linux/drivers/spi/spi-atmel.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Atmel AT32 and AT91 SPI Controllers
   4 *
   5 * Copyright (C) 2006 Atmel Corporation
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/platform_device.h>
  12#include <linux/delay.h>
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/err.h>
  16#include <linux/interrupt.h>
  17#include <linux/spi/spi.h>
  18#include <linux/slab.h>
  19#include <linux/of.h>
  20
  21#include <linux/io.h>
  22#include <linux/gpio/consumer.h>
  23#include <linux/pinctrl/consumer.h>
  24#include <linux/pm_runtime.h>
  25#include <trace/events/spi.h>
  26
  27/* SPI register offsets */
  28#define SPI_CR                                  0x0000
  29#define SPI_MR                                  0x0004
  30#define SPI_RDR                                 0x0008
  31#define SPI_TDR                                 0x000c
  32#define SPI_SR                                  0x0010
  33#define SPI_IER                                 0x0014
  34#define SPI_IDR                                 0x0018
  35#define SPI_IMR                                 0x001c
  36#define SPI_CSR0                                0x0030
  37#define SPI_CSR1                                0x0034
  38#define SPI_CSR2                                0x0038
  39#define SPI_CSR3                                0x003c
  40#define SPI_FMR                                 0x0040
  41#define SPI_FLR                                 0x0044
  42#define SPI_VERSION                             0x00fc
  43#define SPI_RPR                                 0x0100
  44#define SPI_RCR                                 0x0104
  45#define SPI_TPR                                 0x0108
  46#define SPI_TCR                                 0x010c
  47#define SPI_RNPR                                0x0110
  48#define SPI_RNCR                                0x0114
  49#define SPI_TNPR                                0x0118
  50#define SPI_TNCR                                0x011c
  51#define SPI_PTCR                                0x0120
  52#define SPI_PTSR                                0x0124
  53
  54/* Bitfields in CR */
  55#define SPI_SPIEN_OFFSET                        0
  56#define SPI_SPIEN_SIZE                          1
  57#define SPI_SPIDIS_OFFSET                       1
  58#define SPI_SPIDIS_SIZE                         1
  59#define SPI_SWRST_OFFSET                        7
  60#define SPI_SWRST_SIZE                          1
  61#define SPI_LASTXFER_OFFSET                     24
  62#define SPI_LASTXFER_SIZE                       1
  63#define SPI_TXFCLR_OFFSET                       16
  64#define SPI_TXFCLR_SIZE                         1
  65#define SPI_RXFCLR_OFFSET                       17
  66#define SPI_RXFCLR_SIZE                         1
  67#define SPI_FIFOEN_OFFSET                       30
  68#define SPI_FIFOEN_SIZE                         1
  69#define SPI_FIFODIS_OFFSET                      31
  70#define SPI_FIFODIS_SIZE                        1
  71
  72/* Bitfields in MR */
  73#define SPI_MSTR_OFFSET                         0
  74#define SPI_MSTR_SIZE                           1
  75#define SPI_PS_OFFSET                           1
  76#define SPI_PS_SIZE                             1
  77#define SPI_PCSDEC_OFFSET                       2
  78#define SPI_PCSDEC_SIZE                         1
  79#define SPI_FDIV_OFFSET                         3
  80#define SPI_FDIV_SIZE                           1
  81#define SPI_MODFDIS_OFFSET                      4
  82#define SPI_MODFDIS_SIZE                        1
  83#define SPI_WDRBT_OFFSET                        5
  84#define SPI_WDRBT_SIZE                          1
  85#define SPI_LLB_OFFSET                          7
  86#define SPI_LLB_SIZE                            1
  87#define SPI_PCS_OFFSET                          16
  88#define SPI_PCS_SIZE                            4
  89#define SPI_DLYBCS_OFFSET                       24
  90#define SPI_DLYBCS_SIZE                         8
  91
  92/* Bitfields in RDR */
  93#define SPI_RD_OFFSET                           0
  94#define SPI_RD_SIZE                             16
  95
  96/* Bitfields in TDR */
  97#define SPI_TD_OFFSET                           0
  98#define SPI_TD_SIZE                             16
  99
 100/* Bitfields in SR */
 101#define SPI_RDRF_OFFSET                         0
 102#define SPI_RDRF_SIZE                           1
 103#define SPI_TDRE_OFFSET                         1
 104#define SPI_TDRE_SIZE                           1
 105#define SPI_MODF_OFFSET                         2
 106#define SPI_MODF_SIZE                           1
 107#define SPI_OVRES_OFFSET                        3
 108#define SPI_OVRES_SIZE                          1
 109#define SPI_ENDRX_OFFSET                        4
 110#define SPI_ENDRX_SIZE                          1
 111#define SPI_ENDTX_OFFSET                        5
 112#define SPI_ENDTX_SIZE                          1
 113#define SPI_RXBUFF_OFFSET                       6
 114#define SPI_RXBUFF_SIZE                         1
 115#define SPI_TXBUFE_OFFSET                       7
 116#define SPI_TXBUFE_SIZE                         1
 117#define SPI_NSSR_OFFSET                         8
 118#define SPI_NSSR_SIZE                           1
 119#define SPI_TXEMPTY_OFFSET                      9
 120#define SPI_TXEMPTY_SIZE                        1
 121#define SPI_SPIENS_OFFSET                       16
 122#define SPI_SPIENS_SIZE                         1
 123#define SPI_TXFEF_OFFSET                        24
 124#define SPI_TXFEF_SIZE                          1
 125#define SPI_TXFFF_OFFSET                        25
 126#define SPI_TXFFF_SIZE                          1
 127#define SPI_TXFTHF_OFFSET                       26
 128#define SPI_TXFTHF_SIZE                         1
 129#define SPI_RXFEF_OFFSET                        27
 130#define SPI_RXFEF_SIZE                          1
 131#define SPI_RXFFF_OFFSET                        28
 132#define SPI_RXFFF_SIZE                          1
 133#define SPI_RXFTHF_OFFSET                       29
 134#define SPI_RXFTHF_SIZE                         1
 135#define SPI_TXFPTEF_OFFSET                      30
 136#define SPI_TXFPTEF_SIZE                        1
 137#define SPI_RXFPTEF_OFFSET                      31
 138#define SPI_RXFPTEF_SIZE                        1
 139
 140/* Bitfields in CSR0 */
 141#define SPI_CPOL_OFFSET                         0
 142#define SPI_CPOL_SIZE                           1
 143#define SPI_NCPHA_OFFSET                        1
 144#define SPI_NCPHA_SIZE                          1
 145#define SPI_CSAAT_OFFSET                        3
 146#define SPI_CSAAT_SIZE                          1
 147#define SPI_BITS_OFFSET                         4
 148#define SPI_BITS_SIZE                           4
 149#define SPI_SCBR_OFFSET                         8
 150#define SPI_SCBR_SIZE                           8
 151#define SPI_DLYBS_OFFSET                        16
 152#define SPI_DLYBS_SIZE                          8
 153#define SPI_DLYBCT_OFFSET                       24
 154#define SPI_DLYBCT_SIZE                         8
 155
 156/* Bitfields in RCR */
 157#define SPI_RXCTR_OFFSET                        0
 158#define SPI_RXCTR_SIZE                          16
 159
 160/* Bitfields in TCR */
 161#define SPI_TXCTR_OFFSET                        0
 162#define SPI_TXCTR_SIZE                          16
 163
 164/* Bitfields in RNCR */
 165#define SPI_RXNCR_OFFSET                        0
 166#define SPI_RXNCR_SIZE                          16
 167
 168/* Bitfields in TNCR */
 169#define SPI_TXNCR_OFFSET                        0
 170#define SPI_TXNCR_SIZE                          16
 171
 172/* Bitfields in PTCR */
 173#define SPI_RXTEN_OFFSET                        0
 174#define SPI_RXTEN_SIZE                          1
 175#define SPI_RXTDIS_OFFSET                       1
 176#define SPI_RXTDIS_SIZE                         1
 177#define SPI_TXTEN_OFFSET                        8
 178#define SPI_TXTEN_SIZE                          1
 179#define SPI_TXTDIS_OFFSET                       9
 180#define SPI_TXTDIS_SIZE                         1
 181
 182/* Bitfields in FMR */
 183#define SPI_TXRDYM_OFFSET                       0
 184#define SPI_TXRDYM_SIZE                         2
 185#define SPI_RXRDYM_OFFSET                       4
 186#define SPI_RXRDYM_SIZE                         2
 187#define SPI_TXFTHRES_OFFSET                     16
 188#define SPI_TXFTHRES_SIZE                       6
 189#define SPI_RXFTHRES_OFFSET                     24
 190#define SPI_RXFTHRES_SIZE                       6
 191
 192/* Bitfields in FLR */
 193#define SPI_TXFL_OFFSET                         0
 194#define SPI_TXFL_SIZE                           6
 195#define SPI_RXFL_OFFSET                         16
 196#define SPI_RXFL_SIZE                           6
 197
 198/* Constants for BITS */
 199#define SPI_BITS_8_BPT                          0
 200#define SPI_BITS_9_BPT                          1
 201#define SPI_BITS_10_BPT                         2
 202#define SPI_BITS_11_BPT                         3
 203#define SPI_BITS_12_BPT                         4
 204#define SPI_BITS_13_BPT                         5
 205#define SPI_BITS_14_BPT                         6
 206#define SPI_BITS_15_BPT                         7
 207#define SPI_BITS_16_BPT                         8
 208#define SPI_ONE_DATA                            0
 209#define SPI_TWO_DATA                            1
 210#define SPI_FOUR_DATA                           2
 211
 212/* Bit manipulation macros */
 213#define SPI_BIT(name) \
 214        (1 << SPI_##name##_OFFSET)
 215#define SPI_BF(name, value) \
 216        (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
 217#define SPI_BFEXT(name, value) \
 218        (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
 219#define SPI_BFINS(name, value, old) \
 220        (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
 221          | SPI_BF(name, value))
 222
 223/* Register access macros */
 224#define spi_readl(port, reg) \
 225        readl_relaxed((port)->regs + SPI_##reg)
 226#define spi_writel(port, reg, value) \
 227        writel_relaxed((value), (port)->regs + SPI_##reg)
 228#define spi_writew(port, reg, value) \
 229        writew_relaxed((value), (port)->regs + SPI_##reg)
 230
 231/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
 232 * cache operations; better heuristics consider wordsize and bitrate.
 233 */
 234#define DMA_MIN_BYTES   16
 235
 236#define SPI_DMA_TIMEOUT         (msecs_to_jiffies(1000))
 237
 238#define AUTOSUSPEND_TIMEOUT     2000
 239
 240struct atmel_spi_caps {
 241        bool    is_spi2;
 242        bool    has_wdrbt;
 243        bool    has_dma_support;
 244        bool    has_pdc_support;
 245};
 246
 247/*
 248 * The core SPI transfer engine just talks to a register bank to set up
 249 * DMA transfers; transfer queue progress is driven by IRQs.  The clock
 250 * framework provides the base clock, subdivided for each spi_device.
 251 */
 252struct atmel_spi {
 253        spinlock_t              lock;
 254        unsigned long           flags;
 255
 256        phys_addr_t             phybase;
 257        void __iomem            *regs;
 258        int                     irq;
 259        struct clk              *clk;
 260        struct platform_device  *pdev;
 261        unsigned long           spi_clk;
 262
 263        struct spi_transfer     *current_transfer;
 264        int                     current_remaining_bytes;
 265        int                     done_status;
 266        dma_addr_t              dma_addr_rx_bbuf;
 267        dma_addr_t              dma_addr_tx_bbuf;
 268        void                    *addr_rx_bbuf;
 269        void                    *addr_tx_bbuf;
 270
 271        struct completion       xfer_completion;
 272
 273        struct atmel_spi_caps   caps;
 274
 275        bool                    use_dma;
 276        bool                    use_pdc;
 277
 278        bool                    keep_cs;
 279
 280        u32                     fifo_size;
 281        u8                      native_cs_free;
 282        u8                      native_cs_for_gpio;
 283};
 284
 285/* Controller-specific per-slave state */
 286struct atmel_spi_device {
 287        u32                     csr;
 288};
 289
 290#define SPI_MAX_DMA_XFER        65535 /* true for both PDC and DMA */
 291#define INVALID_DMA_ADDRESS     0xffffffff
 292
 293/*
 294 * Version 2 of the SPI controller has
 295 *  - CR.LASTXFER
 296 *  - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
 297 *  - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
 298 *  - SPI_CSRx.CSAAT
 299 *  - SPI_CSRx.SBCR allows faster clocking
 300 */
 301static bool atmel_spi_is_v2(struct atmel_spi *as)
 302{
 303        return as->caps.is_spi2;
 304}
 305
 306/*
 307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
 308 * they assume that spi slave device state will not change on deselect, so
 309 * that automagic deselection is OK.  ("NPCSx rises if no data is to be
 310 * transmitted")  Not so!  Workaround uses nCSx pins as GPIOs; or newer
 311 * controllers have CSAAT and friends.
 312 *
 313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
 314 * it lets us support active-high chipselects despite the controller's
 315 * belief that only active-low devices/systems exists.
 316 *
 317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
 318 * right when driven with GPIO.  ("Mode Fault does not allow more than one
 319 * Master on Chip Select 0.")  No workaround exists for that ... so for
 320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
 321 * and (c) will trigger that first erratum in some cases.
 322 */
 323
 324static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
 325{
 326        struct atmel_spi_device *asd = spi->controller_state;
 327        int chip_select;
 328        u32 mr;
 329
 330        if (spi->cs_gpiod)
 331                chip_select = as->native_cs_for_gpio;
 332        else
 333                chip_select = spi->chip_select;
 334
 335        if (atmel_spi_is_v2(as)) {
 336                spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
 337                /* For the low SPI version, there is a issue that PDC transfer
 338                 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
 339                 */
 340                spi_writel(as, CSR0, asd->csr);
 341                if (as->caps.has_wdrbt) {
 342                        spi_writel(as, MR,
 343                                        SPI_BF(PCS, ~(0x01 << chip_select))
 344                                        | SPI_BIT(WDRBT)
 345                                        | SPI_BIT(MODFDIS)
 346                                        | SPI_BIT(MSTR));
 347                } else {
 348                        spi_writel(as, MR,
 349                                        SPI_BF(PCS, ~(0x01 << chip_select))
 350                                        | SPI_BIT(MODFDIS)
 351                                        | SPI_BIT(MSTR));
 352                }
 353
 354                mr = spi_readl(as, MR);
 355                if (spi->cs_gpiod)
 356                        gpiod_set_value(spi->cs_gpiod, 1);
 357        } else {
 358                u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
 359                int i;
 360                u32 csr;
 361
 362                /* Make sure clock polarity is correct */
 363                for (i = 0; i < spi->master->num_chipselect; i++) {
 364                        csr = spi_readl(as, CSR0 + 4 * i);
 365                        if ((csr ^ cpol) & SPI_BIT(CPOL))
 366                                spi_writel(as, CSR0 + 4 * i,
 367                                                csr ^ SPI_BIT(CPOL));
 368                }
 369
 370                mr = spi_readl(as, MR);
 371                mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
 372                if (spi->cs_gpiod)
 373                        gpiod_set_value(spi->cs_gpiod, 1);
 374                spi_writel(as, MR, mr);
 375        }
 376
 377        dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
 378}
 379
 380static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
 381{
 382        int chip_select;
 383        u32 mr;
 384
 385        if (spi->cs_gpiod)
 386                chip_select = as->native_cs_for_gpio;
 387        else
 388                chip_select = spi->chip_select;
 389
 390        /* only deactivate *this* device; sometimes transfers to
 391         * another device may be active when this routine is called.
 392         */
 393        mr = spi_readl(as, MR);
 394        if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
 395                mr = SPI_BFINS(PCS, 0xf, mr);
 396                spi_writel(as, MR, mr);
 397        }
 398
 399        dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
 400
 401        if (!spi->cs_gpiod)
 402                spi_writel(as, CR, SPI_BIT(LASTXFER));
 403        else
 404                gpiod_set_value(spi->cs_gpiod, 0);
 405}
 406
 407static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
 408{
 409        spin_lock_irqsave(&as->lock, as->flags);
 410}
 411
 412static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
 413{
 414        spin_unlock_irqrestore(&as->lock, as->flags);
 415}
 416
 417static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
 418{
 419        return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
 420}
 421
 422static inline bool atmel_spi_use_dma(struct atmel_spi *as,
 423                                struct spi_transfer *xfer)
 424{
 425        return as->use_dma && xfer->len >= DMA_MIN_BYTES;
 426}
 427
 428static bool atmel_spi_can_dma(struct spi_master *master,
 429                              struct spi_device *spi,
 430                              struct spi_transfer *xfer)
 431{
 432        struct atmel_spi *as = spi_master_get_devdata(master);
 433
 434        if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
 435                return atmel_spi_use_dma(as, xfer) &&
 436                        !atmel_spi_is_vmalloc_xfer(xfer);
 437        else
 438                return atmel_spi_use_dma(as, xfer);
 439
 440}
 441
 442static int atmel_spi_dma_slave_config(struct atmel_spi *as,
 443                                struct dma_slave_config *slave_config,
 444                                u8 bits_per_word)
 445{
 446        struct spi_master *master = platform_get_drvdata(as->pdev);
 447        int err = 0;
 448
 449        if (bits_per_word > 8) {
 450                slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 451                slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 452        } else {
 453                slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 454                slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 455        }
 456
 457        slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
 458        slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
 459        slave_config->src_maxburst = 1;
 460        slave_config->dst_maxburst = 1;
 461        slave_config->device_fc = false;
 462
 463        /*
 464         * This driver uses fixed peripheral select mode (PS bit set to '0' in
 465         * the Mode Register).
 466         * So according to the datasheet, when FIFOs are available (and
 467         * enabled), the Transmit FIFO operates in Multiple Data Mode.
 468         * In this mode, up to 2 data, not 4, can be written into the Transmit
 469         * Data Register in a single access.
 470         * However, the first data has to be written into the lowest 16 bits and
 471         * the second data into the highest 16 bits of the Transmit
 472         * Data Register. For 8bit data (the most frequent case), it would
 473         * require to rework tx_buf so each data would actualy fit 16 bits.
 474         * So we'd rather write only one data at the time. Hence the transmit
 475         * path works the same whether FIFOs are available (and enabled) or not.
 476         */
 477        slave_config->direction = DMA_MEM_TO_DEV;
 478        if (dmaengine_slave_config(master->dma_tx, slave_config)) {
 479                dev_err(&as->pdev->dev,
 480                        "failed to configure tx dma channel\n");
 481                err = -EINVAL;
 482        }
 483
 484        /*
 485         * This driver configures the spi controller for master mode (MSTR bit
 486         * set to '1' in the Mode Register).
 487         * So according to the datasheet, when FIFOs are available (and
 488         * enabled), the Receive FIFO operates in Single Data Mode.
 489         * So the receive path works the same whether FIFOs are available (and
 490         * enabled) or not.
 491         */
 492        slave_config->direction = DMA_DEV_TO_MEM;
 493        if (dmaengine_slave_config(master->dma_rx, slave_config)) {
 494                dev_err(&as->pdev->dev,
 495                        "failed to configure rx dma channel\n");
 496                err = -EINVAL;
 497        }
 498
 499        return err;
 500}
 501
 502static int atmel_spi_configure_dma(struct spi_master *master,
 503                                   struct atmel_spi *as)
 504{
 505        struct dma_slave_config slave_config;
 506        struct device *dev = &as->pdev->dev;
 507        int err;
 508
 509        dma_cap_mask_t mask;
 510        dma_cap_zero(mask);
 511        dma_cap_set(DMA_SLAVE, mask);
 512
 513        master->dma_tx = dma_request_chan(dev, "tx");
 514        if (IS_ERR(master->dma_tx)) {
 515                err = PTR_ERR(master->dma_tx);
 516                dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
 517                goto error_clear;
 518        }
 519
 520        master->dma_rx = dma_request_chan(dev, "rx");
 521        if (IS_ERR(master->dma_rx)) {
 522                err = PTR_ERR(master->dma_rx);
 523                /*
 524                 * No reason to check EPROBE_DEFER here since we have already
 525                 * requested tx channel.
 526                 */
 527                dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
 528                goto error;
 529        }
 530
 531        err = atmel_spi_dma_slave_config(as, &slave_config, 8);
 532        if (err)
 533                goto error;
 534
 535        dev_info(&as->pdev->dev,
 536                        "Using %s (tx) and %s (rx) for DMA transfers\n",
 537                        dma_chan_name(master->dma_tx),
 538                        dma_chan_name(master->dma_rx));
 539
 540        return 0;
 541error:
 542        if (!IS_ERR(master->dma_rx))
 543                dma_release_channel(master->dma_rx);
 544        if (!IS_ERR(master->dma_tx))
 545                dma_release_channel(master->dma_tx);
 546error_clear:
 547        master->dma_tx = master->dma_rx = NULL;
 548        return err;
 549}
 550
 551static void atmel_spi_stop_dma(struct spi_master *master)
 552{
 553        if (master->dma_rx)
 554                dmaengine_terminate_all(master->dma_rx);
 555        if (master->dma_tx)
 556                dmaengine_terminate_all(master->dma_tx);
 557}
 558
 559static void atmel_spi_release_dma(struct spi_master *master)
 560{
 561        if (master->dma_rx) {
 562                dma_release_channel(master->dma_rx);
 563                master->dma_rx = NULL;
 564        }
 565        if (master->dma_tx) {
 566                dma_release_channel(master->dma_tx);
 567                master->dma_tx = NULL;
 568        }
 569}
 570
 571/* This function is called by the DMA driver from tasklet context */
 572static void dma_callback(void *data)
 573{
 574        struct spi_master       *master = data;
 575        struct atmel_spi        *as = spi_master_get_devdata(master);
 576
 577        if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
 578            IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 579                memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
 580                       as->current_transfer->len);
 581        }
 582        complete(&as->xfer_completion);
 583}
 584
 585/*
 586 * Next transfer using PIO without FIFO.
 587 */
 588static void atmel_spi_next_xfer_single(struct spi_master *master,
 589                                       struct spi_transfer *xfer)
 590{
 591        struct atmel_spi        *as = spi_master_get_devdata(master);
 592        unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
 593
 594        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
 595
 596        /* Make sure data is not remaining in RDR */
 597        spi_readl(as, RDR);
 598        while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
 599                spi_readl(as, RDR);
 600                cpu_relax();
 601        }
 602
 603        if (xfer->bits_per_word > 8)
 604                spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
 605        else
 606                spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
 607
 608        dev_dbg(master->dev.parent,
 609                "  start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
 610                xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 611                xfer->bits_per_word);
 612
 613        /* Enable relevant interrupts */
 614        spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
 615}
 616
 617/*
 618 * Next transfer using PIO with FIFO.
 619 */
 620static void atmel_spi_next_xfer_fifo(struct spi_master *master,
 621                                     struct spi_transfer *xfer)
 622{
 623        struct atmel_spi *as = spi_master_get_devdata(master);
 624        u32 current_remaining_data, num_data;
 625        u32 offset = xfer->len - as->current_remaining_bytes;
 626        const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
 627        const u8  *bytes = (const u8  *)((u8 *)xfer->tx_buf + offset);
 628        u16 td0, td1;
 629        u32 fifomr;
 630
 631        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
 632
 633        /* Compute the number of data to transfer in the current iteration */
 634        current_remaining_data = ((xfer->bits_per_word > 8) ?
 635                                  ((u32)as->current_remaining_bytes >> 1) :
 636                                  (u32)as->current_remaining_bytes);
 637        num_data = min(current_remaining_data, as->fifo_size);
 638
 639        /* Flush RX and TX FIFOs */
 640        spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
 641        while (spi_readl(as, FLR))
 642                cpu_relax();
 643
 644        /* Set RX FIFO Threshold to the number of data to transfer */
 645        fifomr = spi_readl(as, FMR);
 646        spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
 647
 648        /* Clear FIFO flags in the Status Register, especially RXFTHF */
 649        (void)spi_readl(as, SR);
 650
 651        /* Fill TX FIFO */
 652        while (num_data >= 2) {
 653                if (xfer->bits_per_word > 8) {
 654                        td0 = *words++;
 655                        td1 = *words++;
 656                } else {
 657                        td0 = *bytes++;
 658                        td1 = *bytes++;
 659                }
 660
 661                spi_writel(as, TDR, (td1 << 16) | td0);
 662                num_data -= 2;
 663        }
 664
 665        if (num_data) {
 666                if (xfer->bits_per_word > 8)
 667                        td0 = *words++;
 668                else
 669                        td0 = *bytes++;
 670
 671                spi_writew(as, TDR, td0);
 672                num_data--;
 673        }
 674
 675        dev_dbg(master->dev.parent,
 676                "  start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
 677                xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
 678                xfer->bits_per_word);
 679
 680        /*
 681         * Enable RX FIFO Threshold Flag interrupt to be notified about
 682         * transfer completion.
 683         */
 684        spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
 685}
 686
 687/*
 688 * Next transfer using PIO.
 689 */
 690static void atmel_spi_next_xfer_pio(struct spi_master *master,
 691                                    struct spi_transfer *xfer)
 692{
 693        struct atmel_spi *as = spi_master_get_devdata(master);
 694
 695        if (as->fifo_size)
 696                atmel_spi_next_xfer_fifo(master, xfer);
 697        else
 698                atmel_spi_next_xfer_single(master, xfer);
 699}
 700
 701/*
 702 * Submit next transfer for DMA.
 703 */
 704static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
 705                                struct spi_transfer *xfer,
 706                                u32 *plen)
 707        __must_hold(&as->lock)
 708{
 709        struct atmel_spi        *as = spi_master_get_devdata(master);
 710        struct dma_chan         *rxchan = master->dma_rx;
 711        struct dma_chan         *txchan = master->dma_tx;
 712        struct dma_async_tx_descriptor *rxdesc;
 713        struct dma_async_tx_descriptor *txdesc;
 714        struct dma_slave_config slave_config;
 715        dma_cookie_t            cookie;
 716
 717        dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
 718
 719        /* Check that the channels are available */
 720        if (!rxchan || !txchan)
 721                return -ENODEV;
 722
 723        /* release lock for DMA operations */
 724        atmel_spi_unlock(as);
 725
 726        *plen = xfer->len;
 727
 728        if (atmel_spi_dma_slave_config(as, &slave_config,
 729                                       xfer->bits_per_word))
 730                goto err_exit;
 731
 732        /* Send both scatterlists */
 733        if (atmel_spi_is_vmalloc_xfer(xfer) &&
 734            IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 735                rxdesc = dmaengine_prep_slave_single(rxchan,
 736                                                     as->dma_addr_rx_bbuf,
 737                                                     xfer->len,
 738                                                     DMA_DEV_TO_MEM,
 739                                                     DMA_PREP_INTERRUPT |
 740                                                     DMA_CTRL_ACK);
 741        } else {
 742                rxdesc = dmaengine_prep_slave_sg(rxchan,
 743                                                 xfer->rx_sg.sgl,
 744                                                 xfer->rx_sg.nents,
 745                                                 DMA_DEV_TO_MEM,
 746                                                 DMA_PREP_INTERRUPT |
 747                                                 DMA_CTRL_ACK);
 748        }
 749        if (!rxdesc)
 750                goto err_dma;
 751
 752        if (atmel_spi_is_vmalloc_xfer(xfer) &&
 753            IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
 754                memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
 755                txdesc = dmaengine_prep_slave_single(txchan,
 756                                                     as->dma_addr_tx_bbuf,
 757                                                     xfer->len, DMA_MEM_TO_DEV,
 758                                                     DMA_PREP_INTERRUPT |
 759                                                     DMA_CTRL_ACK);
 760        } else {
 761                txdesc = dmaengine_prep_slave_sg(txchan,
 762                                                 xfer->tx_sg.sgl,
 763                                                 xfer->tx_sg.nents,
 764                                                 DMA_MEM_TO_DEV,
 765                                                 DMA_PREP_INTERRUPT |
 766                                                 DMA_CTRL_ACK);
 767        }
 768        if (!txdesc)
 769                goto err_dma;
 770
 771        dev_dbg(master->dev.parent,
 772                "  start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 773                xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
 774                xfer->rx_buf, (unsigned long long)xfer->rx_dma);
 775
 776        /* Enable relevant interrupts */
 777        spi_writel(as, IER, SPI_BIT(OVRES));
 778
 779        /* Put the callback on the RX transfer only, that should finish last */
 780        rxdesc->callback = dma_callback;
 781        rxdesc->callback_param = master;
 782
 783        /* Submit and fire RX and TX with TX last so we're ready to read! */
 784        cookie = rxdesc->tx_submit(rxdesc);
 785        if (dma_submit_error(cookie))
 786                goto err_dma;
 787        cookie = txdesc->tx_submit(txdesc);
 788        if (dma_submit_error(cookie))
 789                goto err_dma;
 790        rxchan->device->device_issue_pending(rxchan);
 791        txchan->device->device_issue_pending(txchan);
 792
 793        /* take back lock */
 794        atmel_spi_lock(as);
 795        return 0;
 796
 797err_dma:
 798        spi_writel(as, IDR, SPI_BIT(OVRES));
 799        atmel_spi_stop_dma(master);
 800err_exit:
 801        atmel_spi_lock(as);
 802        return -ENOMEM;
 803}
 804
 805static void atmel_spi_next_xfer_data(struct spi_master *master,
 806                                struct spi_transfer *xfer,
 807                                dma_addr_t *tx_dma,
 808                                dma_addr_t *rx_dma,
 809                                u32 *plen)
 810{
 811        *rx_dma = xfer->rx_dma + xfer->len - *plen;
 812        *tx_dma = xfer->tx_dma + xfer->len - *plen;
 813        if (*plen > master->max_dma_len)
 814                *plen = master->max_dma_len;
 815}
 816
 817static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
 818                                    struct spi_device *spi,
 819                                    struct spi_transfer *xfer)
 820{
 821        u32                     scbr, csr;
 822        unsigned long           bus_hz;
 823        int chip_select;
 824
 825        if (spi->cs_gpiod)
 826                chip_select = as->native_cs_for_gpio;
 827        else
 828                chip_select = spi->chip_select;
 829
 830        /* v1 chips start out at half the peripheral bus speed. */
 831        bus_hz = as->spi_clk;
 832        if (!atmel_spi_is_v2(as))
 833                bus_hz /= 2;
 834
 835        /*
 836         * Calculate the lowest divider that satisfies the
 837         * constraint, assuming div32/fdiv/mbz == 0.
 838         */
 839        scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
 840
 841        /*
 842         * If the resulting divider doesn't fit into the
 843         * register bitfield, we can't satisfy the constraint.
 844         */
 845        if (scbr >= (1 << SPI_SCBR_SIZE)) {
 846                dev_err(&spi->dev,
 847                        "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
 848                        xfer->speed_hz, scbr, bus_hz/255);
 849                return -EINVAL;
 850        }
 851        if (scbr == 0) {
 852                dev_err(&spi->dev,
 853                        "setup: %d Hz too high, scbr %u; max %ld Hz\n",
 854                        xfer->speed_hz, scbr, bus_hz);
 855                return -EINVAL;
 856        }
 857        csr = spi_readl(as, CSR0 + 4 * chip_select);
 858        csr = SPI_BFINS(SCBR, scbr, csr);
 859        spi_writel(as, CSR0 + 4 * chip_select, csr);
 860        xfer->effective_speed_hz = bus_hz / scbr;
 861
 862        return 0;
 863}
 864
 865/*
 866 * Submit next transfer for PDC.
 867 * lock is held, spi irq is blocked
 868 */
 869static void atmel_spi_pdc_next_xfer(struct spi_master *master,
 870                                        struct spi_message *msg,
 871                                        struct spi_transfer *xfer)
 872{
 873        struct atmel_spi        *as = spi_master_get_devdata(master);
 874        u32                     len;
 875        dma_addr_t              tx_dma, rx_dma;
 876
 877        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 878
 879        len = as->current_remaining_bytes;
 880        atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 881        as->current_remaining_bytes -= len;
 882
 883        spi_writel(as, RPR, rx_dma);
 884        spi_writel(as, TPR, tx_dma);
 885
 886        if (msg->spi->bits_per_word > 8)
 887                len >>= 1;
 888        spi_writel(as, RCR, len);
 889        spi_writel(as, TCR, len);
 890
 891        dev_dbg(&msg->spi->dev,
 892                "  start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 893                xfer, xfer->len, xfer->tx_buf,
 894                (unsigned long long)xfer->tx_dma, xfer->rx_buf,
 895                (unsigned long long)xfer->rx_dma);
 896
 897        if (as->current_remaining_bytes) {
 898                len = as->current_remaining_bytes;
 899                atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
 900                as->current_remaining_bytes -= len;
 901
 902                spi_writel(as, RNPR, rx_dma);
 903                spi_writel(as, TNPR, tx_dma);
 904
 905                if (msg->spi->bits_per_word > 8)
 906                        len >>= 1;
 907                spi_writel(as, RNCR, len);
 908                spi_writel(as, TNCR, len);
 909
 910                dev_dbg(&msg->spi->dev,
 911                        "  next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
 912                        xfer, xfer->len, xfer->tx_buf,
 913                        (unsigned long long)xfer->tx_dma, xfer->rx_buf,
 914                        (unsigned long long)xfer->rx_dma);
 915        }
 916
 917        /* REVISIT: We're waiting for RXBUFF before we start the next
 918         * transfer because we need to handle some difficult timing
 919         * issues otherwise. If we wait for TXBUFE in one transfer and
 920         * then starts waiting for RXBUFF in the next, it's difficult
 921         * to tell the difference between the RXBUFF interrupt we're
 922         * actually waiting for and the RXBUFF interrupt of the
 923         * previous transfer.
 924         *
 925         * It should be doable, though. Just not now...
 926         */
 927        spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
 928        spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
 929}
 930
 931/*
 932 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
 933 *  - The buffer is either valid for CPU access, else NULL
 934 *  - If the buffer is valid, so is its DMA address
 935 *
 936 * This driver manages the dma address unless message->is_dma_mapped.
 937 */
 938static int
 939atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
 940{
 941        struct device   *dev = &as->pdev->dev;
 942
 943        xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
 944        if (xfer->tx_buf) {
 945                /* tx_buf is a const void* where we need a void * for the dma
 946                 * mapping */
 947                void *nonconst_tx = (void *)xfer->tx_buf;
 948
 949                xfer->tx_dma = dma_map_single(dev,
 950                                nonconst_tx, xfer->len,
 951                                DMA_TO_DEVICE);
 952                if (dma_mapping_error(dev, xfer->tx_dma))
 953                        return -ENOMEM;
 954        }
 955        if (xfer->rx_buf) {
 956                xfer->rx_dma = dma_map_single(dev,
 957                                xfer->rx_buf, xfer->len,
 958                                DMA_FROM_DEVICE);
 959                if (dma_mapping_error(dev, xfer->rx_dma)) {
 960                        if (xfer->tx_buf)
 961                                dma_unmap_single(dev,
 962                                                xfer->tx_dma, xfer->len,
 963                                                DMA_TO_DEVICE);
 964                        return -ENOMEM;
 965                }
 966        }
 967        return 0;
 968}
 969
 970static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
 971                                     struct spi_transfer *xfer)
 972{
 973        if (xfer->tx_dma != INVALID_DMA_ADDRESS)
 974                dma_unmap_single(master->dev.parent, xfer->tx_dma,
 975                                 xfer->len, DMA_TO_DEVICE);
 976        if (xfer->rx_dma != INVALID_DMA_ADDRESS)
 977                dma_unmap_single(master->dev.parent, xfer->rx_dma,
 978                                 xfer->len, DMA_FROM_DEVICE);
 979}
 980
 981static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
 982{
 983        spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
 984}
 985
 986static void
 987atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
 988{
 989        u8              *rxp;
 990        u16             *rxp16;
 991        unsigned long   xfer_pos = xfer->len - as->current_remaining_bytes;
 992
 993        if (xfer->bits_per_word > 8) {
 994                rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
 995                *rxp16 = spi_readl(as, RDR);
 996        } else {
 997                rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
 998                *rxp = spi_readl(as, RDR);
 999        }
1000        if (xfer->bits_per_word > 8) {
1001                if (as->current_remaining_bytes > 2)
1002                        as->current_remaining_bytes -= 2;
1003                else
1004                        as->current_remaining_bytes = 0;
1005        } else {
1006                as->current_remaining_bytes--;
1007        }
1008}
1009
1010static void
1011atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1012{
1013        u32 fifolr = spi_readl(as, FLR);
1014        u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1015        u32 offset = xfer->len - as->current_remaining_bytes;
1016        u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1017        u8  *bytes = (u8  *)((u8 *)xfer->rx_buf + offset);
1018        u16 rd; /* RD field is the lowest 16 bits of RDR */
1019
1020        /* Update the number of remaining bytes to transfer */
1021        num_bytes = ((xfer->bits_per_word > 8) ?
1022                     (num_data << 1) :
1023                     num_data);
1024
1025        if (as->current_remaining_bytes > num_bytes)
1026                as->current_remaining_bytes -= num_bytes;
1027        else
1028                as->current_remaining_bytes = 0;
1029
1030        /* Handle odd number of bytes when data are more than 8bit width */
1031        if (xfer->bits_per_word > 8)
1032                as->current_remaining_bytes &= ~0x1;
1033
1034        /* Read data */
1035        while (num_data) {
1036                rd = spi_readl(as, RDR);
1037                if (xfer->bits_per_word > 8)
1038                        *words++ = rd;
1039                else
1040                        *bytes++ = rd;
1041                num_data--;
1042        }
1043}
1044
1045/* Called from IRQ
1046 *
1047 * Must update "current_remaining_bytes" to keep track of data
1048 * to transfer.
1049 */
1050static void
1051atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1052{
1053        if (as->fifo_size)
1054                atmel_spi_pump_fifo_data(as, xfer);
1055        else
1056                atmel_spi_pump_single_data(as, xfer);
1057}
1058
1059/* Interrupt
1060 *
1061 * No need for locking in this Interrupt handler: done_status is the
1062 * only information modified.
1063 */
1064static irqreturn_t
1065atmel_spi_pio_interrupt(int irq, void *dev_id)
1066{
1067        struct spi_master       *master = dev_id;
1068        struct atmel_spi        *as = spi_master_get_devdata(master);
1069        u32                     status, pending, imr;
1070        struct spi_transfer     *xfer;
1071        int                     ret = IRQ_NONE;
1072
1073        imr = spi_readl(as, IMR);
1074        status = spi_readl(as, SR);
1075        pending = status & imr;
1076
1077        if (pending & SPI_BIT(OVRES)) {
1078                ret = IRQ_HANDLED;
1079                spi_writel(as, IDR, SPI_BIT(OVRES));
1080                dev_warn(master->dev.parent, "overrun\n");
1081
1082                /*
1083                 * When we get an overrun, we disregard the current
1084                 * transfer. Data will not be copied back from any
1085                 * bounce buffer and msg->actual_len will not be
1086                 * updated with the last xfer.
1087                 *
1088                 * We will also not process any remaning transfers in
1089                 * the message.
1090                 */
1091                as->done_status = -EIO;
1092                smp_wmb();
1093
1094                /* Clear any overrun happening while cleaning up */
1095                spi_readl(as, SR);
1096
1097                complete(&as->xfer_completion);
1098
1099        } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1100                atmel_spi_lock(as);
1101
1102                if (as->current_remaining_bytes) {
1103                        ret = IRQ_HANDLED;
1104                        xfer = as->current_transfer;
1105                        atmel_spi_pump_pio_data(as, xfer);
1106                        if (!as->current_remaining_bytes)
1107                                spi_writel(as, IDR, pending);
1108
1109                        complete(&as->xfer_completion);
1110                }
1111
1112                atmel_spi_unlock(as);
1113        } else {
1114                WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1115                ret = IRQ_HANDLED;
1116                spi_writel(as, IDR, pending);
1117        }
1118
1119        return ret;
1120}
1121
1122static irqreturn_t
1123atmel_spi_pdc_interrupt(int irq, void *dev_id)
1124{
1125        struct spi_master       *master = dev_id;
1126        struct atmel_spi        *as = spi_master_get_devdata(master);
1127        u32                     status, pending, imr;
1128        int                     ret = IRQ_NONE;
1129
1130        imr = spi_readl(as, IMR);
1131        status = spi_readl(as, SR);
1132        pending = status & imr;
1133
1134        if (pending & SPI_BIT(OVRES)) {
1135
1136                ret = IRQ_HANDLED;
1137
1138                spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1139                                     | SPI_BIT(OVRES)));
1140
1141                /* Clear any overrun happening while cleaning up */
1142                spi_readl(as, SR);
1143
1144                as->done_status = -EIO;
1145
1146                complete(&as->xfer_completion);
1147
1148        } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1149                ret = IRQ_HANDLED;
1150
1151                spi_writel(as, IDR, pending);
1152
1153                complete(&as->xfer_completion);
1154        }
1155
1156        return ret;
1157}
1158
1159static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1160{
1161        struct spi_delay *delay = &spi->word_delay;
1162        u32 value = delay->value;
1163
1164        switch (delay->unit) {
1165        case SPI_DELAY_UNIT_NSECS:
1166                value /= 1000;
1167                break;
1168        case SPI_DELAY_UNIT_USECS:
1169                break;
1170        default:
1171                return -EINVAL;
1172        }
1173
1174        return (as->spi_clk / 1000000 * value) >> 5;
1175}
1176
1177static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1178{
1179        int i;
1180        struct spi_master *master = platform_get_drvdata(as->pdev);
1181
1182        if (!as->native_cs_free)
1183                return; /* already initialized */
1184
1185        if (!master->cs_gpiods)
1186                return; /* No CS GPIO */
1187
1188        /*
1189         * On the first version of the controller (AT91RM9200), CS0
1190         * can't be used associated with GPIO
1191         */
1192        if (atmel_spi_is_v2(as))
1193                i = 0;
1194        else
1195                i = 1;
1196
1197        for (; i < 4; i++)
1198                if (master->cs_gpiods[i])
1199                        as->native_cs_free |= BIT(i);
1200
1201        if (as->native_cs_free)
1202                as->native_cs_for_gpio = ffs(as->native_cs_free);
1203}
1204
1205static int atmel_spi_setup(struct spi_device *spi)
1206{
1207        struct atmel_spi        *as;
1208        struct atmel_spi_device *asd;
1209        u32                     csr;
1210        unsigned int            bits = spi->bits_per_word;
1211        int chip_select;
1212        int                     word_delay_csr;
1213
1214        as = spi_master_get_devdata(spi->master);
1215
1216        /* see notes above re chipselect */
1217        if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1218                dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1219                return -EINVAL;
1220        }
1221
1222        /* Setup() is called during spi_register_controller(aka
1223         * spi_register_master) but after all membmers of the cs_gpiod
1224         * array have been filled, so we can looked for which native
1225         * CS will be free for using with GPIO
1226         */
1227        initialize_native_cs_for_gpio(as);
1228
1229        if (spi->cs_gpiod && as->native_cs_free) {
1230                dev_err(&spi->dev,
1231                        "No native CS available to support this GPIO CS\n");
1232                return -EBUSY;
1233        }
1234
1235        if (spi->cs_gpiod)
1236                chip_select = as->native_cs_for_gpio;
1237        else
1238                chip_select = spi->chip_select;
1239
1240        csr = SPI_BF(BITS, bits - 8);
1241        if (spi->mode & SPI_CPOL)
1242                csr |= SPI_BIT(CPOL);
1243        if (!(spi->mode & SPI_CPHA))
1244                csr |= SPI_BIT(NCPHA);
1245
1246        if (!spi->cs_gpiod)
1247                csr |= SPI_BIT(CSAAT);
1248        csr |= SPI_BF(DLYBS, 0);
1249
1250        word_delay_csr = atmel_word_delay_csr(spi, as);
1251        if (word_delay_csr < 0)
1252                return word_delay_csr;
1253
1254        /* DLYBCT adds delays between words.  This is useful for slow devices
1255         * that need a bit of time to setup the next transfer.
1256         */
1257        csr |= SPI_BF(DLYBCT, word_delay_csr);
1258
1259        asd = spi->controller_state;
1260        if (!asd) {
1261                asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1262                if (!asd)
1263                        return -ENOMEM;
1264
1265                spi->controller_state = asd;
1266        }
1267
1268        asd->csr = csr;
1269
1270        dev_dbg(&spi->dev,
1271                "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1272                bits, spi->mode, spi->chip_select, csr);
1273
1274        if (!atmel_spi_is_v2(as))
1275                spi_writel(as, CSR0 + 4 * chip_select, csr);
1276
1277        return 0;
1278}
1279
1280static int atmel_spi_one_transfer(struct spi_master *master,
1281                                        struct spi_message *msg,
1282                                        struct spi_transfer *xfer)
1283{
1284        struct atmel_spi        *as;
1285        struct spi_device       *spi = msg->spi;
1286        u8                      bits;
1287        u32                     len;
1288        struct atmel_spi_device *asd;
1289        int                     timeout;
1290        int                     ret;
1291        unsigned long           dma_timeout;
1292
1293        as = spi_master_get_devdata(master);
1294
1295        if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1296                dev_dbg(&spi->dev, "missing rx or tx buf\n");
1297                return -EINVAL;
1298        }
1299
1300        asd = spi->controller_state;
1301        bits = (asd->csr >> 4) & 0xf;
1302        if (bits != xfer->bits_per_word - 8) {
1303                dev_dbg(&spi->dev,
1304                        "you can't yet change bits_per_word in transfers\n");
1305                return -ENOPROTOOPT;
1306        }
1307
1308        /*
1309         * DMA map early, for performance (empties dcache ASAP) and
1310         * better fault reporting.
1311         */
1312        if ((!msg->is_dma_mapped)
1313                && as->use_pdc) {
1314                if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1315                        return -ENOMEM;
1316        }
1317
1318        atmel_spi_set_xfer_speed(as, msg->spi, xfer);
1319
1320        as->done_status = 0;
1321        as->current_transfer = xfer;
1322        as->current_remaining_bytes = xfer->len;
1323        while (as->current_remaining_bytes) {
1324                reinit_completion(&as->xfer_completion);
1325
1326                if (as->use_pdc) {
1327                        atmel_spi_pdc_next_xfer(master, msg, xfer);
1328                } else if (atmel_spi_use_dma(as, xfer)) {
1329                        len = as->current_remaining_bytes;
1330                        ret = atmel_spi_next_xfer_dma_submit(master,
1331                                                                xfer, &len);
1332                        if (ret) {
1333                                dev_err(&spi->dev,
1334                                        "unable to use DMA, fallback to PIO\n");
1335                                atmel_spi_next_xfer_pio(master, xfer);
1336                        } else {
1337                                as->current_remaining_bytes -= len;
1338                                if (as->current_remaining_bytes < 0)
1339                                        as->current_remaining_bytes = 0;
1340                        }
1341                } else {
1342                        atmel_spi_next_xfer_pio(master, xfer);
1343                }
1344
1345                /* interrupts are disabled, so free the lock for schedule */
1346                atmel_spi_unlock(as);
1347                dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1348                                                          SPI_DMA_TIMEOUT);
1349                atmel_spi_lock(as);
1350                if (WARN_ON(dma_timeout == 0)) {
1351                        dev_err(&spi->dev, "spi transfer timeout\n");
1352                        as->done_status = -EIO;
1353                }
1354
1355                if (as->done_status)
1356                        break;
1357        }
1358
1359        if (as->done_status) {
1360                if (as->use_pdc) {
1361                        dev_warn(master->dev.parent,
1362                                "overrun (%u/%u remaining)\n",
1363                                spi_readl(as, TCR), spi_readl(as, RCR));
1364
1365                        /*
1366                         * Clean up DMA registers and make sure the data
1367                         * registers are empty.
1368                         */
1369                        spi_writel(as, RNCR, 0);
1370                        spi_writel(as, TNCR, 0);
1371                        spi_writel(as, RCR, 0);
1372                        spi_writel(as, TCR, 0);
1373                        for (timeout = 1000; timeout; timeout--)
1374                                if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1375                                        break;
1376                        if (!timeout)
1377                                dev_warn(master->dev.parent,
1378                                         "timeout waiting for TXEMPTY");
1379                        while (spi_readl(as, SR) & SPI_BIT(RDRF))
1380                                spi_readl(as, RDR);
1381
1382                        /* Clear any overrun happening while cleaning up */
1383                        spi_readl(as, SR);
1384
1385                } else if (atmel_spi_use_dma(as, xfer)) {
1386                        atmel_spi_stop_dma(master);
1387                }
1388
1389                if (!msg->is_dma_mapped
1390                        && as->use_pdc)
1391                        atmel_spi_dma_unmap_xfer(master, xfer);
1392
1393                return 0;
1394
1395        } else {
1396                /* only update length if no error */
1397                msg->actual_length += xfer->len;
1398        }
1399
1400        if (!msg->is_dma_mapped
1401                && as->use_pdc)
1402                atmel_spi_dma_unmap_xfer(master, xfer);
1403
1404        spi_transfer_delay_exec(xfer);
1405
1406        if (xfer->cs_change) {
1407                if (list_is_last(&xfer->transfer_list,
1408                                 &msg->transfers)) {
1409                        as->keep_cs = true;
1410                } else {
1411                        cs_deactivate(as, msg->spi);
1412                        udelay(10);
1413                        cs_activate(as, msg->spi);
1414                }
1415        }
1416
1417        return 0;
1418}
1419
1420static int atmel_spi_transfer_one_message(struct spi_master *master,
1421                                                struct spi_message *msg)
1422{
1423        struct atmel_spi *as;
1424        struct spi_transfer *xfer;
1425        struct spi_device *spi = msg->spi;
1426        int ret = 0;
1427
1428        as = spi_master_get_devdata(master);
1429
1430        dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431                                        msg, dev_name(&spi->dev));
1432
1433        atmel_spi_lock(as);
1434        cs_activate(as, spi);
1435
1436        as->keep_cs = false;
1437
1438        msg->status = 0;
1439        msg->actual_length = 0;
1440
1441        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1442                trace_spi_transfer_start(msg, xfer);
1443
1444                ret = atmel_spi_one_transfer(master, msg, xfer);
1445                if (ret)
1446                        goto msg_done;
1447
1448                trace_spi_transfer_stop(msg, xfer);
1449        }
1450
1451        if (as->use_pdc)
1452                atmel_spi_disable_pdc_transfer(as);
1453
1454        list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1455                dev_dbg(&spi->dev,
1456                        "  xfer %p: len %u tx %p/%pad rx %p/%pad\n",
1457                        xfer, xfer->len,
1458                        xfer->tx_buf, &xfer->tx_dma,
1459                        xfer->rx_buf, &xfer->rx_dma);
1460        }
1461
1462msg_done:
1463        if (!as->keep_cs)
1464                cs_deactivate(as, msg->spi);
1465
1466        atmel_spi_unlock(as);
1467
1468        msg->status = as->done_status;
1469        spi_finalize_current_message(spi->master);
1470
1471        return ret;
1472}
1473
1474static void atmel_spi_cleanup(struct spi_device *spi)
1475{
1476        struct atmel_spi_device *asd = spi->controller_state;
1477
1478        if (!asd)
1479                return;
1480
1481        spi->controller_state = NULL;
1482        kfree(asd);
1483}
1484
1485static inline unsigned int atmel_get_version(struct atmel_spi *as)
1486{
1487        return spi_readl(as, VERSION) & 0x00000fff;
1488}
1489
1490static void atmel_get_caps(struct atmel_spi *as)
1491{
1492        unsigned int version;
1493
1494        version = atmel_get_version(as);
1495
1496        as->caps.is_spi2 = version > 0x121;
1497        as->caps.has_wdrbt = version >= 0x210;
1498        as->caps.has_dma_support = version >= 0x212;
1499        as->caps.has_pdc_support = version < 0x212;
1500}
1501
1502static void atmel_spi_init(struct atmel_spi *as)
1503{
1504        spi_writel(as, CR, SPI_BIT(SWRST));
1505        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1506
1507        /* It is recommended to enable FIFOs first thing after reset */
1508        if (as->fifo_size)
1509                spi_writel(as, CR, SPI_BIT(FIFOEN));
1510
1511        if (as->caps.has_wdrbt) {
1512                spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1513                                | SPI_BIT(MSTR));
1514        } else {
1515                spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1516        }
1517
1518        if (as->use_pdc)
1519                spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1520        spi_writel(as, CR, SPI_BIT(SPIEN));
1521}
1522
1523static int atmel_spi_probe(struct platform_device *pdev)
1524{
1525        struct resource         *regs;
1526        int                     irq;
1527        struct clk              *clk;
1528        int                     ret;
1529        struct spi_master       *master;
1530        struct atmel_spi        *as;
1531
1532        /* Select default pin state */
1533        pinctrl_pm_select_default_state(&pdev->dev);
1534
1535        regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1536        if (!regs)
1537                return -ENXIO;
1538
1539        irq = platform_get_irq(pdev, 0);
1540        if (irq < 0)
1541                return irq;
1542
1543        clk = devm_clk_get(&pdev->dev, "spi_clk");
1544        if (IS_ERR(clk))
1545                return PTR_ERR(clk);
1546
1547        /* setup spi core then atmel-specific driver state */
1548        master = spi_alloc_master(&pdev->dev, sizeof(*as));
1549        if (!master)
1550                return -ENOMEM;
1551
1552        /* the spi->mode bits understood by this driver: */
1553        master->use_gpio_descriptors = true;
1554        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1555        master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1556        master->dev.of_node = pdev->dev.of_node;
1557        master->bus_num = pdev->id;
1558        master->num_chipselect = 4;
1559        master->setup = atmel_spi_setup;
1560        master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX);
1561        master->transfer_one_message = atmel_spi_transfer_one_message;
1562        master->cleanup = atmel_spi_cleanup;
1563        master->auto_runtime_pm = true;
1564        master->max_dma_len = SPI_MAX_DMA_XFER;
1565        master->can_dma = atmel_spi_can_dma;
1566        platform_set_drvdata(pdev, master);
1567
1568        as = spi_master_get_devdata(master);
1569
1570        spin_lock_init(&as->lock);
1571
1572        as->pdev = pdev;
1573        as->regs = devm_ioremap_resource(&pdev->dev, regs);
1574        if (IS_ERR(as->regs)) {
1575                ret = PTR_ERR(as->regs);
1576                goto out_unmap_regs;
1577        }
1578        as->phybase = regs->start;
1579        as->irq = irq;
1580        as->clk = clk;
1581
1582        init_completion(&as->xfer_completion);
1583
1584        atmel_get_caps(as);
1585
1586        as->use_dma = false;
1587        as->use_pdc = false;
1588        if (as->caps.has_dma_support) {
1589                ret = atmel_spi_configure_dma(master, as);
1590                if (ret == 0) {
1591                        as->use_dma = true;
1592                } else if (ret == -EPROBE_DEFER) {
1593                        return ret;
1594                }
1595        } else if (as->caps.has_pdc_support) {
1596                as->use_pdc = true;
1597        }
1598
1599        if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1600                as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1601                                                      SPI_MAX_DMA_XFER,
1602                                                      &as->dma_addr_rx_bbuf,
1603                                                      GFP_KERNEL | GFP_DMA);
1604                if (!as->addr_rx_bbuf) {
1605                        as->use_dma = false;
1606                } else {
1607                        as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1608                                        SPI_MAX_DMA_XFER,
1609                                        &as->dma_addr_tx_bbuf,
1610                                        GFP_KERNEL | GFP_DMA);
1611                        if (!as->addr_tx_bbuf) {
1612                                as->use_dma = false;
1613                                dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1614                                                  as->addr_rx_bbuf,
1615                                                  as->dma_addr_rx_bbuf);
1616                        }
1617                }
1618                if (!as->use_dma)
1619                        dev_info(master->dev.parent,
1620                                 "  can not allocate dma coherent memory\n");
1621        }
1622
1623        if (as->caps.has_dma_support && !as->use_dma)
1624                dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1625
1626        if (as->use_pdc) {
1627                ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1628                                        0, dev_name(&pdev->dev), master);
1629        } else {
1630                ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1631                                        0, dev_name(&pdev->dev), master);
1632        }
1633        if (ret)
1634                goto out_unmap_regs;
1635
1636        /* Initialize the hardware */
1637        ret = clk_prepare_enable(clk);
1638        if (ret)
1639                goto out_free_irq;
1640
1641        as->spi_clk = clk_get_rate(clk);
1642
1643        as->fifo_size = 0;
1644        if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1645                                  &as->fifo_size)) {
1646                dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1647        }
1648
1649        atmel_spi_init(as);
1650
1651        pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1652        pm_runtime_use_autosuspend(&pdev->dev);
1653        pm_runtime_set_active(&pdev->dev);
1654        pm_runtime_enable(&pdev->dev);
1655
1656        ret = devm_spi_register_master(&pdev->dev, master);
1657        if (ret)
1658                goto out_free_dma;
1659
1660        /* go! */
1661        dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1662                        atmel_get_version(as), (unsigned long)regs->start,
1663                        irq);
1664
1665        return 0;
1666
1667out_free_dma:
1668        pm_runtime_disable(&pdev->dev);
1669        pm_runtime_set_suspended(&pdev->dev);
1670
1671        if (as->use_dma)
1672                atmel_spi_release_dma(master);
1673
1674        spi_writel(as, CR, SPI_BIT(SWRST));
1675        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1676        clk_disable_unprepare(clk);
1677out_free_irq:
1678out_unmap_regs:
1679        spi_master_put(master);
1680        return ret;
1681}
1682
1683static int atmel_spi_remove(struct platform_device *pdev)
1684{
1685        struct spi_master       *master = platform_get_drvdata(pdev);
1686        struct atmel_spi        *as = spi_master_get_devdata(master);
1687
1688        pm_runtime_get_sync(&pdev->dev);
1689
1690        /* reset the hardware and block queue progress */
1691        if (as->use_dma) {
1692                atmel_spi_stop_dma(master);
1693                atmel_spi_release_dma(master);
1694                if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1695                        dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1696                                          as->addr_tx_bbuf,
1697                                          as->dma_addr_tx_bbuf);
1698                        dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1699                                          as->addr_rx_bbuf,
1700                                          as->dma_addr_rx_bbuf);
1701                }
1702        }
1703
1704        spin_lock_irq(&as->lock);
1705        spi_writel(as, CR, SPI_BIT(SWRST));
1706        spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1707        spi_readl(as, SR);
1708        spin_unlock_irq(&as->lock);
1709
1710        clk_disable_unprepare(as->clk);
1711
1712        pm_runtime_put_noidle(&pdev->dev);
1713        pm_runtime_disable(&pdev->dev);
1714
1715        return 0;
1716}
1717
1718#ifdef CONFIG_PM
1719static int atmel_spi_runtime_suspend(struct device *dev)
1720{
1721        struct spi_master *master = dev_get_drvdata(dev);
1722        struct atmel_spi *as = spi_master_get_devdata(master);
1723
1724        clk_disable_unprepare(as->clk);
1725        pinctrl_pm_select_sleep_state(dev);
1726
1727        return 0;
1728}
1729
1730static int atmel_spi_runtime_resume(struct device *dev)
1731{
1732        struct spi_master *master = dev_get_drvdata(dev);
1733        struct atmel_spi *as = spi_master_get_devdata(master);
1734
1735        pinctrl_pm_select_default_state(dev);
1736
1737        return clk_prepare_enable(as->clk);
1738}
1739
1740#ifdef CONFIG_PM_SLEEP
1741static int atmel_spi_suspend(struct device *dev)
1742{
1743        struct spi_master *master = dev_get_drvdata(dev);
1744        int ret;
1745
1746        /* Stop the queue running */
1747        ret = spi_master_suspend(master);
1748        if (ret)
1749                return ret;
1750
1751        if (!pm_runtime_suspended(dev))
1752                atmel_spi_runtime_suspend(dev);
1753
1754        return 0;
1755}
1756
1757static int atmel_spi_resume(struct device *dev)
1758{
1759        struct spi_master *master = dev_get_drvdata(dev);
1760        struct atmel_spi *as = spi_master_get_devdata(master);
1761        int ret;
1762
1763        ret = clk_prepare_enable(as->clk);
1764        if (ret)
1765                return ret;
1766
1767        atmel_spi_init(as);
1768
1769        clk_disable_unprepare(as->clk);
1770
1771        if (!pm_runtime_suspended(dev)) {
1772                ret = atmel_spi_runtime_resume(dev);
1773                if (ret)
1774                        return ret;
1775        }
1776
1777        /* Start the queue running */
1778        return spi_master_resume(master);
1779}
1780#endif
1781
1782static const struct dev_pm_ops atmel_spi_pm_ops = {
1783        SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1784        SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1785                           atmel_spi_runtime_resume, NULL)
1786};
1787#define ATMEL_SPI_PM_OPS        (&atmel_spi_pm_ops)
1788#else
1789#define ATMEL_SPI_PM_OPS        NULL
1790#endif
1791
1792static const struct of_device_id atmel_spi_dt_ids[] = {
1793        { .compatible = "atmel,at91rm9200-spi" },
1794        { /* sentinel */ }
1795};
1796
1797MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1798
1799static struct platform_driver atmel_spi_driver = {
1800        .driver         = {
1801                .name   = "atmel_spi",
1802                .pm     = ATMEL_SPI_PM_OPS,
1803                .of_match_table = atmel_spi_dt_ids,
1804        },
1805        .probe          = atmel_spi_probe,
1806        .remove         = atmel_spi_remove,
1807};
1808module_platform_driver(atmel_spi_driver);
1809
1810MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1811MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1812MODULE_LICENSE("GPL");
1813MODULE_ALIAS("platform:atmel_spi");
1814