linux/drivers/spi/spi-nxp-fspi.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0+
   2
   3/*
   4 * NXP FlexSPI(FSPI) controller driver.
   5 *
   6 * Copyright 2019-2020 NXP
   7 * Copyright 2020 Puresoftware Ltd.
   8 *
   9 * FlexSPI is a flexsible SPI host controller which supports two SPI
  10 * channels and up to 4 external devices. Each channel supports
  11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
  12 * data lines).
  13 *
  14 * FlexSPI controller is driven by the LUT(Look-up Table) registers
  15 * LUT registers are a look-up-table for sequences of instructions.
  16 * A valid sequence consists of four LUT registers.
  17 * Maximum 32 LUT sequences can be programmed simultaneously.
  18 *
  19 * LUTs are being created at run-time based on the commands passed
  20 * from the spi-mem framework, thus using single LUT index.
  21 *
  22 * Software triggered Flash read/write access by IP Bus.
  23 *
  24 * Memory mapped read access by AHB Bus.
  25 *
  26 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
  27 *
  28 * Author:
  29 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
  30 *     Boris Brezillon <bbrezillon@kernel.org>
  31 *     Frieder Schrempf <frieder.schrempf@kontron.de>
  32 */
  33
  34#include <linux/acpi.h>
  35#include <linux/bitops.h>
  36#include <linux/clk.h>
  37#include <linux/completion.h>
  38#include <linux/delay.h>
  39#include <linux/err.h>
  40#include <linux/errno.h>
  41#include <linux/interrupt.h>
  42#include <linux/io.h>
  43#include <linux/iopoll.h>
  44#include <linux/jiffies.h>
  45#include <linux/kernel.h>
  46#include <linux/module.h>
  47#include <linux/mutex.h>
  48#include <linux/of.h>
  49#include <linux/of_device.h>
  50#include <linux/platform_device.h>
  51#include <linux/pm_qos.h>
  52#include <linux/sizes.h>
  53
  54#include <linux/spi/spi.h>
  55#include <linux/spi/spi-mem.h>
  56
  57/*
  58 * The driver only uses one single LUT entry, that is updated on
  59 * each call of exec_op(). Index 0 is preset at boot with a basic
  60 * read operation, so let's use the last entry (31).
  61 */
  62#define SEQID_LUT                       31
  63
  64/* Registers used by the driver */
  65#define FSPI_MCR0                       0x00
  66#define FSPI_MCR0_AHB_TIMEOUT(x)        ((x) << 24)
  67#define FSPI_MCR0_IP_TIMEOUT(x)         ((x) << 16)
  68#define FSPI_MCR0_LEARN_EN              BIT(15)
  69#define FSPI_MCR0_SCRFRUN_EN            BIT(14)
  70#define FSPI_MCR0_OCTCOMB_EN            BIT(13)
  71#define FSPI_MCR0_DOZE_EN               BIT(12)
  72#define FSPI_MCR0_HSEN                  BIT(11)
  73#define FSPI_MCR0_SERCLKDIV             BIT(8)
  74#define FSPI_MCR0_ATDF_EN               BIT(7)
  75#define FSPI_MCR0_ARDF_EN               BIT(6)
  76#define FSPI_MCR0_RXCLKSRC(x)           ((x) << 4)
  77#define FSPI_MCR0_END_CFG(x)            ((x) << 2)
  78#define FSPI_MCR0_MDIS                  BIT(1)
  79#define FSPI_MCR0_SWRST                 BIT(0)
  80
  81#define FSPI_MCR1                       0x04
  82#define FSPI_MCR1_SEQ_TIMEOUT(x)        ((x) << 16)
  83#define FSPI_MCR1_AHB_TIMEOUT(x)        (x)
  84
  85#define FSPI_MCR2                       0x08
  86#define FSPI_MCR2_IDLE_WAIT(x)          ((x) << 24)
  87#define FSPI_MCR2_SAMEDEVICEEN          BIT(15)
  88#define FSPI_MCR2_CLRLRPHS              BIT(14)
  89#define FSPI_MCR2_ABRDATSZ              BIT(8)
  90#define FSPI_MCR2_ABRLEARN              BIT(7)
  91#define FSPI_MCR2_ABR_READ              BIT(6)
  92#define FSPI_MCR2_ABRWRITE              BIT(5)
  93#define FSPI_MCR2_ABRDUMMY              BIT(4)
  94#define FSPI_MCR2_ABR_MODE              BIT(3)
  95#define FSPI_MCR2_ABRCADDR              BIT(2)
  96#define FSPI_MCR2_ABRRADDR              BIT(1)
  97#define FSPI_MCR2_ABR_CMD               BIT(0)
  98
  99#define FSPI_AHBCR                      0x0c
 100#define FSPI_AHBCR_RDADDROPT            BIT(6)
 101#define FSPI_AHBCR_PREF_EN              BIT(5)
 102#define FSPI_AHBCR_BUFF_EN              BIT(4)
 103#define FSPI_AHBCR_CACH_EN              BIT(3)
 104#define FSPI_AHBCR_CLRTXBUF             BIT(2)
 105#define FSPI_AHBCR_CLRRXBUF             BIT(1)
 106#define FSPI_AHBCR_PAR_EN               BIT(0)
 107
 108#define FSPI_INTEN                      0x10
 109#define FSPI_INTEN_SCLKSBWR             BIT(9)
 110#define FSPI_INTEN_SCLKSBRD             BIT(8)
 111#define FSPI_INTEN_DATALRNFL            BIT(7)
 112#define FSPI_INTEN_IPTXWE               BIT(6)
 113#define FSPI_INTEN_IPRXWA               BIT(5)
 114#define FSPI_INTEN_AHBCMDERR            BIT(4)
 115#define FSPI_INTEN_IPCMDERR             BIT(3)
 116#define FSPI_INTEN_AHBCMDGE             BIT(2)
 117#define FSPI_INTEN_IPCMDGE              BIT(1)
 118#define FSPI_INTEN_IPCMDDONE            BIT(0)
 119
 120#define FSPI_INTR                       0x14
 121#define FSPI_INTR_SCLKSBWR              BIT(9)
 122#define FSPI_INTR_SCLKSBRD              BIT(8)
 123#define FSPI_INTR_DATALRNFL             BIT(7)
 124#define FSPI_INTR_IPTXWE                BIT(6)
 125#define FSPI_INTR_IPRXWA                BIT(5)
 126#define FSPI_INTR_AHBCMDERR             BIT(4)
 127#define FSPI_INTR_IPCMDERR              BIT(3)
 128#define FSPI_INTR_AHBCMDGE              BIT(2)
 129#define FSPI_INTR_IPCMDGE               BIT(1)
 130#define FSPI_INTR_IPCMDDONE             BIT(0)
 131
 132#define FSPI_LUTKEY                     0x18
 133#define FSPI_LUTKEY_VALUE               0x5AF05AF0
 134
 135#define FSPI_LCKCR                      0x1C
 136
 137#define FSPI_LCKER_LOCK                 0x1
 138#define FSPI_LCKER_UNLOCK               0x2
 139
 140#define FSPI_BUFXCR_INVALID_MSTRID      0xE
 141#define FSPI_AHBRX_BUF0CR0              0x20
 142#define FSPI_AHBRX_BUF1CR0              0x24
 143#define FSPI_AHBRX_BUF2CR0              0x28
 144#define FSPI_AHBRX_BUF3CR0              0x2C
 145#define FSPI_AHBRX_BUF4CR0              0x30
 146#define FSPI_AHBRX_BUF5CR0              0x34
 147#define FSPI_AHBRX_BUF6CR0              0x38
 148#define FSPI_AHBRX_BUF7CR0              0x3C
 149#define FSPI_AHBRXBUF0CR7_PREF          BIT(31)
 150
 151#define FSPI_AHBRX_BUF0CR1              0x40
 152#define FSPI_AHBRX_BUF1CR1              0x44
 153#define FSPI_AHBRX_BUF2CR1              0x48
 154#define FSPI_AHBRX_BUF3CR1              0x4C
 155#define FSPI_AHBRX_BUF4CR1              0x50
 156#define FSPI_AHBRX_BUF5CR1              0x54
 157#define FSPI_AHBRX_BUF6CR1              0x58
 158#define FSPI_AHBRX_BUF7CR1              0x5C
 159
 160#define FSPI_FLSHA1CR0                  0x60
 161#define FSPI_FLSHA2CR0                  0x64
 162#define FSPI_FLSHB1CR0                  0x68
 163#define FSPI_FLSHB2CR0                  0x6C
 164#define FSPI_FLSHXCR0_SZ_KB             10
 165#define FSPI_FLSHXCR0_SZ(x)             ((x) >> FSPI_FLSHXCR0_SZ_KB)
 166
 167#define FSPI_FLSHA1CR1                  0x70
 168#define FSPI_FLSHA2CR1                  0x74
 169#define FSPI_FLSHB1CR1                  0x78
 170#define FSPI_FLSHB2CR1                  0x7C
 171#define FSPI_FLSHXCR1_CSINTR(x)         ((x) << 16)
 172#define FSPI_FLSHXCR1_CAS(x)            ((x) << 11)
 173#define FSPI_FLSHXCR1_WA                BIT(10)
 174#define FSPI_FLSHXCR1_TCSH(x)           ((x) << 5)
 175#define FSPI_FLSHXCR1_TCSS(x)           (x)
 176
 177#define FSPI_FLSHA1CR2                  0x80
 178#define FSPI_FLSHA2CR2                  0x84
 179#define FSPI_FLSHB1CR2                  0x88
 180#define FSPI_FLSHB2CR2                  0x8C
 181#define FSPI_FLSHXCR2_CLRINSP           BIT(24)
 182#define FSPI_FLSHXCR2_AWRWAIT           BIT(16)
 183#define FSPI_FLSHXCR2_AWRSEQN_SHIFT     13
 184#define FSPI_FLSHXCR2_AWRSEQI_SHIFT     8
 185#define FSPI_FLSHXCR2_ARDSEQN_SHIFT     5
 186#define FSPI_FLSHXCR2_ARDSEQI_SHIFT     0
 187
 188#define FSPI_IPCR0                      0xA0
 189
 190#define FSPI_IPCR1                      0xA4
 191#define FSPI_IPCR1_IPAREN               BIT(31)
 192#define FSPI_IPCR1_SEQNUM_SHIFT         24
 193#define FSPI_IPCR1_SEQID_SHIFT          16
 194#define FSPI_IPCR1_IDATSZ(x)            (x)
 195
 196#define FSPI_IPCMD                      0xB0
 197#define FSPI_IPCMD_TRG                  BIT(0)
 198
 199#define FSPI_DLPR                       0xB4
 200
 201#define FSPI_IPRXFCR                    0xB8
 202#define FSPI_IPRXFCR_CLR                BIT(0)
 203#define FSPI_IPRXFCR_DMA_EN             BIT(1)
 204#define FSPI_IPRXFCR_WMRK(x)            ((x) << 2)
 205
 206#define FSPI_IPTXFCR                    0xBC
 207#define FSPI_IPTXFCR_CLR                BIT(0)
 208#define FSPI_IPTXFCR_DMA_EN             BIT(1)
 209#define FSPI_IPTXFCR_WMRK(x)            ((x) << 2)
 210
 211#define FSPI_DLLACR                     0xC0
 212#define FSPI_DLLACR_OVRDEN              BIT(8)
 213
 214#define FSPI_DLLBCR                     0xC4
 215#define FSPI_DLLBCR_OVRDEN              BIT(8)
 216
 217#define FSPI_STS0                       0xE0
 218#define FSPI_STS0_DLPHB(x)              ((x) << 8)
 219#define FSPI_STS0_DLPHA(x)              ((x) << 4)
 220#define FSPI_STS0_CMD_SRC(x)            ((x) << 2)
 221#define FSPI_STS0_ARB_IDLE              BIT(1)
 222#define FSPI_STS0_SEQ_IDLE              BIT(0)
 223
 224#define FSPI_STS1                       0xE4
 225#define FSPI_STS1_IP_ERRCD(x)           ((x) << 24)
 226#define FSPI_STS1_IP_ERRID(x)           ((x) << 16)
 227#define FSPI_STS1_AHB_ERRCD(x)          ((x) << 8)
 228#define FSPI_STS1_AHB_ERRID(x)          (x)
 229
 230#define FSPI_AHBSPNST                   0xEC
 231#define FSPI_AHBSPNST_DATLFT(x)         ((x) << 16)
 232#define FSPI_AHBSPNST_BUFID(x)          ((x) << 1)
 233#define FSPI_AHBSPNST_ACTIVE            BIT(0)
 234
 235#define FSPI_IPRXFSTS                   0xF0
 236#define FSPI_IPRXFSTS_RDCNTR(x)         ((x) << 16)
 237#define FSPI_IPRXFSTS_FILL(x)           (x)
 238
 239#define FSPI_IPTXFSTS                   0xF4
 240#define FSPI_IPTXFSTS_WRCNTR(x)         ((x) << 16)
 241#define FSPI_IPTXFSTS_FILL(x)           (x)
 242
 243#define FSPI_RFDR                       0x100
 244#define FSPI_TFDR                       0x180
 245
 246#define FSPI_LUT_BASE                   0x200
 247#define FSPI_LUT_OFFSET                 (SEQID_LUT * 4 * 4)
 248#define FSPI_LUT_REG(idx) \
 249        (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
 250
 251/* register map end */
 252
 253/* Instruction set for the LUT register. */
 254#define LUT_STOP                        0x00
 255#define LUT_CMD                         0x01
 256#define LUT_ADDR                        0x02
 257#define LUT_CADDR_SDR                   0x03
 258#define LUT_MODE                        0x04
 259#define LUT_MODE2                       0x05
 260#define LUT_MODE4                       0x06
 261#define LUT_MODE8                       0x07
 262#define LUT_NXP_WRITE                   0x08
 263#define LUT_NXP_READ                    0x09
 264#define LUT_LEARN_SDR                   0x0A
 265#define LUT_DATSZ_SDR                   0x0B
 266#define LUT_DUMMY                       0x0C
 267#define LUT_DUMMY_RWDS_SDR              0x0D
 268#define LUT_JMP_ON_CS                   0x1F
 269#define LUT_CMD_DDR                     0x21
 270#define LUT_ADDR_DDR                    0x22
 271#define LUT_CADDR_DDR                   0x23
 272#define LUT_MODE_DDR                    0x24
 273#define LUT_MODE2_DDR                   0x25
 274#define LUT_MODE4_DDR                   0x26
 275#define LUT_MODE8_DDR                   0x27
 276#define LUT_WRITE_DDR                   0x28
 277#define LUT_READ_DDR                    0x29
 278#define LUT_LEARN_DDR                   0x2A
 279#define LUT_DATSZ_DDR                   0x2B
 280#define LUT_DUMMY_DDR                   0x2C
 281#define LUT_DUMMY_RWDS_DDR              0x2D
 282
 283/*
 284 * Calculate number of required PAD bits for LUT register.
 285 *
 286 * The pad stands for the number of IO lines [0:7].
 287 * For example, the octal read needs eight IO lines,
 288 * so you should use LUT_PAD(8). This macro
 289 * returns 3 i.e. use eight (2^3) IP lines for read.
 290 */
 291#define LUT_PAD(x) (fls(x) - 1)
 292
 293/*
 294 * Macro for constructing the LUT entries with the following
 295 * register layout:
 296 *
 297 *  ---------------------------------------------------
 298 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 299 *  ---------------------------------------------------
 300 */
 301#define PAD_SHIFT               8
 302#define INSTR_SHIFT             10
 303#define OPRND_SHIFT             16
 304
 305/* Macros for constructing the LUT register. */
 306#define LUT_DEF(idx, ins, pad, opr)                       \
 307        ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
 308        (opr)) << (((idx) % 2) * OPRND_SHIFT))
 309
 310#define POLL_TOUT               5000
 311#define NXP_FSPI_MAX_CHIPSELECT         4
 312#define NXP_FSPI_MIN_IOMAP      SZ_4M
 313
 314struct nxp_fspi_devtype_data {
 315        unsigned int rxfifo;
 316        unsigned int txfifo;
 317        unsigned int ahb_buf_size;
 318        unsigned int quirks;
 319        bool little_endian;
 320};
 321
 322static const struct nxp_fspi_devtype_data lx2160a_data = {
 323        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 324        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 325        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 326        .quirks = 0,
 327        .little_endian = true,  /* little-endian    */
 328};
 329
 330static const struct nxp_fspi_devtype_data imx8mm_data = {
 331        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 332        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 333        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 334        .quirks = 0,
 335        .little_endian = true,  /* little-endian    */
 336};
 337
 338static const struct nxp_fspi_devtype_data imx8qxp_data = {
 339        .rxfifo = SZ_512,       /* (64  * 64 bits)  */
 340        .txfifo = SZ_1K,        /* (128 * 64 bits)  */
 341        .ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
 342        .quirks = 0,
 343        .little_endian = true,  /* little-endian    */
 344};
 345
 346struct nxp_fspi {
 347        void __iomem *iobase;
 348        void __iomem *ahb_addr;
 349        u32 memmap_phy;
 350        u32 memmap_phy_size;
 351        u32 memmap_start;
 352        u32 memmap_len;
 353        struct clk *clk, *clk_en;
 354        struct device *dev;
 355        struct completion c;
 356        const struct nxp_fspi_devtype_data *devtype_data;
 357        struct mutex lock;
 358        struct pm_qos_request pm_qos_req;
 359        int selected;
 360};
 361
 362/*
 363 * R/W functions for big- or little-endian registers:
 364 * The FSPI controller's endianness is independent of
 365 * the CPU core's endianness. So far, although the CPU
 366 * core is little-endian the FSPI controller can use
 367 * big-endian or little-endian.
 368 */
 369static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
 370{
 371        if (f->devtype_data->little_endian)
 372                iowrite32(val, addr);
 373        else
 374                iowrite32be(val, addr);
 375}
 376
 377static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
 378{
 379        if (f->devtype_data->little_endian)
 380                return ioread32(addr);
 381        else
 382                return ioread32be(addr);
 383}
 384
 385static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
 386{
 387        struct nxp_fspi *f = dev_id;
 388        u32 reg;
 389
 390        /* clear interrupt */
 391        reg = fspi_readl(f, f->iobase + FSPI_INTR);
 392        fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
 393
 394        if (reg & FSPI_INTR_IPCMDDONE)
 395                complete(&f->c);
 396
 397        return IRQ_HANDLED;
 398}
 399
 400static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
 401{
 402        switch (width) {
 403        case 1:
 404        case 2:
 405        case 4:
 406        case 8:
 407                return 0;
 408        }
 409
 410        return -ENOTSUPP;
 411}
 412
 413static bool nxp_fspi_supports_op(struct spi_mem *mem,
 414                                 const struct spi_mem_op *op)
 415{
 416        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 417        int ret;
 418
 419        ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
 420
 421        if (op->addr.nbytes)
 422                ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
 423
 424        if (op->dummy.nbytes)
 425                ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
 426
 427        if (op->data.nbytes)
 428                ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
 429
 430        if (ret)
 431                return false;
 432
 433        /*
 434         * The number of address bytes should be equal to or less than 4 bytes.
 435         */
 436        if (op->addr.nbytes > 4)
 437                return false;
 438
 439        /*
 440         * If requested address value is greater than controller assigned
 441         * memory mapped space, return error as it didn't fit in the range
 442         * of assigned address space.
 443         */
 444        if (op->addr.val >= f->memmap_phy_size)
 445                return false;
 446
 447        /* Max 64 dummy clock cycles supported */
 448        if (op->dummy.buswidth &&
 449            (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
 450                return false;
 451
 452        /* Max data length, check controller limits and alignment */
 453        if (op->data.dir == SPI_MEM_DATA_IN &&
 454            (op->data.nbytes > f->devtype_data->ahb_buf_size ||
 455             (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
 456              !IS_ALIGNED(op->data.nbytes, 8))))
 457                return false;
 458
 459        if (op->data.dir == SPI_MEM_DATA_OUT &&
 460            op->data.nbytes > f->devtype_data->txfifo)
 461                return false;
 462
 463        return spi_mem_default_supports_op(mem, op);
 464}
 465
 466/* Instead of busy looping invoke readl_poll_timeout functionality. */
 467static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
 468                                u32 mask, u32 delay_us,
 469                                u32 timeout_us, bool c)
 470{
 471        u32 reg;
 472
 473        if (!f->devtype_data->little_endian)
 474                mask = (u32)cpu_to_be32(mask);
 475
 476        if (c)
 477                return readl_poll_timeout(base, reg, (reg & mask),
 478                                          delay_us, timeout_us);
 479        else
 480                return readl_poll_timeout(base, reg, !(reg & mask),
 481                                          delay_us, timeout_us);
 482}
 483
 484/*
 485 * If the slave device content being changed by Write/Erase, need to
 486 * invalidate the AHB buffer. This can be achieved by doing the reset
 487 * of controller after setting MCR0[SWRESET] bit.
 488 */
 489static inline void nxp_fspi_invalid(struct nxp_fspi *f)
 490{
 491        u32 reg;
 492        int ret;
 493
 494        reg = fspi_readl(f, f->iobase + FSPI_MCR0);
 495        fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
 496
 497        /* w1c register, wait unit clear */
 498        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 499                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 500        WARN_ON(ret);
 501}
 502
 503static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
 504                                 const struct spi_mem_op *op)
 505{
 506        void __iomem *base = f->iobase;
 507        u32 lutval[4] = {};
 508        int lutidx = 1, i;
 509
 510        /* cmd */
 511        lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
 512                             op->cmd.opcode);
 513
 514        /* addr bytes */
 515        if (op->addr.nbytes) {
 516                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
 517                                              LUT_PAD(op->addr.buswidth),
 518                                              op->addr.nbytes * 8);
 519                lutidx++;
 520        }
 521
 522        /* dummy bytes, if needed */
 523        if (op->dummy.nbytes) {
 524                lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
 525                /*
 526                 * Due to FlexSPI controller limitation number of PAD for dummy
 527                 * buswidth needs to be programmed as equal to data buswidth.
 528                 */
 529                                              LUT_PAD(op->data.buswidth),
 530                                              op->dummy.nbytes * 8 /
 531                                              op->dummy.buswidth);
 532                lutidx++;
 533        }
 534
 535        /* read/write data bytes */
 536        if (op->data.nbytes) {
 537                lutval[lutidx / 2] |= LUT_DEF(lutidx,
 538                                              op->data.dir == SPI_MEM_DATA_IN ?
 539                                              LUT_NXP_READ : LUT_NXP_WRITE,
 540                                              LUT_PAD(op->data.buswidth),
 541                                              0);
 542                lutidx++;
 543        }
 544
 545        /* stop condition. */
 546        lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
 547
 548        /* unlock LUT */
 549        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 550        fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
 551
 552        /* fill LUT */
 553        for (i = 0; i < ARRAY_SIZE(lutval); i++)
 554                fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
 555
 556        dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
 557                op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);
 558
 559        /* lock LUT */
 560        fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
 561        fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
 562}
 563
 564static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
 565{
 566        int ret;
 567
 568        if (is_acpi_node(f->dev->fwnode))
 569                return 0;
 570
 571        ret = clk_prepare_enable(f->clk_en);
 572        if (ret)
 573                return ret;
 574
 575        ret = clk_prepare_enable(f->clk);
 576        if (ret) {
 577                clk_disable_unprepare(f->clk_en);
 578                return ret;
 579        }
 580
 581        return 0;
 582}
 583
 584static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
 585{
 586        if (is_acpi_node(f->dev->fwnode))
 587                return 0;
 588
 589        clk_disable_unprepare(f->clk);
 590        clk_disable_unprepare(f->clk_en);
 591
 592        return 0;
 593}
 594
 595/*
 596 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 597 * register and start base address of the slave device.
 598 *
 599 *                                                          (Higher address)
 600 *                              --------    <-- FLSHB2CR0
 601 *                              |  B2  |
 602 *                              |      |
 603 *      B2 start address -->    --------    <-- FLSHB1CR0
 604 *                              |  B1  |
 605 *                              |      |
 606 *      B1 start address -->    --------    <-- FLSHA2CR0
 607 *                              |  A2  |
 608 *                              |      |
 609 *      A2 start address -->    --------    <-- FLSHA1CR0
 610 *                              |  A1  |
 611 *                              |      |
 612 *      A1 start address -->    --------                    (Lower address)
 613 *
 614 *
 615 * Start base address defines the starting address range for given CS and
 616 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 617 *
 618 * But, different targets are having different combinations of number of CS,
 619 * some targets only have single CS or two CS covering controller's full
 620 * memory mapped space area.
 621 * Thus, implementation is being done as independent of the size and number
 622 * of the connected slave device.
 623 * Assign controller memory mapped space size as the size to the connected
 624 * slave device.
 625 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 626 * chip-select Flash configuration register.
 627 *
 628 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 629 * memory mapped size of the controller.
 630 * Value for rest of the CS FLSHxxCR0 register would be zero.
 631 *
 632 */
 633static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
 634{
 635        unsigned long rate = spi->max_speed_hz;
 636        int ret;
 637        uint64_t size_kb;
 638
 639        /*
 640         * Return, if previously selected slave device is same as current
 641         * requested slave device.
 642         */
 643        if (f->selected == spi->chip_select)
 644                return;
 645
 646        /* Reset FLSHxxCR0 registers */
 647        fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
 648        fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
 649        fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
 650        fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
 651
 652        /* Assign controller memory mapped space as size, KBytes, of flash. */
 653        size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
 654
 655        fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
 656                    4 * spi->chip_select);
 657
 658        dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
 659
 660        nxp_fspi_clk_disable_unprep(f);
 661
 662        ret = clk_set_rate(f->clk, rate);
 663        if (ret)
 664                return;
 665
 666        ret = nxp_fspi_clk_prep_enable(f);
 667        if (ret)
 668                return;
 669
 670        f->selected = spi->chip_select;
 671}
 672
 673static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
 674{
 675        u32 start = op->addr.val;
 676        u32 len = op->data.nbytes;
 677
 678        /* if necessary, ioremap before AHB read */
 679        if ((!f->ahb_addr) || start < f->memmap_start ||
 680             start + len > f->memmap_start + f->memmap_len) {
 681                if (f->ahb_addr)
 682                        iounmap(f->ahb_addr);
 683
 684                f->memmap_start = start;
 685                f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
 686                                len : NXP_FSPI_MIN_IOMAP;
 687
 688                f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
 689                                         f->memmap_len);
 690
 691                if (!f->ahb_addr) {
 692                        dev_err(f->dev, "failed to alloc memory\n");
 693                        return -ENOMEM;
 694                }
 695        }
 696
 697        /* Read out the data directly from the AHB buffer. */
 698        memcpy_fromio(op->data.buf.in,
 699                      f->ahb_addr + start - f->memmap_start, len);
 700
 701        return 0;
 702}
 703
 704static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
 705                                 const struct spi_mem_op *op)
 706{
 707        void __iomem *base = f->iobase;
 708        int i, ret;
 709        u8 *buf = (u8 *) op->data.buf.out;
 710
 711        /* clear the TX FIFO. */
 712        fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
 713
 714        /*
 715         * Default value of water mark level is 8 bytes, hence in single
 716         * write request controller can write max 8 bytes of data.
 717         */
 718
 719        for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
 720                /* Wait for TXFIFO empty */
 721                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 722                                           FSPI_INTR_IPTXWE, 0,
 723                                           POLL_TOUT, true);
 724                WARN_ON(ret);
 725
 726                fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
 727                fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
 728                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 729        }
 730
 731        if (i < op->data.nbytes) {
 732                u32 data = 0;
 733                int j;
 734                /* Wait for TXFIFO empty */
 735                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 736                                           FSPI_INTR_IPTXWE, 0,
 737                                           POLL_TOUT, true);
 738                WARN_ON(ret);
 739
 740                for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
 741                        memcpy(&data, buf + i + j, 4);
 742                        fspi_writel(f, data, base + FSPI_TFDR + j);
 743                }
 744                fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
 745        }
 746}
 747
 748static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
 749                          const struct spi_mem_op *op)
 750{
 751        void __iomem *base = f->iobase;
 752        int i, ret;
 753        int len = op->data.nbytes;
 754        u8 *buf = (u8 *) op->data.buf.in;
 755
 756        /*
 757         * Default value of water mark level is 8 bytes, hence in single
 758         * read request controller can read max 8 bytes of data.
 759         */
 760        for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
 761                /* Wait for RXFIFO available */
 762                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 763                                           FSPI_INTR_IPRXWA, 0,
 764                                           POLL_TOUT, true);
 765                WARN_ON(ret);
 766
 767                *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
 768                *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
 769                /* move the FIFO pointer */
 770                fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 771        }
 772
 773        if (i < len) {
 774                u32 tmp;
 775                int size, j;
 776
 777                buf = op->data.buf.in + i;
 778                /* Wait for RXFIFO available */
 779                ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
 780                                           FSPI_INTR_IPRXWA, 0,
 781                                           POLL_TOUT, true);
 782                WARN_ON(ret);
 783
 784                len = op->data.nbytes - i;
 785                for (j = 0; j < op->data.nbytes - i; j += 4) {
 786                        tmp = fspi_readl(f, base + FSPI_RFDR + j);
 787                        size = min(len, 4);
 788                        memcpy(buf + j, &tmp, size);
 789                        len -= size;
 790                }
 791        }
 792
 793        /* invalid the RXFIFO */
 794        fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
 795        /* move the FIFO pointer */
 796        fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
 797}
 798
 799static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
 800{
 801        void __iomem *base = f->iobase;
 802        int seqnum = 0;
 803        int err = 0;
 804        u32 reg;
 805
 806        reg = fspi_readl(f, base + FSPI_IPRXFCR);
 807        /* invalid RXFIFO first */
 808        reg &= ~FSPI_IPRXFCR_DMA_EN;
 809        reg = reg | FSPI_IPRXFCR_CLR;
 810        fspi_writel(f, reg, base + FSPI_IPRXFCR);
 811
 812        init_completion(&f->c);
 813
 814        fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
 815        /*
 816         * Always start the sequence at the same index since we update
 817         * the LUT at each exec_op() call. And also specify the DATA
 818         * length, since it's has not been specified in the LUT.
 819         */
 820        fspi_writel(f, op->data.nbytes |
 821                 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
 822                 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
 823                 base + FSPI_IPCR1);
 824
 825        /* Trigger the LUT now. */
 826        fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
 827
 828        /* Wait for the interrupt. */
 829        if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
 830                err = -ETIMEDOUT;
 831
 832        /* Invoke IP data read, if request is of data read. */
 833        if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
 834                nxp_fspi_read_rxfifo(f, op);
 835
 836        return err;
 837}
 838
 839static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 840{
 841        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 842        int err = 0;
 843
 844        mutex_lock(&f->lock);
 845
 846        /* Wait for controller being ready. */
 847        err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
 848                                   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
 849        WARN_ON(err);
 850
 851        nxp_fspi_select_mem(f, mem->spi);
 852
 853        nxp_fspi_prepare_lut(f, op);
 854        /*
 855         * If we have large chunks of data, we read them through the AHB bus
 856         * by accessing the mapped memory. In all other cases we use
 857         * IP commands to access the flash.
 858         */
 859        if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
 860            op->data.dir == SPI_MEM_DATA_IN) {
 861                err = nxp_fspi_read_ahb(f, op);
 862        } else {
 863                if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
 864                        nxp_fspi_fill_txfifo(f, op);
 865
 866                err = nxp_fspi_do_op(f, op);
 867        }
 868
 869        /* Invalidate the data in the AHB buffer. */
 870        nxp_fspi_invalid(f);
 871
 872        mutex_unlock(&f->lock);
 873
 874        return err;
 875}
 876
 877static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
 878{
 879        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 880
 881        if (op->data.dir == SPI_MEM_DATA_OUT) {
 882                if (op->data.nbytes > f->devtype_data->txfifo)
 883                        op->data.nbytes = f->devtype_data->txfifo;
 884        } else {
 885                if (op->data.nbytes > f->devtype_data->ahb_buf_size)
 886                        op->data.nbytes = f->devtype_data->ahb_buf_size;
 887                else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
 888                        op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
 889        }
 890
 891        return 0;
 892}
 893
 894static int nxp_fspi_default_setup(struct nxp_fspi *f)
 895{
 896        void __iomem *base = f->iobase;
 897        int ret, i;
 898        u32 reg;
 899
 900        /* disable and unprepare clock to avoid glitch pass to controller */
 901        nxp_fspi_clk_disable_unprep(f);
 902
 903        /* the default frequency, we will change it later if necessary. */
 904        ret = clk_set_rate(f->clk, 20000000);
 905        if (ret)
 906                return ret;
 907
 908        ret = nxp_fspi_clk_prep_enable(f);
 909        if (ret)
 910                return ret;
 911
 912        /* Reset the module */
 913        /* w1c register, wait unit clear */
 914        ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
 915                                   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
 916        WARN_ON(ret);
 917
 918        /* Disable the module */
 919        fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
 920
 921        /* Reset the DLL register to default value */
 922        fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
 923        fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
 924
 925        /* enable module */
 926        fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
 927                    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
 928                    base + FSPI_MCR0);
 929
 930        /*
 931         * Disable same device enable bit and configure all slave devices
 932         * independently.
 933         */
 934        reg = fspi_readl(f, f->iobase + FSPI_MCR2);
 935        reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
 936        fspi_writel(f, reg, base + FSPI_MCR2);
 937
 938        /* AHB configuration for access buffer 0~7. */
 939        for (i = 0; i < 7; i++)
 940                fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
 941
 942        /*
 943         * Set ADATSZ with the maximum AHB buffer size to improve the read
 944         * performance.
 945         */
 946        fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
 947                  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
 948
 949        /* prefetch and no start address alignment limitation */
 950        fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
 951                 base + FSPI_AHBCR);
 952
 953        /* AHB Read - Set lut sequence ID for all CS. */
 954        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
 955        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
 956        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
 957        fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
 958
 959        f->selected = -1;
 960
 961        /* enable the interrupt */
 962        fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
 963
 964        return 0;
 965}
 966
 967static const char *nxp_fspi_get_name(struct spi_mem *mem)
 968{
 969        struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
 970        struct device *dev = &mem->spi->dev;
 971        const char *name;
 972
 973        // Set custom name derived from the platform_device of the controller.
 974        if (of_get_available_child_count(f->dev->of_node) == 1)
 975                return dev_name(f->dev);
 976
 977        name = devm_kasprintf(dev, GFP_KERNEL,
 978                              "%s-%d", dev_name(f->dev),
 979                              mem->spi->chip_select);
 980
 981        if (!name) {
 982                dev_err(dev, "failed to get memory for custom flash name\n");
 983                return ERR_PTR(-ENOMEM);
 984        }
 985
 986        return name;
 987}
 988
 989static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
 990        .adjust_op_size = nxp_fspi_adjust_op_size,
 991        .supports_op = nxp_fspi_supports_op,
 992        .exec_op = nxp_fspi_exec_op,
 993        .get_name = nxp_fspi_get_name,
 994};
 995
 996static int nxp_fspi_probe(struct platform_device *pdev)
 997{
 998        struct spi_controller *ctlr;
 999        struct device *dev = &pdev->dev;
1000        struct device_node *np = dev->of_node;
1001        struct resource *res;
1002        struct nxp_fspi *f;
1003        int ret;
1004        u32 reg;
1005
1006        ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1007        if (!ctlr)
1008                return -ENOMEM;
1009
1010        ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1011                          SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1012
1013        f = spi_controller_get_devdata(ctlr);
1014        f->dev = dev;
1015        f->devtype_data = device_get_match_data(dev);
1016        if (!f->devtype_data) {
1017                ret = -ENODEV;
1018                goto err_put_ctrl;
1019        }
1020
1021        platform_set_drvdata(pdev, f);
1022
1023        /* find the resources - configuration register address space */
1024        if (is_acpi_node(f->dev->fwnode))
1025                res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1026        else
1027                res = platform_get_resource_byname(pdev,
1028                                IORESOURCE_MEM, "fspi_base");
1029
1030        f->iobase = devm_ioremap_resource(dev, res);
1031        if (IS_ERR(f->iobase)) {
1032                ret = PTR_ERR(f->iobase);
1033                goto err_put_ctrl;
1034        }
1035
1036        /* Clear potential interrupts */
1037        reg = fspi_readl(f, f->iobase + FSPI_INTR);
1038        if (reg)
1039                fspi_writel(f, reg, f->iobase + FSPI_INTR);
1040
1041
1042        /* find the resources - controller memory mapped space */
1043        if (is_acpi_node(f->dev->fwnode))
1044                res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1045        else
1046                res = platform_get_resource_byname(pdev,
1047                                IORESOURCE_MEM, "fspi_mmap");
1048
1049        if (!res) {
1050                ret = -ENODEV;
1051                goto err_put_ctrl;
1052        }
1053
1054        /* assign memory mapped starting address and mapped size. */
1055        f->memmap_phy = res->start;
1056        f->memmap_phy_size = resource_size(res);
1057
1058        /* find the clocks */
1059        if (dev_of_node(&pdev->dev)) {
1060                f->clk_en = devm_clk_get(dev, "fspi_en");
1061                if (IS_ERR(f->clk_en)) {
1062                        ret = PTR_ERR(f->clk_en);
1063                        goto err_put_ctrl;
1064                }
1065
1066                f->clk = devm_clk_get(dev, "fspi");
1067                if (IS_ERR(f->clk)) {
1068                        ret = PTR_ERR(f->clk);
1069                        goto err_put_ctrl;
1070                }
1071
1072                ret = nxp_fspi_clk_prep_enable(f);
1073                if (ret) {
1074                        dev_err(dev, "can not enable the clock\n");
1075                        goto err_put_ctrl;
1076                }
1077        }
1078
1079        /* find the irq */
1080        ret = platform_get_irq(pdev, 0);
1081        if (ret < 0)
1082                goto err_disable_clk;
1083
1084        ret = devm_request_irq(dev, ret,
1085                        nxp_fspi_irq_handler, 0, pdev->name, f);
1086        if (ret) {
1087                dev_err(dev, "failed to request irq: %d\n", ret);
1088                goto err_disable_clk;
1089        }
1090
1091        mutex_init(&f->lock);
1092
1093        ctlr->bus_num = -1;
1094        ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1095        ctlr->mem_ops = &nxp_fspi_mem_ops;
1096
1097        nxp_fspi_default_setup(f);
1098
1099        ctlr->dev.of_node = np;
1100
1101        ret = devm_spi_register_controller(&pdev->dev, ctlr);
1102        if (ret)
1103                goto err_destroy_mutex;
1104
1105        return 0;
1106
1107err_destroy_mutex:
1108        mutex_destroy(&f->lock);
1109
1110err_disable_clk:
1111        nxp_fspi_clk_disable_unprep(f);
1112
1113err_put_ctrl:
1114        spi_controller_put(ctlr);
1115
1116        dev_err(dev, "NXP FSPI probe failed\n");
1117        return ret;
1118}
1119
1120static int nxp_fspi_remove(struct platform_device *pdev)
1121{
1122        struct nxp_fspi *f = platform_get_drvdata(pdev);
1123
1124        /* disable the hardware */
1125        fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1126
1127        nxp_fspi_clk_disable_unprep(f);
1128
1129        mutex_destroy(&f->lock);
1130
1131        if (f->ahb_addr)
1132                iounmap(f->ahb_addr);
1133
1134        return 0;
1135}
1136
1137static int nxp_fspi_suspend(struct device *dev)
1138{
1139        return 0;
1140}
1141
1142static int nxp_fspi_resume(struct device *dev)
1143{
1144        struct nxp_fspi *f = dev_get_drvdata(dev);
1145
1146        nxp_fspi_default_setup(f);
1147
1148        return 0;
1149}
1150
1151static const struct of_device_id nxp_fspi_dt_ids[] = {
1152        { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1153        { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1154        { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1155        { /* sentinel */ }
1156};
1157MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1158
1159#ifdef CONFIG_ACPI
1160static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1161        { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1162        {}
1163};
1164MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1165#endif
1166
1167static const struct dev_pm_ops nxp_fspi_pm_ops = {
1168        .suspend        = nxp_fspi_suspend,
1169        .resume         = nxp_fspi_resume,
1170};
1171
1172static struct platform_driver nxp_fspi_driver = {
1173        .driver = {
1174                .name   = "nxp-fspi",
1175                .of_match_table = nxp_fspi_dt_ids,
1176                .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1177                .pm =   &nxp_fspi_pm_ops,
1178        },
1179        .probe          = nxp_fspi_probe,
1180        .remove         = nxp_fspi_remove,
1181};
1182module_platform_driver(nxp_fspi_driver);
1183
1184MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1185MODULE_AUTHOR("NXP Semiconductor");
1186MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1187MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1188MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1189MODULE_LICENSE("GPL v2");
1190