linux/drivers/thunderbolt/usb4.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * USB4 specific functionality
   4 *
   5 * Copyright (C) 2019, Intel Corporation
   6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
   7 *          Rajmohan Mani <rajmohan.mani@intel.com>
   8 */
   9
  10#include <linux/delay.h>
  11#include <linux/ktime.h>
  12
  13#include "sb_regs.h"
  14#include "tb.h"
  15
  16#define USB4_DATA_DWORDS                16
  17#define USB4_DATA_RETRIES               3
  18
  19enum usb4_sb_target {
  20        USB4_SB_TARGET_ROUTER,
  21        USB4_SB_TARGET_PARTNER,
  22        USB4_SB_TARGET_RETIMER,
  23};
  24
  25#define USB4_NVM_READ_OFFSET_MASK       GENMASK(23, 2)
  26#define USB4_NVM_READ_OFFSET_SHIFT      2
  27#define USB4_NVM_READ_LENGTH_MASK       GENMASK(27, 24)
  28#define USB4_NVM_READ_LENGTH_SHIFT      24
  29
  30#define USB4_NVM_SET_OFFSET_MASK        USB4_NVM_READ_OFFSET_MASK
  31#define USB4_NVM_SET_OFFSET_SHIFT       USB4_NVM_READ_OFFSET_SHIFT
  32
  33#define USB4_DROM_ADDRESS_MASK          GENMASK(14, 2)
  34#define USB4_DROM_ADDRESS_SHIFT         2
  35#define USB4_DROM_SIZE_MASK             GENMASK(19, 15)
  36#define USB4_DROM_SIZE_SHIFT            15
  37
  38#define USB4_NVM_SECTOR_SIZE_MASK       GENMASK(23, 0)
  39
  40typedef int (*read_block_fn)(void *, unsigned int, void *, size_t);
  41typedef int (*write_block_fn)(void *, const void *, size_t);
  42
  43static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
  44                                    u32 value, int timeout_msec)
  45{
  46        ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
  47
  48        do {
  49                u32 val;
  50                int ret;
  51
  52                ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
  53                if (ret)
  54                        return ret;
  55
  56                if ((val & bit) == value)
  57                        return 0;
  58
  59                usleep_range(50, 100);
  60        } while (ktime_before(ktime_get(), timeout));
  61
  62        return -ETIMEDOUT;
  63}
  64
  65static int usb4_do_read_data(u16 address, void *buf, size_t size,
  66                             read_block_fn read_block, void *read_block_data)
  67{
  68        unsigned int retries = USB4_DATA_RETRIES;
  69        unsigned int offset;
  70
  71        offset = address & 3;
  72        address = address & ~3;
  73
  74        do {
  75                size_t nbytes = min_t(size_t, size, USB4_DATA_DWORDS * 4);
  76                unsigned int dwaddress, dwords;
  77                u8 data[USB4_DATA_DWORDS * 4];
  78                int ret;
  79
  80                dwaddress = address / 4;
  81                dwords = ALIGN(nbytes, 4) / 4;
  82
  83                ret = read_block(read_block_data, dwaddress, data, dwords);
  84                if (ret) {
  85                        if (ret != -ENODEV && retries--)
  86                                continue;
  87                        return ret;
  88                }
  89
  90                memcpy(buf, data + offset, nbytes);
  91
  92                size -= nbytes;
  93                address += nbytes;
  94                buf += nbytes;
  95        } while (size > 0);
  96
  97        return 0;
  98}
  99
 100static int usb4_do_write_data(unsigned int address, const void *buf, size_t size,
 101        write_block_fn write_next_block, void *write_block_data)
 102{
 103        unsigned int retries = USB4_DATA_RETRIES;
 104        unsigned int offset;
 105
 106        offset = address & 3;
 107        address = address & ~3;
 108
 109        do {
 110                u32 nbytes = min_t(u32, size, USB4_DATA_DWORDS * 4);
 111                u8 data[USB4_DATA_DWORDS * 4];
 112                int ret;
 113
 114                memcpy(data + offset, buf, nbytes);
 115
 116                ret = write_next_block(write_block_data, data, nbytes / 4);
 117                if (ret) {
 118                        if (ret == -ETIMEDOUT) {
 119                                if (retries--)
 120                                        continue;
 121                                ret = -EIO;
 122                        }
 123                        return ret;
 124                }
 125
 126                size -= nbytes;
 127                address += nbytes;
 128                buf += nbytes;
 129        } while (size > 0);
 130
 131        return 0;
 132}
 133
 134static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
 135                                 u32 *metadata, u8 *status,
 136                                 const void *tx_data, size_t tx_dwords,
 137                                 void *rx_data, size_t rx_dwords)
 138{
 139        u32 val;
 140        int ret;
 141
 142        if (metadata) {
 143                ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
 144                if (ret)
 145                        return ret;
 146        }
 147        if (tx_dwords) {
 148                ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
 149                                  tx_dwords);
 150                if (ret)
 151                        return ret;
 152        }
 153
 154        val = opcode | ROUTER_CS_26_OV;
 155        ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
 156        if (ret)
 157                return ret;
 158
 159        ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
 160        if (ret)
 161                return ret;
 162
 163        ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
 164        if (ret)
 165                return ret;
 166
 167        if (val & ROUTER_CS_26_ONS)
 168                return -EOPNOTSUPP;
 169
 170        if (status)
 171                *status = (val & ROUTER_CS_26_STATUS_MASK) >>
 172                        ROUTER_CS_26_STATUS_SHIFT;
 173
 174        if (metadata) {
 175                ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
 176                if (ret)
 177                        return ret;
 178        }
 179        if (rx_dwords) {
 180                ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
 181                                 rx_dwords);
 182                if (ret)
 183                        return ret;
 184        }
 185
 186        return 0;
 187}
 188
 189static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
 190                            u8 *status, const void *tx_data, size_t tx_dwords,
 191                            void *rx_data, size_t rx_dwords)
 192{
 193        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
 194
 195        if (tx_dwords > USB4_DATA_DWORDS || rx_dwords > USB4_DATA_DWORDS)
 196                return -EINVAL;
 197
 198        /*
 199         * If the connection manager implementation provides USB4 router
 200         * operation proxy callback, call it here instead of running the
 201         * operation natively.
 202         */
 203        if (cm_ops->usb4_switch_op) {
 204                int ret;
 205
 206                ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
 207                                             tx_data, tx_dwords, rx_data,
 208                                             rx_dwords);
 209                if (ret != -EOPNOTSUPP)
 210                        return ret;
 211
 212                /*
 213                 * If the proxy was not supported then run the native
 214                 * router operation instead.
 215                 */
 216        }
 217
 218        return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
 219                                     tx_dwords, rx_data, rx_dwords);
 220}
 221
 222static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
 223                                 u32 *metadata, u8 *status)
 224{
 225        return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
 226}
 227
 228static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
 229                                      u32 *metadata, u8 *status,
 230                                      const void *tx_data, size_t tx_dwords,
 231                                      void *rx_data, size_t rx_dwords)
 232{
 233        return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
 234                                tx_dwords, rx_data, rx_dwords);
 235}
 236
 237static void usb4_switch_check_wakes(struct tb_switch *sw)
 238{
 239        struct tb_port *port;
 240        bool wakeup = false;
 241        u32 val;
 242
 243        if (!device_may_wakeup(&sw->dev))
 244                return;
 245
 246        if (tb_route(sw)) {
 247                if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
 248                        return;
 249
 250                tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
 251                          (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
 252                          (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
 253
 254                wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
 255        }
 256
 257        /* Check for any connected downstream ports for USB4 wake */
 258        tb_switch_for_each_port(sw, port) {
 259                if (!tb_port_has_remote(port))
 260                        continue;
 261
 262                if (tb_port_read(port, &val, TB_CFG_PORT,
 263                                 port->cap_usb4 + PORT_CS_18, 1))
 264                        break;
 265
 266                tb_port_dbg(port, "USB4 wake: %s\n",
 267                            (val & PORT_CS_18_WOU4S) ? "yes" : "no");
 268
 269                if (val & PORT_CS_18_WOU4S)
 270                        wakeup = true;
 271        }
 272
 273        if (wakeup)
 274                pm_wakeup_event(&sw->dev, 0);
 275}
 276
 277static bool link_is_usb4(struct tb_port *port)
 278{
 279        u32 val;
 280
 281        if (!port->cap_usb4)
 282                return false;
 283
 284        if (tb_port_read(port, &val, TB_CFG_PORT,
 285                         port->cap_usb4 + PORT_CS_18, 1))
 286                return false;
 287
 288        return !(val & PORT_CS_18_TCM);
 289}
 290
 291/**
 292 * usb4_switch_setup() - Additional setup for USB4 device
 293 * @sw: USB4 router to setup
 294 *
 295 * USB4 routers need additional settings in order to enable all the
 296 * tunneling. This function enables USB and PCIe tunneling if it can be
 297 * enabled (e.g the parent switch also supports them). If USB tunneling
 298 * is not available for some reason (like that there is Thunderbolt 3
 299 * switch upstream) then the internal xHCI controller is enabled
 300 * instead.
 301 */
 302int usb4_switch_setup(struct tb_switch *sw)
 303{
 304        struct tb_port *downstream_port;
 305        struct tb_switch *parent;
 306        bool tbt3, xhci;
 307        u32 val = 0;
 308        int ret;
 309
 310        usb4_switch_check_wakes(sw);
 311
 312        if (!tb_route(sw))
 313                return 0;
 314
 315        ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
 316        if (ret)
 317                return ret;
 318
 319        parent = tb_switch_parent(sw);
 320        downstream_port = tb_port_at(tb_route(sw), parent);
 321        sw->link_usb4 = link_is_usb4(downstream_port);
 322        tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT3");
 323
 324        xhci = val & ROUTER_CS_6_HCI;
 325        tbt3 = !(val & ROUTER_CS_6_TNS);
 326
 327        tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
 328                  tbt3 ? "yes" : "no", xhci ? "yes" : "no");
 329
 330        ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 331        if (ret)
 332                return ret;
 333
 334        if (sw->link_usb4 && tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
 335                val |= ROUTER_CS_5_UTO;
 336                xhci = false;
 337        }
 338
 339        /* Only enable PCIe tunneling if the parent router supports it */
 340        if (tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
 341                val |= ROUTER_CS_5_PTO;
 342                /*
 343                 * xHCI can be enabled if PCIe tunneling is supported
 344                 * and the parent does not have any USB3 dowstream
 345                 * adapters (so we cannot do USB 3.x tunneling).
 346                 */
 347                if (xhci)
 348                        val |= ROUTER_CS_5_HCO;
 349        }
 350
 351        /* TBT3 supported by the CM */
 352        val |= ROUTER_CS_5_C3S;
 353        /* Tunneling configuration is ready now */
 354        val |= ROUTER_CS_5_CV;
 355
 356        ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 357        if (ret)
 358                return ret;
 359
 360        return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
 361                                        ROUTER_CS_6_CR, 50);
 362}
 363
 364/**
 365 * usb4_switch_read_uid() - Read UID from USB4 router
 366 * @sw: USB4 router
 367 * @uid: UID is stored here
 368 *
 369 * Reads 64-bit UID from USB4 router config space.
 370 */
 371int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
 372{
 373        return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
 374}
 375
 376static int usb4_switch_drom_read_block(void *data,
 377                                       unsigned int dwaddress, void *buf,
 378                                       size_t dwords)
 379{
 380        struct tb_switch *sw = data;
 381        u8 status = 0;
 382        u32 metadata;
 383        int ret;
 384
 385        metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
 386        metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
 387                USB4_DROM_ADDRESS_MASK;
 388
 389        ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
 390                                  &status, NULL, 0, buf, dwords);
 391        if (ret)
 392                return ret;
 393
 394        return status ? -EIO : 0;
 395}
 396
 397/**
 398 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
 399 * @sw: USB4 router
 400 * @address: Byte address inside DROM to start reading
 401 * @buf: Buffer where the DROM content is stored
 402 * @size: Number of bytes to read from DROM
 403 *
 404 * Uses USB4 router operations to read router DROM. For devices this
 405 * should always work but for hosts it may return %-EOPNOTSUPP in which
 406 * case the host router does not have DROM.
 407 */
 408int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
 409                          size_t size)
 410{
 411        return usb4_do_read_data(address, buf, size,
 412                                 usb4_switch_drom_read_block, sw);
 413}
 414
 415/**
 416 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
 417 * @sw: USB4 router
 418 *
 419 * Checks whether conditions are met so that lane bonding can be
 420 * established with the upstream router. Call only for device routers.
 421 */
 422bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
 423{
 424        struct tb_port *up;
 425        int ret;
 426        u32 val;
 427
 428        up = tb_upstream_port(sw);
 429        ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
 430        if (ret)
 431                return false;
 432
 433        return !!(val & PORT_CS_18_BE);
 434}
 435
 436/**
 437 * usb4_switch_set_wake() - Enabled/disable wake
 438 * @sw: USB4 router
 439 * @flags: Wakeup flags (%0 to disable)
 440 *
 441 * Enables/disables router to wake up from sleep.
 442 */
 443int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
 444{
 445        struct tb_port *port;
 446        u64 route = tb_route(sw);
 447        u32 val;
 448        int ret;
 449
 450        /*
 451         * Enable wakes coming from all USB4 downstream ports (from
 452         * child routers). For device routers do this also for the
 453         * upstream USB4 port.
 454         */
 455        tb_switch_for_each_port(sw, port) {
 456                if (!tb_port_is_null(port))
 457                        continue;
 458                if (!route && tb_is_upstream_port(port))
 459                        continue;
 460                if (!port->cap_usb4)
 461                        continue;
 462
 463                ret = tb_port_read(port, &val, TB_CFG_PORT,
 464                                   port->cap_usb4 + PORT_CS_19, 1);
 465                if (ret)
 466                        return ret;
 467
 468                val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
 469
 470                if (flags & TB_WAKE_ON_CONNECT)
 471                        val |= PORT_CS_19_WOC;
 472                if (flags & TB_WAKE_ON_DISCONNECT)
 473                        val |= PORT_CS_19_WOD;
 474                if (flags & TB_WAKE_ON_USB4)
 475                        val |= PORT_CS_19_WOU4;
 476
 477                ret = tb_port_write(port, &val, TB_CFG_PORT,
 478                                    port->cap_usb4 + PORT_CS_19, 1);
 479                if (ret)
 480                        return ret;
 481        }
 482
 483        /*
 484         * Enable wakes from PCIe and USB 3.x on this router. Only
 485         * needed for device routers.
 486         */
 487        if (route) {
 488                ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 489                if (ret)
 490                        return ret;
 491
 492                val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU);
 493                if (flags & TB_WAKE_ON_USB3)
 494                        val |= ROUTER_CS_5_WOU;
 495                if (flags & TB_WAKE_ON_PCIE)
 496                        val |= ROUTER_CS_5_WOP;
 497
 498                ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 499                if (ret)
 500                        return ret;
 501        }
 502
 503        return 0;
 504}
 505
 506/**
 507 * usb4_switch_set_sleep() - Prepare the router to enter sleep
 508 * @sw: USB4 router
 509 *
 510 * Sets sleep bit for the router. Returns when the router sleep ready
 511 * bit has been asserted.
 512 */
 513int usb4_switch_set_sleep(struct tb_switch *sw)
 514{
 515        int ret;
 516        u32 val;
 517
 518        /* Set sleep bit and wait for sleep ready to be asserted */
 519        ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 520        if (ret)
 521                return ret;
 522
 523        val |= ROUTER_CS_5_SLP;
 524
 525        ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
 526        if (ret)
 527                return ret;
 528
 529        return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
 530                                        ROUTER_CS_6_SLPR, 500);
 531}
 532
 533/**
 534 * usb4_switch_nvm_sector_size() - Return router NVM sector size
 535 * @sw: USB4 router
 536 *
 537 * If the router supports NVM operations this function returns the NVM
 538 * sector size in bytes. If NVM operations are not supported returns
 539 * %-EOPNOTSUPP.
 540 */
 541int usb4_switch_nvm_sector_size(struct tb_switch *sw)
 542{
 543        u32 metadata;
 544        u8 status;
 545        int ret;
 546
 547        ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
 548                             &status);
 549        if (ret)
 550                return ret;
 551
 552        if (status)
 553                return status == 0x2 ? -EOPNOTSUPP : -EIO;
 554
 555        return metadata & USB4_NVM_SECTOR_SIZE_MASK;
 556}
 557
 558static int usb4_switch_nvm_read_block(void *data,
 559        unsigned int dwaddress, void *buf, size_t dwords)
 560{
 561        struct tb_switch *sw = data;
 562        u8 status = 0;
 563        u32 metadata;
 564        int ret;
 565
 566        metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
 567                   USB4_NVM_READ_LENGTH_MASK;
 568        metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
 569                   USB4_NVM_READ_OFFSET_MASK;
 570
 571        ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
 572                                  &status, NULL, 0, buf, dwords);
 573        if (ret)
 574                return ret;
 575
 576        return status ? -EIO : 0;
 577}
 578
 579/**
 580 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
 581 * @sw: USB4 router
 582 * @address: Starting address in bytes
 583 * @buf: Read data is placed here
 584 * @size: How many bytes to read
 585 *
 586 * Reads NVM contents of the router. If NVM is not supported returns
 587 * %-EOPNOTSUPP.
 588 */
 589int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
 590                         size_t size)
 591{
 592        return usb4_do_read_data(address, buf, size,
 593                                 usb4_switch_nvm_read_block, sw);
 594}
 595
 596static int usb4_switch_nvm_set_offset(struct tb_switch *sw,
 597                                      unsigned int address)
 598{
 599        u32 metadata, dwaddress;
 600        u8 status = 0;
 601        int ret;
 602
 603        dwaddress = address / 4;
 604        metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
 605                   USB4_NVM_SET_OFFSET_MASK;
 606
 607        ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
 608                             &status);
 609        if (ret)
 610                return ret;
 611
 612        return status ? -EIO : 0;
 613}
 614
 615static int usb4_switch_nvm_write_next_block(void *data, const void *buf,
 616                                            size_t dwords)
 617{
 618        struct tb_switch *sw = data;
 619        u8 status;
 620        int ret;
 621
 622        ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
 623                                  buf, dwords, NULL, 0);
 624        if (ret)
 625                return ret;
 626
 627        return status ? -EIO : 0;
 628}
 629
 630/**
 631 * usb4_switch_nvm_write() - Write to the router NVM
 632 * @sw: USB4 router
 633 * @address: Start address where to write in bytes
 634 * @buf: Pointer to the data to write
 635 * @size: Size of @buf in bytes
 636 *
 637 * Writes @buf to the router NVM using USB4 router operations. If NVM
 638 * write is not supported returns %-EOPNOTSUPP.
 639 */
 640int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
 641                          const void *buf, size_t size)
 642{
 643        int ret;
 644
 645        ret = usb4_switch_nvm_set_offset(sw, address);
 646        if (ret)
 647                return ret;
 648
 649        return usb4_do_write_data(address, buf, size,
 650                                  usb4_switch_nvm_write_next_block, sw);
 651}
 652
 653/**
 654 * usb4_switch_nvm_authenticate() - Authenticate new NVM
 655 * @sw: USB4 router
 656 *
 657 * After the new NVM has been written via usb4_switch_nvm_write(), this
 658 * function triggers NVM authentication process. The router gets power
 659 * cycled and if the authentication is successful the new NVM starts
 660 * running. In case of failure returns negative errno.
 661 *
 662 * The caller should call usb4_switch_nvm_authenticate_status() to read
 663 * the status of the authentication after power cycle. It should be the
 664 * first router operation to avoid the status being lost.
 665 */
 666int usb4_switch_nvm_authenticate(struct tb_switch *sw)
 667{
 668        int ret;
 669
 670        ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
 671        switch (ret) {
 672        /*
 673         * The router is power cycled once NVM_AUTH is started so it is
 674         * expected to get any of the following errors back.
 675         */
 676        case -EACCES:
 677        case -ENOTCONN:
 678        case -ETIMEDOUT:
 679                return 0;
 680
 681        default:
 682                return ret;
 683        }
 684}
 685
 686/**
 687 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
 688 * @sw: USB4 router
 689 * @status: Status code of the operation
 690 *
 691 * The function checks if there is status available from the last NVM
 692 * authenticate router operation. If there is status then %0 is returned
 693 * and the status code is placed in @status. Returns negative errno in case
 694 * of failure.
 695 *
 696 * Must be called before any other router operation.
 697 */
 698int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
 699{
 700        const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
 701        u16 opcode;
 702        u32 val;
 703        int ret;
 704
 705        if (cm_ops->usb4_switch_nvm_authenticate_status) {
 706                ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
 707                if (ret != -EOPNOTSUPP)
 708                        return ret;
 709        }
 710
 711        ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
 712        if (ret)
 713                return ret;
 714
 715        /* Check that the opcode is correct */
 716        opcode = val & ROUTER_CS_26_OPCODE_MASK;
 717        if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
 718                if (val & ROUTER_CS_26_OV)
 719                        return -EBUSY;
 720                if (val & ROUTER_CS_26_ONS)
 721                        return -EOPNOTSUPP;
 722
 723                *status = (val & ROUTER_CS_26_STATUS_MASK) >>
 724                        ROUTER_CS_26_STATUS_SHIFT;
 725        } else {
 726                *status = 0;
 727        }
 728
 729        return 0;
 730}
 731
 732/**
 733 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
 734 * @sw: USB4 router
 735 * @in: DP IN adapter
 736 *
 737 * For DP tunneling this function can be used to query availability of
 738 * DP IN resource. Returns true if the resource is available for DP
 739 * tunneling, false otherwise.
 740 */
 741bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
 742{
 743        u32 metadata = in->port;
 744        u8 status;
 745        int ret;
 746
 747        ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
 748                             &status);
 749        /*
 750         * If DP resource allocation is not supported assume it is
 751         * always available.
 752         */
 753        if (ret == -EOPNOTSUPP)
 754                return true;
 755        else if (ret)
 756                return false;
 757
 758        return !status;
 759}
 760
 761/**
 762 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
 763 * @sw: USB4 router
 764 * @in: DP IN adapter
 765 *
 766 * Allocates DP IN resource for DP tunneling using USB4 router
 767 * operations. If the resource was allocated returns %0. Otherwise
 768 * returns negative errno, in particular %-EBUSY if the resource is
 769 * already allocated.
 770 */
 771int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
 772{
 773        u32 metadata = in->port;
 774        u8 status;
 775        int ret;
 776
 777        ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
 778                             &status);
 779        if (ret == -EOPNOTSUPP)
 780                return 0;
 781        else if (ret)
 782                return ret;
 783
 784        return status ? -EBUSY : 0;
 785}
 786
 787/**
 788 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
 789 * @sw: USB4 router
 790 * @in: DP IN adapter
 791 *
 792 * Releases the previously allocated DP IN resource.
 793 */
 794int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
 795{
 796        u32 metadata = in->port;
 797        u8 status;
 798        int ret;
 799
 800        ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
 801                             &status);
 802        if (ret == -EOPNOTSUPP)
 803                return 0;
 804        else if (ret)
 805                return ret;
 806
 807        return status ? -EIO : 0;
 808}
 809
 810static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
 811{
 812        struct tb_port *p;
 813        int usb4_idx = 0;
 814
 815        /* Assume port is primary */
 816        tb_switch_for_each_port(sw, p) {
 817                if (!tb_port_is_null(p))
 818                        continue;
 819                if (tb_is_upstream_port(p))
 820                        continue;
 821                if (!p->link_nr) {
 822                        if (p == port)
 823                                break;
 824                        usb4_idx++;
 825                }
 826        }
 827
 828        return usb4_idx;
 829}
 830
 831/**
 832 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
 833 * @sw: USB4 router
 834 * @port: USB4 port
 835 *
 836 * USB4 routers have direct mapping between USB4 ports and PCIe
 837 * downstream adapters where the PCIe topology is extended. This
 838 * function returns the corresponding downstream PCIe adapter or %NULL
 839 * if no such mapping was possible.
 840 */
 841struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
 842                                          const struct tb_port *port)
 843{
 844        int usb4_idx = usb4_port_idx(sw, port);
 845        struct tb_port *p;
 846        int pcie_idx = 0;
 847
 848        /* Find PCIe down port matching usb4_port */
 849        tb_switch_for_each_port(sw, p) {
 850                if (!tb_port_is_pcie_down(p))
 851                        continue;
 852
 853                if (pcie_idx == usb4_idx)
 854                        return p;
 855
 856                pcie_idx++;
 857        }
 858
 859        return NULL;
 860}
 861
 862/**
 863 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
 864 * @sw: USB4 router
 865 * @port: USB4 port
 866 *
 867 * USB4 routers have direct mapping between USB4 ports and USB 3.x
 868 * downstream adapters where the USB 3.x topology is extended. This
 869 * function returns the corresponding downstream USB 3.x adapter or
 870 * %NULL if no such mapping was possible.
 871 */
 872struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
 873                                          const struct tb_port *port)
 874{
 875        int usb4_idx = usb4_port_idx(sw, port);
 876        struct tb_port *p;
 877        int usb_idx = 0;
 878
 879        /* Find USB3 down port matching usb4_port */
 880        tb_switch_for_each_port(sw, p) {
 881                if (!tb_port_is_usb3_down(p))
 882                        continue;
 883
 884                if (usb_idx == usb4_idx)
 885                        return p;
 886
 887                usb_idx++;
 888        }
 889
 890        return NULL;
 891}
 892
 893/**
 894 * usb4_port_unlock() - Unlock USB4 downstream port
 895 * @port: USB4 port to unlock
 896 *
 897 * Unlocks USB4 downstream port so that the connection manager can
 898 * access the router below this port.
 899 */
 900int usb4_port_unlock(struct tb_port *port)
 901{
 902        int ret;
 903        u32 val;
 904
 905        ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
 906        if (ret)
 907                return ret;
 908
 909        val &= ~ADP_CS_4_LCK;
 910        return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
 911}
 912
 913static int usb4_port_set_configured(struct tb_port *port, bool configured)
 914{
 915        int ret;
 916        u32 val;
 917
 918        if (!port->cap_usb4)
 919                return -EINVAL;
 920
 921        ret = tb_port_read(port, &val, TB_CFG_PORT,
 922                           port->cap_usb4 + PORT_CS_19, 1);
 923        if (ret)
 924                return ret;
 925
 926        if (configured)
 927                val |= PORT_CS_19_PC;
 928        else
 929                val &= ~PORT_CS_19_PC;
 930
 931        return tb_port_write(port, &val, TB_CFG_PORT,
 932                             port->cap_usb4 + PORT_CS_19, 1);
 933}
 934
 935/**
 936 * usb4_port_configure() - Set USB4 port configured
 937 * @port: USB4 router
 938 *
 939 * Sets the USB4 link to be configured for power management purposes.
 940 */
 941int usb4_port_configure(struct tb_port *port)
 942{
 943        return usb4_port_set_configured(port, true);
 944}
 945
 946/**
 947 * usb4_port_unconfigure() - Set USB4 port unconfigured
 948 * @port: USB4 router
 949 *
 950 * Sets the USB4 link to be unconfigured for power management purposes.
 951 */
 952void usb4_port_unconfigure(struct tb_port *port)
 953{
 954        usb4_port_set_configured(port, false);
 955}
 956
 957static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
 958{
 959        int ret;
 960        u32 val;
 961
 962        if (!port->cap_usb4)
 963                return -EINVAL;
 964
 965        ret = tb_port_read(port, &val, TB_CFG_PORT,
 966                           port->cap_usb4 + PORT_CS_19, 1);
 967        if (ret)
 968                return ret;
 969
 970        if (configured)
 971                val |= PORT_CS_19_PID;
 972        else
 973                val &= ~PORT_CS_19_PID;
 974
 975        return tb_port_write(port, &val, TB_CFG_PORT,
 976                             port->cap_usb4 + PORT_CS_19, 1);
 977}
 978
 979/**
 980 * usb4_port_configure_xdomain() - Configure port for XDomain
 981 * @port: USB4 port connected to another host
 982 *
 983 * Marks the USB4 port as being connected to another host. Returns %0 in
 984 * success and negative errno in failure.
 985 */
 986int usb4_port_configure_xdomain(struct tb_port *port)
 987{
 988        return usb4_set_xdomain_configured(port, true);
 989}
 990
 991/**
 992 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
 993 * @port: USB4 port that was connected to another host
 994 *
 995 * Clears USB4 port from being marked as XDomain.
 996 */
 997void usb4_port_unconfigure_xdomain(struct tb_port *port)
 998{
 999        usb4_set_xdomain_configured(port, false);
1000}
1001
1002static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1003                                  u32 value, int timeout_msec)
1004{
1005        ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1006
1007        do {
1008                u32 val;
1009                int ret;
1010
1011                ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1012                if (ret)
1013                        return ret;
1014
1015                if ((val & bit) == value)
1016                        return 0;
1017
1018                usleep_range(50, 100);
1019        } while (ktime_before(ktime_get(), timeout));
1020
1021        return -ETIMEDOUT;
1022}
1023
1024static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1025{
1026        if (dwords > USB4_DATA_DWORDS)
1027                return -EINVAL;
1028
1029        return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1030                            dwords);
1031}
1032
1033static int usb4_port_write_data(struct tb_port *port, const void *data,
1034                                size_t dwords)
1035{
1036        if (dwords > USB4_DATA_DWORDS)
1037                return -EINVAL;
1038
1039        return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1040                             dwords);
1041}
1042
1043static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1044                             u8 index, u8 reg, void *buf, u8 size)
1045{
1046        size_t dwords = DIV_ROUND_UP(size, 4);
1047        int ret;
1048        u32 val;
1049
1050        if (!port->cap_usb4)
1051                return -EINVAL;
1052
1053        val = reg;
1054        val |= size << PORT_CS_1_LENGTH_SHIFT;
1055        val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1056        if (target == USB4_SB_TARGET_RETIMER)
1057                val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1058        val |= PORT_CS_1_PND;
1059
1060        ret = tb_port_write(port, &val, TB_CFG_PORT,
1061                            port->cap_usb4 + PORT_CS_1, 1);
1062        if (ret)
1063                return ret;
1064
1065        ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1066                                     PORT_CS_1_PND, 0, 500);
1067        if (ret)
1068                return ret;
1069
1070        ret = tb_port_read(port, &val, TB_CFG_PORT,
1071                            port->cap_usb4 + PORT_CS_1, 1);
1072        if (ret)
1073                return ret;
1074
1075        if (val & PORT_CS_1_NR)
1076                return -ENODEV;
1077        if (val & PORT_CS_1_RC)
1078                return -EIO;
1079
1080        return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1081}
1082
1083static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1084                              u8 index, u8 reg, const void *buf, u8 size)
1085{
1086        size_t dwords = DIV_ROUND_UP(size, 4);
1087        int ret;
1088        u32 val;
1089
1090        if (!port->cap_usb4)
1091                return -EINVAL;
1092
1093        if (buf) {
1094                ret = usb4_port_write_data(port, buf, dwords);
1095                if (ret)
1096                        return ret;
1097        }
1098
1099        val = reg;
1100        val |= size << PORT_CS_1_LENGTH_SHIFT;
1101        val |= PORT_CS_1_WNR_WRITE;
1102        val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1103        if (target == USB4_SB_TARGET_RETIMER)
1104                val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1105        val |= PORT_CS_1_PND;
1106
1107        ret = tb_port_write(port, &val, TB_CFG_PORT,
1108                            port->cap_usb4 + PORT_CS_1, 1);
1109        if (ret)
1110                return ret;
1111
1112        ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1113                                     PORT_CS_1_PND, 0, 500);
1114        if (ret)
1115                return ret;
1116
1117        ret = tb_port_read(port, &val, TB_CFG_PORT,
1118                            port->cap_usb4 + PORT_CS_1, 1);
1119        if (ret)
1120                return ret;
1121
1122        if (val & PORT_CS_1_NR)
1123                return -ENODEV;
1124        if (val & PORT_CS_1_RC)
1125                return -EIO;
1126
1127        return 0;
1128}
1129
1130static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1131                           u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1132{
1133        ktime_t timeout;
1134        u32 val;
1135        int ret;
1136
1137        val = opcode;
1138        ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1139                                 sizeof(val));
1140        if (ret)
1141                return ret;
1142
1143        timeout = ktime_add_ms(ktime_get(), timeout_msec);
1144
1145        do {
1146                /* Check results */
1147                ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1148                                        &val, sizeof(val));
1149                if (ret)
1150                        return ret;
1151
1152                switch (val) {
1153                case 0:
1154                        return 0;
1155
1156                case USB4_SB_OPCODE_ERR:
1157                        return -EAGAIN;
1158
1159                case USB4_SB_OPCODE_ONS:
1160                        return -EOPNOTSUPP;
1161
1162                default:
1163                        if (val != opcode)
1164                                return -EIO;
1165                        break;
1166                }
1167        } while (ktime_before(ktime_get(), timeout));
1168
1169        return -ETIMEDOUT;
1170}
1171
1172/**
1173 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1174 * @port: USB4 port
1175 *
1176 * This forces the USB4 port to send broadcast RT transaction which
1177 * makes the retimers on the link to assign index to themselves. Returns
1178 * %0 in case of success and negative errno if there was an error.
1179 */
1180int usb4_port_enumerate_retimers(struct tb_port *port)
1181{
1182        u32 val;
1183
1184        val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1185        return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1186                                  USB4_SB_OPCODE, &val, sizeof(val));
1187}
1188
1189static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1190                                       enum usb4_sb_opcode opcode,
1191                                       int timeout_msec)
1192{
1193        return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1194                               timeout_msec);
1195}
1196
1197/**
1198 * usb4_port_retimer_read() - Read from retimer sideband registers
1199 * @port: USB4 port
1200 * @index: Retimer index
1201 * @reg: Sideband register to read
1202 * @buf: Data from @reg is stored here
1203 * @size: Number of bytes to read
1204 *
1205 * Function reads retimer sideband registers starting from @reg. The
1206 * retimer is connected to @port at @index. Returns %0 in case of
1207 * success, and read data is copied to @buf. If there is no retimer
1208 * present at given @index returns %-ENODEV. In any other failure
1209 * returns negative errno.
1210 */
1211int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1212                           u8 size)
1213{
1214        return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1215                                 size);
1216}
1217
1218/**
1219 * usb4_port_retimer_write() - Write to retimer sideband registers
1220 * @port: USB4 port
1221 * @index: Retimer index
1222 * @reg: Sideband register to write
1223 * @buf: Data that is written starting from @reg
1224 * @size: Number of bytes to write
1225 *
1226 * Writes retimer sideband registers starting from @reg. The retimer is
1227 * connected to @port at @index. Returns %0 in case of success. If there
1228 * is no retimer present at given @index returns %-ENODEV. In any other
1229 * failure returns negative errno.
1230 */
1231int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1232                            const void *buf, u8 size)
1233{
1234        return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1235                                  size);
1236}
1237
1238/**
1239 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1240 * @port: USB4 port
1241 * @index: Retimer index
1242 *
1243 * If the retimer at @index is last one (connected directly to the
1244 * Type-C port) this function returns %1. If it is not returns %0. If
1245 * the retimer is not present returns %-ENODEV. Otherwise returns
1246 * negative errno.
1247 */
1248int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1249{
1250        u32 metadata;
1251        int ret;
1252
1253        ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1254                                   500);
1255        if (ret)
1256                return ret;
1257
1258        ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1259                                     sizeof(metadata));
1260        return ret ? ret : metadata & 1;
1261}
1262
1263/**
1264 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1265 * @port: USB4 port
1266 * @index: Retimer index
1267 *
1268 * Reads NVM sector size (in bytes) of a retimer at @index. This
1269 * operation can be used to determine whether the retimer supports NVM
1270 * upgrade for example. Returns sector size in bytes or negative errno
1271 * in case of error. Specifically returns %-ENODEV if there is no
1272 * retimer at @index.
1273 */
1274int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1275{
1276        u32 metadata;
1277        int ret;
1278
1279        ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1280                                   500);
1281        if (ret)
1282                return ret;
1283
1284        ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1285                                     sizeof(metadata));
1286        return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1287}
1288
1289static int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1290                                            unsigned int address)
1291{
1292        u32 metadata, dwaddress;
1293        int ret;
1294
1295        dwaddress = address / 4;
1296        metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1297                  USB4_NVM_SET_OFFSET_MASK;
1298
1299        ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1300                                      sizeof(metadata));
1301        if (ret)
1302                return ret;
1303
1304        return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1305                                    500);
1306}
1307
1308struct retimer_info {
1309        struct tb_port *port;
1310        u8 index;
1311};
1312
1313static int usb4_port_retimer_nvm_write_next_block(void *data, const void *buf,
1314                                                  size_t dwords)
1315
1316{
1317        const struct retimer_info *info = data;
1318        struct tb_port *port = info->port;
1319        u8 index = info->index;
1320        int ret;
1321
1322        ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1323                                      buf, dwords * 4);
1324        if (ret)
1325                return ret;
1326
1327        return usb4_port_retimer_op(port, index,
1328                        USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1329}
1330
1331/**
1332 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1333 * @port: USB4 port
1334 * @index: Retimer index
1335 * @address: Byte address where to start the write
1336 * @buf: Data to write
1337 * @size: Size in bytes how much to write
1338 *
1339 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1340 * upgrade. Returns %0 if the data was written successfully and negative
1341 * errno in case of failure. Specifically returns %-ENODEV if there is
1342 * no retimer at @index.
1343 */
1344int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1345                                const void *buf, size_t size)
1346{
1347        struct retimer_info info = { .port = port, .index = index };
1348        int ret;
1349
1350        ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1351        if (ret)
1352                return ret;
1353
1354        return usb4_do_write_data(address, buf, size,
1355                        usb4_port_retimer_nvm_write_next_block, &info);
1356}
1357
1358/**
1359 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1360 * @port: USB4 port
1361 * @index: Retimer index
1362 *
1363 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1364 * this function can be used to trigger the NVM upgrade process. If
1365 * successful the retimer restarts with the new NVM and may not have the
1366 * index set so one needs to call usb4_port_enumerate_retimers() to
1367 * force index to be assigned.
1368 */
1369int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1370{
1371        u32 val;
1372
1373        /*
1374         * We need to use the raw operation here because once the
1375         * authentication completes the retimer index is not set anymore
1376         * so we do not get back the status now.
1377         */
1378        val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1379        return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1380                                  USB4_SB_OPCODE, &val, sizeof(val));
1381}
1382
1383/**
1384 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1385 * @port: USB4 port
1386 * @index: Retimer index
1387 * @status: Raw status code read from metadata
1388 *
1389 * This can be called after usb4_port_retimer_nvm_authenticate() and
1390 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1391 *
1392 * Returns %0 if the authentication status was successfully read. The
1393 * completion metadata (the result) is then stored into @status. If
1394 * reading the status fails, returns negative errno.
1395 */
1396int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1397                                              u32 *status)
1398{
1399        u32 metadata, val;
1400        int ret;
1401
1402        ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1403                                     sizeof(val));
1404        if (ret)
1405                return ret;
1406
1407        switch (val) {
1408        case 0:
1409                *status = 0;
1410                return 0;
1411
1412        case USB4_SB_OPCODE_ERR:
1413                ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1414                                             &metadata, sizeof(metadata));
1415                if (ret)
1416                        return ret;
1417
1418                *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1419                return 0;
1420
1421        case USB4_SB_OPCODE_ONS:
1422                return -EOPNOTSUPP;
1423
1424        default:
1425                return -EIO;
1426        }
1427}
1428
1429static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1430                                            void *buf, size_t dwords)
1431{
1432        const struct retimer_info *info = data;
1433        struct tb_port *port = info->port;
1434        u8 index = info->index;
1435        u32 metadata;
1436        int ret;
1437
1438        metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1439        if (dwords < USB4_DATA_DWORDS)
1440                metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1441
1442        ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1443                                      sizeof(metadata));
1444        if (ret)
1445                return ret;
1446
1447        ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1448        if (ret)
1449                return ret;
1450
1451        return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1452                                      dwords * 4);
1453}
1454
1455/**
1456 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1457 * @port: USB4 port
1458 * @index: Retimer index
1459 * @address: NVM address (in bytes) to start reading
1460 * @buf: Data read from NVM is stored here
1461 * @size: Number of bytes to read
1462 *
1463 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1464 * read was successful and negative errno in case of failure.
1465 * Specifically returns %-ENODEV if there is no retimer at @index.
1466 */
1467int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1468                               unsigned int address, void *buf, size_t size)
1469{
1470        struct retimer_info info = { .port = port, .index = index };
1471
1472        return usb4_do_read_data(address, buf, size,
1473                        usb4_port_retimer_nvm_read_block, &info);
1474}
1475
1476/**
1477 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1478 * @port: USB3 adapter port
1479 *
1480 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1481 * Negative errno in case of error.
1482 */
1483int usb4_usb3_port_max_link_rate(struct tb_port *port)
1484{
1485        int ret, lr;
1486        u32 val;
1487
1488        if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1489                return -EINVAL;
1490
1491        ret = tb_port_read(port, &val, TB_CFG_PORT,
1492                           port->cap_adap + ADP_USB3_CS_4, 1);
1493        if (ret)
1494                return ret;
1495
1496        lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1497        return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1498}
1499
1500/**
1501 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1502 * @port: USB3 adapter port
1503 *
1504 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1505 * link is not up returns %0 and negative errno in case of failure.
1506 */
1507int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1508{
1509        int ret, lr;
1510        u32 val;
1511
1512        if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1513                return -EINVAL;
1514
1515        ret = tb_port_read(port, &val, TB_CFG_PORT,
1516                           port->cap_adap + ADP_USB3_CS_4, 1);
1517        if (ret)
1518                return ret;
1519
1520        if (!(val & ADP_USB3_CS_4_ULV))
1521                return 0;
1522
1523        lr = val & ADP_USB3_CS_4_ALR_MASK;
1524        return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1525}
1526
1527static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1528{
1529        int ret;
1530        u32 val;
1531
1532        if (!tb_port_is_usb3_down(port))
1533                return -EINVAL;
1534        if (tb_route(port->sw))
1535                return -EINVAL;
1536
1537        ret = tb_port_read(port, &val, TB_CFG_PORT,
1538                           port->cap_adap + ADP_USB3_CS_2, 1);
1539        if (ret)
1540                return ret;
1541
1542        if (request)
1543                val |= ADP_USB3_CS_2_CMR;
1544        else
1545                val &= ~ADP_USB3_CS_2_CMR;
1546
1547        ret = tb_port_write(port, &val, TB_CFG_PORT,
1548                            port->cap_adap + ADP_USB3_CS_2, 1);
1549        if (ret)
1550                return ret;
1551
1552        /*
1553         * We can use val here directly as the CMR bit is in the same place
1554         * as HCA. Just mask out others.
1555         */
1556        val &= ADP_USB3_CS_2_CMR;
1557        return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1558                                      ADP_USB3_CS_1_HCA, val, 1500);
1559}
1560
1561static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1562{
1563        return usb4_usb3_port_cm_request(port, true);
1564}
1565
1566static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1567{
1568        return usb4_usb3_port_cm_request(port, false);
1569}
1570
1571static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1572{
1573        unsigned long uframes;
1574
1575        uframes = bw * 512UL << scale;
1576        return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1577}
1578
1579static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1580{
1581        unsigned long uframes;
1582
1583        /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1584        uframes = ((unsigned long)mbps * 1000 *  1000) / 8000;
1585        return DIV_ROUND_UP(uframes, 512UL << scale);
1586}
1587
1588static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1589                                                   int *upstream_bw,
1590                                                   int *downstream_bw)
1591{
1592        u32 val, bw, scale;
1593        int ret;
1594
1595        ret = tb_port_read(port, &val, TB_CFG_PORT,
1596                           port->cap_adap + ADP_USB3_CS_2, 1);
1597        if (ret)
1598                return ret;
1599
1600        ret = tb_port_read(port, &scale, TB_CFG_PORT,
1601                           port->cap_adap + ADP_USB3_CS_3, 1);
1602        if (ret)
1603                return ret;
1604
1605        scale &= ADP_USB3_CS_3_SCALE_MASK;
1606
1607        bw = val & ADP_USB3_CS_2_AUBW_MASK;
1608        *upstream_bw = usb3_bw_to_mbps(bw, scale);
1609
1610        bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1611        *downstream_bw = usb3_bw_to_mbps(bw, scale);
1612
1613        return 0;
1614}
1615
1616/**
1617 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1618 * @port: USB3 adapter port
1619 * @upstream_bw: Allocated upstream bandwidth is stored here
1620 * @downstream_bw: Allocated downstream bandwidth is stored here
1621 *
1622 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1623 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1624 * errno in failure.
1625 */
1626int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1627                                       int *downstream_bw)
1628{
1629        int ret;
1630
1631        ret = usb4_usb3_port_set_cm_request(port);
1632        if (ret)
1633                return ret;
1634
1635        ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1636                                                      downstream_bw);
1637        usb4_usb3_port_clear_cm_request(port);
1638
1639        return ret;
1640}
1641
1642static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1643                                                  int *upstream_bw,
1644                                                  int *downstream_bw)
1645{
1646        u32 val, bw, scale;
1647        int ret;
1648
1649        ret = tb_port_read(port, &val, TB_CFG_PORT,
1650                           port->cap_adap + ADP_USB3_CS_1, 1);
1651        if (ret)
1652                return ret;
1653
1654        ret = tb_port_read(port, &scale, TB_CFG_PORT,
1655                           port->cap_adap + ADP_USB3_CS_3, 1);
1656        if (ret)
1657                return ret;
1658
1659        scale &= ADP_USB3_CS_3_SCALE_MASK;
1660
1661        bw = val & ADP_USB3_CS_1_CUBW_MASK;
1662        *upstream_bw = usb3_bw_to_mbps(bw, scale);
1663
1664        bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1665        *downstream_bw = usb3_bw_to_mbps(bw, scale);
1666
1667        return 0;
1668}
1669
1670static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1671                                                    int upstream_bw,
1672                                                    int downstream_bw)
1673{
1674        u32 val, ubw, dbw, scale;
1675        int ret;
1676
1677        /* Read the used scale, hardware default is 0 */
1678        ret = tb_port_read(port, &scale, TB_CFG_PORT,
1679                           port->cap_adap + ADP_USB3_CS_3, 1);
1680        if (ret)
1681                return ret;
1682
1683        scale &= ADP_USB3_CS_3_SCALE_MASK;
1684        ubw = mbps_to_usb3_bw(upstream_bw, scale);
1685        dbw = mbps_to_usb3_bw(downstream_bw, scale);
1686
1687        ret = tb_port_read(port, &val, TB_CFG_PORT,
1688                           port->cap_adap + ADP_USB3_CS_2, 1);
1689        if (ret)
1690                return ret;
1691
1692        val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1693        val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1694        val |= ubw;
1695
1696        return tb_port_write(port, &val, TB_CFG_PORT,
1697                             port->cap_adap + ADP_USB3_CS_2, 1);
1698}
1699
1700/**
1701 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1702 * @port: USB3 adapter port
1703 * @upstream_bw: New upstream bandwidth
1704 * @downstream_bw: New downstream bandwidth
1705 *
1706 * This can be used to set how much bandwidth is allocated for the USB3
1707 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1708 * new values programmed to the USB3 adapter allocation registers. If
1709 * the values are lower than what is currently consumed the allocation
1710 * is set to what is currently consumed instead (consumed bandwidth
1711 * cannot be taken away by CM). The actual new values are returned in
1712 * @upstream_bw and @downstream_bw.
1713 *
1714 * Returns %0 in case of success and negative errno if there was a
1715 * failure.
1716 */
1717int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1718                                      int *downstream_bw)
1719{
1720        int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1721
1722        ret = usb4_usb3_port_set_cm_request(port);
1723        if (ret)
1724                return ret;
1725
1726        ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1727                                                     &consumed_down);
1728        if (ret)
1729                goto err_request;
1730
1731        /* Don't allow it go lower than what is consumed */
1732        allocate_up = max(*upstream_bw, consumed_up);
1733        allocate_down = max(*downstream_bw, consumed_down);
1734
1735        ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1736                                                       allocate_down);
1737        if (ret)
1738                goto err_request;
1739
1740        *upstream_bw = allocate_up;
1741        *downstream_bw = allocate_down;
1742
1743err_request:
1744        usb4_usb3_port_clear_cm_request(port);
1745        return ret;
1746}
1747
1748/**
1749 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1750 * @port: USB3 adapter port
1751 * @upstream_bw: New allocated upstream bandwidth
1752 * @downstream_bw: New allocated downstream bandwidth
1753 *
1754 * Releases USB3 allocated bandwidth down to what is actually consumed.
1755 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1756 *
1757 * Returns 0% in success and negative errno in case of failure.
1758 */
1759int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1760                                     int *downstream_bw)
1761{
1762        int ret, consumed_up, consumed_down;
1763
1764        ret = usb4_usb3_port_set_cm_request(port);
1765        if (ret)
1766                return ret;
1767
1768        ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1769                                                     &consumed_down);
1770        if (ret)
1771                goto err_request;
1772
1773        /*
1774         * Always keep 1000 Mb/s to make sure xHCI has at least some
1775         * bandwidth available for isochronous traffic.
1776         */
1777        if (consumed_up < 1000)
1778                consumed_up = 1000;
1779        if (consumed_down < 1000)
1780                consumed_down = 1000;
1781
1782        ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
1783                                                       consumed_down);
1784        if (ret)
1785                goto err_request;
1786
1787        *upstream_bw = consumed_up;
1788        *downstream_bw = consumed_down;
1789
1790err_request:
1791        usb4_usb3_port_clear_cm_request(port);
1792        return ret;
1793}
1794