReadLramWord(iop_base,
6692                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS));
6693        scsiq->q_status = (uchar)_val;
6694        scsiq->q_no = (uchar)(_val >> 8);
6695        _val = AscReadLramWord(iop_base,
6696                               (ushort)(q_addr + (ushort)ASC_SCSIQ_B_CNTL));
6697        scsiq->cntl = (uchar)_val;
6698        sg_queue_cnt = (uchar)(_val >> 8);
6699        _val = AscReadLramWord(iop_base,
6700                               (ushort)(q_addr +
6701                                        (ushort)ASC_SCSIQ_B_SENSE_LEN));
6702        scsiq->sense_len = (uchar)_val;
6703        scsiq->extra_bytes = (uchar)(_val >> 8);
6704
6705        /*
6706         * Read high word of remain bytes from alternate location.
6707         */
6708        scsiq->remain_bytes = (((u32)AscReadLramWord(iop_base,
6709                                                     (ushort)(q_addr +
6710                                                              (ushort)
6711                                                              ASC_SCSIQ_W_ALT_DC1)))
6712                               << 16);
6713        /*
6714         * Read low word of remain bytes from original location.
6715         */
6716        scsiq->remain_bytes += AscReadLramWord(iop_base,
6717                                               (ushort)(q_addr + (ushort)
6718                                                        ASC_SCSIQ_DW_REMAIN_XFER_CNT));
6719
6720        scsiq->remain_bytes &= max_dma_count;
6721        return sg_queue_cnt;
6722}
6723
6724/*
6725 * asc_isr_callback() - Second Level Interrupt Handler called by AscISR().
6726 *
6727 * Interrupt callback function for the Narrow SCSI Asc Library.
6728 */
6729static void asc_isr_callback(ASC_DVC_VAR *asc_dvc_varp, ASC_QDONE_INFO *qdonep)
6730{
6731        struct asc_board *boardp = asc_dvc_varp->drv_ptr;
6732        u32 srb_tag;
6733        struct scsi_cmnd *scp;
6734
6735        ASC_DBG(1, "asc_dvc_varp 0x%p, qdonep 0x%p\n", asc_dvc_varp, qdonep);
6736        ASC_DBG_PRT_ASC_QDONE_INFO(2, qdonep);
6737
6738        /*
6739         * Decrease the srb_tag by 1 to find the SCSI command
6740         */
6741        srb_tag = qdonep->d2.srb_tag - 1;
6742        scp = scsi_host_find_tag(boardp->shost, srb_tag);
6743        if (!scp)
6744                return;
6745
6746        ASC_DBG_PRT_CDB(2, scp->cmnd, scp->cmd_len);
6747
6748        ASC_STATS(boardp->shost, callback);
6749
6750        dma_unmap_single(boardp->dev, scp->SCp.dma_handle,
6751                         SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
6752        /*
6753         * 'qdonep' contains the command's ending status.
6754         */
6755        switch (qdonep->d3.done_stat) {
6756        case QD_NO_ERROR:
6757                ASC_DBG(2, "QD_NO_ERROR\n");
6758                scp->result = 0;
6759
6760                /*
6761                 * Check for an underrun condition.
6762                 *
6763                 * If there was no error and an underrun condition, then
6764                 * return the number of underrun bytes.
6765                 */
6766                if (scsi_bufflen(scp) != 0 && qdonep->remain_bytes != 0 &&
6767                    qdonep->remain_bytes <= scsi_bufflen(scp)) {
6768                        ASC_DBG(1, "underrun condition %u bytes\n",
6769                                 (unsigned)qdonep->remain_bytes);
6770                        scsi_set_resid(scp, qdonep->remain_bytes);
6771                }
6772                break;
6773
6774        case QD_WITH_ERROR:
6775                ASC_DBG(2, "QD_WITH_ERROR\n");
6776                switch (qdonep->d3.host_stat) {
6777                case QHSTA_NO_ERROR:
6778                        if (qdonep->d3.scsi_stat == SAM_STAT_CHECK_CONDITION) {
6779                                ASC_DBG(2, "SAM_STAT_CHECK_CONDITION\n");
6780                                ASC_DBG_PRT_SENSE(2, scp->sense_buffer,
6781                                                  SCSI_SENSE_BUFFERSIZE);
6782                                /*
6783                                 * Note: The 'status_byte()' macro used by
6784                                 * target drivers defined in scsi.h shifts the
6785                                 * status byte returned by host drivers right
6786                                 * by 1 bit.  This is why target drivers also
6787                                 * use right shifted status byte definitions.
6788                                 * For instance target drivers use
6789                                 * CHECK_CONDITION, defined to 0x1, instead of
6790                                 * the SCSI defined check condition value of
6791                                 * 0x2. Host drivers are supposed to return
6792                                 * the status byte as it is defined by SCSI.
6793                                 */
6794                                scp->result = DRIVER_BYTE(DRIVER_SENSE) |
6795                                    STATUS_BYTE(qdonep->d3.scsi_stat);
6796                        } else {
6797                                scp->result = STATUS_BYTE(qdonep->d3.scsi_stat);
6798                        }
6799                        break;
6800
6801                default:
6802                        /* QHSTA error occurred */
6803                        ASC_DBG(1, "host_stat 0x%x\n", qdonep->d3.host_stat);
6804                        scp->result = HOST_BYTE(DID_BAD_TARGET);
6805                        break;
6806                }
6807                break;
6808
6809        case QD_ABORTED_BY_HOST:
6810                ASC_DBG(1, "QD_ABORTED_BY_HOST\n");
6811                scp->result =
6812                    HOST_BYTE(DID_ABORT) | MSG_BYTE(qdonep->d3.
6813                                                    scsi_msg) |
6814                    STATUS_BYTE(qdonep->d3.scsi_stat);
6815                break;
6816
6817        default:
6818                ASC_DBG(1, "done_stat 0x%x\n", qdonep->d3.done_stat);
6819                scp->result =
6820                    HOST_BYTE(DID_ERROR) | MSG_BYTE(qdonep->d3.
6821                                                    scsi_msg) |
6822                    STATUS_BYTE(qdonep->d3.scsi_stat);
6823                break;
6824        }
6825
6826        /*
6827         * If the 'init_tidmask' bit isn't already set for the target and the
6828         * current request finished normally, then set the bit for the target
6829         * to indicate that a device is present.
6830         */
6831        if ((boardp->init_tidmask & ADV_TID_TO_TIDMASK(scp->device->id)) == 0 &&
6832            qdonep->d3.done_stat == QD_NO_ERROR &&
6833            qdonep->d3.host_stat == QHSTA_NO_ERROR) {
6834                boardp->init_tidmask |= ADV_TID_TO_TIDMASK(scp->device->id);
6835        }
6836
6837        asc_scsi_done(scp);
6838}
6839
6840static int AscIsrQDone(ASC_DVC_VAR *asc_dvc)
6841{
6842        uchar next_qp;
6843        uchar n_q_used;
6844        uchar sg_list_qp;
6845        uchar sg_queue_cnt;
6846        uchar q_cnt;
6847        uchar done_q_tail;
6848        uchar tid_no;
6849        ASC_SCSI_BIT_ID_TYPE scsi_busy;
6850        ASC_SCSI_BIT_ID_TYPE target_id;
6851        PortAddr iop_base;
6852        ushort q_addr;
6853        ushort sg_q_addr;
6854        uchar cur_target_qng;
6855        ASC_QDONE_INFO scsiq_buf;
6856        ASC_QDONE_INFO *scsiq;
6857        bool false_overrun;
6858
6859        iop_base = asc_dvc->iop_base;
6860        n_q_used = 1;
6861        scsiq = (ASC_QDONE_INFO *)&scsiq_buf;
6862        done_q_tail = (uchar)AscGetVarDoneQTail(iop_base);
6863        q_addr = ASC_QNO_TO_QADDR(done_q_tail);
6864        next_qp = AscReadLramByte(iop_base,
6865                                  (ushort)(q_addr + (ushort)ASC_SCSIQ_B_FWD));
6866        if (next_qp != ASC_QLINK_END) {
6867                AscPutVarDoneQTail(iop_base, next_qp);
6868                q_addr = ASC_QNO_TO_QADDR(next_qp);
6869                sg_queue_cnt = _AscCopyLramScsiDoneQ(iop_base, q_addr, scsiq,
6870                                                     asc_dvc->max_dma_count);
6871                AscWriteLramByte(iop_base,
6872                                 (ushort)(q_addr +
6873                                          (ushort)ASC_SCSIQ_B_STATUS),
6874                                 (uchar)(scsiq->
6875                                         q_status & (uchar)~(QS_READY |
6876                                                             QS_ABORTED)));
6877                tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
6878                target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
6879                if ((scsiq->cntl & QC_SG_HEAD) != 0) {
6880                        sg_q_addr = q_addr;
6881                        sg_list_qp = next_qp;
6882                        for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
6883                                sg_list_qp = AscReadLramByte(iop_base,
6884                                                             (ushort)(sg_q_addr
6885                                                                      + (ushort)
6886                                                                      ASC_SCSIQ_B_FWD));
6887                                sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
6888                                if (sg_list_qp == ASC_QLINK_END) {
6889                                        AscSetLibErrorCode(asc_dvc,
6890                                                           ASCQ_ERR_SG_Q_LINKS);
6891                                        scsiq->d3.done_stat = QD_WITH_ERROR;
6892                                        scsiq->d3.host_stat =
6893                                            QHSTA_D_QDONE_SG_LIST_CORRUPTED;
6894                                        goto FATAL_ERR_QDONE;
6895                                }
6896                                AscWriteLramByte(iop_base,
6897                                                 (ushort)(sg_q_addr + (ushort)
6898                                                          ASC_SCSIQ_B_STATUS),
6899                                                 QS_FREE);
6900                        }
6901                        n_q_used = sg_queue_cnt + 1;
6902                        AscPutVarDoneQTail(iop_base, sg_list_qp);
6903                }
6904                if (asc_dvc->queue_full_or_busy & target_id) {
6905                        cur_target_qng = AscReadLramByte(iop_base,
6906                                                         (ushort)((ushort)
6907                                                                  ASC_QADR_BEG
6908                                                                  + (ushort)
6909                                                                  scsiq->d2.
6910                                                                  target_ix));
6911                        if (cur_target_qng < asc_dvc->max_dvc_qng[tid_no]) {
6912                                scsi_busy = AscReadLramByte(iop_base, (ushort)
6913                                                            ASCV_SCSIBUSY_B);
6914                                scsi_busy &= ~target_id;
6915                                AscWriteLramByte(iop_base,
6916                                                 (ushort)ASCV_SCSIBUSY_B,
6917                                                 scsi_busy);
6918                                asc_dvc->queue_full_or_busy &= ~target_id;
6919                        }
6920                }
6921                if (asc_dvc->cur_total_qng >= n_q_used) {
6922                        asc_dvc->cur_total_qng -= n_q_used;
6923                        if (asc_dvc->cur_dvc_qng[tid_no] != 0) {
6924                                asc_dvc->cur_dvc_qng[tid_no]--;
6925                        }
6926                } else {
6927                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CUR_QNG);
6928                        scsiq->d3.done_stat = QD_WITH_ERROR;
6929                        goto FATAL_ERR_QDONE;
6930                }
6931                if ((scsiq->d2.srb_tag == 0UL) ||
6932                    ((scsiq->q_status & QS_ABORTED) != 0)) {
6933                        return (0x11);
6934                } else if (scsiq->q_status == QS_DONE) {
6935                        /*
6936                         * This is also curious.
6937                         * false_overrun will _always_ be set to 'false'
6938                         */
6939                        false_overrun = false;
6940                        if (scsiq->extra_bytes != 0) {
6941                                scsiq->remain_bytes += scsiq->extra_bytes;
6942                        }
6943                        if (scsiq->d3.done_stat == QD_WITH_ERROR) {
6944                                if (scsiq->d3.host_stat ==
6945                                    QHSTA_M_DATA_OVER_RUN) {
6946                                        if ((scsiq->
6947                                             cntl & (QC_DATA_IN | QC_DATA_OUT))
6948                                            == 0) {
6949                                                scsiq->d3.done_stat =
6950                                                    QD_NO_ERROR;
6951                                                scsiq->d3.host_stat =
6952                                                    QHSTA_NO_ERROR;
6953                                        } else if (false_overrun) {
6954                                                scsiq->d3.done_stat =
6955                                                    QD_NO_ERROR;
6956                                                scsiq->d3.host_stat =
6957                                                    QHSTA_NO_ERROR;
6958                                        }
6959                                } else if (scsiq->d3.host_stat ==
6960                                           QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
6961                                        AscStopChip(iop_base);
6962                                        AscSetChipControl(iop_base,
6963                                                          (uchar)(CC_SCSI_RESET
6964                                                                  | CC_HALT));
6965                                        udelay(60);
6966                                        AscSetChipControl(iop_base, CC_HALT);
6967                                        AscSetChipStatus(iop_base,
6968                                                         CIW_CLR_SCSI_RESET_INT);
6969                                        AscSetChipStatus(iop_base, 0);
6970                                        AscSetChipControl(iop_base, 0);
6971                                }
6972                        }
6973                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6974                                asc_isr_callback(asc_dvc, scsiq);
6975                        } else {
6976                                if ((AscReadLramByte(iop_base,
6977                                                     (ushort)(q_addr + (ushort)
6978                                                              ASC_SCSIQ_CDB_BEG))
6979                                     == START_STOP)) {
6980                                        asc_dvc->unit_not_ready &= ~target_id;
6981                                        if (scsiq->d3.done_stat != QD_NO_ERROR) {
6982                                                asc_dvc->start_motor &=
6983                                                    ~target_id;
6984                                        }
6985                                }
6986                        }
6987                        return (1);
6988                } else {
6989                        AscSetLibErrorCode(asc_dvc, ASCQ_ERR_Q_STATUS);
6990 FATAL_ERR_QDONE:
6991                        if ((scsiq->cntl & QC_NO_CALLBACK) == 0) {
6992                                asc_isr_callback(asc_dvc, scsiq);
6993                        }
6994                        return (0x80);
6995                }
6996        }
6997        return (0);
6998}
6999
7000static int AscISR(ASC_DVC_VAR *asc_dvc)
7001{
7002        ASC_CS_TYPE chipstat;
7003        PortAddr iop_base;
7004        ushort saved_ram_addr;
7005        uchar ctrl_reg;
7006        uchar saved_ctrl_reg;
7007        int int_pending;
7008        int status;
7009        uchar host_flag;
7010
7011        iop_base = asc_dvc->iop_base;
7012        int_pending = ASC_FALSE;
7013
7014        if (AscIsIntPending(iop_base) == 0)
7015                return int_pending;
7016
7017        if ((asc_dvc->init_state & ASC_INIT_STATE_END_LOAD_MC) == 0) {
7018                return ASC_ERROR;
7019        }
7020        if (asc_dvc->in_critical_cnt != 0) {
7021                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_ON_CRITICAL);
7022                return ASC_ERROR;
7023        }
7024        if (asc_dvc->is_in_int) {
7025                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_ISR_RE_ENTRY);
7026                return ASC_ERROR;
7027        }
7028        asc_dvc->is_in_int = true;
7029        ctrl_reg = AscGetChipControl(iop_base);
7030        saved_ctrl_reg = ctrl_reg & (~(CC_SCSI_RESET | CC_CHIP_RESET |
7031                                       CC_SINGLE_STEP | CC_DIAG | CC_TEST));
7032        chipstat = AscGetChipStatus(iop_base);
7033        if (chipstat & CSW_SCSI_RESET_LATCH) {
7034                if (!(asc_dvc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
7035                        int i = 10;
7036                        int_pending = ASC_TRUE;
7037                        asc_dvc->sdtr_done = 0;
7038                        saved_ctrl_reg &= (uchar)(~CC_HALT);
7039                        while ((AscGetChipStatus(iop_base) &
7040                                CSW_SCSI_RESET_ACTIVE) && (i-- > 0)) {
7041                                mdelay(100);
7042                        }
7043                        AscSetChipControl(iop_base, (CC_CHIP_RESET | CC_HALT));
7044                        AscSetChipControl(iop_base, CC_HALT);
7045                        AscSetChipStatus(iop_base, CIW_CLR_SCSI_RESET_INT);
7046                        AscSetChipStatus(iop_base, 0);
7047                        chipstat = AscGetChipStatus(iop_base);
7048                }
7049        }
7050        saved_ram_addr = AscGetChipLramAddr(iop_base);
7051        host_flag = AscReadLramByte(iop_base,
7052                                    ASCV_HOST_FLAG_B) &
7053            (uchar)(~ASC_HOST_FLAG_IN_ISR);
7054        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B,
7055                         (uchar)(host_flag | (uchar)ASC_HOST_FLAG_IN_ISR));
7056        if ((chipstat & CSW_INT_PENDING) || (int_pending)) {
7057                AscAckInterrupt(iop_base);
7058                int_pending = ASC_TRUE;
7059                if ((chipstat & CSW_HALTED) && (ctrl_reg & CC_SINGLE_STEP)) {
7060                        AscIsrChipHalted(asc_dvc);
7061                        saved_ctrl_reg &= (uchar)(~CC_HALT);
7062                } else {
7063                        if ((asc_dvc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) != 0) {
7064                                while (((status =
7065                                         AscIsrQDone(asc_dvc)) & 0x01) != 0) {
7066                                }
7067                        } else {
7068                                do {
7069                                        if ((status =
7070                                             AscIsrQDone(asc_dvc)) == 1) {
7071                                                break;
7072                                        }
7073                                } while (status == 0x11);
7074                        }
7075                        if ((status & 0x80) != 0)
7076                                int_pending = ASC_ERROR;
7077                }
7078        }
7079        AscWriteLramByte(iop_base, ASCV_HOST_FLAG_B, host_flag);
7080        AscSetChipLramAddr(iop_base, saved_ram_addr);
7081        AscSetChipControl(iop_base, saved_ctrl_reg);
7082        asc_dvc->is_in_int = false;
7083        return int_pending;
7084}
7085
7086/*
7087 * advansys_reset()
7088 *
7089 * Reset the host associated with the command 'scp'.
7090 *
7091 * This function runs its own thread. Interrupts must be blocked but
7092 * sleeping is allowed and no locking other than for host structures is
7093 * required. Returns SUCCESS or FAILED.
7094 */
7095static int advansys_reset(struct scsi_cmnd *scp)
7096{
7097        struct Scsi_Host *shost = scp->device->host;
7098        struct asc_board *boardp = shost_priv(shost);
7099        unsigned long flags;
7100        int status;
7101        int ret = SUCCESS;
7102
7103        ASC_DBG(1, "0x%p\n", scp);
7104
7105        ASC_STATS(shost, reset);
7106
7107        scmd_printk(KERN_INFO, scp, "SCSI host reset started...\n");
7108
7109        if (ASC_NARROW_BOARD(boardp)) {
7110                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7111
7112                /* Reset the chip and SCSI bus. */
7113                ASC_DBG(1, "before AscInitAsc1000Driver()\n");
7114                status = AscInitAsc1000Driver(asc_dvc);
7115
7116                /* Refer to ASC_IERR_* definitions for meaning of 'err_code'. */
7117                if (asc_dvc->err_code || !asc_dvc->overrun_dma) {
7118                        scmd_printk(KERN_INFO, scp, "SCSI host reset error: "
7119                                    "0x%x, status: 0x%x\n", asc_dvc->err_code,
7120                                    status);
7121                        ret = FAILED;
7122                } else if (status) {
7123                        scmd_printk(KERN_INFO, scp, "SCSI host reset warning: "
7124                                    "0x%x\n", status);
7125                } else {
7126                        scmd_printk(KERN_INFO, scp, "SCSI host reset "
7127                                    "successful\n");
7128                }
7129
7130                ASC_DBG(1, "after AscInitAsc1000Driver()\n");
7131        } else {
7132                /*
7133                 * If the suggest reset bus flags are set, then reset the bus.
7134                 * Otherwise only reset the device.
7135                 */
7136                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
7137
7138                /*
7139                 * Reset the chip and SCSI bus.
7140                 */
7141                ASC_DBG(1, "before AdvResetChipAndSB()\n");
7142                switch (AdvResetChipAndSB(adv_dvc)) {
7143                case ASC_TRUE:
7144                        scmd_printk(KERN_INFO, scp, "SCSI host reset "
7145                                    "successful\n");
7146                        break;
7147                case ASC_FALSE:
7148                default:
7149                        scmd_printk(KERN_INFO, scp, "SCSI host reset error\n");
7150                        ret = FAILED;
7151                        break;
7152                }
7153                spin_lock_irqsave(shost->host_lock, flags);
7154                AdvISR(adv_dvc);
7155                spin_unlock_irqrestore(shost->host_lock, flags);
7156        }
7157
7158        ASC_DBG(1, "ret %d\n", ret);
7159
7160        return ret;
7161}
7162
7163/*
7164 * advansys_biosparam()
7165 *
7166 * Translate disk drive geometry if the "BIOS greater than 1 GB"
7167 * support is enabled for a drive.
7168 *
7169 * ip (information pointer) is an int array with the following definition:
7170 * ip[0]: heads
7171 * ip[1]: sectors
7172 * ip[2]: cylinders
7173 */
7174static int
7175advansys_biosparam(struct scsi_device *sdev, struct block_device *bdev,
7176                   sector_t capacity, int ip[])
7177{
7178        struct asc_board *boardp = shost_priv(sdev->host);
7179
7180        ASC_DBG(1, "begin\n");
7181        ASC_STATS(sdev->host, biosparam);
7182        if (ASC_NARROW_BOARD(boardp)) {
7183                if ((boardp->dvc_var.asc_dvc_var.dvc_cntl &
7184                     ASC_CNTL_BIOS_GT_1GB) && capacity > 0x200000) {
7185                        ip[0] = 255;
7186                        ip[1] = 63;
7187                } else {
7188                        ip[0] = 64;
7189                        ip[1] = 32;
7190                }
7191        } else {
7192                if ((boardp->dvc_var.adv_dvc_var.bios_ctrl &
7193                     BIOS_CTRL_EXTENDED_XLAT) && capacity > 0x200000) {
7194                        ip[0] = 255;
7195                        ip[1] = 63;
7196                } else {
7197                        ip[0] = 64;
7198                        ip[1] = 32;
7199                }
7200        }
7201        ip[2] = (unsigned long)capacity / (ip[0] * ip[1]);
7202        ASC_DBG(1, "end\n");
7203        return 0;
7204}
7205
7206/*
7207 * First-level interrupt handler.
7208 *
7209 * 'dev_id' is a pointer to the interrupting adapter's Scsi_Host.
7210 */
7211static irqreturn_t advansys_interrupt(int irq, void *dev_id)
7212{
7213        struct Scsi_Host *shost = dev_id;
7214        struct asc_board *boardp = shost_priv(shost);
7215        irqreturn_t result = IRQ_NONE;
7216        unsigned long flags;
7217
7218        ASC_DBG(2, "boardp 0x%p\n", boardp);
7219        spin_lock_irqsave(shost->host_lock, flags);
7220        if (ASC_NARROW_BOARD(boardp)) {
7221                if (AscIsIntPending(shost->io_port)) {
7222                        result = IRQ_HANDLED;
7223                        ASC_STATS(shost, interrupt);
7224                        ASC_DBG(1, "before AscISR()\n");
7225                        AscISR(&boardp->dvc_var.asc_dvc_var);
7226                }
7227        } else {
7228                ASC_DBG(1, "before AdvISR()\n");
7229                if (AdvISR(&boardp->dvc_var.adv_dvc_var)) {
7230                        result = IRQ_HANDLED;
7231                        ASC_STATS(shost, interrupt);
7232                }
7233        }
7234        spin_unlock_irqrestore(shost->host_lock, flags);
7235
7236        ASC_DBG(1, "end\n");
7237        return result;
7238}
7239
7240static bool AscHostReqRiscHalt(PortAddr iop_base)
7241{
7242        int count = 0;
7243        bool sta = false;
7244        uchar saved_stop_code;
7245
7246        if (AscIsChipHalted(iop_base))
7247                return true;
7248        saved_stop_code = AscReadLramByte(iop_base, ASCV_STOP_CODE_B);
7249        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
7250                         ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
7251        do {
7252                if (AscIsChipHalted(iop_base)) {
7253                        sta = true;
7254                        break;
7255                }
7256                mdelay(100);
7257        } while (count++ < 20);
7258        AscWriteLramByte(iop_base, ASCV_STOP_CODE_B, saved_stop_code);
7259        return sta;
7260}
7261
7262static bool
7263AscSetRunChipSynRegAtID(PortAddr iop_base, uchar tid_no, uchar sdtr_data)
7264{
7265        bool sta = false;
7266
7267        if (AscHostReqRiscHalt(iop_base)) {
7268                sta = AscSetChipSynRegAtID(iop_base, tid_no, sdtr_data);
7269                AscStartChip(iop_base);
7270        }
7271        return sta;
7272}
7273
7274static void AscAsyncFix(ASC_DVC_VAR *asc_dvc, struct scsi_device *sdev)
7275{
7276        char type = sdev->type;
7277        ASC_SCSI_BIT_ID_TYPE tid_bits = 1 << sdev->id;
7278
7279        if (!(asc_dvc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN))
7280                return;
7281        if (asc_dvc->init_sdtr & tid_bits)
7282                return;
7283
7284        if ((type == TYPE_ROM) && (strncmp(sdev->vendor, "HP ", 3) == 0))
7285                asc_dvc->pci_fix_asyn_xfer_always |= tid_bits;
7286
7287        asc_dvc->pci_fix_asyn_xfer |= tid_bits;
7288        if ((type == TYPE_PROCESSOR) || (type == TYPE_SCANNER) ||
7289            (type == TYPE_ROM) || (type == TYPE_TAPE))
7290                asc_dvc->pci_fix_asyn_xfer &= ~tid_bits;
7291
7292        if (asc_dvc->pci_fix_asyn_xfer & tid_bits)
7293                AscSetRunChipSynRegAtID(asc_dvc->iop_base, sdev->id,
7294                                        ASYN_SDTR_DATA_FIX_PCI_REV_AB);
7295}
7296
7297static void
7298advansys_narrow_slave_configure(struct scsi_device *sdev, ASC_DVC_VAR *asc_dvc)
7299{
7300        ASC_SCSI_BIT_ID_TYPE tid_bit = 1 << sdev->id;
7301        ASC_SCSI_BIT_ID_TYPE orig_use_tagged_qng = asc_dvc->use_tagged_qng;
7302
7303        if (sdev->lun == 0) {
7304                ASC_SCSI_BIT_ID_TYPE orig_init_sdtr = asc_dvc->init_sdtr;
7305                if ((asc_dvc->cfg->sdtr_enable & tid_bit) && sdev->sdtr) {
7306                        asc_dvc->init_sdtr |= tid_bit;
7307                } else {
7308                        asc_dvc->init_sdtr &= ~tid_bit;
7309                }
7310
7311                if (orig_init_sdtr != asc_dvc->init_sdtr)
7312                        AscAsyncFix(asc_dvc, sdev);
7313        }
7314
7315        if (sdev->tagged_supported) {
7316                if (asc_dvc->cfg->cmd_qng_enabled & tid_bit) {
7317                        if (sdev->lun == 0) {
7318                                asc_dvc->cfg->can_tagged_qng |= tid_bit;
7319                                asc_dvc->use_tagged_qng |= tid_bit;
7320                        }
7321                        scsi_change_queue_depth(sdev, 
7322                                                asc_dvc->max_dvc_qng[sdev->id]);
7323                }
7324        } else {
7325                if (sdev->lun == 0) {
7326                        asc_dvc->cfg->can_tagged_qng &= ~tid_bit;
7327                        asc_dvc->use_tagged_qng &= ~tid_bit;
7328                }
7329        }
7330
7331        if ((sdev->lun == 0) &&
7332            (orig_use_tagged_qng != asc_dvc->use_tagged_qng)) {
7333                AscWriteLramByte(asc_dvc->iop_base, ASCV_DISC_ENABLE_B,
7334                                 asc_dvc->cfg->disc_enable);
7335                AscWriteLramByte(asc_dvc->iop_base, ASCV_USE_TAGGED_QNG_B,
7336                                 asc_dvc->use_tagged_qng);
7337                AscWriteLramByte(asc_dvc->iop_base, ASCV_CAN_TAGGED_QNG_B,
7338                                 asc_dvc->cfg->can_tagged_qng);
7339
7340                asc_dvc->max_dvc_qng[sdev->id] =
7341                                        asc_dvc->cfg->max_tag_qng[sdev->id];
7342                AscWriteLramByte(asc_dvc->iop_base,
7343                                 (ushort)(ASCV_MAX_DVC_QNG_BEG + sdev->id),
7344                                 asc_dvc->max_dvc_qng[sdev->id]);
7345        }
7346}
7347
7348/*
7349 * Wide Transfers
7350 *
7351 * If the EEPROM enabled WDTR for the device and the device supports wide
7352 * bus (16 bit) transfers, then turn on the device's 'wdtr_able' bit and
7353 * write the new value to the microcode.
7354 */
7355static void
7356advansys_wide_enable_wdtr(AdvPortAddr iop_base, unsigned short tidmask)
7357{
7358        unsigned short cfg_word;
7359        AdvReadWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7360        if ((cfg_word & tidmask) != 0)
7361                return;
7362
7363        cfg_word |= tidmask;
7364        AdvWriteWordLram(iop_base, ASC_MC_WDTR_ABLE, cfg_word);
7365
7366        /*
7367         * Clear the microcode SDTR and WDTR negotiation done indicators for
7368         * the target to cause it to negotiate with the new setting set above.
7369         * WDTR when accepted causes the target to enter asynchronous mode, so
7370         * SDTR must be negotiated.
7371         */
7372        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7373        cfg_word &= ~tidmask;
7374        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7375        AdvReadWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7376        cfg_word &= ~tidmask;
7377        AdvWriteWordLram(iop_base, ASC_MC_WDTR_DONE, cfg_word);
7378}
7379
7380/*
7381 * Synchronous Transfers
7382 *
7383 * If the EEPROM enabled SDTR for the device and the device
7384 * supports synchronous transfers, then turn on the device's
7385 * 'sdtr_able' bit. Write the new value to the microcode.
7386 */
7387static void
7388advansys_wide_enable_sdtr(AdvPortAddr iop_base, unsigned short tidmask)
7389{
7390        unsigned short cfg_word;
7391        AdvReadWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7392        if ((cfg_word & tidmask) != 0)
7393                return;
7394
7395        cfg_word |= tidmask;
7396        AdvWriteWordLram(iop_base, ASC_MC_SDTR_ABLE, cfg_word);
7397
7398        /*
7399         * Clear the microcode "SDTR negotiation" done indicator for the
7400         * target to cause it to negotiate with the new setting set above.
7401         */
7402        AdvReadWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7403        cfg_word &= ~tidmask;
7404        AdvWriteWordLram(iop_base, ASC_MC_SDTR_DONE, cfg_word);
7405}
7406
7407/*
7408 * PPR (Parallel Protocol Request) Capable
7409 *
7410 * If the device supports DT mode, then it must be PPR capable.
7411 * The PPR message will be used in place of the SDTR and WDTR
7412 * messages to negotiate synchronous speed and offset, transfer
7413 * width, and protocol options.
7414 */
7415static void advansys_wide_enable_ppr(ADV_DVC_VAR *adv_dvc,
7416                                AdvPortAddr iop_base, unsigned short tidmask)
7417{
7418        AdvReadWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7419        adv_dvc->ppr_able |= tidmask;
7420        AdvWriteWordLram(iop_base, ASC_MC_PPR_ABLE, adv_dvc->ppr_able);
7421}
7422
7423static void
7424advansys_wide_slave_configure(struct scsi_device *sdev, ADV_DVC_VAR *adv_dvc)
7425{
7426        AdvPortAddr iop_base = adv_dvc->iop_base;
7427        unsigned short tidmask = 1 << sdev->id;
7428
7429        if (sdev->lun == 0) {
7430                /*
7431                 * Handle WDTR, SDTR, and Tag Queuing. If the feature
7432                 * is enabled in the EEPROM and the device supports the
7433                 * feature, then enable it in the microcode.
7434                 */
7435
7436                if ((adv_dvc->wdtr_able & tidmask) && sdev->wdtr)
7437                        advansys_wide_enable_wdtr(iop_base, tidmask);
7438                if ((adv_dvc->sdtr_able & tidmask) && sdev->sdtr)
7439                        advansys_wide_enable_sdtr(iop_base, tidmask);
7440                if (adv_dvc->chip_type == ADV_CHIP_ASC38C1600 && sdev->ppr)
7441                        advansys_wide_enable_ppr(adv_dvc, iop_base, tidmask);
7442
7443                /*
7444                 * Tag Queuing is disabled for the BIOS which runs in polled
7445                 * mode and would see no benefit from Tag Queuing. Also by
7446                 * disabling Tag Queuing in the BIOS devices with Tag Queuing
7447                 * bugs will at least work with the BIOS.
7448                 */
7449                if ((adv_dvc->tagqng_able & tidmask) &&
7450                    sdev->tagged_supported) {
7451                        unsigned short cfg_word;
7452                        AdvReadWordLram(iop_base, ASC_MC_TAGQNG_ABLE, cfg_word);
7453                        cfg_word |= tidmask;
7454                        AdvWriteWordLram(iop_base, ASC_MC_TAGQNG_ABLE,
7455                                         cfg_word);
7456                        AdvWriteByteLram(iop_base,
7457                                         ASC_MC_NUMBER_OF_MAX_CMD + sdev->id,
7458                                         adv_dvc->max_dvc_qng);
7459                }
7460        }
7461
7462        if ((adv_dvc->tagqng_able & tidmask) && sdev->tagged_supported)
7463                scsi_change_queue_depth(sdev, adv_dvc->max_dvc_qng);
7464}
7465
7466/*
7467 * Set the number of commands to queue per device for the
7468 * specified host adapter.
7469 */
7470static int advansys_slave_configure(struct scsi_device *sdev)
7471{
7472        struct asc_board *boardp = shost_priv(sdev->host);
7473
7474        if (ASC_NARROW_BOARD(boardp))
7475                advansys_narrow_slave_configure(sdev,
7476                                                &boardp->dvc_var.asc_dvc_var);
7477        else
7478                advansys_wide_slave_configure(sdev,
7479                                                &boardp->dvc_var.adv_dvc_var);
7480
7481        return 0;
7482}
7483
7484static __le32 asc_get_sense_buffer_dma(struct scsi_cmnd *scp)
7485{
7486        struct asc_board *board = shost_priv(scp->device->host);
7487
7488        scp->SCp.dma_handle = dma_map_single(board->dev, scp->sense_buffer,
7489                                             SCSI_SENSE_BUFFERSIZE,
7490                                             DMA_FROM_DEVICE);
7491        if (dma_mapping_error(board->dev, scp->SCp.dma_handle)) {
7492                ASC_DBG(1, "failed to map sense buffer\n");
7493                return 0;
7494        }
7495        return cpu_to_le32(scp->SCp.dma_handle);
7496}
7497
7498static int asc_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7499                        struct asc_scsi_q *asc_scsi_q)
7500{
7501        struct asc_dvc_var *asc_dvc = &boardp->dvc_var.asc_dvc_var;
7502        int use_sg;
7503        u32 srb_tag;
7504
7505        memset(asc_scsi_q, 0, sizeof(*asc_scsi_q));
7506
7507        /*
7508         * Set the srb_tag to the command tag + 1, as
7509         * srb_tag '0' is used internally by the chip.
7510         */
7511        srb_tag = scp->request->tag + 1;
7512        asc_scsi_q->q2.srb_tag = srb_tag;
7513
7514        /*
7515         * Build the ASC_SCSI_Q request.
7516         */
7517        asc_scsi_q->cdbptr = &scp->cmnd[0];
7518        asc_scsi_q->q2.cdb_len = scp->cmd_len;
7519        asc_scsi_q->q1.target_id = ASC_TID_TO_TARGET_ID(scp->device->id);
7520        asc_scsi_q->q1.target_lun = scp->device->lun;
7521        asc_scsi_q->q2.target_ix =
7522            ASC_TIDLUN_TO_IX(scp->device->id, scp->device->lun);
7523        asc_scsi_q->q1.sense_addr = asc_get_sense_buffer_dma(scp);
7524        asc_scsi_q->q1.sense_len = SCSI_SENSE_BUFFERSIZE;
7525        if (!asc_scsi_q->q1.sense_addr)
7526                return ASC_BUSY;
7527
7528        /*
7529         * If there are any outstanding requests for the current target,
7530         * then every 255th request send an ORDERED request. This heuristic
7531         * tries to retain the benefit of request sorting while preventing
7532         * request starvation. 255 is the max number of tags or pending commands
7533         * a device may have outstanding.
7534         *
7535         * The request count is incremented below for every successfully
7536         * started request.
7537         *
7538         */
7539        if ((asc_dvc->cur_dvc_qng[scp->device->id] > 0) &&
7540            (boardp->reqcnt[scp->device->id] % 255) == 0) {
7541                asc_scsi_q->q2.tag_code = ORDERED_QUEUE_TAG;
7542        } else {
7543                asc_scsi_q->q2.tag_code = SIMPLE_QUEUE_TAG;
7544        }
7545
7546        /* Build ASC_SCSI_Q */
7547        use_sg = scsi_dma_map(scp);
7548        if (use_sg < 0) {
7549                ASC_DBG(1, "failed to map sglist\n");
7550                return ASC_BUSY;
7551        } else if (use_sg > 0) {
7552                int sgcnt;
7553                struct scatterlist *slp;
7554                struct asc_sg_head *asc_sg_head;
7555
7556                if (use_sg > scp->device->host->sg_tablesize) {
7557                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
7558                                "sg_tablesize %d\n", use_sg,
7559                                scp->device->host->sg_tablesize);
7560                        scsi_dma_unmap(scp);
7561                        scp->result = HOST_BYTE(DID_ERROR);
7562                        return ASC_ERROR;
7563                }
7564
7565                asc_sg_head = kzalloc(sizeof(asc_scsi_q->sg_head) +
7566                        use_sg * sizeof(struct asc_sg_list), GFP_ATOMIC);
7567                if (!asc_sg_head) {
7568                        scsi_dma_unmap(scp);
7569                        scp->result = HOST_BYTE(DID_SOFT_ERROR);
7570                        return ASC_ERROR;
7571                }
7572
7573                asc_scsi_q->q1.cntl |= QC_SG_HEAD;
7574                asc_scsi_q->sg_head = asc_sg_head;
7575                asc_scsi_q->q1.data_cnt = 0;
7576                asc_scsi_q->q1.data_addr = 0;
7577                /* This is a byte value, otherwise it would need to be swapped. */
7578                asc_sg_head->entry_cnt = asc_scsi_q->q1.sg_queue_cnt = use_sg;
7579                ASC_STATS_ADD(scp->device->host, xfer_elem,
7580                              asc_sg_head->entry_cnt);
7581
7582                /*
7583                 * Convert scatter-gather list into ASC_SG_HEAD list.
7584                 */
7585                scsi_for_each_sg(scp, slp, use_sg, sgcnt) {
7586                        asc_sg_head->sg_list[sgcnt].addr =
7587                            cpu_to_le32(sg_dma_address(slp));
7588                        asc_sg_head->sg_list[sgcnt].bytes =
7589                            cpu_to_le32(sg_dma_len(slp));
7590                        ASC_STATS_ADD(scp->device->host, xfer_sect,
7591                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
7592                }
7593        }
7594
7595        ASC_STATS(scp->device->host, xfer_cnt);
7596
7597        ASC_DBG_PRT_ASC_SCSI_Q(2, asc_scsi_q);
7598        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7599
7600        return ASC_NOERROR;
7601}
7602
7603/*
7604 * Build scatter-gather list for Adv Library (Wide Board).
7605 *
7606 * Additional ADV_SG_BLOCK structures will need to be allocated
7607 * if the total number of scatter-gather elements exceeds
7608 * NO_OF_SG_PER_BLOCK (15). The ADV_SG_BLOCK structures are
7609 * assumed to be physically contiguous.
7610 *
7611 * Return:
7612 *      ADV_SUCCESS(1) - SG List successfully created
7613 *      ADV_ERROR(-1) - SG List creation failed
7614 */
7615static int
7616adv_get_sglist(struct asc_board *boardp, adv_req_t *reqp,
7617               ADV_SCSI_REQ_Q *scsiqp, struct scsi_cmnd *scp, int use_sg)
7618{
7619        adv_sgblk_t *sgblkp, *prev_sgblkp;
7620        struct scatterlist *slp;
7621        int sg_elem_cnt;
7622        ADV_SG_BLOCK *sg_block, *prev_sg_block;
7623        dma_addr_t sgblk_paddr;
7624        int i;
7625
7626        slp = scsi_sglist(scp);
7627        sg_elem_cnt = use_sg;
7628        prev_sgblkp = NULL;
7629        prev_sg_block = NULL;
7630        reqp->sgblkp = NULL;
7631
7632        for (;;) {
7633                /*
7634                 * Allocate a 'adv_sgblk_t' structure from the board free
7635                 * list. One 'adv_sgblk_t' structure holds NO_OF_SG_PER_BLOCK
7636                 * (15) scatter-gather elements.
7637                 */
7638                sgblkp = dma_pool_alloc(boardp->adv_sgblk_pool, GFP_ATOMIC,
7639                                        &sgblk_paddr);
7640                if (!sgblkp) {
7641                        ASC_DBG(1, "no free adv_sgblk_t\n");
7642                        ASC_STATS(scp->device->host, adv_build_nosg);
7643
7644                        /*
7645                         * Allocation failed. Free 'adv_sgblk_t' structures
7646                         * already allocated for the request.
7647                         */
7648                        while ((sgblkp = reqp->sgblkp) != NULL) {
7649                                /* Remove 'sgblkp' from the request list. */
7650                                reqp->sgblkp = sgblkp->next_sgblkp;
7651                                sgblkp->next_sgblkp = NULL;
7652                                dma_pool_free(boardp->adv_sgblk_pool, sgblkp,
7653                                              sgblkp->sg_addr);
7654                        }
7655                        return ASC_BUSY;
7656                }
7657                /* Complete 'adv_sgblk_t' board allocation. */
7658                sgblkp->sg_addr = sgblk_paddr;
7659                sgblkp->next_sgblkp = NULL;
7660                sg_block = &sgblkp->sg_block;
7661
7662                /*
7663                 * Check if this is the first 'adv_sgblk_t' for the
7664                 * request.
7665                 */
7666                if (reqp->sgblkp == NULL) {
7667                        /* Request's first scatter-gather block. */
7668                        reqp->sgblkp = sgblkp;
7669
7670                        /*
7671                         * Set ADV_SCSI_REQ_T ADV_SG_BLOCK virtual and physical
7672                         * address pointers.
7673                         */
7674                        scsiqp->sg_list_ptr = sg_block;
7675                        scsiqp->sg_real_addr = cpu_to_le32(sgblk_paddr);
7676                } else {
7677                        /* Request's second or later scatter-gather block. */
7678                        prev_sgblkp->next_sgblkp = sgblkp;
7679
7680                        /*
7681                         * Point the previous ADV_SG_BLOCK structure to
7682                         * the newly allocated ADV_SG_BLOCK structure.
7683                         */
7684                        prev_sg_block->sg_ptr = cpu_to_le32(sgblk_paddr);
7685                }
7686
7687                for (i = 0; i < NO_OF_SG_PER_BLOCK; i++) {
7688                        sg_block->sg_list[i].sg_addr =
7689                                        cpu_to_le32(sg_dma_address(slp));
7690                        sg_block->sg_list[i].sg_count =
7691                                        cpu_to_le32(sg_dma_len(slp));
7692                        ASC_STATS_ADD(scp->device->host, xfer_sect,
7693                                      DIV_ROUND_UP(sg_dma_len(slp), 512));
7694
7695                        if (--sg_elem_cnt == 0) {
7696                                /*
7697                                 * Last ADV_SG_BLOCK and scatter-gather entry.
7698                                 */
7699                                sg_block->sg_cnt = i + 1;
7700                                sg_block->sg_ptr = 0L; /* Last ADV_SG_BLOCK in list. */
7701                                return ADV_SUCCESS;
7702                        }
7703                        slp = sg_next(slp);
7704                }
7705                sg_block->sg_cnt = NO_OF_SG_PER_BLOCK;
7706                prev_sg_block = sg_block;
7707                prev_sgblkp = sgblkp;
7708        }
7709}
7710
7711/*
7712 * Build a request structure for the Adv Library (Wide Board).
7713 *
7714 * If an adv_req_t can not be allocated to issue the request,
7715 * then return ASC_BUSY. If an error occurs, then return ASC_ERROR.
7716 *
7717 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the
7718 * microcode for DMA addresses or math operations are byte swapped
7719 * to little-endian order.
7720 */
7721static int
7722adv_build_req(struct asc_board *boardp, struct scsi_cmnd *scp,
7723              adv_req_t **adv_reqpp)
7724{
7725        u32 srb_tag = scp->request->tag;
7726        adv_req_t *reqp;
7727        ADV_SCSI_REQ_Q *scsiqp;
7728        int ret;
7729        int use_sg;
7730        dma_addr_t sense_addr;
7731
7732        /*
7733         * Allocate an adv_req_t structure from the board to execute
7734         * the command.
7735         */
7736        reqp = &boardp->adv_reqp[srb_tag];
7737        if (reqp->cmndp && reqp->cmndp != scp ) {
7738                ASC_DBG(1, "no free adv_req_t\n");
7739                ASC_STATS(scp->device->host, adv_build_noreq);
7740                return ASC_BUSY;
7741        }
7742
7743        reqp->req_addr = boardp->adv_reqp_addr + (srb_tag * sizeof(adv_req_t));
7744
7745        scsiqp = &reqp->scsi_req_q;
7746
7747        /*
7748         * Initialize the structure.
7749         */
7750        scsiqp->cntl = scsiqp->scsi_cntl = scsiqp->done_status = 0;
7751
7752        /*
7753         * Set the srb_tag to the command tag.
7754         */
7755        scsiqp->srb_tag = srb_tag;
7756
7757        /*
7758         * Set 'host_scribble' to point to the adv_req_t structure.
7759         */
7760        reqp->cmndp = scp;
7761        scp->host_scribble = (void *)reqp;
7762
7763        /*
7764         * Build the ADV_SCSI_REQ_Q request.
7765         */
7766
7767        /* Set CDB length and copy it to the request structure.  */
7768        scsiqp->cdb_len = scp->cmd_len;
7769        /* Copy first 12 CDB bytes to cdb[]. */
7770        memcpy(scsiqp->cdb, scp->cmnd, scp->cmd_len < 12 ? scp->cmd_len : 12);
7771        /* Copy last 4 CDB bytes, if present, to cdb16[]. */
7772        if (scp->cmd_len > 12) {
7773                int cdb16_len = scp->cmd_len - 12;
7774
7775                memcpy(scsiqp->cdb16, &scp->cmnd[12], cdb16_len);
7776        }
7777
7778        scsiqp->target_id = scp->device->id;
7779        scsiqp->target_lun = scp->device->lun;
7780
7781        sense_addr = dma_map_single(boardp->dev, scp->sense_buffer,
7782                                    SCSI_SENSE_BUFFERSIZE, DMA_FROM_DEVICE);
7783        if (dma_mapping_error(boardp->dev, sense_addr)) {
7784                ASC_DBG(1, "failed to map sense buffer\n");
7785                ASC_STATS(scp->device->host, adv_build_noreq);
7786                return ASC_BUSY;
7787        }
7788        scsiqp->sense_addr = cpu_to_le32(sense_addr);
7789        scsiqp->sense_len = SCSI_SENSE_BUFFERSIZE;
7790
7791        /* Build ADV_SCSI_REQ_Q */
7792
7793        use_sg = scsi_dma_map(scp);
7794        if (use_sg < 0) {
7795                ASC_DBG(1, "failed to map SG list\n");
7796                ASC_STATS(scp->device->host, adv_build_noreq);
7797                return ASC_BUSY;
7798        } else if (use_sg == 0) {
7799                /* Zero-length transfer */
7800                reqp->sgblkp = NULL;
7801                scsiqp->data_cnt = 0;
7802
7803                scsiqp->data_addr = 0;
7804                scsiqp->sg_list_ptr = NULL;
7805                scsiqp->sg_real_addr = 0;
7806        } else {
7807                if (use_sg > ADV_MAX_SG_LIST) {
7808                        scmd_printk(KERN_ERR, scp, "use_sg %d > "
7809                                   "ADV_MAX_SG_LIST %d\n", use_sg,
7810                                   scp->device->host->sg_tablesize);
7811                        scsi_dma_unmap(scp);
7812                        scp->result = HOST_BYTE(DID_ERROR);
7813                        reqp->cmndp = NULL;
7814                        scp->host_scribble = NULL;
7815
7816                        return ASC_ERROR;
7817                }
7818
7819                scsiqp->data_cnt = cpu_to_le32(scsi_bufflen(scp));
7820
7821                ret = adv_get_sglist(boardp, reqp, scsiqp, scp, use_sg);
7822                if (ret != ADV_SUCCESS) {
7823                        scsi_dma_unmap(scp);
7824                        scp->result = HOST_BYTE(DID_ERROR);
7825                        reqp->cmndp = NULL;
7826                        scp->host_scribble = NULL;
7827
7828                        return ret;
7829                }
7830
7831                ASC_STATS_ADD(scp->device->host, xfer_elem, use_sg);
7832        }
7833
7834        ASC_STATS(scp->device->host, xfer_cnt);
7835
7836        ASC_DBG_PRT_ADV_SCSI_REQ_Q(2, scsiqp);
7837        ASC_DBG_PRT_CDB(1, scp->cmnd, scp->cmd_len);
7838
7839        *adv_reqpp = reqp;
7840
7841        return ASC_NOERROR;
7842}
7843
7844static int AscSgListToQueue(int sg_list)
7845{
7846        int n_sg_list_qs;
7847
7848        n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
7849        if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
7850                n_sg_list_qs++;
7851        return n_sg_list_qs + 1;
7852}
7853
7854static uint
7855AscGetNumOfFreeQueue(ASC_DVC_VAR *asc_dvc, uchar target_ix, uchar n_qs)
7856{
7857        uint cur_used_qs;
7858        uint cur_free_qs;
7859        ASC_SCSI_BIT_ID_TYPE target_id;
7860        uchar tid_no;
7861
7862        target_id = ASC_TIX_TO_TARGET_ID(target_ix);
7863        tid_no = ASC_TIX_TO_TID(target_ix);
7864        if ((asc_dvc->unit_not_ready & target_id) ||
7865            (asc_dvc->queue_full_or_busy & target_id)) {
7866                return 0;
7867        }
7868        if (n_qs == 1) {
7869                cur_used_qs = (uint) asc_dvc->cur_total_qng +
7870                    (uint) asc_dvc->last_q_shortage + (uint) ASC_MIN_FREE_Q;
7871        } else {
7872                cur_used_qs = (uint) asc_dvc->cur_total_qng +
7873                    (uint) ASC_MIN_FREE_Q;
7874        }
7875        if ((uint) (cur_used_qs + n_qs) <= (uint) asc_dvc->max_total_qng) {
7876                cur_free_qs = (uint) asc_dvc->max_total_qng - cur_used_qs;
7877                if (asc_dvc->cur_dvc_qng[tid_no] >=
7878                    asc_dvc->max_dvc_qng[tid_no]) {
7879                        return 0;
7880                }
7881                return cur_free_qs;
7882        }
7883        if (n_qs > 1) {
7884                if ((n_qs > asc_dvc->last_q_shortage)
7885                    && (n_qs <= (asc_dvc->max_total_qng - ASC_MIN_FREE_Q))) {
7886                        asc_dvc->last_q_shortage = n_qs;
7887                }
7888        }
7889        return 0;
7890}
7891
7892static uchar AscAllocFreeQueue(PortAddr iop_base, uchar free_q_head)
7893{
7894        ushort q_addr;
7895        uchar next_qp;
7896        uchar q_status;
7897
7898        q_addr = ASC_QNO_TO_QADDR(free_q_head);
7899        q_status = (uchar)AscReadLramByte(iop_base,
7900                                          (ushort)(q_addr +
7901                                                   ASC_SCSIQ_B_STATUS));
7902        next_qp = AscReadLramByte(iop_base, (ushort)(q_addr + ASC_SCSIQ_B_FWD));
7903        if (((q_status & QS_READY) == 0) && (next_qp != ASC_QLINK_END))
7904                return next_qp;
7905        return ASC_QLINK_END;
7906}
7907
7908static uchar
7909AscAllocMultipleFreeQueue(PortAddr iop_base, uchar free_q_head, uchar n_free_q)
7910{
7911        uchar i;
7912
7913        for (i = 0; i < n_free_q; i++) {
7914                free_q_head = AscAllocFreeQueue(iop_base, free_q_head);
7915                if (free_q_head == ASC_QLINK_END)
7916                        break;
7917        }
7918        return free_q_head;
7919}
7920
7921/*
7922 * void
7923 * DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7924 *
7925 * Calling/Exit State:
7926 *    none
7927 *
7928 * Description:
7929 *     Output an ASC_SCSI_Q structure to the chip
7930 */
7931static void
7932DvcPutScsiQ(PortAddr iop_base, ushort s_addr, uchar *outbuf, int words)
7933{
7934        int i;
7935
7936        ASC_DBG_PRT_HEX(2, "DvcPutScsiQ", outbuf, 2 * words);
7937        AscSetChipLramAddr(iop_base, s_addr);
7938        for (i = 0; i < 2 * words; i += 2) {
7939                if (i == 4 || i == 20) {
7940                        continue;
7941                }
7942                outpw(iop_base + IOP_RAM_DATA,
7943                      ((ushort)outbuf[i + 1] << 8) | outbuf[i]);
7944        }
7945}
7946
7947static int AscPutReadyQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7948{
7949        ushort q_addr;
7950        uchar tid_no;
7951        uchar sdtr_data;
7952        uchar syn_period_ix;
7953        uchar syn_offset;
7954        PortAddr iop_base;
7955
7956        iop_base = asc_dvc->iop_base;
7957        if (((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) &&
7958            ((asc_dvc->sdtr_done & scsiq->q1.target_id) == 0)) {
7959                tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
7960                sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
7961                syn_period_ix =
7962                    (sdtr_data >> 4) & (asc_dvc->max_sdtr_index - 1);
7963                syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
7964                AscMsgOutSDTR(asc_dvc,
7965                              asc_dvc->sdtr_period_tbl[syn_period_ix],
7966                              syn_offset);
7967                scsiq->q1.cntl |= QC_MSG_OUT;
7968        }
7969        q_addr = ASC_QNO_TO_QADDR(q_no);
7970        if ((scsiq->q1.target_id & asc_dvc->use_tagged_qng) == 0) {
7971                scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
7972        }
7973        scsiq->q1.status = QS_FREE;
7974        AscMemWordCopyPtrToLram(iop_base,
7975                                q_addr + ASC_SCSIQ_CDB_BEG,
7976                                (uchar *)scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
7977
7978        DvcPutScsiQ(iop_base,
7979                    q_addr + ASC_SCSIQ_CPY_BEG,
7980                    (uchar *)&scsiq->q1.cntl,
7981                    ((sizeof(ASC_SCSIQ_1) + sizeof(ASC_SCSIQ_2)) / 2) - 1);
7982        AscWriteLramWord(iop_base,
7983                         (ushort)(q_addr + (ushort)ASC_SCSIQ_B_STATUS),
7984                         (ushort)(((ushort)scsiq->q1.
7985                                   q_no << 8) | (ushort)QS_READY));
7986        return 1;
7987}
7988
7989static int
7990AscPutReadySgListQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar q_no)
7991{
7992        int sta;
7993        int i;
7994        ASC_SG_HEAD *sg_head;
7995        ASC_SG_LIST_Q scsi_sg_q;
7996        __le32 saved_data_addr;
7997        __le32 saved_data_cnt;
7998        PortAddr iop_base;
7999        ushort sg_list_dwords;
8000        ushort sg_index;
8001        ushort sg_entry_cnt;
8002        ushort q_addr;
8003        uchar next_qp;
8004
8005        iop_base = asc_dvc->iop_base;
8006        sg_head = scsiq->sg_head;
8007        saved_data_addr = scsiq->q1.data_addr;
8008        saved_data_cnt = scsiq->q1.data_cnt;
8009        scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8010        scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8011        /*
8012         * Set sg_entry_cnt to be the number of SG elements that
8013         * will fit in the allocated SG queues. It is minus 1, because
8014         * the first SG element is handled above.
8015         */
8016        sg_entry_cnt = sg_head->entry_cnt - 1;
8017
8018        if (sg_entry_cnt != 0) {
8019                scsiq->q1.cntl |= QC_SG_HEAD;
8020                q_addr = ASC_QNO_TO_QADDR(q_no);
8021                sg_index = 1;
8022                scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
8023                scsi_sg_q.sg_head_qp = q_no;
8024                scsi_sg_q.cntl = QCSG_SG_XFER_LIST;
8025                for (i = 0; i < sg_head->queue_cnt; i++) {
8026                        scsi_sg_q.seq_no = i + 1;
8027                        if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
8028                                sg_list_dwords = (uchar)(ASC_SG_LIST_PER_Q * 2);
8029                                sg_entry_cnt -= ASC_SG_LIST_PER_Q;
8030                                if (i == 0) {
8031                                        scsi_sg_q.sg_list_cnt =
8032                                            ASC_SG_LIST_PER_Q;
8033                                        scsi_sg_q.sg_cur_list_cnt =
8034                                            ASC_SG_LIST_PER_Q;
8035                                } else {
8036                                        scsi_sg_q.sg_list_cnt =
8037                                            ASC_SG_LIST_PER_Q - 1;
8038                                        scsi_sg_q.sg_cur_list_cnt =
8039                                            ASC_SG_LIST_PER_Q - 1;
8040                                }
8041                        } else {
8042                                scsi_sg_q.cntl |= QCSG_SG_XFER_END;
8043                                sg_list_dwords = sg_entry_cnt << 1;
8044                                if (i == 0) {
8045                                        scsi_sg_q.sg_list_cnt = sg_entry_cnt;
8046                                        scsi_sg_q.sg_cur_list_cnt =
8047                                            sg_entry_cnt;
8048                                } else {
8049                                        scsi_sg_q.sg_list_cnt =
8050                                            sg_entry_cnt - 1;
8051                                        scsi_sg_q.sg_cur_list_cnt =
8052                                            sg_entry_cnt - 1;
8053                                }
8054                                sg_entry_cnt = 0;
8055                        }
8056                        next_qp = AscReadLramByte(iop_base,
8057                                                  (ushort)(q_addr +
8058                                                           ASC_SCSIQ_B_FWD));
8059                        scsi_sg_q.q_no = next_qp;
8060                        q_addr = ASC_QNO_TO_QADDR(next_qp);
8061                        AscMemWordCopyPtrToLram(iop_base,
8062                                                q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
8063                                                (uchar *)&scsi_sg_q,
8064                                                sizeof(ASC_SG_LIST_Q) >> 1);
8065                        AscMemDWordCopyPtrToLram(iop_base,
8066                                                 q_addr + ASC_SGQ_LIST_BEG,
8067                                                 (uchar *)&sg_head->
8068                                                 sg_list[sg_index],
8069                                                 sg_list_dwords);
8070                        sg_index += ASC_SG_LIST_PER_Q;
8071                        scsiq->next_sg_index = sg_index;
8072                }
8073        } else {
8074                scsiq->q1.cntl &= ~QC_SG_HEAD;
8075        }
8076        sta = AscPutReadyQueue(asc_dvc, scsiq, q_no);
8077        scsiq->q1.data_addr = saved_data_addr;
8078        scsiq->q1.data_cnt = saved_data_cnt;
8079        return (sta);
8080}
8081
8082static int
8083AscSendScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq, uchar n_q_required)
8084{
8085        PortAddr iop_base;
8086        uchar free_q_head;
8087        uchar next_qp;
8088        uchar tid_no;
8089        uchar target_ix;
8090        int sta;
8091
8092        iop_base = asc_dvc->iop_base;
8093        target_ix = scsiq->q2.target_ix;
8094        tid_no = ASC_TIX_TO_TID(target_ix);
8095        sta = 0;
8096        free_q_head = (uchar)AscGetVarFreeQHead(iop_base);
8097        if (n_q_required > 1) {
8098                next_qp = AscAllocMultipleFreeQueue(iop_base, free_q_head,
8099                                                    (uchar)n_q_required);
8100                if (next_qp != ASC_QLINK_END) {
8101                        asc_dvc->last_q_shortage = 0;
8102                        scsiq->sg_head->queue_cnt = n_q_required - 1;
8103                        scsiq->q1.q_no = free_q_head;
8104                        sta = AscPutReadySgListQueue(asc_dvc, scsiq,
8105                                                     free_q_head);
8106                }
8107        } else if (n_q_required == 1) {
8108                next_qp = AscAllocFreeQueue(iop_base, free_q_head);
8109                if (next_qp != ASC_QLINK_END) {
8110                        scsiq->q1.q_no = free_q_head;
8111                        sta = AscPutReadyQueue(asc_dvc, scsiq, free_q_head);
8112                }
8113        }
8114        if (sta == 1) {
8115                AscPutVarFreeQHead(iop_base, next_qp);
8116                asc_dvc->cur_total_qng += n_q_required;
8117                asc_dvc->cur_dvc_qng[tid_no]++;
8118        }
8119        return sta;
8120}
8121
8122#define ASC_SYN_OFFSET_ONE_DISABLE_LIST  16
8123static uchar _syn_offset_one_disable_cmd[ASC_SYN_OFFSET_ONE_DISABLE_LIST] = {
8124        INQUIRY,
8125        REQUEST_SENSE,
8126        READ_CAPACITY,
8127        READ_TOC,
8128        MODE_SELECT,
8129        MODE_SENSE,
8130        MODE_SELECT_10,
8131        MODE_SENSE_10,
8132        0xFF,
8133        0xFF,
8134        0xFF,
8135        0xFF,
8136        0xFF,
8137        0xFF,
8138        0xFF,
8139        0xFF
8140};
8141
8142static int AscExeScsiQueue(ASC_DVC_VAR *asc_dvc, ASC_SCSI_Q *scsiq)
8143{
8144        PortAddr iop_base;
8145        int sta;
8146        int n_q_required;
8147        bool disable_syn_offset_one_fix;
8148        int i;
8149        u32 addr;
8150        ushort sg_entry_cnt = 0;
8151        ushort sg_entry_cnt_minus_one = 0;
8152        uchar target_ix;
8153        uchar tid_no;
8154        uchar sdtr_data;
8155        uchar extra_bytes;
8156        uchar scsi_cmd;
8157        uchar disable_cmd;
8158        ASC_SG_HEAD *sg_head;
8159        unsigned long data_cnt;
8160
8161        iop_base = asc_dvc->iop_base;
8162        sg_head = scsiq->sg_head;
8163        if (asc_dvc->err_code != 0)
8164                return ASC_ERROR;
8165        scsiq->q1.q_no = 0;
8166        if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0) {
8167                scsiq->q1.extra_bytes = 0;
8168        }
8169        sta = 0;
8170        target_ix = scsiq->q2.target_ix;
8171        tid_no = ASC_TIX_TO_TID(target_ix);
8172        n_q_required = 1;
8173        if (scsiq->cdbptr[0] == REQUEST_SENSE) {
8174                if ((asc_dvc->init_sdtr & scsiq->q1.target_id) != 0) {
8175                        asc_dvc->sdtr_done &= ~scsiq->q1.target_id;
8176                        sdtr_data = AscGetMCodeInitSDTRAtID(iop_base, tid_no);
8177                        AscMsgOutSDTR(asc_dvc,
8178                                      asc_dvc->
8179                                      sdtr_period_tbl[(sdtr_data >> 4) &
8180                                                      (uchar)(asc_dvc->
8181                                                              max_sdtr_index -
8182                                                              1)],
8183                                      (uchar)(sdtr_data & (uchar)
8184                                              ASC_SYN_MAX_OFFSET));
8185                        scsiq->q1.cntl |= (QC_MSG_OUT | QC_URGENT);
8186                }
8187        }
8188        if (asc_dvc->in_critical_cnt != 0) {
8189                AscSetLibErrorCode(asc_dvc, ASCQ_ERR_CRITICAL_RE_ENTRY);
8190                return ASC_ERROR;
8191        }
8192        asc_dvc->in_critical_cnt++;
8193        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8194                if ((sg_entry_cnt = sg_head->entry_cnt) == 0) {
8195                        asc_dvc->in_critical_cnt--;
8196                        return ASC_ERROR;
8197                }
8198                if (sg_entry_cnt > ASC_MAX_SG_LIST) {
8199                        asc_dvc->in_critical_cnt--;
8200                        return ASC_ERROR;
8201                }
8202                if (sg_entry_cnt == 1) {
8203                        scsiq->q1.data_addr = cpu_to_le32(sg_head->sg_list[0].addr);
8204                        scsiq->q1.data_cnt = cpu_to_le32(sg_head->sg_list[0].bytes);
8205                        scsiq->q1.cntl &= ~(QC_SG_HEAD | QC_SG_SWAP_QUEUE);
8206                }
8207                sg_entry_cnt_minus_one = sg_entry_cnt - 1;
8208        }
8209        scsi_cmd = scsiq->cdbptr[0];
8210        disable_syn_offset_one_fix = false;
8211        if ((asc_dvc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
8212            !(asc_dvc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
8213                if (scsiq->q1.cntl & QC_SG_HEAD) {
8214                        data_cnt = 0;
8215                        for (i = 0; i < sg_entry_cnt; i++) {
8216                                data_cnt += le32_to_cpu(sg_head->sg_list[i].
8217                                                        bytes);
8218                        }
8219                } else {
8220                        data_cnt = le32_to_cpu(scsiq->q1.data_cnt);
8221                }
8222                if (data_cnt != 0UL) {
8223                        if (data_cnt < 512UL) {
8224                                disable_syn_offset_one_fix = true;
8225                        } else {
8226                                for (i = 0; i < ASC_SYN_OFFSET_ONE_DISABLE_LIST;
8227                                     i++) {
8228                                        disable_cmd =
8229                                            _syn_offset_one_disable_cmd[i];
8230                                        if (disable_cmd == 0xFF) {
8231                                                break;
8232                                        }
8233                                        if (scsi_cmd == disable_cmd) {
8234                                                disable_syn_offset_one_fix =
8235                                                    true;
8236                                                break;
8237                                        }
8238                                }
8239                        }
8240                }
8241        }
8242        if (disable_syn_offset_one_fix) {
8243                scsiq->q2.tag_code &= ~SIMPLE_QUEUE_TAG;
8244                scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
8245                                       ASC_TAG_FLAG_DISABLE_DISCONNECT);
8246        } else {
8247                scsiq->q2.tag_code &= 0x27;
8248        }
8249        if ((scsiq->q1.cntl & QC_SG_HEAD) != 0) {
8250                if (asc_dvc->bug_fix_cntl) {
8251                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8252                                if ((scsi_cmd == READ_6) ||
8253                                    (scsi_cmd == READ_10)) {
8254                                        addr = le32_to_cpu(sg_head->
8255                                                                   sg_list
8256                                                                   [sg_entry_cnt_minus_one].
8257                                                                   addr) +
8258                                                le32_to_cpu(sg_head->
8259                                                                  sg_list
8260                                                                  [sg_entry_cnt_minus_one].
8261                                                                  bytes);
8262                                        extra_bytes =
8263                                            (uchar)((ushort)addr & 0x0003);
8264                                        if ((extra_bytes != 0)
8265                                            &&
8266                                            ((scsiq->q2.
8267                                              tag_code &
8268                                              ASC_TAG_FLAG_EXTRA_BYTES)
8269                                             == 0)) {
8270                                                scsiq->q2.tag_code |=
8271                                                    ASC_TAG_FLAG_EXTRA_BYTES;
8272                                                scsiq->q1.extra_bytes =
8273                                                    extra_bytes;
8274                                                data_cnt =
8275                                                    le32_to_cpu(sg_head->
8276                                                                sg_list
8277                                                                [sg_entry_cnt_minus_one].
8278                                                                bytes);
8279                                                data_cnt -= extra_bytes;
8280                                                sg_head->
8281                                                    sg_list
8282                                                    [sg_entry_cnt_minus_one].
8283                                                    bytes =
8284                                                    cpu_to_le32(data_cnt);
8285                                        }
8286                                }
8287                        }
8288                }
8289                sg_head->entry_to_copy = sg_head->entry_cnt;
8290                n_q_required = AscSgListToQueue(sg_entry_cnt);
8291                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, n_q_required) >=
8292                     (uint) n_q_required)
8293                    || ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8294                        if ((sta =
8295                             AscSendScsiQueue(asc_dvc, scsiq,
8296                                              n_q_required)) == 1) {
8297                                asc_dvc->in_critical_cnt--;
8298                                return (sta);
8299                        }
8300                }
8301        } else {
8302                if (asc_dvc->bug_fix_cntl) {
8303                        if (asc_dvc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
8304                                if ((scsi_cmd == READ_6) ||
8305                                    (scsi_cmd == READ_10)) {
8306                                        addr =
8307                                            le32_to_cpu(scsiq->q1.data_addr) +
8308                                            le32_to_cpu(scsiq->q1.data_cnt);
8309                                        extra_bytes =
8310                                            (uchar)((ushort)addr & 0x0003);
8311                                        if ((extra_bytes != 0)
8312                                            &&
8313                                            ((scsiq->q2.
8314                                              tag_code &
8315                                              ASC_TAG_FLAG_EXTRA_BYTES)
8316                                             == 0)) {
8317                                                data_cnt =
8318                                                    le32_to_cpu(scsiq->q1.
8319                                                                data_cnt);
8320                                                if (((ushort)data_cnt & 0x01FF)
8321                                                    == 0) {
8322                                                        scsiq->q2.tag_code |=
8323                                                            ASC_TAG_FLAG_EXTRA_BYTES;
8324                                                        data_cnt -= extra_bytes;
8325                                                        scsiq->q1.data_cnt =
8326                                                            cpu_to_le32
8327                                                            (data_cnt);
8328                                                        scsiq->q1.extra_bytes =
8329                                                            extra_bytes;
8330                                                }
8331                                        }
8332                                }
8333                        }
8334                }
8335                n_q_required = 1;
8336                if ((AscGetNumOfFreeQueue(asc_dvc, target_ix, 1) >= 1) ||
8337                    ((scsiq->q1.cntl & QC_URGENT) != 0)) {
8338                        if ((sta = AscSendScsiQueue(asc_dvc, scsiq,
8339                                                    n_q_required)) == 1) {
8340                                asc_dvc->in_critical_cnt--;
8341                                return (sta);
8342                        }
8343                }
8344        }
8345        asc_dvc->in_critical_cnt--;
8346        return (sta);
8347}
8348
8349/*
8350 * AdvExeScsiQueue() - Send a request to the RISC microcode program.
8351 *
8352 *   Allocate a carrier structure, point the carrier to the ADV_SCSI_REQ_Q,
8353 *   add the carrier to the ICQ (Initiator Command Queue), and tickle the
8354 *   RISC to notify it a new command is ready to be executed.
8355 *
8356 * If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
8357 * set to SCSI_MAX_RETRY.
8358 *
8359 * Multi-byte fields in the ADV_SCSI_REQ_Q that are used by the microcode
8360 * for DMA addresses or math operations are byte swapped to little-endian
8361 * order.
8362 *
8363 * Return:
8364 *      ADV_SUCCESS(1) - The request was successfully queued.
8365 *      ADV_BUSY(0) -    Resource unavailable; Retry again after pending
8366 *                       request completes.
8367 *      ADV_ERROR(-1) -  Invalid ADV_SCSI_REQ_Q request structure
8368 *                       host IC error.
8369 */
8370static int AdvExeScsiQueue(ADV_DVC_VAR *asc_dvc, adv_req_t *reqp)
8371{
8372        AdvPortAddr iop_base;
8373        ADV_CARR_T *new_carrp;
8374        ADV_SCSI_REQ_Q *scsiq = &reqp->scsi_req_q;
8375
8376        /*
8377         * The ADV_SCSI_REQ_Q 'target_id' field should never exceed ADV_MAX_TID.
8378         */
8379        if (scsiq->target_id > ADV_MAX_TID) {
8380                scsiq->host_status = QHSTA_M_INVALID_DEVICE;
8381                scsiq->done_status = QD_WITH_ERROR;
8382                return ADV_ERROR;
8383        }
8384
8385        iop_base = asc_dvc->iop_base;
8386
8387        /*
8388         * Allocate a carrier ensuring at least one carrier always
8389         * remains on the freelist and initialize fields.
8390         */
8391        new_carrp = adv_get_next_carrier(asc_dvc);
8392        if (!new_carrp) {
8393                ASC_DBG(1, "No free carriers\n");
8394                return ADV_BUSY;
8395        }
8396
8397        asc_dvc->carr_pending_cnt++;
8398
8399        /* Save virtual and physical address of ADV_SCSI_REQ_Q and carrier. */
8400        scsiq->scsiq_ptr = cpu_to_le32(scsiq->srb_tag);
8401        scsiq->scsiq_rptr = cpu_to_le32(reqp->req_addr);
8402
8403        scsiq->carr_va = asc_dvc->icq_sp->carr_va;
8404        scsiq->carr_pa = asc_dvc->icq_sp->carr_pa;
8405
8406        /*
8407         * Use the current stopper to send the ADV_SCSI_REQ_Q command to
8408         * the microcode. The newly allocated stopper will become the new
8409         * stopper.
8410         */
8411        asc_dvc->icq_sp->areq_vpa = scsiq->scsiq_rptr;
8412
8413        /*
8414         * Set the 'next_vpa' pointer for the old stopper to be the
8415         * physical address of the new stopper. The RISC can only
8416         * follow physical addresses.
8417         */
8418        asc_dvc->icq_sp->next_vpa = new_carrp->carr_pa;
8419
8420        /*
8421         * Set the host adapter stopper pointer to point to the new carrier.
8422         */
8423        asc_dvc->icq_sp = new_carrp;
8424
8425        if (asc_dvc->chip_type == ADV_CHIP_ASC3550 ||
8426            asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
8427                /*
8428                 * Tickle the RISC to tell it to read its Command Queue Head pointer.
8429                 */
8430                AdvWriteByteRegister(iop_base, IOPB_TICKLE, ADV_TICKLE_A);
8431                if (asc_dvc->chip_type == ADV_CHIP_ASC3550) {
8432                        /*
8433                         * Clear the tickle value. In the ASC-3550 the RISC flag
8434                         * command 'clr_tickle_a' does not work unless the host
8435                         * value is cleared.
8436                         */
8437                        AdvWriteByteRegister(iop_base, IOPB_TICKLE,
8438                                             ADV_TICKLE_NOP);
8439                }
8440        } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
8441                /*
8442                 * Notify the RISC a carrier is ready by writing the physical
8443                 * address of the new carrier stopper to the COMMA register.
8444                 */
8445                AdvWriteDWordRegister(iop_base, IOPDW_COMMA,
8446                                      le32_to_cpu(new_carrp->carr_pa));
8447        }
8448
8449        return ADV_SUCCESS;
8450}
8451
8452/*
8453 * Execute a single 'struct scsi_cmnd'.
8454 */
8455static int asc_execute_scsi_cmnd(struct scsi_cmnd *scp)
8456{
8457        int ret, err_code;
8458        struct asc_board *boardp = shost_priv(scp->device->host);
8459
8460        ASC_DBG(1, "scp 0x%p\n", scp);
8461
8462        if (ASC_NARROW_BOARD(boardp)) {
8463                ASC_DVC_VAR *asc_dvc = &boardp->dvc_var.asc_dvc_var;
8464                struct asc_scsi_q asc_scsi_q;
8465
8466                ret = asc_build_req(boardp, scp, &asc_scsi_q);
8467                if (ret != ASC_NOERROR) {
8468                        ASC_STATS(scp->device->host, build_error);
8469                        return ret;
8470                }
8471
8472                ret = AscExeScsiQueue(asc_dvc, &asc_scsi_q);
8473                kfree(asc_scsi_q.sg_head);
8474                err_code = asc_dvc->err_code;
8475        } else {
8476                ADV_DVC_VAR *adv_dvc = &boardp->dvc_var.adv_dvc_var;
8477                adv_req_t *adv_reqp;
8478
8479                switch (adv_build_req(boardp, scp, &adv_reqp)) {
8480                case ASC_NOERROR:
8481                        ASC_DBG(3, "adv_build_req ASC_NOERROR\n");
8482                        break;
8483                case ASC_BUSY:
8484                        ASC_DBG(1, "adv_build_req ASC_BUSY\n");
8485                        /*
8486                         * The asc_stats fields 'adv_build_noreq' and
8487                         * 'adv_build_nosg' count wide board busy conditions.
8488                         * They are updated in adv_build_req and
8489                         * adv_get_sglist, respectively.
8490                         */
8491                        return ASC_BUSY;
8492                case ASC_ERROR:
8493                default:
8494                        ASC_DBG(1, "adv_build_req ASC_ERROR\n");
8495                        ASC_STATS(scp->device->host, build_error);
8496                        return ASC_ERROR;
8497                }
8498
8499                ret = AdvExeScsiQueue(adv_dvc, adv_reqp);
8500                err_code = adv_dvc->err_code;
8501        }
8502
8503        switch (ret) {
8504        case ASC_NOERROR:
8505                ASC_STATS(scp->device->host, exe_noerror);
8506                /*
8507                 * Increment monotonically increasing per device
8508                 * successful request counter. Wrapping doesn't matter.
8509                 */
8510                boardp->reqcnt[scp->device->id]++;
8511                ASC_DBG(1, "ExeScsiQueue() ASC_NOERROR\n");
8512                break;
8513        case ASC_BUSY:
8514                ASC_DBG(1, "ExeScsiQueue() ASC_BUSY\n");
8515                ASC_STATS(scp->device->host, exe_busy);
8516                break;
8517        case ASC_ERROR:
8518                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() ASC_ERROR, "
8519                        "err_code 0x%x\n", err_code);
8520                ASC_STATS(scp->device->host, exe_error);
8521                scp->result = HOST_BYTE(DID_ERROR);
8522                break;
8523        default:
8524                scmd_printk(KERN_ERR, scp, "ExeScsiQueue() unknown, "
8525                        "err_code 0x%x\n", err_code);
8526                ASC_STATS(scp->device->host, exe_unknown);
8527                scp->result = HOST_BYTE(DID_ERROR);
8528                break;
8529        }
8530
8531        ASC_DBG(1, "end\n");
8532        return ret;
8533}
8534
8535/*
8536 * advansys_queuecommand() - interrupt-driven I/O entrypoint.
8537 *
8538 * This function always returns 0. Command return status is saved
8539 * in the 'scp' result field.
8540 */
8541static int
8542advansys_queuecommand_lck(struct scsi_cmnd *scp, void (*done)(struct scsi_cmnd *))
8543{
8544        struct Scsi_Host *shost = scp->device->host;
8545        int asc_res, result = 0;
8546
8547        ASC_STATS(shost, queuecommand);
8548        scp->scsi_done = done;
8549
8550        asc_res = asc_execute_scsi_cmnd(scp);
8551
8552        switch (asc_res) {
8553        case ASC_NOERROR:
8554                break;
8555        case ASC_BUSY:
8556                result = SCSI_MLQUEUE_HOST_BUSY;
8557                break;
8558        case ASC_ERROR:
8559        default:
8560                asc_scsi_done(scp);
8561                break;
8562        }
8563
8564        return result;
8565}
8566
8567static DEF_SCSI_QCMD(advansys_queuecommand)
8568
8569static ushort AscGetEisaChipCfg(PortAddr iop_base)
8570{
8571        PortAddr eisa_cfg_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8572            (PortAddr) (ASC_EISA_CFG_IOP_MASK);
8573        return inpw(eisa_cfg_iop);
8574}
8575
8576/*
8577 * Return the BIOS address of the adapter at the specified
8578 * I/O port and with the specified bus type.
8579 */
8580static unsigned short AscGetChipBiosAddress(PortAddr iop_base,
8581                                            unsigned short bus_type)
8582{
8583        unsigned short cfg_lsw;
8584        unsigned short bios_addr;
8585
8586        /*
8587         * The PCI BIOS is re-located by the motherboard BIOS. Because
8588         * of this the driver can not determine where a PCI BIOS is
8589         * loaded and executes.
8590         */
8591        if (bus_type & ASC_IS_PCI)
8592                return 0;
8593
8594        if ((bus_type & ASC_IS_EISA) != 0) {
8595                cfg_lsw = AscGetEisaChipCfg(iop_base);
8596                cfg_lsw &= 0x000F;
8597                bios_addr = ASC_BIOS_MIN_ADDR + cfg_lsw * ASC_BIOS_BANK_SIZE;
8598                return bios_addr;
8599        }
8600
8601        cfg_lsw = AscGetChipCfgLsw(iop_base);
8602
8603        /*
8604         *  ISA PnP uses the top bit as the 32K BIOS flag
8605         */
8606        if (bus_type == ASC_IS_ISAPNP)
8607                cfg_lsw &= 0x7FFF;
8608        bios_addr = ASC_BIOS_MIN_ADDR + (cfg_lsw >> 12) * ASC_BIOS_BANK_SIZE;
8609        return bios_addr;
8610}
8611
8612static uchar AscSetChipScsiID(PortAddr iop_base, uchar new_host_id)
8613{
8614        ushort cfg_lsw;
8615
8616        if (AscGetChipScsiID(iop_base) == new_host_id) {
8617                return (new_host_id);
8618        }
8619        cfg_lsw = AscGetChipCfgLsw(iop_base);
8620        cfg_lsw &= 0xF8FF;
8621        cfg_lsw |= (ushort)((new_host_id & ASC_MAX_TID) << 8);
8622        AscSetChipCfgLsw(iop_base, cfg_lsw);
8623        return (AscGetChipScsiID(iop_base));
8624}
8625
8626static unsigned char AscGetChipScsiCtrl(PortAddr iop_base)
8627{
8628        unsigned char sc;
8629
8630        AscSetBank(iop_base, 1);
8631        sc = inp(iop_base + IOP_REG_SC);
8632        AscSetBank(iop_base, 0);
8633        return sc;
8634}
8635
8636static unsigned char AscGetChipVersion(PortAddr iop_base,
8637                                       unsigned short bus_type)
8638{
8639        if (bus_type & ASC_IS_EISA) {
8640                PortAddr eisa_iop;
8641                unsigned char revision;
8642                eisa_iop = (PortAddr) ASC_GET_EISA_SLOT(iop_base) |
8643                    (PortAddr) ASC_EISA_REV_IOP_MASK;
8644                revision = inp(eisa_iop);
8645                return ASC_CHIP_MIN_VER_EISA - 1 + revision;
8646        }
8647        return AscGetChipVerNo(iop_base);
8648}
8649
8650#ifdef CONFIG_ISA
8651static void AscEnableIsaDma(uchar dma_channel)
8652{
8653        if (dma_channel < 4) {
8654                outp(0x000B, (ushort)(0xC0 | dma_channel));
8655                outp(0x000A, dma_channel);
8656        } else if (dma_channel < 8) {
8657                outp(0x00D6, (ushort)(0xC0 | (dma_channel - 4)));
8658                outp(0x00D4, (ushort)(dma_channel - 4));
8659        }
8660}
8661#endif /* CONFIG_ISA */
8662
8663static int AscStopQueueExe(PortAddr iop_base)
8664{
8665        int count = 0;
8666
8667        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) == 0) {
8668                AscWriteLramByte(iop_base, ASCV_STOP_CODE_B,
8669                                 ASC_STOP_REQ_RISC_STOP);
8670                do {
8671                        if (AscReadLramByte(iop_base, ASCV_STOP_CODE_B) &
8672                            ASC_STOP_ACK_RISC_STOP) {
8673                                return (1);
8674                        }
8675                        mdelay(100);
8676                } while (count++ < 20);
8677        }
8678        return (0);
8679}
8680
8681static unsigned int AscGetMaxDmaCount(ushort bus_type)
8682{
8683        if (bus_type & ASC_IS_ISA)
8684                return ASC_MAX_ISA_DMA_COUNT;
8685        else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
8686                return ASC_MAX_VL_DMA_COUNT;
8687        return ASC_MAX_PCI_DMA_COUNT;
8688}
8689
8690#ifdef CONFIG_ISA
8691static ushort AscGetIsaDmaChannel(PortAddr iop_base)
8692{
8693        ushort channel;
8694
8695        channel = AscGetChipCfgLsw(iop_base) & 0x0003;
8696        if (channel == 0x03)
8697                return (0);
8698        else if (channel == 0x00)
8699                return (7);
8700        return (channel + 4);
8701}
8702
8703static ushort AscSetIsaDmaChannel(PortAddr iop_base, ushort dma_channel)
8704{
8705        ushort cfg_lsw;
8706        uchar value;
8707
8708        if ((dma_channel >= 5) && (dma_channel <= 7)) {
8709                if (dma_channel == 7)
8710                        value = 0x00;
8711                else
8712                        value = dma_channel - 4;
8713                cfg_lsw = AscGetChipCfgLsw(iop_base) & 0xFFFC;
8714                cfg_lsw |= value;
8715                AscSetChipCfgLsw(iop_base, cfg_lsw);
8716                return (AscGetIsaDmaChannel(iop_base));
8717        }
8718        return 0;
8719}
8720
8721static uchar AscGetIsaDmaSpeed(PortAddr iop_base)
8722{
8723        uchar speed_value;
8724
8725        AscSetBank(iop_base, 1);
8726        speed_value = AscReadChipDmaSpeed(iop_base);
8727        speed_value &= 0x07;
8728        AscSetBank(iop_base, 0);
8729        return speed_value;
8730}
8731
8732static uchar AscSetIsaDmaSpeed(PortAddr iop_base, uchar speed_value)
8733{
8734        speed_value &= 0x07;
8735        AscSetBank(iop_base, 1);
8736        AscWriteChipDmaSpeed(iop_base, speed_value);
8737        AscSetBank(iop_base, 0);
8738        return AscGetIsaDmaSpeed(iop_base);
8739}
8740#endif /* CONFIG_ISA */
8741
8742static void AscInitAscDvcVar(ASC_DVC_VAR *asc_dvc)
8743{
8744        int i;
8745        PortAddr iop_base;
8746        uchar chip_version;
8747
8748        iop_base = asc_dvc->iop_base;
8749        asc_dvc->err_code = 0;
8750        if ((asc_dvc->bus_type &
8751             (ASC_IS_ISA | ASC_IS_PCI | ASC_IS_EISA | ASC_IS_VL)) == 0) {
8752                asc_dvc->err_code |= ASC_IERR_NO_BUS_TYPE;
8753        }
8754        AscSetChipControl(iop_base, CC_HALT);
8755        AscSetChipStatus(iop_base, 0);
8756        asc_dvc->bug_fix_cntl = 0;
8757        asc_dvc->pci_fix_asyn_xfer = 0;
8758        asc_dvc->pci_fix_asyn_xfer_always = 0;
8759        /* asc_dvc->init_state initialized in AscInitGetConfig(). */
8760        asc_dvc->sdtr_done = 0;
8761        asc_dvc->cur_total_qng = 0;
8762        asc_dvc->is_in_int = false;
8763        asc_dvc->in_critical_cnt = 0;
8764        asc_dvc->last_q_shortage = 0;
8765        asc_dvc->use_tagged_qng = 0;
8766        asc_dvc->no_scam = 0;
8767        asc_dvc->unit_not_ready = 0;
8768        asc_dvc->queue_full_or_busy = 0;
8769        asc_dvc->redo_scam = 0;
8770        asc_dvc->res2 = 0;
8771        asc_dvc->min_sdtr_index = 0;
8772        asc_dvc->cfg->can_tagged_qng = 0;
8773        asc_dvc->cfg->cmd_qng_enabled = 0;
8774        asc_dvc->dvc_cntl = ASC_DEF_DVC_CNTL;
8775        asc_dvc->init_sdtr = 0;
8776        asc_dvc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
8777        asc_dvc->scsi_reset_wait = 3;
8778        asc_dvc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
8779        asc_dvc->max_dma_count = AscGetMaxDmaCount(asc_dvc->bus_type);
8780        asc_dvc->cfg->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
8781        asc_dvc->cfg->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
8782        asc_dvc->cfg->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
8783        chip_version = AscGetChipVersion(iop_base, asc_dvc->bus_type);
8784        asc_dvc->cfg->chip_version = chip_version;
8785        asc_dvc->sdtr_period_tbl = asc_syn_xfer_period;
8786        asc_dvc->max_sdtr_index = 7;
8787        if ((asc_dvc->bus_type & ASC_IS_PCI) &&
8788            (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
8789                asc_dvc->bus_type = ASC_IS_PCI_ULTRA;
8790                asc_dvc->sdtr_period_tbl = asc_syn_ultra_xfer_period;
8791                asc_dvc->max_sdtr_index = 15;
8792                if (chip_version == ASC_CHIP_VER_PCI_ULTRA_3150) {
8793                        AscSetExtraControl(iop_base,
8794                                           (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8795                } else if (chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050) {
8796                        AscSetExtraControl(iop_base,
8797                                           (SEC_ACTIVE_NEGATE |
8798                                            SEC_ENABLE_FILTER));
8799                }
8800        }
8801        if (asc_dvc->bus_type == ASC_IS_PCI) {
8802                AscSetExtraControl(iop_base,
8803                                   (SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
8804        }
8805
8806        asc_dvc->cfg->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
8807#ifdef CONFIG_ISA
8808        if ((asc_dvc->bus_type & ASC_IS_ISA) != 0) {
8809                if (chip_version >= ASC_CHIP_MIN_VER_ISA_PNP) {
8810                        AscSetChipIFC(iop_base, IFC_INIT_DEFAULT);
8811                        asc_dvc->bus_type = ASC_IS_ISAPNP;
8812                }
8813                asc_dvc->cfg->isa_dma_channel =
8814                    (uchar)AscGetIsaDmaChannel(iop_base);
8815        }
8816#endif /* CONFIG_ISA */
8817        for (i = 0; i <= ASC_MAX_TID; i++) {
8818                asc_dvc->cur_dvc_qng[i] = 0;
8819                asc_dvc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
8820                asc_dvc->scsiq_busy_head[i] = (ASC_SCSI_Q *)0L;
8821                asc_dvc->scsiq_busy_tail[i] = (ASC_SCSI_Q *)0L;
8822                asc_dvc->cfg->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
8823        }
8824}
8825
8826static int AscWriteEEPCmdReg(PortAddr iop_base, uchar cmd_reg)
8827{
8828        int retry;
8829
8830        for (retry = 0; retry < ASC_EEP_MAX_RETRY; retry++) {
8831                unsigned char read_back;
8832                AscSetChipEEPCmd(iop_base, cmd_reg);
8833                mdelay(1);
8834                read_back = AscGetChipEEPCmd(iop_base);
8835                if (read_back == cmd_reg)
8836                        return 1;
8837        }
8838        return 0;
8839}
8840
8841static void AscWaitEEPRead(void)
8842{
8843        mdelay(1);
8844}
8845
8846static ushort AscReadEEPWord(PortAddr iop_base, uchar addr)
8847{
8848        ushort read_wval;
8849        uchar cmd_reg;
8850
8851        AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8852        AscWaitEEPRead();
8853        cmd_reg = addr | ASC_EEP_CMD_READ;
8854        AscWriteEEPCmdReg(iop_base, cmd_reg);
8855        AscWaitEEPRead();
8856        read_wval = AscGetChipEEPData(iop_base);
8857        AscWaitEEPRead();
8858        return read_wval;
8859}
8860
8861static ushort AscGetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8862                              ushort bus_type)
8863{
8864        ushort wval;
8865        ushort sum;
8866        ushort *wbuf;
8867        int cfg_beg;
8868        int cfg_end;
8869        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8870        int s_addr;
8871
8872        wbuf = (ushort *)cfg_buf;
8873        sum = 0;
8874        /* Read two config words; Byte-swapping done by AscReadEEPWord(). */
8875        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8876                *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8877                sum += *wbuf;
8878        }
8879        if (bus_type & ASC_IS_VL) {
8880                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8881                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8882        } else {
8883                cfg_beg = ASC_EEP_DVC_CFG_BEG;
8884                cfg_end = ASC_EEP_MAX_DVC_ADDR;
8885        }
8886        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
8887                wval = AscReadEEPWord(iop_base, (uchar)s_addr);
8888                if (s_addr <= uchar_end_in_config) {
8889                        /*
8890                         * Swap all char fields - must unswap bytes already swapped
8891                         * by AscReadEEPWord().
8892                         */
8893                        *wbuf = le16_to_cpu(wval);
8894                } else {
8895                        /* Don't swap word field at the end - cntl field. */
8896                        *wbuf = wval;
8897                }
8898                sum += wval;    /* Checksum treats all EEPROM data as words. */
8899        }
8900        /*
8901         * Read the checksum word which will be compared against 'sum'
8902         * by the caller. Word field already swapped.
8903         */
8904        *wbuf = AscReadEEPWord(iop_base, (uchar)s_addr);
8905        return sum;
8906}
8907
8908static int AscTestExternalLram(ASC_DVC_VAR *asc_dvc)
8909{
8910        PortAddr iop_base;
8911        ushort q_addr;
8912        ushort saved_word;
8913        int sta;
8914
8915        iop_base = asc_dvc->iop_base;
8916        sta = 0;
8917        q_addr = ASC_QNO_TO_QADDR(241);
8918        saved_word = AscReadLramWord(iop_base, q_addr);
8919        AscSetChipLramAddr(iop_base, q_addr);
8920        AscSetChipLramData(iop_base, 0x55AA);
8921        mdelay(10);
8922        AscSetChipLramAddr(iop_base, q_addr);
8923        if (AscGetChipLramData(iop_base) == 0x55AA) {
8924                sta = 1;
8925                AscWriteLramWord(iop_base, q_addr, saved_word);
8926        }
8927        return (sta);
8928}
8929
8930static void AscWaitEEPWrite(void)
8931{
8932        mdelay(20);
8933}
8934
8935static int AscWriteEEPDataReg(PortAddr iop_base, ushort data_reg)
8936{
8937        ushort read_back;
8938        int retry;
8939
8940        retry = 0;
8941        while (true) {
8942                AscSetChipEEPData(iop_base, data_reg);
8943                mdelay(1);
8944                read_back = AscGetChipEEPData(iop_base);
8945                if (read_back == data_reg) {
8946                        return (1);
8947                }
8948                if (retry++ > ASC_EEP_MAX_RETRY) {
8949                        return (0);
8950                }
8951        }
8952}
8953
8954static ushort AscWriteEEPWord(PortAddr iop_base, uchar addr, ushort word_val)
8955{
8956        ushort read_wval;
8957
8958        read_wval = AscReadEEPWord(iop_base, addr);
8959        if (read_wval != word_val) {
8960                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_ABLE);
8961                AscWaitEEPRead();
8962                AscWriteEEPDataReg(iop_base, word_val);
8963                AscWaitEEPRead();
8964                AscWriteEEPCmdReg(iop_base,
8965                                  (uchar)((uchar)ASC_EEP_CMD_WRITE | addr));
8966                AscWaitEEPWrite();
8967                AscWriteEEPCmdReg(iop_base, ASC_EEP_CMD_WRITE_DISABLE);
8968                AscWaitEEPRead();
8969                return (AscReadEEPWord(iop_base, addr));
8970        }
8971        return (read_wval);
8972}
8973
8974static int AscSetEEPConfigOnce(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
8975                               ushort bus_type)
8976{
8977        int n_error;
8978        ushort *wbuf;
8979        ushort word;
8980        ushort sum;
8981        int s_addr;
8982        int cfg_beg;
8983        int cfg_end;
8984        int uchar_end_in_config = ASC_EEP_MAX_DVC_ADDR - 2;
8985
8986        wbuf = (ushort *)cfg_buf;
8987        n_error = 0;
8988        sum = 0;
8989        /* Write two config words; AscWriteEEPWord() will swap bytes. */
8990        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
8991                sum += *wbuf;
8992                if (*wbuf != AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
8993                        n_error++;
8994                }
8995        }
8996        if (bus_type & ASC_IS_VL) {
8997                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
8998                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
8999        } else {
9000                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9001                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9002        }
9003        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9004                if (s_addr <= uchar_end_in_config) {
9005                        /*
9006                         * This is a char field. Swap char fields before they are
9007                         * swapped again by AscWriteEEPWord().
9008                         */
9009                        word = cpu_to_le16(*wbuf);
9010                        if (word !=
9011                            AscWriteEEPWord(iop_base, (uchar)s_addr, word)) {
9012                                n_error++;
9013                        }
9014                } else {
9015                        /* Don't swap word field at the end - cntl field. */
9016                        if (*wbuf !=
9017                            AscWriteEEPWord(iop_base, (uchar)s_addr, *wbuf)) {
9018                                n_error++;
9019                        }
9020                }
9021                sum += *wbuf;   /* Checksum calculated from word values. */
9022        }
9023        /* Write checksum word. It will be swapped by AscWriteEEPWord(). */
9024        *wbuf = sum;
9025        if (sum != AscWriteEEPWord(iop_base, (uchar)s_addr, sum)) {
9026                n_error++;
9027        }
9028
9029        /* Read EEPROM back again. */
9030        wbuf = (ushort *)cfg_buf;
9031        /*
9032         * Read two config words; Byte-swapping done by AscReadEEPWord().
9033         */
9034        for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
9035                if (*wbuf != AscReadEEPWord(iop_base, (uchar)s_addr)) {
9036                        n_error++;
9037                }
9038        }
9039        if (bus_type & ASC_IS_VL) {
9040                cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
9041                cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
9042        } else {
9043                cfg_beg = ASC_EEP_DVC_CFG_BEG;
9044                cfg_end = ASC_EEP_MAX_DVC_ADDR;
9045        }
9046        for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
9047                if (s_addr <= uchar_end_in_config) {
9048                        /*
9049                         * Swap all char fields. Must unswap bytes already swapped
9050                         * by AscReadEEPWord().
9051                         */
9052                        word =
9053                            le16_to_cpu(AscReadEEPWord
9054                                        (iop_base, (uchar)s_addr));
9055                } else {
9056                        /* Don't swap word field at the end - cntl field. */
9057                        word = AscReadEEPWord(iop_base, (uchar)s_addr);
9058                }
9059                if (*wbuf != word) {
9060                        n_error++;
9061                }
9062        }
9063        /* Read checksum; Byte swapping not needed. */
9064        if (AscReadEEPWord(iop_base, (uchar)s_addr) != sum) {
9065                n_error++;
9066        }
9067        return n_error;
9068}
9069
9070static int AscSetEEPConfig(PortAddr iop_base, ASCEEP_CONFIG *cfg_buf,
9071                           ushort bus_type)
9072{
9073        int retry;
9074        int n_error;
9075
9076        retry = 0;
9077        while (true) {
9078                if ((n_error = AscSetEEPConfigOnce(iop_base, cfg_buf,
9079                                                   bus_type)) == 0) {
9080                        break;
9081                }
9082                if (++retry > ASC_EEP_MAX_RETRY) {
9083                        break;
9084                }
9085        }
9086        return n_error;
9087}
9088
9089static int AscInitFromEEP(ASC_DVC_VAR *asc_dvc)
9090{
9091        ASCEEP_CONFIG eep_config_buf;
9092        ASCEEP_CONFIG *eep_config;
9093        PortAddr iop_base;
9094        ushort chksum;
9095        ushort warn_code;
9096        ushort cfg_msw, cfg_lsw;
9097        int i;
9098        int write_eep = 0;
9099
9100        iop_base = asc_dvc->iop_base;
9101        warn_code = 0;
9102        AscWriteLramWord(iop_base, ASCV_HALTCODE_W, 0x00FE);
9103        AscStopQueueExe(iop_base);
9104        if ((AscStopChip(iop_base)) ||
9105            (AscGetChipScsiCtrl(iop_base) != 0)) {
9106                asc_dvc->init_state |= ASC_INIT_RESET_SCSI_DONE;
9107                AscResetChipAndScsiBus(asc_dvc);
9108                mdelay(asc_dvc->scsi_reset_wait * 1000); /* XXX: msleep? */
9109        }
9110        if (!AscIsChipHalted(iop_base)) {
9111                asc_dvc->err_code |= ASC_IERR_START_STOP_CHIP;
9112                return (warn_code);
9113        }
9114        AscSetPCAddr(iop_base, ASC_MCODE_START_ADDR);
9115        if (AscGetPCAddr(iop_base) != ASC_MCODE_START_ADDR) {
9116                asc_dvc->err_code |= ASC_IERR_SET_PC_ADDR;
9117                return (warn_code);
9118        }
9119        eep_config = (ASCEEP_CONFIG *)&eep_config_buf;
9120        cfg_msw = AscGetChipCfgMsw(iop_base);
9121        cfg_lsw = AscGetChipCfgLsw(iop_base);
9122        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9123                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9124                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9125                AscSetChipCfgMsw(iop_base, cfg_msw);
9126        }
9127        chksum = AscGetEEPConfig(iop_base, eep_config, asc_dvc->bus_type);
9128        ASC_DBG(1, "chksum 0x%x\n", chksum);
9129        if (chksum == 0) {
9130                chksum = 0xaa55;
9131        }
9132        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9133                warn_code |= ASC_WARN_AUTO_CONFIG;
9134                if (asc_dvc->cfg->chip_version == 3) {
9135                        if (eep_config->cfg_lsw != cfg_lsw) {
9136                                warn_code |= ASC_WARN_EEPROM_RECOVER;
9137                                eep_config->cfg_lsw =
9138                                    AscGetChipCfgLsw(iop_base);
9139                        }
9140                        if (eep_config->cfg_msw != cfg_msw) {
9141                                warn_code |= ASC_WARN_EEPROM_RECOVER;
9142                                eep_config->cfg_msw =
9143                                    AscGetChipCfgMsw(iop_base);
9144                        }
9145                }
9146        }
9147        eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9148        eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
9149        ASC_DBG(1, "eep_config->chksum 0x%x\n", eep_config->chksum);
9150        if (chksum != eep_config->chksum) {
9151                if (AscGetChipVersion(iop_base, asc_dvc->bus_type) ==
9152                    ASC_CHIP_VER_PCI_ULTRA_3050) {
9153                        ASC_DBG(1, "chksum error ignored; EEPROM-less board\n");
9154                        eep_config->init_sdtr = 0xFF;
9155                        eep_config->disc_enable = 0xFF;
9156                        eep_config->start_motor = 0xFF;
9157                        eep_config->use_cmd_qng = 0;
9158                        eep_config->max_total_qng = 0xF0;
9159                        eep_config->max_tag_qng = 0x20;
9160                        eep_config->cntl = 0xBFFF;
9161                        ASC_EEP_SET_CHIP_ID(eep_config, 7);
9162                        eep_config->no_scam = 0;
9163                        eep_config->adapter_info[0] = 0;
9164                        eep_config->adapter_info[1] = 0;
9165                        eep_config->adapter_info[2] = 0;
9166                        eep_config->adapter_info[3] = 0;
9167                        eep_config->adapter_info[4] = 0;
9168                        /* Indicate EEPROM-less board. */
9169                        eep_config->adapter_info[5] = 0xBB;
9170                } else {
9171                        ASC_PRINT
9172                            ("AscInitFromEEP: EEPROM checksum error; Will try to re-write EEPROM.\n");
9173                        write_eep = 1;
9174                        warn_code |= ASC_WARN_EEPROM_CHKSUM;
9175                }
9176        }
9177        asc_dvc->cfg->sdtr_enable = eep_config->init_sdtr;
9178        asc_dvc->cfg->disc_enable = eep_config->disc_enable;
9179        asc_dvc->cfg->cmd_qng_enabled = eep_config->use_cmd_qng;
9180        asc_dvc->cfg->isa_dma_speed = ASC_EEP_GET_DMA_SPD(eep_config);
9181        asc_dvc->start_motor = eep_config->start_motor;
9182        asc_dvc->dvc_cntl = eep_config->cntl;
9183        asc_dvc->no_scam = eep_config->no_scam;
9184        asc_dvc->cfg->adapter_info[0] = eep_config->adapter_info[0];
9185        asc_dvc->cfg->adapter_info[1] = eep_config->adapter_info[1];
9186        asc_dvc->cfg->adapter_info[2] = eep_config->adapter_info[2];
9187        asc_dvc->cfg->adapter_info[3] = eep_config->adapter_info[3];
9188        asc_dvc->cfg->adapter_info[4] = eep_config->adapter_info[4];
9189        asc_dvc->cfg->adapter_info[5] = eep_config->adapter_info[5];
9190        if (!AscTestExternalLram(asc_dvc)) {
9191                if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) ==
9192                     ASC_IS_PCI_ULTRA)) {
9193                        eep_config->max_total_qng =
9194                            ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
9195                        eep_config->max_tag_qng =
9196                            ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
9197                } else {
9198                        eep_config->cfg_msw |= 0x0800;
9199                        cfg_msw |= 0x0800;
9200                        AscSetChipCfgMsw(iop_base, cfg_msw);
9201                        eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
9202                        eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
9203                }
9204        } else {
9205        }
9206        if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG) {
9207                eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
9208        }
9209        if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG) {
9210                eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
9211        }
9212        if (eep_config->max_tag_qng > eep_config->max_total_qng) {
9213                eep_config->max_tag_qng = eep_config->max_total_qng;
9214        }
9215        if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC) {
9216                eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
9217        }
9218        asc_dvc->max_total_qng = eep_config->max_total_qng;
9219        if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
9220            eep_config->use_cmd_qng) {
9221                eep_config->disc_enable = eep_config->use_cmd_qng;
9222                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9223        }
9224        ASC_EEP_SET_CHIP_ID(eep_config,
9225                            ASC_EEP_GET_CHIP_ID(eep_config) & ASC_MAX_TID);
9226        asc_dvc->cfg->chip_scsi_id = ASC_EEP_GET_CHIP_ID(eep_config);
9227        if (((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
9228            !(asc_dvc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
9229                asc_dvc->min_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
9230        }
9231
9232        for (i = 0; i <= ASC_MAX_TID; i++) {
9233                asc_dvc->dos_int13_table[i] = eep_config->dos_int13_table[i];
9234                asc_dvc->cfg->max_tag_qng[i] = eep_config->max_tag_qng;
9235                asc_dvc->cfg->sdtr_period_offset[i] =
9236                    (uchar)(ASC_DEF_SDTR_OFFSET |
9237                            (asc_dvc->min_sdtr_index << 4));
9238        }
9239        eep_config->cfg_msw = AscGetChipCfgMsw(iop_base);
9240        if (write_eep) {
9241                if ((i = AscSetEEPConfig(iop_base, eep_config,
9242                                     asc_dvc->bus_type)) != 0) {
9243                        ASC_PRINT1
9244                            ("AscInitFromEEP: Failed to re-write EEPROM with %d errors.\n",
9245                             i);
9246                } else {
9247                        ASC_PRINT
9248                            ("AscInitFromEEP: Successfully re-wrote EEPROM.\n");
9249                }
9250        }
9251        return (warn_code);
9252}
9253
9254static int AscInitGetConfig(struct Scsi_Host *shost)
9255{
9256        struct asc_board *board = shost_priv(shost);
9257        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9258        unsigned short warn_code = 0;
9259
9260        asc_dvc->init_state = ASC_INIT_STATE_BEG_GET_CFG;
9261        if (asc_dvc->err_code != 0)
9262                return asc_dvc->err_code;
9263
9264        if (AscFindSignature(asc_dvc->iop_base)) {
9265                AscInitAscDvcVar(asc_dvc);
9266                warn_code = AscInitFromEEP(asc_dvc);
9267                asc_dvc->init_state |= ASC_INIT_STATE_END_GET_CFG;
9268                if (asc_dvc->scsi_reset_wait > ASC_MAX_SCSI_RESET_WAIT)
9269                        asc_dvc->scsi_reset_wait = ASC_MAX_SCSI_RESET_WAIT;
9270        } else {
9271                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9272        }
9273
9274        switch (warn_code) {
9275        case 0: /* No error */
9276                break;
9277        case ASC_WARN_IO_PORT_ROTATE:
9278                shost_printk(KERN_WARNING, shost, "I/O port address "
9279                                "modified\n");
9280                break;
9281        case ASC_WARN_AUTO_CONFIG:
9282                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9283                                "enabled\n");
9284                break;
9285        case ASC_WARN_EEPROM_CHKSUM:
9286                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9287                break;
9288        case ASC_WARN_IRQ_MODIFIED:
9289                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9290                break;
9291        case ASC_WARN_CMD_QNG_CONFLICT:
9292                shost_printk(KERN_WARNING, shost, "tag queuing enabled w/o "
9293                                "disconnects\n");
9294                break;
9295        default:
9296                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9297                                warn_code);
9298                break;
9299        }
9300
9301        if (asc_dvc->err_code != 0)
9302                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9303                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9304
9305        return asc_dvc->err_code;
9306}
9307
9308static int AscInitSetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
9309{
9310        struct asc_board *board = shost_priv(shost);
9311        ASC_DVC_VAR *asc_dvc = &board->dvc_var.asc_dvc_var;
9312        PortAddr iop_base = asc_dvc->iop_base;
9313        unsigned short cfg_msw;
9314        unsigned short warn_code = 0;
9315
9316        asc_dvc->init_state |= ASC_INIT_STATE_BEG_SET_CFG;
9317        if (asc_dvc->err_code != 0)
9318                return asc_dvc->err_code;
9319        if (!AscFindSignature(asc_dvc->iop_base)) {
9320                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
9321                return asc_dvc->err_code;
9322        }
9323
9324        cfg_msw = AscGetChipCfgMsw(iop_base);
9325        if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
9326                cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
9327                warn_code |= ASC_WARN_CFG_MSW_RECOVER;
9328                AscSetChipCfgMsw(iop_base, cfg_msw);
9329        }
9330        if ((asc_dvc->cfg->cmd_qng_enabled & asc_dvc->cfg->disc_enable) !=
9331            asc_dvc->cfg->cmd_qng_enabled) {
9332                asc_dvc->cfg->disc_enable = asc_dvc->cfg->cmd_qng_enabled;
9333                warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
9334        }
9335        if (AscGetChipStatus(iop_base) & CSW_AUTO_CONFIG) {
9336                warn_code |= ASC_WARN_AUTO_CONFIG;
9337        }
9338#ifdef CONFIG_PCI
9339        if (asc_dvc->bus_type & ASC_IS_PCI) {
9340                cfg_msw &= 0xFFC0;
9341                AscSetChipCfgMsw(iop_base, cfg_msw);
9342                if ((asc_dvc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) {
9343                } else {
9344                        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
9345                            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
9346                                asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
9347                                asc_dvc->bug_fix_cntl |=
9348                                    ASC_BUG_FIX_ASYN_USE_SYN;
9349                        }
9350                }
9351        } else
9352#endif /* CONFIG_PCI */
9353        if (asc_dvc->bus_type == ASC_IS_ISAPNP) {
9354                if (AscGetChipVersion(iop_base, asc_dvc->bus_type)
9355                    == ASC_CHIP_VER_ASYN_BUG) {
9356                        asc_dvc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
9357                }
9358        }
9359        if (AscSetChipScsiID(iop_base, asc_dvc->cfg->chip_scsi_id) !=
9360            asc_dvc->cfg->chip_scsi_id) {
9361                asc_dvc->err_code |= ASC_IERR_SET_SCSI_ID;
9362        }
9363#ifdef CONFIG_ISA
9364        if (asc_dvc->bus_type & ASC_IS_ISA) {
9365                AscSetIsaDmaChannel(iop_base, asc_dvc->cfg->isa_dma_channel);
9366                AscSetIsaDmaSpeed(iop_base, asc_dvc->cfg->isa_dma_speed);
9367        }
9368#endif /* CONFIG_ISA */
9369
9370        asc_dvc->init_state |= ASC_INIT_STATE_END_SET_CFG;
9371
9372        switch (warn_code) {
9373        case 0: /* No error. */
9374                break;
9375        case ASC_WARN_IO_PORT_ROTATE:
9376                shost_printk(KERN_WARNING, shost, "I/O port address "
9377                                "modified\n");
9378                break;
9379        case ASC_WARN_AUTO_CONFIG:
9380                shost_printk(KERN_WARNING, shost, "I/O port increment switch "
9381                                "enabled\n");
9382                break;
9383        case ASC_WARN_EEPROM_CHKSUM:
9384                shost_printk(KERN_WARNING, shost, "EEPROM checksum error\n");
9385                break;
9386        case ASC_WARN_IRQ_MODIFIED:
9387                shost_printk(KERN_WARNING, shost, "IRQ modified\n");
9388                break;
9389        case ASC_WARN_CMD_QNG_CONFLICT:
9390                shost_printk(KERN_WARNING, shost, "tag queuing w/o "
9391                                "disconnects\n");
9392                break;
9393        default:
9394                shost_printk(KERN_WARNING, shost, "unknown warning: 0x%x\n",
9395                                warn_code);
9396                break;
9397        }
9398
9399        if (asc_dvc->err_code != 0)
9400                shost_printk(KERN_ERR, shost, "error 0x%x at init_state "
9401                        "0x%x\n", asc_dvc->err_code, asc_dvc->init_state);
9402
9403        return asc_dvc->err_code;
9404}
9405
9406/*
9407 * EEPROM Configuration.
9408 *
9409 * All drivers should use this structure to set the default EEPROM
9410 * configuration. The BIOS now uses this structure when it is built.
9411 * Additional structure information can be found in a_condor.h where
9412 * the structure is defined.
9413 *
9414 * The *_Field_IsChar structs are needed to correct for endianness.
9415 * These values are read from the board 16 bits at a time directly
9416 * into the structs. Because some fields are char, the values will be
9417 * in the wrong order. The *_Field_IsChar tells when to flip the
9418 * bytes. Data read and written to PCI memory is automatically swapped
9419 * on big-endian platforms so char fields read as words are actually being
9420 * unswapped on big-endian platforms.
9421 */
9422#ifdef CONFIG_PCI
9423static ADVEEP_3550_CONFIG Default_3550_EEPROM_Config = {
9424        ADV_EEPROM_BIOS_ENABLE, /* cfg_lsw */
9425        0x0000,                 /* cfg_msw */
9426        0xFFFF,                 /* disc_enable */
9427        0xFFFF,                 /* wdtr_able */
9428        0xFFFF,                 /* sdtr_able */
9429        0xFFFF,                 /* start_motor */
9430        0xFFFF,                 /* tagqng_able */
9431        0xFFFF,                 /* bios_scan */
9432        0,                      /* scam_tolerant */
9433        7,                      /* adapter_scsi_id */
9434        0,                      /* bios_boot_delay */
9435        3,                      /* scsi_reset_delay */
9436        0,                      /* bios_id_lun */
9437        0,                      /* termination */
9438        0,                      /* reserved1 */
9439        0xFFE7,                 /* bios_ctrl */
9440        0xFFFF,                 /* ultra_able */
9441        0,                      /* reserved2 */
9442        ASC_DEF_MAX_HOST_QNG,   /* max_host_qng */
9443        ASC_DEF_MAX_DVC_QNG,    /* max_dvc_qng */
9444        0,                      /* dvc_cntl */
9445        0,                      /* bug_fix */
9446        0,                      /* serial_number_word1 */
9447        0,                      /* serial_number_word2 */
9448        0,                      /* serial_number_word3 */
9449        0,                      /* check_sum */
9450        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9451        ,                       /* oem_name[16] */
9452        0,                      /* dvc_err_code */
9453        0,                      /* adv_err_code */
9454        0,                      /* adv_err_addr */
9455        0,                      /* saved_dvc_err_code */
9456        0,                      /* saved_adv_err_code */
9457        0,                      /* saved_adv_err_addr */
9458        0                       /* num_of_err */
9459};
9460
9461static ADVEEP_3550_CONFIG ADVEEP_3550_Config_Field_IsChar = {
9462        0,                      /* cfg_lsw */
9463        0,                      /* cfg_msw */
9464        0,                      /* -disc_enable */
9465        0,                      /* wdtr_able */
9466        0,                      /* sdtr_able */
9467        0,                      /* start_motor */
9468        0,                      /* tagqng_able */
9469        0,                      /* bios_scan */
9470        0,                      /* scam_tolerant */
9471        1,                      /* adapter_scsi_id */
9472        1,                      /* bios_boot_delay */
9473        1,                      /* scsi_reset_delay */
9474        1,                      /* bios_id_lun */
9475        1,                      /* termination */
9476        1,                      /* reserved1 */
9477        0,                      /* bios_ctrl */
9478        0,                      /* ultra_able */
9479        0,                      /* reserved2 */
9480        1,                      /* max_host_qng */
9481        1,                      /* max_dvc_qng */
9482        0,                      /* dvc_cntl */
9483        0,                      /* bug_fix */
9484        0,                      /* serial_number_word1 */
9485        0,                      /* serial_number_word2 */
9486        0,                      /* serial_number_word3 */
9487        0,                      /* check_sum */
9488        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9489        ,                       /* oem_name[16] */
9490        0,                      /* dvc_err_code */
9491        0,                      /* adv_err_code */
9492        0,                      /* adv_err_addr */
9493        0,                      /* saved_dvc_err_code */
9494        0,                      /* saved_adv_err_code */
9495        0,                      /* saved_adv_err_addr */
9496        0                       /* num_of_err */
9497};
9498
9499static ADVEEP_38C0800_CONFIG Default_38C0800_EEPROM_Config = {
9500        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9501        0x0000,                 /* 01 cfg_msw */
9502        0xFFFF,                 /* 02 disc_enable */
9503        0xFFFF,                 /* 03 wdtr_able */
9504        0x4444,                 /* 04 sdtr_speed1 */
9505        0xFFFF,                 /* 05 start_motor */
9506        0xFFFF,                 /* 06 tagqng_able */
9507        0xFFFF,                 /* 07 bios_scan */
9508        0,                      /* 08 scam_tolerant */
9509        7,                      /* 09 adapter_scsi_id */
9510        0,                      /*    bios_boot_delay */
9511        3,                      /* 10 scsi_reset_delay */
9512        0,                      /*    bios_id_lun */
9513        0,                      /* 11 termination_se */
9514        0,                      /*    termination_lvd */
9515        0xFFE7,                 /* 12 bios_ctrl */
9516        0x4444,                 /* 13 sdtr_speed2 */
9517        0x4444,                 /* 14 sdtr_speed3 */
9518        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9519        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9520        0,                      /* 16 dvc_cntl */
9521        0x4444,                 /* 17 sdtr_speed4 */
9522        0,                      /* 18 serial_number_word1 */
9523        0,                      /* 19 serial_number_word2 */
9524        0,                      /* 20 serial_number_word3 */
9525        0,                      /* 21 check_sum */
9526        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9527        ,                       /* 22-29 oem_name[16] */
9528        0,                      /* 30 dvc_err_code */
9529        0,                      /* 31 adv_err_code */
9530        0,                      /* 32 adv_err_addr */
9531        0,                      /* 33 saved_dvc_err_code */
9532        0,                      /* 34 saved_adv_err_code */
9533        0,                      /* 35 saved_adv_err_addr */
9534        0,                      /* 36 reserved */
9535        0,                      /* 37 reserved */
9536        0,                      /* 38 reserved */
9537        0,                      /* 39 reserved */
9538        0,                      /* 40 reserved */
9539        0,                      /* 41 reserved */
9540        0,                      /* 42 reserved */
9541        0,                      /* 43 reserved */
9542        0,                      /* 44 reserved */
9543        0,                      /* 45 reserved */
9544        0,                      /* 46 reserved */
9545        0,                      /* 47 reserved */
9546        0,                      /* 48 reserved */
9547        0,                      /* 49 reserved */
9548        0,                      /* 50 reserved */
9549        0,                      /* 51 reserved */
9550        0,                      /* 52 reserved */
9551        0,                      /* 53 reserved */
9552        0,                      /* 54 reserved */
9553        0,                      /* 55 reserved */
9554        0,                      /* 56 cisptr_lsw */
9555        0,                      /* 57 cisprt_msw */
9556        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
9557        PCI_DEVICE_ID_38C0800_REV1,     /* 59 subsysid */
9558        0,                      /* 60 reserved */
9559        0,                      /* 61 reserved */
9560        0,                      /* 62 reserved */
9561        0                       /* 63 reserved */
9562};
9563
9564static ADVEEP_38C0800_CONFIG ADVEEP_38C0800_Config_Field_IsChar = {
9565        0,                      /* 00 cfg_lsw */
9566        0,                      /* 01 cfg_msw */
9567        0,                      /* 02 disc_enable */
9568        0,                      /* 03 wdtr_able */
9569        0,                      /* 04 sdtr_speed1 */
9570        0,                      /* 05 start_motor */
9571        0,                      /* 06 tagqng_able */
9572        0,                      /* 07 bios_scan */
9573        0,                      /* 08 scam_tolerant */
9574        1,                      /* 09 adapter_scsi_id */
9575        1,                      /*    bios_boot_delay */
9576        1,                      /* 10 scsi_reset_delay */
9577        1,                      /*    bios_id_lun */
9578        1,                      /* 11 termination_se */
9579        1,                      /*    termination_lvd */
9580        0,                      /* 12 bios_ctrl */
9581        0,                      /* 13 sdtr_speed2 */
9582        0,                      /* 14 sdtr_speed3 */
9583        1,                      /* 15 max_host_qng */
9584        1,                      /*    max_dvc_qng */
9585        0,                      /* 16 dvc_cntl */
9586        0,                      /* 17 sdtr_speed4 */
9587        0,                      /* 18 serial_number_word1 */
9588        0,                      /* 19 serial_number_word2 */
9589        0,                      /* 20 serial_number_word3 */
9590        0,                      /* 21 check_sum */
9591        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9592        ,                       /* 22-29 oem_name[16] */
9593        0,                      /* 30 dvc_err_code */
9594        0,                      /* 31 adv_err_code */
9595        0,                      /* 32 adv_err_addr */
9596        0,                      /* 33 saved_dvc_err_code */
9597        0,                      /* 34 saved_adv_err_code */
9598        0,                      /* 35 saved_adv_err_addr */
9599        0,                      /* 36 reserved */
9600        0,                      /* 37 reserved */
9601        0,                      /* 38 reserved */
9602        0,                      /* 39 reserved */
9603        0,                      /* 40 reserved */
9604        0,                      /* 41 reserved */
9605        0,                      /* 42 reserved */
9606        0,                      /* 43 reserved */
9607        0,                      /* 44 reserved */
9608        0,                      /* 45 reserved */
9609        0,                      /* 46 reserved */
9610        0,                      /* 47 reserved */
9611        0,                      /* 48 reserved */
9612        0,                      /* 49 reserved */
9613        0,                      /* 50 reserved */
9614        0,                      /* 51 reserved */
9615        0,                      /* 52 reserved */
9616        0,                      /* 53 reserved */
9617        0,                      /* 54 reserved */
9618        0,                      /* 55 reserved */
9619        0,                      /* 56 cisptr_lsw */
9620        0,                      /* 57 cisprt_msw */
9621        0,                      /* 58 subsysvid */
9622        0,                      /* 59 subsysid */
9623        0,                      /* 60 reserved */
9624        0,                      /* 61 reserved */
9625        0,                      /* 62 reserved */
9626        0                       /* 63 reserved */
9627};
9628
9629static ADVEEP_38C1600_CONFIG Default_38C1600_EEPROM_Config = {
9630        ADV_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
9631        0x0000,                 /* 01 cfg_msw */
9632        0xFFFF,                 /* 02 disc_enable */
9633        0xFFFF,                 /* 03 wdtr_able */
9634        0x5555,                 /* 04 sdtr_speed1 */
9635        0xFFFF,                 /* 05 start_motor */
9636        0xFFFF,                 /* 06 tagqng_able */
9637        0xFFFF,                 /* 07 bios_scan */
9638        0,                      /* 08 scam_tolerant */
9639        7,                      /* 09 adapter_scsi_id */
9640        0,                      /*    bios_boot_delay */
9641        3,                      /* 10 scsi_reset_delay */
9642        0,                      /*    bios_id_lun */
9643        0,                      /* 11 termination_se */
9644        0,                      /*    termination_lvd */
9645        0xFFE7,                 /* 12 bios_ctrl */
9646        0x5555,                 /* 13 sdtr_speed2 */
9647        0x5555,                 /* 14 sdtr_speed3 */
9648        ASC_DEF_MAX_HOST_QNG,   /* 15 max_host_qng */
9649        ASC_DEF_MAX_DVC_QNG,    /*    max_dvc_qng */
9650        0,                      /* 16 dvc_cntl */
9651        0x5555,                 /* 17 sdtr_speed4 */
9652        0,                      /* 18 serial_number_word1 */
9653        0,                      /* 19 serial_number_word2 */
9654        0,                      /* 20 serial_number_word3 */
9655        0,                      /* 21 check_sum */
9656        {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
9657        ,                       /* 22-29 oem_name[16] */
9658        0,                      /* 30 dvc_err_code */
9659        0,                      /* 31 adv_err_code */
9660        0,                      /* 32 adv_err_addr */
9661        0,                      /* 33 saved_dvc_err_code */
9662        0,                      /* 34 saved_adv_err_code */
9663        0,                      /* 35 saved_adv_err_addr */
9664        0,                      /* 36 reserved */
9665        0,                      /* 37 reserved */
9666        0,                      /* 38 reserved */
9667        0,                      /* 39 reserved */
9668        0,                      /* 40 reserved */
9669        0,                      /* 41 reserved */
9670        0,                      /* 42 reserved */
9671        0,                      /* 43 reserved */
9672        0,                      /* 44 reserved */
9673        0,                      /* 45 reserved */
9674        0,                      /* 46 reserved */
9675        0,                      /* 47 reserved */
9676        0,                      /* 48 reserved */
9677        0,                      /* 49 reserved */
9678        0,                      /* 50 reserved */
9679        0,                      /* 51 reserved */
9680        0,                      /* 52 reserved */
9681        0,                      /* 53 reserved */
9682        0,                      /* 54 reserved */
9683        0,                      /* 55 reserved */
9684        0,                      /* 56 cisptr_lsw */
9685        0,                      /* 57 cisprt_msw */
9686        PCI_VENDOR_ID_ASP,      /* 58 subsysvid */
9687        PCI_DEVICE_ID_38C1600_REV1,     /* 59 subsysid */
9688        0,                      /* 60 reserved */
9689        0,                      /* 61 reserved */
9690        0,                      /* 62 reserved */
9691        0                       /* 63 reserved */
9692};
9693
9694static ADVEEP_38C1600_CONFIG ADVEEP_38C1600_Config_Field_IsChar = {
9695        0,                      /* 00 cfg_lsw */
9696        0,                      /* 01 cfg_msw */
9697        0,                      /* 02 disc_enable */
9698        0,                      /* 03 wdtr_able */
9699        0,                      /* 04 sdtr_speed1 */
9700        0,                      /* 05 start_motor */
9701        0,                      /* 06 tagqng_able */
9702        0,                      /* 07 bios_scan */
9703        0,                      /* 08 scam_tolerant */
9704        1,                      /* 09 adapter_scsi_id */
9705        1,                      /*    bios_boot_delay */
9706        1,                      /* 10 scsi_reset_delay */
9707        1,                      /*    bios_id_lun */
9708        1,                      /* 11 termination_se */
9709        1,                      /*    termination_lvd */
9710        0,                      /* 12 bios_ctrl */
9711        0,                      /* 13 sdtr_speed2 */
9712        0,                      /* 14 sdtr_speed3 */
9713        1,                      /* 15 max_host_qng */
9714        1,                      /*    max_dvc_qng */
9715        0,                      /* 16 dvc_cntl */
9716        0,                      /* 17 sdtr_speed4 */
9717        0,                      /* 18 serial_number_word1 */
9718        0,                      /* 19 serial_number_word2 */
9719        0,                      /* 20 serial_number_word3 */
9720        0,                      /* 21 check_sum */
9721        {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
9722        ,                       /* 22-29 oem_name[16] */
9723        0,                      /* 30 dvc_err_code */
9724        0,                      /* 31 adv_err_code */
9725        0,                      /* 32 adv_err_addr */
9726        0,                      /* 33 saved_dvc_err_code */
9727        0,                      /* 34 saved_adv_err_code */
9728        0,                      /* 35 saved_adv_err_addr */
9729        0,                      /* 36 reserved */
9730        0,                      /* 37 reserved */
9731        0,                      /* 38 reserved */
9732        0,                      /* 39 reserved */
9733        0,                      /* 40 reserved */
9734        0,                      /* 41 reserved */
9735        0,                      /* 42 reserved */
9736        0,                      /* 43 reserved */
9737        0,                      /* 44 reserved */
9738        0,                      /* 45 reserved */
9739        0,                      /* 46 reserved */
9740        0,                      /* 47 reserved */
9741        0,                      /* 48 reserved */
9742        0,                      /* 49 reserved */
9743        0,                      /* 50 reserved */
9744        0,                      /* 51 reserved */
9745        0,                      /* 52 reserved */
9746        0,                      /* 53 reserved */
9747        0,                      /* 54 reserved */
9748        0,                      /* 55 reserved */
9749        0,                      /* 56 cisptr_lsw */
9750        0,                      /* 57 cisprt_msw */
9751        0,                      /* 58 subsysvid */
9752        0,                      /* 59 subsysid */
9753        0,                      /* 60 reserved */
9754        0,                      /* 61 reserved */
9755        0,                      /* 62 reserved */
9756        0                       /* 63 reserved */
9757};
9758
9759/*
9760 * Wait for EEPROM command to complete
9761 */
9762static void AdvWaitEEPCmd(AdvPortAddr iop_base)
9763{
9764        int eep_delay_ms;
9765
9766        for (eep_delay_ms = 0; eep_delay_ms < ADV_EEP_DELAY_MS; eep_delay_ms++) {
9767                if (AdvReadWordRegister(iop_base, IOPW_EE_CMD) &
9768                    ASC_EEP_CMD_DONE) {
9769                        break;
9770                }
9771                mdelay(1);
9772        }
9773        if ((AdvReadWordRegister(iop_base, IOPW_EE_CMD) & ASC_EEP_CMD_DONE) ==
9774            0)
9775                BUG();
9776}
9777
9778/*
9779 * Read the EEPROM from specified location
9780 */
9781static ushort AdvReadEEPWord(AdvPortAddr iop_base, int eep_word_addr)
9782{
9783        AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9784                             ASC_EEP_CMD_READ | eep_word_addr);
9785        AdvWaitEEPCmd(iop_base);
9786        return AdvReadWordRegister(iop_base, IOPW_EE_DATA);
9787}
9788
9789/*
9790 * Write the EEPROM from 'cfg_buf'.
9791 */
9792static void AdvSet3550EEPConfig(AdvPortAddr iop_base,
9793                                ADVEEP_3550_CONFIG *cfg_buf)
9794{
9795        ushort *wbuf;
9796        ushort addr, chksum;
9797        ushort *charfields;
9798
9799        wbuf = (ushort *)cfg_buf;
9800        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
9801        chksum = 0;
9802
9803        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9804        AdvWaitEEPCmd(iop_base);
9805
9806        /*
9807         * Write EEPROM from word 0 to word 20.
9808         */
9809        for (addr = ADV_EEP_DVC_CFG_BEGIN;
9810             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9811                ushort word;
9812
9813                if (*charfields++) {
9814                        word = cpu_to_le16(*wbuf);
9815                } else {
9816                        word = *wbuf;
9817                }
9818                chksum += *wbuf;        /* Checksum is calculated from word values. */
9819                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9820                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9821                                     ASC_EEP_CMD_WRITE | addr);
9822                AdvWaitEEPCmd(iop_base);
9823                mdelay(ADV_EEP_DELAY_MS);
9824        }
9825
9826        /*
9827         * Write EEPROM checksum at word 21.
9828         */
9829        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9830        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9831        AdvWaitEEPCmd(iop_base);
9832        wbuf++;
9833        charfields++;
9834
9835        /*
9836         * Write EEPROM OEM name at words 22 to 29.
9837         */
9838        for (addr = ADV_EEP_DVC_CTL_BEGIN;
9839             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9840                ushort word;
9841
9842                if (*charfields++) {
9843                        word = cpu_to_le16(*wbuf);
9844                } else {
9845                        word = *wbuf;
9846                }
9847                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9848                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9849                                     ASC_EEP_CMD_WRITE | addr);
9850                AdvWaitEEPCmd(iop_base);
9851        }
9852        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9853        AdvWaitEEPCmd(iop_base);
9854}
9855
9856/*
9857 * Write the EEPROM from 'cfg_buf'.
9858 */
9859static void AdvSet38C0800EEPConfig(AdvPortAddr iop_base,
9860                                   ADVEEP_38C0800_CONFIG *cfg_buf)
9861{
9862        ushort *wbuf;
9863        ushort *charfields;
9864        ushort addr, chksum;
9865
9866        wbuf = (ushort *)cfg_buf;
9867        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
9868        chksum = 0;
9869
9870        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9871        AdvWaitEEPCmd(iop_base);
9872
9873        /*
9874         * Write EEPROM from word 0 to word 20.
9875         */
9876        for (addr = ADV_EEP_DVC_CFG_BEGIN;
9877             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9878                ushort word;
9879
9880                if (*charfields++) {
9881                        word = cpu_to_le16(*wbuf);
9882                } else {
9883                        word = *wbuf;
9884                }
9885                chksum += *wbuf;        /* Checksum is calculated from word values. */
9886                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9887                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9888                                     ASC_EEP_CMD_WRITE | addr);
9889                AdvWaitEEPCmd(iop_base);
9890                mdelay(ADV_EEP_DELAY_MS);
9891        }
9892
9893        /*
9894         * Write EEPROM checksum at word 21.
9895         */
9896        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9897        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9898        AdvWaitEEPCmd(iop_base);
9899        wbuf++;
9900        charfields++;
9901
9902        /*
9903         * Write EEPROM OEM name at words 22 to 29.
9904         */
9905        for (addr = ADV_EEP_DVC_CTL_BEGIN;
9906             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9907                ushort word;
9908
9909                if (*charfields++) {
9910                        word = cpu_to_le16(*wbuf);
9911                } else {
9912                        word = *wbuf;
9913                }
9914                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9915                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9916                                     ASC_EEP_CMD_WRITE | addr);
9917                AdvWaitEEPCmd(iop_base);
9918        }
9919        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9920        AdvWaitEEPCmd(iop_base);
9921}
9922
9923/*
9924 * Write the EEPROM from 'cfg_buf'.
9925 */
9926static void AdvSet38C1600EEPConfig(AdvPortAddr iop_base,
9927                                   ADVEEP_38C1600_CONFIG *cfg_buf)
9928{
9929        ushort *wbuf;
9930        ushort *charfields;
9931        ushort addr, chksum;
9932
9933        wbuf = (ushort *)cfg_buf;
9934        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
9935        chksum = 0;
9936
9937        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
9938        AdvWaitEEPCmd(iop_base);
9939
9940        /*
9941         * Write EEPROM from word 0 to word 20.
9942         */
9943        for (addr = ADV_EEP_DVC_CFG_BEGIN;
9944             addr < ADV_EEP_DVC_CFG_END; addr++, wbuf++) {
9945                ushort word;
9946
9947                if (*charfields++) {
9948                        word = cpu_to_le16(*wbuf);
9949                } else {
9950                        word = *wbuf;
9951                }
9952                chksum += *wbuf;        /* Checksum is calculated from word values. */
9953                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9954                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9955                                     ASC_EEP_CMD_WRITE | addr);
9956                AdvWaitEEPCmd(iop_base);
9957                mdelay(ADV_EEP_DELAY_MS);
9958        }
9959
9960        /*
9961         * Write EEPROM checksum at word 21.
9962         */
9963        AdvWriteWordRegister(iop_base, IOPW_EE_DATA, chksum);
9964        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE | addr);
9965        AdvWaitEEPCmd(iop_base);
9966        wbuf++;
9967        charfields++;
9968
9969        /*
9970         * Write EEPROM OEM name at words 22 to 29.
9971         */
9972        for (addr = ADV_EEP_DVC_CTL_BEGIN;
9973             addr < ADV_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
9974                ushort word;
9975
9976                if (*charfields++) {
9977                        word = cpu_to_le16(*wbuf);
9978                } else {
9979                        word = *wbuf;
9980                }
9981                AdvWriteWordRegister(iop_base, IOPW_EE_DATA, word);
9982                AdvWriteWordRegister(iop_base, IOPW_EE_CMD,
9983                                     ASC_EEP_CMD_WRITE | addr);
9984                AdvWaitEEPCmd(iop_base);
9985        }
9986        AdvWriteWordRegister(iop_base, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_DISABLE);
9987        AdvWaitEEPCmd(iop_base);
9988}
9989
9990/*
9991 * Read EEPROM configuration into the specified buffer.
9992 *
9993 * Return a checksum based on the EEPROM configuration read.
9994 */
9995static ushort AdvGet3550EEPConfig(AdvPortAddr iop_base,
9996                                  ADVEEP_3550_CONFIG *cfg_buf)
9997{
9998        ushort wval, chksum;
9999        ushort *wbuf;
10000        int eep_addr;
10001        ushort *charfields;
10002
10003        charfields = (ushort *)&ADVEEP_3550_Config_Field_IsChar;
10004        wbuf = (ushort *)cfg_buf;
10005        chksum = 0;
10006
10007        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10008             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10009                wval = AdvReadEEPWord(iop_base, eep_addr);
10010                chksum += wval; /* Checksum is calculated from word values. */
10011                if (*charfields++) {
10012                        *wbuf = le16_to_cpu(wval);
10013                } else {
10014                        *wbuf = wval;
10015                }
10016        }
10017        /* Read checksum word. */
10018        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10019        wbuf++;
10020        charfields++;
10021
10022        /* Read rest of EEPROM not covered by the checksum. */
10023        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10024             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10025                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10026                if (*charfields++) {
10027                        *wbuf = le16_to_cpu(*wbuf);
10028                }
10029        }
10030        return chksum;
10031}
10032
10033/*
10034 * Read EEPROM configuration into the specified buffer.
10035 *
10036 * Return a checksum based on the EEPROM configuration read.
10037 */
10038static ushort AdvGet38C0800EEPConfig(AdvPortAddr iop_base,
10039                                     ADVEEP_38C0800_CONFIG *cfg_buf)
10040{
10041        ushort wval, chksum;
10042        ushort *wbuf;
10043        int eep_addr;
10044        ushort *charfields;
10045
10046        charfields = (ushort *)&ADVEEP_38C0800_Config_Field_IsChar;
10047        wbuf = (ushort *)cfg_buf;
10048        chksum = 0;
10049
10050        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10051             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10052                wval = AdvReadEEPWord(iop_base, eep_addr);
10053                chksum += wval; /* Checksum is calculated from word values. */
10054                if (*charfields++) {
10055                        *wbuf = le16_to_cpu(wval);
10056                } else {
10057                        *wbuf = wval;
10058                }
10059        }
10060        /* Read checksum word. */
10061        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10062        wbuf++;
10063        charfields++;
10064
10065        /* Read rest of EEPROM not covered by the checksum. */
10066        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10067             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10068                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10069                if (*charfields++) {
10070                        *wbuf = le16_to_cpu(*wbuf);
10071                }
10072        }
10073        return chksum;
10074}
10075
10076/*
10077 * Read EEPROM configuration into the specified buffer.
10078 *
10079 * Return a checksum based on the EEPROM configuration read.
10080 */
10081static ushort AdvGet38C1600EEPConfig(AdvPortAddr iop_base,
10082                                     ADVEEP_38C1600_CONFIG *cfg_buf)
10083{
10084        ushort wval, chksum;
10085        ushort *wbuf;
10086        int eep_addr;
10087        ushort *charfields;
10088
10089        charfields = (ushort *)&ADVEEP_38C1600_Config_Field_IsChar;
10090        wbuf = (ushort *)cfg_buf;
10091        chksum = 0;
10092
10093        for (eep_addr = ADV_EEP_DVC_CFG_BEGIN;
10094             eep_addr < ADV_EEP_DVC_CFG_END; eep_addr++, wbuf++) {
10095                wval = AdvReadEEPWord(iop_base, eep_addr);
10096                chksum += wval; /* Checksum is calculated from word values. */
10097                if (*charfields++) {
10098                        *wbuf = le16_to_cpu(wval);
10099                } else {
10100                        *wbuf = wval;
10101                }
10102        }
10103        /* Read checksum word. */
10104        *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10105        wbuf++;
10106        charfields++;
10107
10108        /* Read rest of EEPROM not covered by the checksum. */
10109        for (eep_addr = ADV_EEP_DVC_CTL_BEGIN;
10110             eep_addr < ADV_EEP_MAX_WORD_ADDR; eep_addr++, wbuf++) {
10111                *wbuf = AdvReadEEPWord(iop_base, eep_addr);
10112                if (*charfields++) {
10113                        *wbuf = le16_to_cpu(*wbuf);
10114                }
10115        }
10116        return chksum;
10117}
10118
10119/*
10120 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10121 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10122 * all of this is done.
10123 *
10124 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10125 *
10126 * For a non-fatal error return a warning code. If there are no warnings
10127 * then 0 is returned.
10128 *
10129 * Note: Chip is stopped on entry.
10130 */
10131static int AdvInitFrom3550EEP(ADV_DVC_VAR *asc_dvc)
10132{
10133        AdvPortAddr iop_base;
10134        ushort warn_code;
10135        ADVEEP_3550_CONFIG eep_config;
10136
10137        iop_base = asc_dvc->iop_base;
10138
10139        warn_code = 0;
10140
10141        /*
10142         * Read the board's EEPROM configuration.
10143         *
10144         * Set default values if a bad checksum is found.
10145         */
10146        if (AdvGet3550EEPConfig(iop_base, &eep_config) != eep_config.check_sum) {
10147                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10148
10149                /*
10150                 * Set EEPROM default values.
10151                 */
10152                memcpy(&eep_config, &Default_3550_EEPROM_Config,
10153                        sizeof(ADVEEP_3550_CONFIG));
10154
10155                /*
10156                 * Assume the 6 byte board serial number that was read from
10157                 * EEPROM is correct even if the EEPROM checksum failed.
10158                 */
10159                eep_config.serial_number_word3 =
10160                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10161
10162                eep_config.serial_number_word2 =
10163                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10164
10165                eep_config.serial_number_word1 =
10166                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10167
10168                AdvSet3550EEPConfig(iop_base, &eep_config);
10169        }
10170        /*
10171         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10172         * EEPROM configuration that was read.
10173         *
10174         * This is the mapping of EEPROM fields to Adv Library fields.
10175         */
10176        asc_dvc->wdtr_able = eep_config.wdtr_able;
10177        asc_dvc->sdtr_able = eep_config.sdtr_able;
10178        asc_dvc->ultra_able = eep_config.ultra_able;
10179        asc_dvc->tagqng_able = eep_config.tagqng_able;
10180        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10181        asc_dvc->max_host_qng = eep_config.max_host_qng;
10182        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10183        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10184        asc_dvc->start_motor = eep_config.start_motor;
10185        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10186        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10187        asc_dvc->no_scam = eep_config.scam_tolerant;
10188        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10189        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10190        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10191
10192        /*
10193         * Set the host maximum queuing (max. 253, min. 16) and the per device
10194         * maximum queuing (max. 63, min. 4).
10195         */
10196        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10197                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10198        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10199                /* If the value is zero, assume it is uninitialized. */
10200                if (eep_config.max_host_qng == 0) {
10201                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10202                } else {
10203                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10204                }
10205        }
10206
10207        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10208                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10209        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10210                /* If the value is zero, assume it is uninitialized. */
10211                if (eep_config.max_dvc_qng == 0) {
10212                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10213                } else {
10214                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10215                }
10216        }
10217
10218        /*
10219         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10220         * set 'max_dvc_qng' to 'max_host_qng'.
10221         */
10222        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10223                eep_config.max_dvc_qng = eep_config.max_host_qng;
10224        }
10225
10226        /*
10227         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10228         * values based on possibly adjusted EEPROM values.
10229         */
10230        asc_dvc->max_host_qng = eep_config.max_host_qng;
10231        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10232
10233        /*
10234         * If the EEPROM 'termination' field is set to automatic (0), then set
10235         * the ADV_DVC_CFG 'termination' field to automatic also.
10236         *
10237         * If the termination is specified with a non-zero 'termination'
10238         * value check that a legal value is set and set the ADV_DVC_CFG
10239         * 'termination' field appropriately.
10240         */
10241        if (eep_config.termination == 0) {
10242                asc_dvc->cfg->termination = 0;  /* auto termination */
10243        } else {
10244                /* Enable manual control with low off / high off. */
10245                if (eep_config.termination == 1) {
10246                        asc_dvc->cfg->termination = TERM_CTL_SEL;
10247
10248                        /* Enable manual control with low off / high on. */
10249                } else if (eep_config.termination == 2) {
10250                        asc_dvc->cfg->termination = TERM_CTL_SEL | TERM_CTL_H;
10251
10252                        /* Enable manual control with low on / high on. */
10253                } else if (eep_config.termination == 3) {
10254                        asc_dvc->cfg->termination =
10255                            TERM_CTL_SEL | TERM_CTL_H | TERM_CTL_L;
10256                } else {
10257                        /*
10258                         * The EEPROM 'termination' field contains a bad value. Use
10259                         * automatic termination instead.
10260                         */
10261                        asc_dvc->cfg->termination = 0;
10262                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10263                }
10264        }
10265
10266        return warn_code;
10267}
10268
10269/*
10270 * Read the board's EEPROM configuration. Set fields in ADV_DVC_VAR and
10271 * ADV_DVC_CFG based on the EEPROM settings. The chip is stopped while
10272 * all of this is done.
10273 *
10274 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10275 *
10276 * For a non-fatal error return a warning code. If there are no warnings
10277 * then 0 is returned.
10278 *
10279 * Note: Chip is stopped on entry.
10280 */
10281static int AdvInitFrom38C0800EEP(ADV_DVC_VAR *asc_dvc)
10282{
10283        AdvPortAddr iop_base;
10284        ushort warn_code;
10285        ADVEEP_38C0800_CONFIG eep_config;
10286        uchar tid, termination;
10287        ushort sdtr_speed = 0;
10288
10289        iop_base = asc_dvc->iop_base;
10290
10291        warn_code = 0;
10292
10293        /*
10294         * Read the board's EEPROM configuration.
10295         *
10296         * Set default values if a bad checksum is found.
10297         */
10298        if (AdvGet38C0800EEPConfig(iop_base, &eep_config) !=
10299            eep_config.check_sum) {
10300                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10301
10302                /*
10303                 * Set EEPROM default values.
10304                 */
10305                memcpy(&eep_config, &Default_38C0800_EEPROM_Config,
10306                        sizeof(ADVEEP_38C0800_CONFIG));
10307
10308                /*
10309                 * Assume the 6 byte board serial number that was read from
10310                 * EEPROM is correct even if the EEPROM checksum failed.
10311                 */
10312                eep_config.serial_number_word3 =
10313                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10314
10315                eep_config.serial_number_word2 =
10316                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10317
10318                eep_config.serial_number_word1 =
10319                    AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10320
10321                AdvSet38C0800EEPConfig(iop_base, &eep_config);
10322        }
10323        /*
10324         * Set ADV_DVC_VAR and ADV_DVC_CFG variables from the
10325         * EEPROM configuration that was read.
10326         *
10327         * This is the mapping of EEPROM fields to Adv Library fields.
10328         */
10329        asc_dvc->wdtr_able = eep_config.wdtr_able;
10330        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10331        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10332        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10333        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10334        asc_dvc->tagqng_able = eep_config.tagqng_able;
10335        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10336        asc_dvc->max_host_qng = eep_config.max_host_qng;
10337        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10338        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ADV_MAX_TID);
10339        asc_dvc->start_motor = eep_config.start_motor;
10340        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10341        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10342        asc_dvc->no_scam = eep_config.scam_tolerant;
10343        asc_dvc->cfg->serial1 = eep_config.serial_number_word1;
10344        asc_dvc->cfg->serial2 = eep_config.serial_number_word2;
10345        asc_dvc->cfg->serial3 = eep_config.serial_number_word3;
10346
10347        /*
10348         * For every Target ID if any of its 'sdtr_speed[1234]' bits
10349         * are set, then set an 'sdtr_able' bit for it.
10350         */
10351        asc_dvc->sdtr_able = 0;
10352        for (tid = 0; tid <= ADV_MAX_TID; tid++) {
10353                if (tid == 0) {
10354                        sdtr_speed = asc_dvc->sdtr_speed1;
10355                } else if (tid == 4) {
10356                        sdtr_speed = asc_dvc->sdtr_speed2;
10357                } else if (tid == 8) {
10358                        sdtr_speed = asc_dvc->sdtr_speed3;
10359                } else if (tid == 12) {
10360                        sdtr_speed = asc_dvc->sdtr_speed4;
10361                }
10362                if (sdtr_speed & ADV_MAX_TID) {
10363                        asc_dvc->sdtr_able |= (1 << tid);
10364                }
10365                sdtr_speed >>= 4;
10366        }
10367
10368        /*
10369         * Set the host maximum queuing (max. 253, min. 16) and the per device
10370         * maximum queuing (max. 63, min. 4).
10371         */
10372        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10373                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10374        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10375                /* If the value is zero, assume it is uninitialized. */
10376                if (eep_config.max_host_qng == 0) {
10377                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10378                } else {
10379                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10380                }
10381        }
10382
10383        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10384                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10385        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10386                /* If the value is zero, assume it is uninitialized. */
10387                if (eep_config.max_dvc_qng == 0) {
10388                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10389                } else {
10390                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10391                }
10392        }
10393
10394        /*
10395         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10396         * set 'max_dvc_qng' to 'max_host_qng'.
10397         */
10398        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10399                eep_config.max_dvc_qng = eep_config.max_host_qng;
10400        }
10401
10402        /*
10403         * Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
10404         * values based on possibly adjusted EEPROM values.
10405         */
10406        asc_dvc->max_host_qng = eep_config.max_host_qng;
10407        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10408
10409        /*
10410         * If the EEPROM 'termination' field is set to automatic (0), then set
10411         * the ADV_DVC_CFG 'termination' field to automatic also.
10412         *
10413         * If the termination is specified with a non-zero 'termination'
10414         * value check that a legal value is set and set the ADV_DVC_CFG
10415         * 'termination' field appropriately.
10416         */
10417        if (eep_config.termination_se == 0) {
10418                termination = 0;        /* auto termination for SE */
10419        } else {
10420                /* Enable manual control with low off / high off. */
10421                if (eep_config.termination_se == 1) {
10422                        termination = 0;
10423
10424                        /* Enable manual control with low off / high on. */
10425                } else if (eep_config.termination_se == 2) {
10426                        termination = TERM_SE_HI;
10427
10428                        /* Enable manual control with low on / high on. */
10429                } else if (eep_config.termination_se == 3) {
10430                        termination = TERM_SE;
10431                } else {
10432                        /*
10433                         * The EEPROM 'termination_se' field contains a bad value.
10434                         * Use automatic termination instead.
10435                         */
10436                        termination = 0;
10437                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10438                }
10439        }
10440
10441        if (eep_config.termination_lvd == 0) {
10442                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
10443        } else {
10444                /* Enable manual control with low off / high off. */
10445                if (eep_config.termination_lvd == 1) {
10446                        asc_dvc->cfg->termination = termination;
10447
10448                        /* Enable manual control with low off / high on. */
10449                } else if (eep_config.termination_lvd == 2) {
10450                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10451
10452                        /* Enable manual control with low on / high on. */
10453                } else if (eep_config.termination_lvd == 3) {
10454                        asc_dvc->cfg->termination = termination | TERM_LVD;
10455                } else {
10456                        /*
10457                         * The EEPROM 'termination_lvd' field contains a bad value.
10458                         * Use automatic termination instead.
10459                         */
10460                        asc_dvc->cfg->termination = termination;
10461                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10462                }
10463        }
10464
10465        return warn_code;
10466}
10467
10468/*
10469 * Read the board's EEPROM configuration. Set fields in ASC_DVC_VAR and
10470 * ASC_DVC_CFG based on the EEPROM settings. The chip is stopped while
10471 * all of this is done.
10472 *
10473 * On failure set the ASC_DVC_VAR field 'err_code' and return ADV_ERROR.
10474 *
10475 * For a non-fatal error return a warning code. If there are no warnings
10476 * then 0 is returned.
10477 *
10478 * Note: Chip is stopped on entry.
10479 */
10480static int AdvInitFrom38C1600EEP(ADV_DVC_VAR *asc_dvc)
10481{
10482        AdvPortAddr iop_base;
10483        ushort warn_code;
10484        ADVEEP_38C1600_CONFIG eep_config;
10485        uchar tid, termination;
10486        ushort sdtr_speed = 0;
10487
10488        iop_base = asc_dvc->iop_base;
10489
10490        warn_code = 0;
10491
10492        /*
10493         * Read the board's EEPROM configuration.
10494         *
10495         * Set default values if a bad checksum is found.
10496         */
10497        if (AdvGet38C1600EEPConfig(iop_base, &eep_config) !=
10498            eep_config.check_sum) {
10499                struct pci_dev *pdev = adv_dvc_to_pdev(asc_dvc);
10500                warn_code |= ASC_WARN_EEPROM_CHKSUM;
10501
10502                /*
10503                 * Set EEPROM default values.
10504                 */
10505                memcpy(&eep_config, &Default_38C1600_EEPROM_Config,
10506                        sizeof(ADVEEP_38C1600_CONFIG));
10507
10508                if (PCI_FUNC(pdev->devfn) != 0) {
10509                        u8 ints;
10510                        /*
10511                         * Disable Bit 14 (BIOS_ENABLE) to fix SPARC Ultra 60
10512                         * and old Mac system booting problem. The Expansion
10513                         * ROM must be disabled in Function 1 for these systems
10514                         */
10515                        eep_config.cfg_lsw &= ~ADV_EEPROM_BIOS_ENABLE;
10516                        /*
10517                         * Clear the INTAB (bit 11) if the GPIO 0 input
10518                         * indicates the Function 1 interrupt line is wired
10519                         * to INTB.
10520                         *
10521                         * Set/Clear Bit 11 (INTAB) from the GPIO bit 0 input:
10522                         *   1 - Function 1 interrupt line wired to INT A.
10523                         *   0 - Function 1 interrupt line wired to INT B.
10524                         *
10525                         * Note: Function 0 is always wired to INTA.
10526                         * Put all 5 GPIO bits in input mode and then read
10527                         * their input values.
10528                         */
10529                        AdvWriteByteRegister(iop_base, IOPB_GPIO_CNTL, 0);
10530                        ints = AdvReadByteRegister(iop_base, IOPB_GPIO_DATA);
10531                        if ((ints & 0x01) == 0)
10532                                eep_config.cfg_lsw &= ~ADV_EEPROM_INTAB;
10533                }
10534
10535                /*
10536                 * Assume the 6 byte board serial number that was read from
10537                 * EEPROM is correct even if the EEPROM checksum failed.
10538                 */
10539                eep_config.serial_number_word3 =
10540                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 1);
10541                eep_config.serial_number_word2 =
10542                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 2);
10543                eep_config.serial_number_word1 =
10544                        AdvReadEEPWord(iop_base, ADV_EEP_DVC_CFG_END - 3);
10545
10546                AdvSet38C1600EEPConfig(iop_base, &eep_config);
10547        }
10548
10549        /*
10550         * Set ASC_DVC_VAR and ASC_DVC_CFG variables from the
10551         * EEPROM configuration that was read.
10552         *
10553         * This is the mapping of EEPROM fields to Adv Library fields.
10554         */
10555        asc_dvc->wdtr_able = eep_config.wdtr_able;
10556        asc_dvc->sdtr_speed1 = eep_config.sdtr_speed1;
10557        asc_dvc->sdtr_speed2 = eep_config.sdtr_speed2;
10558        asc_dvc->sdtr_speed3 = eep_config.sdtr_speed3;
10559        asc_dvc->sdtr_speed4 = eep_config.sdtr_speed4;
10560        asc_dvc->ppr_able = 0;
10561        asc_dvc->tagqng_able = eep_config.tagqng_able;
10562        asc_dvc->cfg->disc_enable = eep_config.disc_enable;
10563        asc_dvc->max_host_qng = eep_config.max_host_qng;
10564        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10565        asc_dvc->chip_scsi_id = (eep_config.adapter_scsi_id & ASC_MAX_TID);
10566        asc_dvc->start_motor = eep_config.start_motor;
10567        asc_dvc->scsi_reset_wait = eep_config.scsi_reset_delay;
10568        asc_dvc->bios_ctrl = eep_config.bios_ctrl;
10569        asc_dvc->no_scam = eep_config.scam_tolerant;
10570
10571        /*
10572         * For every Target ID if any of its 'sdtr_speed[1234]' bits
10573         * are set, then set an 'sdtr_able' bit for it.
10574         */
10575        asc_dvc->sdtr_able = 0;
10576        for (tid = 0; tid <= ASC_MAX_TID; tid++) {
10577                if (tid == 0) {
10578                        sdtr_speed = asc_dvc->sdtr_speed1;
10579                } else if (tid == 4) {
10580                        sdtr_speed = asc_dvc->sdtr_speed2;
10581                } else if (tid == 8) {
10582                        sdtr_speed = asc_dvc->sdtr_speed3;
10583                } else if (tid == 12) {
10584                        sdtr_speed = asc_dvc->sdtr_speed4;
10585                }
10586                if (sdtr_speed & ASC_MAX_TID) {
10587                        asc_dvc->sdtr_able |= (1 << tid);
10588                }
10589                sdtr_speed >>= 4;
10590        }
10591
10592        /*
10593         * Set the host maximum queuing (max. 253, min. 16) and the per device
10594         * maximum queuing (max. 63, min. 4).
10595         */
10596        if (eep_config.max_host_qng > ASC_DEF_MAX_HOST_QNG) {
10597                eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10598        } else if (eep_config.max_host_qng < ASC_DEF_MIN_HOST_QNG) {
10599                /* If the value is zero, assume it is uninitialized. */
10600                if (eep_config.max_host_qng == 0) {
10601                        eep_config.max_host_qng = ASC_DEF_MAX_HOST_QNG;
10602                } else {
10603                        eep_config.max_host_qng = ASC_DEF_MIN_HOST_QNG;
10604                }
10605        }
10606
10607        if (eep_config.max_dvc_qng > ASC_DEF_MAX_DVC_QNG) {
10608                eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10609        } else if (eep_config.max_dvc_qng < ASC_DEF_MIN_DVC_QNG) {
10610                /* If the value is zero, assume it is uninitialized. */
10611                if (eep_config.max_dvc_qng == 0) {
10612                        eep_config.max_dvc_qng = ASC_DEF_MAX_DVC_QNG;
10613                } else {
10614                        eep_config.max_dvc_qng = ASC_DEF_MIN_DVC_QNG;
10615                }
10616        }
10617
10618        /*
10619         * If 'max_dvc_qng' is greater than 'max_host_qng', then
10620         * set 'max_dvc_qng' to 'max_host_qng'.
10621         */
10622        if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
10623                eep_config.max_dvc_qng = eep_config.max_host_qng;
10624        }
10625
10626        /*
10627         * Set ASC_DVC_VAR 'max_host_qng' and ASC_DVC_VAR 'max_dvc_qng'
10628         * values based on possibly adjusted EEPROM values.
10629         */
10630        asc_dvc->max_host_qng = eep_config.max_host_qng;
10631        asc_dvc->max_dvc_qng = eep_config.max_dvc_qng;
10632
10633        /*
10634         * If the EEPROM 'termination' field is set to automatic (0), then set
10635         * the ASC_DVC_CFG 'termination' field to automatic also.
10636         *
10637         * If the termination is specified with a non-zero 'termination'
10638         * value check that a legal value is set and set the ASC_DVC_CFG
10639         * 'termination' field appropriately.
10640         */
10641        if (eep_config.termination_se == 0) {
10642                termination = 0;        /* auto termination for SE */
10643        } else {
10644                /* Enable manual control with low off / high off. */
10645                if (eep_config.termination_se == 1) {
10646                        termination = 0;
10647
10648                        /* Enable manual control with low off / high on. */
10649                } else if (eep_config.termination_se == 2) {
10650                        termination = TERM_SE_HI;
10651
10652                        /* Enable manual control with low on / high on. */
10653                } else if (eep_config.termination_se == 3) {
10654                        termination = TERM_SE;
10655                } else {
10656                        /*
10657                         * The EEPROM 'termination_se' field contains a bad value.
10658                         * Use automatic termination instead.
10659                         */
10660                        termination = 0;
10661                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10662                }
10663        }
10664
10665        if (eep_config.termination_lvd == 0) {
10666                asc_dvc->cfg->termination = termination;        /* auto termination for LVD */
10667        } else {
10668                /* Enable manual control with low off / high off. */
10669                if (eep_config.termination_lvd == 1) {
10670                        asc_dvc->cfg->termination = termination;
10671
10672                        /* Enable manual control with low off / high on. */
10673                } else if (eep_config.termination_lvd == 2) {
10674                        asc_dvc->cfg->termination = termination | TERM_LVD_HI;
10675
10676                        /* Enable manual control with low on / high on. */
10677                } else if (eep_config.termination_lvd == 3) {
10678                        asc_dvc->cfg->termination = termination | TERM_LVD;
10679                } else {
10680                        /*
10681                         * The EEPROM 'termination_lvd' field contains a bad value.
10682                         * Use automatic termination instead.
10683                         */
10684                        asc_dvc->cfg->termination = termination;
10685                        warn_code |= ASC_WARN_EEPROM_TERMINATION;
10686                }
10687        }
10688
10689        return warn_code;
10690}
10691
10692/*
10693 * Initialize the ADV_DVC_VAR structure.
10694 *
10695 * On failure set the ADV_DVC_VAR field 'err_code' and return ADV_ERROR.
10696 *
10697 * For a non-fatal error return a warning code. If there are no warnings
10698 * then 0 is returned.
10699 */
10700static int AdvInitGetConfig(struct pci_dev *pdev, struct Scsi_Host *shost)
10701{
10702        struct asc_board *board = shost_priv(shost);
10703        ADV_DVC_VAR *asc_dvc = &board->dvc_var.adv_dvc_var;
10704        unsigned short warn_code = 0;
10705        AdvPortAddr iop_base = asc_dvc->iop_base;
10706        u16 cmd;
10707        int status;
10708
10709        asc_dvc->err_code = 0;
10710
10711        /*
10712         * Save the state of the PCI Configuration Command Register
10713         * "Parity Error Response Control" Bit. If the bit is clear (0),
10714         * in AdvInitAsc3550/38C0800Driver() tell the microcode to ignore
10715         * DMA parity errors.
10716         */
10717        asc_dvc->cfg->control_flag = 0;
10718        pci_read_config_word(pdev, PCI_COMMAND, &cmd);
10719        if ((cmd & PCI_COMMAND_PARITY) == 0)
10720                asc_dvc->cfg->control_flag |= CONTROL_FLAG_IGNORE_PERR;
10721
10722        asc_dvc->cfg->chip_version =
10723            AdvGetChipVersion(iop_base, asc_dvc->bus_type);
10724
10725        ASC_DBG(1, "iopb_chip_id_1: 0x%x 0x%x\n",
10726                 (ushort)AdvReadByteRegister(iop_base, IOPB_CHIP_ID_1),
10727                 (ushort)ADV_CHIP_ID_BYTE);
10728
10729        ASC_DBG(1, "iopw_chip_id_0: 0x%x 0x%x\n",
10730                 (ushort)AdvReadWordRegister(iop_base, IOPW_CHIP_ID_0),
10731                 (ushort)ADV_CHIP_ID_WORD);
10732
10733        /*
10734         * Reset the chip to start and allow register writes.
10735         */
10736        if (AdvFindSignature(iop_base) == 0) {
10737                asc_dvc->err_code = ASC_IERR_BAD_SIGNATURE;
10738                return ADV_ERROR;
10739        } else {
10740                /*
10741                 * The caller must set 'chip_type' to a valid setting.
10742                 */
10743                if (asc_dvc->chip_type != ADV_CHIP_ASC3550 &&
10744                    asc_dvc->chip_type != ADV_CHIP_ASC38C0800 &&
10745                    asc_dvc->chip_type != ADV_CHIP_ASC38C1600) {
10746                        asc_dvc->err_code |= ASC_IERR_BAD_CHIPTYPE;
10747                        return ADV_ERROR;
10748                }
10749
10750                /*
10751                 * Reset Chip.
10752                 */
10753                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10754                                     ADV_CTRL_REG_CMD_RESET);
10755                mdelay(100);
10756                AdvWriteWordRegister(iop_base, IOPW_CTRL_REG,
10757                                     ADV_CTRL_REG_CMD_WR_IO_REG);
10758
10759                if (asc_dvc->chip_type == ADV_CHIP_ASC38C1600) {
10760                        status = AdvInitFrom38C1600EEP(asc_dvc);
10761                } else if (asc_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10762                        status = AdvInitFrom38C0800EEP(asc_dvc);
10763                } else {
10764                        status = AdvInitFrom3550EEP(asc_dvc);
10765                }
10766                warn_code |= status;
10767        }
10768
10769        if (warn_code != 0)
10770                shost_printk(KERN_WARNING, shost, "warning: 0x%x\n", warn_code);
10771
10772        if (asc_dvc->err_code)
10773                shost_printk(KERN_ERR, shost, "error code 0x%x\n",
10774                                asc_dvc->err_code);
10775
10776        return asc_dvc->err_code;
10777}
10778#endif
10779
10780static struct scsi_host_template advansys_template = {
10781        .proc_name = DRV_NAME,
10782#ifdef CONFIG_PROC_FS
10783        .show_info = advansys_show_info,
10784#endif
10785        .name = DRV_NAME,
10786        .info = advansys_info,
10787        .queuecommand = advansys_queuecommand,
10788        .eh_host_reset_handler = advansys_reset,
10789        .bios_param = advansys_biosparam,
10790        .slave_configure = advansys_slave_configure,
10791        /*
10792         * Because the driver may control an ISA adapter 'unchecked_isa_dma'
10793         * must be set. The flag will be cleared in advansys_board_found
10794         * for non-ISA adapters.
10795         */
10796        .unchecked_isa_dma = true,
10797};
10798
10799static int advansys_wide_init_chip(struct Scsi_Host *shost)
10800{
10801        struct asc_board *board = shost_priv(shost);
10802        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10803        size_t sgblk_pool_size;
10804        int warn_code, err_code;
10805
10806        /*
10807         * Allocate buffer carrier structures. The total size
10808         * is about 8 KB, so allocate all at once.
10809         */
10810        adv_dvc->carrier = dma_alloc_coherent(board->dev,
10811                ADV_CARRIER_BUFSIZE, &adv_dvc->carrier_addr, GFP_KERNEL);
10812        ASC_DBG(1, "carrier 0x%p\n", adv_dvc->carrier);
10813
10814        if (!adv_dvc->carrier)
10815                goto kmalloc_failed;
10816
10817        /*
10818         * Allocate up to 'max_host_qng' request structures for the Wide
10819         * board. The total size is about 16 KB, so allocate all at once.
10820         * If the allocation fails decrement and try again.
10821         */
10822        board->adv_reqp_size = adv_dvc->max_host_qng * sizeof(adv_req_t);
10823        if (board->adv_reqp_size & 0x1f) {
10824                ASC_DBG(1, "unaligned reqp %lu bytes\n", sizeof(adv_req_t));
10825                board->adv_reqp_size = ADV_32BALIGN(board->adv_reqp_size);
10826        }
10827        board->adv_reqp = dma_alloc_coherent(board->dev, board->adv_reqp_size,
10828                &board->adv_reqp_addr, GFP_KERNEL);
10829
10830        if (!board->adv_reqp)
10831                goto kmalloc_failed;
10832
10833        ASC_DBG(1, "reqp 0x%p, req_cnt %d, bytes %lu\n", board->adv_reqp,
10834                adv_dvc->max_host_qng, board->adv_reqp_size);
10835
10836        /*
10837         * Allocate up to ADV_TOT_SG_BLOCK request structures for
10838         * the Wide board. Each structure is about 136 bytes.
10839         */
10840        sgblk_pool_size = sizeof(adv_sgblk_t) * ADV_TOT_SG_BLOCK;
10841        board->adv_sgblk_pool = dma_pool_create("adv_sgblk", board->dev,
10842                                                sgblk_pool_size, 32, 0);
10843
10844        ASC_DBG(1, "sg_cnt %d * %lu = %lu bytes\n", ADV_TOT_SG_BLOCK,
10845                sizeof(adv_sgblk_t), sgblk_pool_size);
10846
10847        if (!board->adv_sgblk_pool)
10848                goto kmalloc_failed;
10849
10850        if (adv_dvc->chip_type == ADV_CHIP_ASC3550) {
10851                ASC_DBG(2, "AdvInitAsc3550Driver()\n");
10852                warn_code = AdvInitAsc3550Driver(adv_dvc);
10853        } else if (adv_dvc->chip_type == ADV_CHIP_ASC38C0800) {
10854                ASC_DBG(2, "AdvInitAsc38C0800Driver()\n");
10855                warn_code = AdvInitAsc38C0800Driver(adv_dvc);
10856        } else {
10857                ASC_DBG(2, "AdvInitAsc38C1600Driver()\n");
10858                warn_code = AdvInitAsc38C1600Driver(adv_dvc);
10859        }
10860        err_code = adv_dvc->err_code;
10861
10862        if (warn_code || err_code) {
10863                shost_printk(KERN_WARNING, shost, "error: warn 0x%x, error "
10864                        "0x%x\n", warn_code, err_code);
10865        }
10866
10867        goto exit;
10868
10869 kmalloc_failed:
10870        shost_printk(KERN_ERR, shost, "error: kmalloc() failed\n");
10871        err_code = ADV_ERROR;
10872 exit:
10873        return err_code;
10874}
10875
10876static void advansys_wide_free_mem(struct asc_board *board)
10877{
10878        struct adv_dvc_var *adv_dvc = &board->dvc_var.adv_dvc_var;
10879
10880        if (adv_dvc->carrier) {
10881                dma_free_coherent(board->dev, ADV_CARRIER_BUFSIZE,
10882                                  adv_dvc->carrier, adv_dvc->carrier_addr);
10883                adv_dvc->carrier = NULL;
10884        }
10885        if (board->adv_reqp) {
10886                dma_free_coherent(board->dev, board->adv_reqp_size,
10887                                  board->adv_reqp, board->adv_reqp_addr);
10888                board->adv_reqp = NULL;
10889        }
10890        if (board->adv_sgblk_pool) {
10891                dma_pool_destroy(board->adv_sgblk_pool);
10892                board->adv_sgblk_pool = NULL;
10893        }
10894}
10895
10896static int advansys_board_found(struct Scsi_Host *shost, unsigned int iop,
10897                                int bus_type)
10898{
10899        struct pci_dev *pdev;
10900        struct asc_board *boardp = shost_priv(shost);
10901        ASC_DVC_VAR *asc_dvc_varp = NULL;
10902        ADV_DVC_VAR *adv_dvc_varp = NULL;
10903        int share_irq, warn_code, ret;
10904
10905        pdev = (bus_type == ASC_IS_PCI) ? to_pci_dev(boardp->dev) : NULL;
10906
10907        if (ASC_NARROW_BOARD(boardp)) {
10908                ASC_DBG(1, "narrow board\n");
10909                asc_dvc_varp = &boardp->dvc_var.asc_dvc_var;
10910                asc_dvc_varp->bus_type = bus_type;
10911                asc_dvc_varp->drv_ptr = boardp;
10912                asc_dvc_varp->cfg = &boardp->dvc_cfg.asc_dvc_cfg;
10913                asc_dvc_varp->iop_base = iop;
10914        } else {
10915#ifdef CONFIG_PCI
10916                adv_dvc_varp = &boardp->dvc_var.adv_dvc_var;
10917                adv_dvc_varp->drv_ptr = boardp;
10918                adv_dvc_varp->cfg = &boardp->dvc_cfg.adv_dvc_cfg;
10919                if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW) {
10920                        ASC_DBG(1, "wide board ASC-3550\n");
10921                        adv_dvc_varp->chip_type = ADV_CHIP_ASC3550;
10922                } else if (pdev->device == PCI_DEVICE_ID_38C0800_REV1) {
10923                        ASC_DBG(1, "wide board ASC-38C0800\n");
10924                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C0800;
10925                } else {
10926                        ASC_DBG(1, "wide board ASC-38C1600\n");
10927                        adv_dvc_varp->chip_type = ADV_CHIP_ASC38C1600;
10928                }
10929
10930                boardp->asc_n_io_port = pci_resource_len(pdev, 1);
10931                boardp->ioremap_addr = pci_ioremap_bar(pdev, 1);
10932                if (!boardp->ioremap_addr) {
10933                        shost_printk(KERN_ERR, shost, "ioremap(%lx, %d) "
10934                                        "returned NULL\n",
10935                                        (long)pci_resource_start(pdev, 1),
10936                                        boardp->asc_n_io_port);
10937                        ret = -ENODEV;
10938                        goto err_shost;
10939                }
10940                adv_dvc_varp->iop_base = (AdvPortAddr)boardp->ioremap_addr;
10941                ASC_DBG(1, "iop_base: 0x%p\n", adv_dvc_varp->iop_base);
10942
10943                /*
10944                 * Even though it isn't used to access wide boards, other
10945                 * than for the debug line below, save I/O Port address so
10946                 * that it can be reported.
10947                 */
10948                boardp->ioport = iop;
10949
10950                ASC_DBG(1, "iopb_chip_id_1 0x%x, iopw_chip_id_0 0x%x\n",
10951                                (ushort)inp(iop + 1), (ushort)inpw(iop));
10952#endif /* CONFIG_PCI */
10953        }
10954
10955        if (ASC_NARROW_BOARD(boardp)) {
10956                /*
10957                 * Set the board bus type and PCI IRQ before
10958                 * calling AscInitGetConfig().
10959                 */
10960                switch (asc_dvc_varp->bus_type) {
10961#ifdef CONFIG_ISA
10962                case ASC_IS_ISA:
10963                        shost->unchecked_isa_dma = true;
10964                        share_irq = 0;
10965                        break;
10966                case ASC_IS_VL:
10967                        shost->unchecked_isa_dma = false;
10968                        share_irq = 0;
10969                        break;
10970                case ASC_IS_EISA:
10971                        shost->unchecked_isa_dma = false;
10972                        share_irq = IRQF_SHARED;
10973                        break;
10974#endif /* CONFIG_ISA */
10975#ifdef CONFIG_PCI
10976                case ASC_IS_PCI:
10977                        shost->unchecked_isa_dma = false;
10978                        share_irq = IRQF_SHARED;
10979                        break;
10980#endif /* CONFIG_PCI */
10981                default:
10982                        shost_printk(KERN_ERR, shost, "unknown adapter type: "
10983                                        "%d\n", asc_dvc_varp->bus_type);
10984                        shost->unchecked_isa_dma = false;
10985                        share_irq = 0;
10986                        break;
10987                }
10988
10989                /*
10990                 * NOTE: AscInitGetConfig() may change the board's
10991                 * bus_type value. The bus_type value should no
10992                 * longer be used. If the bus_type field must be
10993                 * referenced only use the bit-wise AND operator "&".
10994                 */
10995                ASC_DBG(2, "AscInitGetConfig()\n");
10996                ret = AscInitGetConfig(shost) ? -ENODEV : 0;
10997        } else {
10998#ifdef CONFIG_PCI
10999                /*
11000                 * For Wide boards set PCI information before calling
11001                 * AdvInitGetConfig().
11002                 */
11003                shost->unchecked_isa_dma = false;
11004                share_irq = IRQF_SHARED;
11005                ASC_DBG(2, "AdvInitGetConfig()\n");
11006
11007                ret = AdvInitGetConfig(pdev, shost) ? -ENODEV : 0;
11008#else
11009                share_irq = 0;
11010                ret = -ENODEV;
11011#endif /* CONFIG_PCI */
11012        }
11013
11014        if (ret)
11015                goto err_unmap;
11016
11017        /*
11018         * Save the EEPROM configuration so that it can be displayed
11019         * from /proc/scsi/advansys/[0...].
11020         */
11021        if (ASC_NARROW_BOARD(boardp)) {
11022
11023                ASCEEP_CONFIG *ep;
11024
11025                /*
11026                 * Set the adapter's target id bit in the 'init_tidmask' field.
11027                 */
11028                boardp->init_tidmask |=
11029                    ADV_TID_TO_TIDMASK(asc_dvc_varp->cfg->chip_scsi_id);
11030
11031                /*
11032                 * Save EEPROM settings for the board.
11033                 */
11034                ep = &boardp->eep_config.asc_eep;
11035
11036                ep->init_sdtr = asc_dvc_varp->cfg->sdtr_enable;
11037                ep->disc_enable = asc_dvc_varp->cfg->disc_enable;
11038                ep->use_cmd_qng = asc_dvc_varp->cfg->cmd_qng_enabled;
11039                ASC_EEP_SET_DMA_SPD(ep, asc_dvc_varp->cfg->isa_dma_speed);
11040                ep->start_motor = asc_dvc_varp->start_motor;
11041                ep->cntl = asc_dvc_varp->dvc_cntl;
11042                ep->no_scam = asc_dvc_varp->no_scam;
11043                ep->max_total_qng = asc_dvc_varp->max_total_qng;
11044                ASC_EEP_SET_CHIP_ID(ep, asc_dvc_varp->cfg->chip_scsi_id);
11045                /* 'max_tag_qng' is set to the same value for every device. */
11046                ep->max_tag_qng = asc_dvc_varp->cfg->max_tag_qng[0];
11047                ep->adapter_info[0] = asc_dvc_varp->cfg->adapter_info[0];
11048                ep->adapter_info[1] = asc_dvc_varp->cfg->adapter_info[1];
11049                ep->adapter_info[2] = asc_dvc_varp->cfg->adapter_info[2];
11050                ep->adapter_info[3] = asc_dvc_varp->cfg->adapter_info[3];
11051                ep->adapter_info[4] = asc_dvc_varp->cfg->adapter_info[4];
11052                ep->adapter_info[5] = asc_dvc_varp->cfg->adapter_info[5];
11053
11054                /*
11055                 * Modify board configuration.
11056                 */
11057                ASC_DBG(2, "AscInitSetConfig()\n");
11058                ret = AscInitSetConfig(pdev, shost) ? -ENODEV : 0;
11059                if (ret)
11060                        goto err_unmap;
11061        } else {
11062                ADVEEP_3550_CONFIG *ep_3550;
11063                ADVEEP_38C0800_CONFIG *ep_38C0800;
11064                ADVEEP_38C1600_CONFIG *ep_38C1600;
11065
11066                /*
11067                 * Save Wide EEP Configuration Information.
11068                 */
11069                if (adv_dvc_varp->chip_type == ADV_CHIP_ASC3550) {
11070                        ep_3550 = &boardp->eep_config.adv_3550_eep;
11071
11072                        ep_3550->adapter_scsi_id = adv_dvc_varp->chip_scsi_id;
11073                        ep_3550->max_host_qng = adv_dvc_varp->max_host_qng;
11074                        ep_3550->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11075                        ep_3550->termination = adv_dvc_varp->cfg->termination;
11076                        ep_3550->disc_enable = adv_dvc_varp->cfg->disc_enable;
11077                        ep_3550->bios_ctrl = adv_dvc_varp->bios_ctrl;
11078                        ep_3550->wdtr_able = adv_dvc_varp->wdtr_able;
11079                        ep_3550->sdtr_able = adv_dvc_varp->sdtr_able;
11080                        ep_3550->ultra_able = adv_dvc_varp->ultra_able;
11081                        ep_3550->tagqng_able = adv_dvc_varp->tagqng_able;
11082                        ep_3550->start_motor = adv_dvc_varp->start_motor;
11083                        ep_3550->scsi_reset_delay =
11084                            adv_dvc_varp->scsi_reset_wait;
11085                        ep_3550->serial_number_word1 =
11086                            adv_dvc_varp->cfg->serial1;
11087                        ep_3550->serial_number_word2 =
11088                            adv_dvc_varp->cfg->serial2;
11089                        ep_3550->serial_number_word3 =
11090                            adv_dvc_varp->cfg->serial3;
11091                } else if (adv_dvc_varp->chip_type == ADV_CHIP_ASC38C0800) {
11092                        ep_38C0800 = &boardp->eep_config.adv_38C0800_eep;
11093
11094                        ep_38C0800->adapter_scsi_id =
11095                            adv_dvc_varp->chip_scsi_id;
11096                        ep_38C0800->max_host_qng = adv_dvc_varp->max_host_qng;
11097                        ep_38C0800->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11098                        ep_38C0800->termination_lvd =
11099                            adv_dvc_varp->cfg->termination;
11100                        ep_38C0800->disc_enable =
11101                            adv_dvc_varp->cfg->disc_enable;
11102                        ep_38C0800->bios_ctrl = adv_dvc_varp->bios_ctrl;
11103                        ep_38C0800->wdtr_able = adv_dvc_varp->wdtr_able;
11104                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11105                        ep_38C0800->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11106                        ep_38C0800->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11107                        ep_38C0800->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11108                        ep_38C0800->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11109                        ep_38C0800->tagqng_able = adv_dvc_varp->tagqng_able;
11110                        ep_38C0800->start_motor = adv_dvc_varp->start_motor;
11111                        ep_38C0800->scsi_reset_delay =
11112                            adv_dvc_varp->scsi_reset_wait;
11113                        ep_38C0800->serial_number_word1 =
11114                            adv_dvc_varp->cfg->serial1;
11115                        ep_38C0800->serial_number_word2 =
11116                            adv_dvc_varp->cfg->serial2;
11117                        ep_38C0800->serial_number_word3 =
11118                            adv_dvc_varp->cfg->serial3;
11119                } else {
11120                        ep_38C1600 = &boardp->eep_config.adv_38C1600_eep;
11121
11122                        ep_38C1600->adapter_scsi_id =
11123                            adv_dvc_varp->chip_scsi_id;
11124                        ep_38C1600->max_host_qng = adv_dvc_varp->max_host_qng;
11125                        ep_38C1600->max_dvc_qng = adv_dvc_varp->max_dvc_qng;
11126                        ep_38C1600->termination_lvd =
11127                            adv_dvc_varp->cfg->termination;
11128                        ep_38C1600->disc_enable =
11129                            adv_dvc_varp->cfg->disc_enable;
11130                        ep_38C1600->bios_ctrl = adv_dvc_varp->bios_ctrl;
11131                        ep_38C1600->wdtr_able = adv_dvc_varp->wdtr_able;
11132                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11133                        ep_38C1600->sdtr_speed1 = adv_dvc_varp->sdtr_speed1;
11134                        ep_38C1600->sdtr_speed2 = adv_dvc_varp->sdtr_speed2;
11135                        ep_38C1600->sdtr_speed3 = adv_dvc_varp->sdtr_speed3;
11136                        ep_38C1600->sdtr_speed4 = adv_dvc_varp->sdtr_speed4;
11137                        ep_38C1600->tagqng_able = adv_dvc_varp->tagqng_able;
11138                        ep_38C1600->start_motor = adv_dvc_varp->start_motor;
11139                        ep_38C1600->scsi_reset_delay =
11140                            adv_dvc_varp->scsi_reset_wait;
11141                        ep_38C1600->serial_number_word1 =
11142                            adv_dvc_varp->cfg->serial1;
11143                        ep_38C1600->serial_number_word2 =
11144                            adv_dvc_varp->cfg->serial2;
11145                        ep_38C1600->serial_number_word3 =
11146                            adv_dvc_varp->cfg->serial3;
11147                }
11148
11149                /*
11150                 * Set the adapter's target id bit in the 'init_tidmask' field.
11151                 */
11152                boardp->init_tidmask |=
11153                    ADV_TID_TO_TIDMASK(adv_dvc_varp->chip_scsi_id);
11154        }
11155
11156        /*
11157         * Channels are numbered beginning with 0. For AdvanSys one host
11158         * structure supports one channel. Multi-channel boards have a
11159         * separate host structure for each channel.
11160         */
11161        shost->max_channel = 0;
11162        if (ASC_NARROW_BOARD(boardp)) {
11163                shost->max_id = ASC_MAX_TID + 1;
11164                shost->max_lun = ASC_MAX_LUN + 1;
11165                shost->max_cmd_len = ASC_MAX_CDB_LEN;
11166
11167                shost->io_port = asc_dvc_varp->iop_base;
11168                boardp->asc_n_io_port = ASC_IOADR_GAP;
11169                shost->this_id = asc_dvc_varp->cfg->chip_scsi_id;
11170
11171                /* Set maximum number of queues the adapter can handle. */
11172                shost->can_queue = asc_dvc_varp->max_total_qng;
11173        } else {
11174                shost->max_id = ADV_MAX_TID + 1;
11175                shost->max_lun = ADV_MAX_LUN + 1;
11176                shost->max_cmd_len = ADV_MAX_CDB_LEN;
11177
11178                /*
11179                 * Save the I/O Port address and length even though
11180                 * I/O ports are not used to access Wide boards.
11181                 * Instead the Wide boards are accessed with
11182                 * PCI Memory Mapped I/O.
11183                 */
11184                shost->io_port = iop;
11185
11186                shost->this_id = adv_dvc_varp->chip_scsi_id;
11187
11188                /* Set maximum number of queues the adapter can handle. */
11189                shost->can_queue = adv_dvc_varp->max_host_qng;
11190        }
11191
11192        /*
11193         * Set the maximum number of scatter-gather elements the
11194         * adapter can handle.
11195         */
11196        if (ASC_NARROW_BOARD(boardp)) {
11197                /*
11198                 * Allow two commands with 'sg_tablesize' scatter-gather
11199                 * elements to be executed simultaneously. This value is
11200                 * the theoretical hardware limit. It may be decreased
11201                 * below.
11202                 */
11203                shost->sg_tablesize =
11204                    (((asc_dvc_varp->max_total_qng - 2) / 2) *
11205                     ASC_SG_LIST_PER_Q) + 1;
11206        } else {
11207                shost->sg_tablesize = ADV_MAX_SG_LIST;
11208        }
11209
11210        /*
11211         * The value of 'sg_tablesize' can not exceed the SCSI
11212         * mid-level driver definition of SG_ALL. SG_ALL also
11213         * must not be exceeded, because it is used to define the
11214         * size of the scatter-gather table in 'struct asc_sg_head'.
11215         */
11216        if (shost->sg_tablesize > SG_ALL) {
11217                shost->sg_tablesize = SG_ALL;
11218        }
11219
11220        ASC_DBG(1, "sg_tablesize: %d\n", shost->sg_tablesize);
11221
11222        /* BIOS start address. */
11223        if (ASC_NARROW_BOARD(boardp)) {
11224                shost->base = AscGetChipBiosAddress(asc_dvc_varp->iop_base,
11225                                                    asc_dvc_varp->bus_type);
11226        } else {
11227                /*
11228                 * Fill-in BIOS board variables. The Wide BIOS saves
11229                 * information in LRAM that is used by the driver.
11230                 */
11231                AdvReadWordLram(adv_dvc_varp->iop_base,
11232                                BIOS_SIGNATURE, boardp->bios_signature);
11233                AdvReadWordLram(adv_dvc_varp->iop_base,
11234                                BIOS_VERSION, boardp->bios_version);
11235                AdvReadWordLram(adv_dvc_varp->iop_base,
11236                                BIOS_CODESEG, boardp->bios_codeseg);
11237                AdvReadWordLram(adv_dvc_varp->iop_base,
11238                                BIOS_CODELEN, boardp->bios_codelen);
11239
11240                ASC_DBG(1, "bios_signature 0x%x, bios_version 0x%x\n",
11241                         boardp->bios_signature, boardp->bios_version);
11242
11243                ASC_DBG(1, "bios_codeseg 0x%x, bios_codelen 0x%x\n",
11244                         boardp->bios_codeseg, boardp->bios_codelen);
11245
11246                /*
11247                 * If the BIOS saved a valid signature, then fill in
11248                 * the BIOS code segment base address.
11249                 */
11250                if (boardp->bios_signature == 0x55AA) {
11251                        /*
11252                         * Convert x86 realmode code segment to a linear
11253                         * address by shifting left 4.
11254                         */
11255                        shost->base = ((ulong)boardp->bios_codeseg << 4);
11256                } else {
11257                        shost->base = 0;
11258                }
11259        }
11260
11261        /*
11262         * Register Board Resources - I/O Port, DMA, IRQ
11263         */
11264
11265        /* Register DMA Channel for Narrow boards. */
11266        shost->dma_channel = NO_ISA_DMA;        /* Default to no ISA DMA. */
11267#ifdef CONFIG_ISA
11268        if (ASC_NARROW_BOARD(boardp)) {
11269                /* Register DMA channel for ISA bus. */
11270                if (asc_dvc_varp->bus_type & ASC_IS_ISA) {
11271                        shost->dma_channel = asc_dvc_varp->cfg->isa_dma_channel;
11272                        ret = request_dma(shost->dma_channel, DRV_NAME);
11273                        if (ret) {
11274                                shost_printk(KERN_ERR, shost, "request_dma() "
11275                                                "%d failed %d\n",
11276                                                shost->dma_channel, ret);
11277                                goto err_unmap;
11278                        }
11279                        AscEnableIsaDma(shost->dma_channel);
11280                }
11281        }
11282#endif /* CONFIG_ISA */
11283
11284        /* Register IRQ Number. */
11285        ASC_DBG(2, "request_irq(%d, %p)\n", boardp->irq, shost);
11286
11287        ret = request_irq(boardp->irq, advansys_interrupt, share_irq,
11288                          DRV_NAME, shost);
11289
11290        if (ret) {
11291                if (ret == -EBUSY) {
11292                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11293                                        "already in use\n", boardp->irq);
11294                } else if (ret == -EINVAL) {
11295                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11296                                        "not valid\n", boardp->irq);
11297                } else {
11298                        shost_printk(KERN_ERR, shost, "request_irq(): IRQ 0x%x "
11299                                        "failed with %d\n", boardp->irq, ret);
11300                }
11301                goto err_free_dma;
11302        }
11303
11304        /*
11305         * Initialize board RISC chip and enable interrupts.
11306         */
11307        if (ASC_NARROW_BOARD(boardp)) {
11308                ASC_DBG(2, "AscInitAsc1000Driver()\n");
11309
11310                asc_dvc_varp->overrun_buf = kzalloc(ASC_OVERRUN_BSIZE, GFP_KERNEL);
11311                if (!asc_dvc_varp->overrun_buf) {
11312                        ret = -ENOMEM;
11313                        goto err_free_irq;
11314                }
11315                warn_code = AscInitAsc1000Driver(asc_dvc_varp);
11316
11317                if (warn_code || asc_dvc_varp->err_code) {
11318                        shost_printk(KERN_ERR, shost, "error: init_state 0x%x, "
11319                                        "warn 0x%x, error 0x%x\n",
11320                                        asc_dvc_varp->init_state, warn_code,
11321                                        asc_dvc_varp->err_code);
11322                        if (!asc_dvc_varp->overrun_dma) {
11323                                ret = -ENODEV;
11324                                goto err_free_mem;
11325                        }
11326                }
11327        } else {
11328                if (advansys_wide_init_chip(shost)) {
11329                        ret = -ENODEV;
11330                        goto err_free_mem;
11331                }
11332        }
11333
11334        ASC_DBG_PRT_SCSI_HOST(2, shost);
11335
11336        ret = scsi_add_host(shost, boardp->dev);
11337        if (ret)
11338                goto err_free_mem;
11339
11340        scsi_scan_host(shost);
11341        return 0;
11342
11343 err_free_mem:
11344        if (ASC_NARROW_BOARD(boardp)) {
11345                if (asc_dvc_varp->overrun_dma)
11346                        dma_unmap_single(boardp->dev, asc_dvc_varp->overrun_dma,
11347                                         ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11348                kfree(asc_dvc_varp->overrun_buf);
11349        } else
11350                advansys_wide_free_mem(boardp);
11351 err_free_irq:
11352        free_irq(boardp->irq, shost);
11353 err_free_dma:
11354#ifdef CONFIG_ISA
11355        if (shost->dma_channel != NO_ISA_DMA)
11356                free_dma(shost->dma_channel);
11357#endif
11358 err_unmap:
11359        if (boardp->ioremap_addr)
11360                iounmap(boardp->ioremap_addr);
11361#ifdef CONFIG_PCI
11362 err_shost:
11363#endif
11364        return ret;
11365}
11366
11367/*
11368 * advansys_release()
11369 *
11370 * Release resources allocated for a single AdvanSys adapter.
11371 */
11372static int advansys_release(struct Scsi_Host *shost)
11373{
11374        struct asc_board *board = shost_priv(shost);
11375        ASC_DBG(1, "begin\n");
11376        scsi_remove_host(shost);
11377        free_irq(board->irq, shost);
11378#ifdef CONFIG_ISA
11379        if (shost->dma_channel != NO_ISA_DMA) {
11380                ASC_DBG(1, "free_dma()\n");
11381                free_dma(shost->dma_channel);
11382        }
11383#endif
11384        if (ASC_NARROW_BOARD(board)) {
11385                dma_unmap_single(board->dev,
11386                                        board->dvc_var.asc_dvc_var.overrun_dma,
11387                                        ASC_OVERRUN_BSIZE, DMA_FROM_DEVICE);
11388                kfree(board->dvc_var.asc_dvc_var.overrun_buf);
11389        } else {
11390                iounmap(board->ioremap_addr);
11391                advansys_wide_free_mem(board);
11392        }
11393        scsi_host_put(shost);
11394        ASC_DBG(1, "end\n");
11395        return 0;
11396}
11397
11398#define ASC_IOADR_TABLE_MAX_IX  11
11399
11400static PortAddr _asc_def_iop_base[ASC_IOADR_TABLE_MAX_IX] = {
11401        0x100, 0x0110, 0x120, 0x0130, 0x140, 0x0150, 0x0190,
11402        0x0210, 0x0230, 0x0250, 0x0330
11403};
11404
11405/*
11406 * The ISA IRQ number is found in bits 2 and 3 of the CfgLsw.  It decodes as:
11407 * 00: 10
11408 * 01: 11
11409 * 10: 12
11410 * 11: 15
11411 */
11412static unsigned int advansys_isa_irq_no(PortAddr iop_base)
11413{
11414        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11415        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x03) + 10;
11416        if (chip_irq == 13)
11417                chip_irq = 15;
11418        return chip_irq;
11419}
11420
11421static int advansys_isa_probe(struct device *dev, unsigned int id)
11422{
11423        int err = -ENODEV;
11424        PortAddr iop_base = _asc_def_iop_base[id];
11425        struct Scsi_Host *shost;
11426        struct asc_board *board;
11427
11428        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11429                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11430                return -ENODEV;
11431        }
11432        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11433        if (!AscFindSignature(iop_base))
11434                goto release_region;
11435        if (!(AscGetChipVersion(iop_base, ASC_IS_ISA) & ASC_CHIP_VER_ISA_BIT))
11436                goto release_region;
11437
11438        err = -ENOMEM;
11439        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11440        if (!shost)
11441                goto release_region;
11442
11443        board = shost_priv(shost);
11444        board->irq = advansys_isa_irq_no(iop_base);
11445        board->dev = dev;
11446        board->shost = shost;
11447
11448        err = advansys_board_found(shost, iop_base, ASC_IS_ISA);
11449        if (err)
11450                goto free_host;
11451
11452        dev_set_drvdata(dev, shost);
11453        return 0;
11454
11455 free_host:
11456        scsi_host_put(shost);
11457 release_region:
11458        release_region(iop_base, ASC_IOADR_GAP);
11459        return err;
11460}
11461
11462static int advansys_isa_remove(struct device *dev, unsigned int id)
11463{
11464        int ioport = _asc_def_iop_base[id];
11465        advansys_release(dev_get_drvdata(dev));
11466        release_region(ioport, ASC_IOADR_GAP);
11467        return 0;
11468}
11469
11470static struct isa_driver advansys_isa_driver = {
11471        .probe          = advansys_isa_probe,
11472        .remove         = advansys_isa_remove,
11473        .driver = {
11474                .owner  = THIS_MODULE,
11475                .name   = DRV_NAME,
11476        },
11477};
11478
11479/*
11480 * The VLB IRQ number is found in bits 2 to 4 of the CfgLsw.  It decodes as:
11481 * 000: invalid
11482 * 001: 10
11483 * 010: 11
11484 * 011: 12
11485 * 100: invalid
11486 * 101: 14
11487 * 110: 15
11488 * 111: invalid
11489 */
11490static unsigned int advansys_vlb_irq_no(PortAddr iop_base)
11491{
11492        unsigned short cfg_lsw = AscGetChipCfgLsw(iop_base);
11493        unsigned int chip_irq = ((cfg_lsw >> 2) & 0x07) + 9;
11494        if ((chip_irq < 10) || (chip_irq == 13) || (chip_irq > 15))
11495                return 0;
11496        return chip_irq;
11497}
11498
11499static int advansys_vlb_probe(struct device *dev, unsigned int id)
11500{
11501        int err = -ENODEV;
11502        PortAddr iop_base = _asc_def_iop_base[id];
11503        struct Scsi_Host *shost;
11504        struct asc_board *board;
11505
11506        if (!request_region(iop_base, ASC_IOADR_GAP, DRV_NAME)) {
11507                ASC_DBG(1, "I/O port 0x%x busy\n", iop_base);
11508                return -ENODEV;
11509        }
11510        ASC_DBG(1, "probing I/O port 0x%x\n", iop_base);
11511        if (!AscFindSignature(iop_base))
11512                goto release_region;
11513        /*
11514         * I don't think this condition can actually happen, but the old
11515         * driver did it, and the chances of finding a VLB setup in 2007
11516         * to do testing with is slight to none.
11517         */
11518        if (AscGetChipVersion(iop_base, ASC_IS_VL) > ASC_CHIP_MAX_VER_VL)
11519                goto release_region;
11520
11521        err = -ENOMEM;
11522        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11523        if (!shost)
11524                goto release_region;
11525
11526        board = shost_priv(shost);
11527        board->irq = advansys_vlb_irq_no(iop_base);
11528        board->dev = dev;
11529        board->shost = shost;
11530
11531        err = advansys_board_found(shost, iop_base, ASC_IS_VL);
11532        if (err)
11533                goto free_host;
11534
11535        dev_set_drvdata(dev, shost);
11536        return 0;
11537
11538 free_host:
11539        scsi_host_put(shost);
11540 release_region:
11541        release_region(iop_base, ASC_IOADR_GAP);
11542        return -ENODEV;
11543}
11544
11545static struct isa_driver advansys_vlb_driver = {
11546        .probe          = advansys_vlb_probe,
11547        .remove         = advansys_isa_remove,
11548        .driver = {
11549                .owner  = THIS_MODULE,
11550                .name   = "advansys_vlb",
11551        },
11552};
11553
11554static struct eisa_device_id advansys_eisa_table[] = {
11555        { "ABP7401" },
11556        { "ABP7501" },
11557        { "" }
11558};
11559
11560MODULE_DEVICE_TABLE(eisa, advansys_eisa_table);
11561
11562/*
11563 * EISA is a little more tricky than PCI; each EISA device may have two
11564 * channels, and this driver is written to make each channel its own Scsi_Host
11565 */
11566struct eisa_scsi_data {
11567        struct Scsi_Host *host[2];
11568};
11569
11570/*
11571 * The EISA IRQ number is found in bits 8 to 10 of the CfgLsw.  It decodes as:
11572 * 000: 10
11573 * 001: 11
11574 * 010: 12
11575 * 011: invalid
11576 * 100: 14
11577 * 101: 15
11578 * 110: invalid
11579 * 111: invalid
11580 */
11581static unsigned int advansys_eisa_irq_no(struct eisa_device *edev)
11582{
11583        unsigned short cfg_lsw = inw(edev->base_addr + 0xc86);
11584        unsigned int chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
11585        if ((chip_irq == 13) || (chip_irq > 15))
11586                return 0;
11587        return chip_irq;
11588}
11589
11590static int advansys_eisa_probe(struct device *dev)
11591{
11592        int i, ioport, irq = 0;
11593        int err;
11594        struct eisa_device *edev = to_eisa_device(dev);
11595        struct eisa_scsi_data *data;
11596
11597        err = -ENOMEM;
11598        data = kzalloc(sizeof(*data), GFP_KERNEL);
11599        if (!data)
11600                goto fail;
11601        ioport = edev->base_addr + 0xc30;
11602
11603        err = -ENODEV;
11604        for (i = 0; i < 2; i++, ioport += 0x20) {
11605                struct asc_board *board;
11606                struct Scsi_Host *shost;
11607                if (!request_region(ioport, ASC_IOADR_GAP, DRV_NAME)) {
11608                        printk(KERN_WARNING "Region %x-%x busy\n", ioport,
11609                               ioport + ASC_IOADR_GAP - 1);
11610                        continue;
11611                }
11612                if (!AscFindSignature(ioport)) {
11613                        release_region(ioport, ASC_IOADR_GAP);
11614                        continue;
11615                }
11616
11617                /*
11618                 * I don't know why we need to do this for EISA chips, but
11619                 * not for any others.  It looks to be equivalent to
11620                 * AscGetChipCfgMsw, but I may have overlooked something,
11621                 * so I'm not converting it until I get an EISA board to
11622                 * test with.
11623                 */
11624                inw(ioport + 4);
11625
11626                if (!irq)
11627                        irq = advansys_eisa_irq_no(edev);
11628
11629                err = -ENOMEM;
11630                shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11631                if (!shost)
11632                        goto release_region;
11633
11634                board = shost_priv(shost);
11635                board->irq = irq;
11636                board->dev = dev;
11637                board->shost = shost;
11638
11639                err = advansys_board_found(shost, ioport, ASC_IS_EISA);
11640                if (!err) {
11641                        data->host[i] = shost;
11642                        continue;
11643                }
11644
11645                scsi_host_put(shost);
11646 release_region:
11647                release_region(ioport, ASC_IOADR_GAP);
11648                break;
11649        }
11650
11651        if (err)
11652                goto free_data;
11653        dev_set_drvdata(dev, data);
11654        return 0;
11655
11656 free_data:
11657        kfree(data->host[0]);
11658        kfree(data->host[1]);
11659        kfree(data);
11660 fail:
11661        return err;
11662}
11663
11664static int advansys_eisa_remove(struct device *dev)
11665{
11666        int i;
11667        struct eisa_scsi_data *data = dev_get_drvdata(dev);
11668
11669        for (i = 0; i < 2; i++) {
11670                int ioport;
11671                struct Scsi_Host *shost = data->host[i];
11672                if (!shost)
11673                        continue;
11674                ioport = shost->io_port;
11675                advansys_release(shost);
11676                release_region(ioport, ASC_IOADR_GAP);
11677        }
11678
11679        kfree(data);
11680        return 0;
11681}
11682
11683static struct eisa_driver advansys_eisa_driver = {
11684        .id_table =             advansys_eisa_table,
11685        .driver = {
11686                .name =         DRV_NAME,
11687                .probe =        advansys_eisa_probe,
11688                .remove =       advansys_eisa_remove,
11689        }
11690};
11691
11692/* PCI Devices supported by this driver */
11693static struct pci_device_id advansys_pci_tbl[] = {
11694        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_1200A,
11695         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11696        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940,
11697         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11698        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940U,
11699         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11700        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_ASP_ABP940UW,
11701         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11702        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C0800_REV1,
11703         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11704        {PCI_VENDOR_ID_ASP, PCI_DEVICE_ID_38C1600_REV1,
11705         PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
11706        {}
11707};
11708
11709MODULE_DEVICE_TABLE(pci, advansys_pci_tbl);
11710
11711static void advansys_set_latency(struct pci_dev *pdev)
11712{
11713        if ((pdev->device == PCI_DEVICE_ID_ASP_1200A) ||
11714            (pdev->device == PCI_DEVICE_ID_ASP_ABP940)) {
11715                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0);
11716        } else {
11717                u8 latency;
11718                pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &latency);
11719                if (latency < 0x20)
11720                        pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x20);
11721        }
11722}
11723
11724static int advansys_pci_probe(struct pci_dev *pdev,
11725                              const struct pci_device_id *ent)
11726{
11727        int err, ioport;
11728        struct Scsi_Host *shost;
11729        struct asc_board *board;
11730
11731        err = pci_enable_device(pdev);
11732        if (err)
11733                goto fail;
11734        err = pci_request_regions(pdev, DRV_NAME);
11735        if (err)
11736                goto disable_device;
11737        pci_set_master(pdev);
11738        advansys_set_latency(pdev);
11739
11740        err = -ENODEV;
11741        if (pci_resource_len(pdev, 0) == 0)
11742                goto release_region;
11743
11744        ioport = pci_resource_start(pdev, 0);
11745
11746        err = -ENOMEM;
11747        shost = scsi_host_alloc(&advansys_template, sizeof(*board));
11748        if (!shost)
11749                goto release_region;
11750
11751        board = shost_priv(shost);
11752        board->irq = pdev->irq;
11753        board->dev = &pdev->dev;
11754        board->shost = shost;
11755
11756        if (pdev->device == PCI_DEVICE_ID_ASP_ABP940UW ||
11757            pdev->device == PCI_DEVICE_ID_38C0800_REV1 ||
11758            pdev->device == PCI_DEVICE_ID_38C1600_REV1) {
11759                board->flags |= ASC_IS_WIDE_BOARD;
11760        }
11761
11762        err = advansys_board_found(shost, ioport, ASC_IS_PCI);
11763        if (err)
11764                goto free_host;
11765
11766        pci_set_drvdata(pdev, shost);
11767        return 0;
11768
11769 free_host:
11770        scsi_host_put(shost);
11771 release_region:
11772        pci_release_regions(pdev);
11773 disable_device:
11774        pci_disable_device(pdev);
11775 fail:
11776        return err;
11777}
11778
11779static void advansys_pci_remove(struct pci_dev *pdev)
11780{
11781        advansys_release(pci_get_drvdata(pdev));
11782        pci_release_regions(pdev);
11783        pci_disable_device(pdev);
11784}
11785
11786static struct pci_driver advansys_pci_driver = {
11787        .name =         DRV_NAME,
11788        .id_table =     advansys_pci_tbl,
11789        .probe =        advansys_pci_probe,
11790        .remove =       advansys_pci_remove,
11791};
11792
11793static int __init advansys_init(void)
11794{
11795        int error;
11796
11797        error = isa_register_driver(&advansys_isa_driver,
11798                                    ASC_IOADR_TABLE_MAX_IX);
11799        if (error)
11800                goto fail;
11801
11802        error = isa_register_driver(&advansys_vlb_driver,
11803                                    ASC_IOADR_TABLE_MAX_IX);
11804        if (error)
11805                goto unregister_isa;
11806
11807        error = eisa_driver_register(&advansys_eisa_driver);
11808        if (error)
11809                goto unregister_vlb;
11810
11811        error = pci_register_driver(&advansys_pci_driver);
11812        if (error)
11813                goto unregister_eisa;
11814
11815        return 0;
11816
11817 unregister_eisa:
11818        eisa_driver_unregister(&advansys_eisa_driver);
11819 unregister_vlb:
11820        isa_unregister_driver(&advansys_vlb_driver);
11821 unregister_isa:
11822        isa_unregister_driver(&advansys_isa_driver);
11823 fail:
11824        return error;
11825}
11826
11827static void __exit advansys_exit(void)
11828{
11829        pci_unregister_driver(&advansys_pci_driver);
11830        eisa_driver_unregister(&advansys_eisa_driver);
11831        isa_unregister_driver(&advansys_vlb_driver);
11832        isa_unregister_driver(&advansys_isa_driver);
11833}
11834
11835module_init(advansys_init);
11836module_exit(advansys_exit);
11837
11838MODULE_LICENSE("GPL");
11839MODULE_FIRMWARE("advansys/mcode.bin");
11840MODULE_FIRMWARE("advansys/3550.bin");
11841MODULE_FIRMWARE("advansys/38C0800.bin");
11842MODULE_FIRMWARE("advansys/38C1600.bin");
11843