linux/fs/btrfs/delayed-inode.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2011 Fujitsu.  All rights reserved.
   4 * Written by Miao Xie <miaox@cn.fujitsu.com>
   5 */
   6
   7#include <linux/slab.h>
   8#include <linux/iversion.h>
   9#include <linux/sched/mm.h>
  10#include "misc.h"
  11#include "delayed-inode.h"
  12#include "disk-io.h"
  13#include "transaction.h"
  14#include "ctree.h"
  15#include "qgroup.h"
  16#include "locking.h"
  17
  18#define BTRFS_DELAYED_WRITEBACK         512
  19#define BTRFS_DELAYED_BACKGROUND        128
  20#define BTRFS_DELAYED_BATCH             16
  21
  22static struct kmem_cache *delayed_node_cache;
  23
  24int __init btrfs_delayed_inode_init(void)
  25{
  26        delayed_node_cache = kmem_cache_create("btrfs_delayed_node",
  27                                        sizeof(struct btrfs_delayed_node),
  28                                        0,
  29                                        SLAB_MEM_SPREAD,
  30                                        NULL);
  31        if (!delayed_node_cache)
  32                return -ENOMEM;
  33        return 0;
  34}
  35
  36void __cold btrfs_delayed_inode_exit(void)
  37{
  38        kmem_cache_destroy(delayed_node_cache);
  39}
  40
  41static inline void btrfs_init_delayed_node(
  42                                struct btrfs_delayed_node *delayed_node,
  43                                struct btrfs_root *root, u64 inode_id)
  44{
  45        delayed_node->root = root;
  46        delayed_node->inode_id = inode_id;
  47        refcount_set(&delayed_node->refs, 0);
  48        delayed_node->ins_root = RB_ROOT_CACHED;
  49        delayed_node->del_root = RB_ROOT_CACHED;
  50        mutex_init(&delayed_node->mutex);
  51        INIT_LIST_HEAD(&delayed_node->n_list);
  52        INIT_LIST_HEAD(&delayed_node->p_list);
  53}
  54
  55static inline int btrfs_is_continuous_delayed_item(
  56                                        struct btrfs_delayed_item *item1,
  57                                        struct btrfs_delayed_item *item2)
  58{
  59        if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  60            item1->key.objectid == item2->key.objectid &&
  61            item1->key.type == item2->key.type &&
  62            item1->key.offset + 1 == item2->key.offset)
  63                return 1;
  64        return 0;
  65}
  66
  67static struct btrfs_delayed_node *btrfs_get_delayed_node(
  68                struct btrfs_inode *btrfs_inode)
  69{
  70        struct btrfs_root *root = btrfs_inode->root;
  71        u64 ino = btrfs_ino(btrfs_inode);
  72        struct btrfs_delayed_node *node;
  73
  74        node = READ_ONCE(btrfs_inode->delayed_node);
  75        if (node) {
  76                refcount_inc(&node->refs);
  77                return node;
  78        }
  79
  80        spin_lock(&root->inode_lock);
  81        node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  82
  83        if (node) {
  84                if (btrfs_inode->delayed_node) {
  85                        refcount_inc(&node->refs);      /* can be accessed */
  86                        BUG_ON(btrfs_inode->delayed_node != node);
  87                        spin_unlock(&root->inode_lock);
  88                        return node;
  89                }
  90
  91                /*
  92                 * It's possible that we're racing into the middle of removing
  93                 * this node from the radix tree.  In this case, the refcount
  94                 * was zero and it should never go back to one.  Just return
  95                 * NULL like it was never in the radix at all; our release
  96                 * function is in the process of removing it.
  97                 *
  98                 * Some implementations of refcount_inc refuse to bump the
  99                 * refcount once it has hit zero.  If we don't do this dance
 100                 * here, refcount_inc() may decide to just WARN_ONCE() instead
 101                 * of actually bumping the refcount.
 102                 *
 103                 * If this node is properly in the radix, we want to bump the
 104                 * refcount twice, once for the inode and once for this get
 105                 * operation.
 106                 */
 107                if (refcount_inc_not_zero(&node->refs)) {
 108                        refcount_inc(&node->refs);
 109                        btrfs_inode->delayed_node = node;
 110                } else {
 111                        node = NULL;
 112                }
 113
 114                spin_unlock(&root->inode_lock);
 115                return node;
 116        }
 117        spin_unlock(&root->inode_lock);
 118
 119        return NULL;
 120}
 121
 122/* Will return either the node or PTR_ERR(-ENOMEM) */
 123static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
 124                struct btrfs_inode *btrfs_inode)
 125{
 126        struct btrfs_delayed_node *node;
 127        struct btrfs_root *root = btrfs_inode->root;
 128        u64 ino = btrfs_ino(btrfs_inode);
 129        int ret;
 130
 131again:
 132        node = btrfs_get_delayed_node(btrfs_inode);
 133        if (node)
 134                return node;
 135
 136        node = kmem_cache_zalloc(delayed_node_cache, GFP_NOFS);
 137        if (!node)
 138                return ERR_PTR(-ENOMEM);
 139        btrfs_init_delayed_node(node, root, ino);
 140
 141        /* cached in the btrfs inode and can be accessed */
 142        refcount_set(&node->refs, 2);
 143
 144        ret = radix_tree_preload(GFP_NOFS);
 145        if (ret) {
 146                kmem_cache_free(delayed_node_cache, node);
 147                return ERR_PTR(ret);
 148        }
 149
 150        spin_lock(&root->inode_lock);
 151        ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
 152        if (ret == -EEXIST) {
 153                spin_unlock(&root->inode_lock);
 154                kmem_cache_free(delayed_node_cache, node);
 155                radix_tree_preload_end();
 156                goto again;
 157        }
 158        btrfs_inode->delayed_node = node;
 159        spin_unlock(&root->inode_lock);
 160        radix_tree_preload_end();
 161
 162        return node;
 163}
 164
 165/*
 166 * Call it when holding delayed_node->mutex
 167 *
 168 * If mod = 1, add this node into the prepared list.
 169 */
 170static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
 171                                     struct btrfs_delayed_node *node,
 172                                     int mod)
 173{
 174        spin_lock(&root->lock);
 175        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 176                if (!list_empty(&node->p_list))
 177                        list_move_tail(&node->p_list, &root->prepare_list);
 178                else if (mod)
 179                        list_add_tail(&node->p_list, &root->prepare_list);
 180        } else {
 181                list_add_tail(&node->n_list, &root->node_list);
 182                list_add_tail(&node->p_list, &root->prepare_list);
 183                refcount_inc(&node->refs);      /* inserted into list */
 184                root->nodes++;
 185                set_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 186        }
 187        spin_unlock(&root->lock);
 188}
 189
 190/* Call it when holding delayed_node->mutex */
 191static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
 192                                       struct btrfs_delayed_node *node)
 193{
 194        spin_lock(&root->lock);
 195        if (test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 196                root->nodes--;
 197                refcount_dec(&node->refs);      /* not in the list */
 198                list_del_init(&node->n_list);
 199                if (!list_empty(&node->p_list))
 200                        list_del_init(&node->p_list);
 201                clear_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags);
 202        }
 203        spin_unlock(&root->lock);
 204}
 205
 206static struct btrfs_delayed_node *btrfs_first_delayed_node(
 207                        struct btrfs_delayed_root *delayed_root)
 208{
 209        struct list_head *p;
 210        struct btrfs_delayed_node *node = NULL;
 211
 212        spin_lock(&delayed_root->lock);
 213        if (list_empty(&delayed_root->node_list))
 214                goto out;
 215
 216        p = delayed_root->node_list.next;
 217        node = list_entry(p, struct btrfs_delayed_node, n_list);
 218        refcount_inc(&node->refs);
 219out:
 220        spin_unlock(&delayed_root->lock);
 221
 222        return node;
 223}
 224
 225static struct btrfs_delayed_node *btrfs_next_delayed_node(
 226                                                struct btrfs_delayed_node *node)
 227{
 228        struct btrfs_delayed_root *delayed_root;
 229        struct list_head *p;
 230        struct btrfs_delayed_node *next = NULL;
 231
 232        delayed_root = node->root->fs_info->delayed_root;
 233        spin_lock(&delayed_root->lock);
 234        if (!test_bit(BTRFS_DELAYED_NODE_IN_LIST, &node->flags)) {
 235                /* not in the list */
 236                if (list_empty(&delayed_root->node_list))
 237                        goto out;
 238                p = delayed_root->node_list.next;
 239        } else if (list_is_last(&node->n_list, &delayed_root->node_list))
 240                goto out;
 241        else
 242                p = node->n_list.next;
 243
 244        next = list_entry(p, struct btrfs_delayed_node, n_list);
 245        refcount_inc(&next->refs);
 246out:
 247        spin_unlock(&delayed_root->lock);
 248
 249        return next;
 250}
 251
 252static void __btrfs_release_delayed_node(
 253                                struct btrfs_delayed_node *delayed_node,
 254                                int mod)
 255{
 256        struct btrfs_delayed_root *delayed_root;
 257
 258        if (!delayed_node)
 259                return;
 260
 261        delayed_root = delayed_node->root->fs_info->delayed_root;
 262
 263        mutex_lock(&delayed_node->mutex);
 264        if (delayed_node->count)
 265                btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
 266        else
 267                btrfs_dequeue_delayed_node(delayed_root, delayed_node);
 268        mutex_unlock(&delayed_node->mutex);
 269
 270        if (refcount_dec_and_test(&delayed_node->refs)) {
 271                struct btrfs_root *root = delayed_node->root;
 272
 273                spin_lock(&root->inode_lock);
 274                /*
 275                 * Once our refcount goes to zero, nobody is allowed to bump it
 276                 * back up.  We can delete it now.
 277                 */
 278                ASSERT(refcount_read(&delayed_node->refs) == 0);
 279                radix_tree_delete(&root->delayed_nodes_tree,
 280                                  delayed_node->inode_id);
 281                spin_unlock(&root->inode_lock);
 282                kmem_cache_free(delayed_node_cache, delayed_node);
 283        }
 284}
 285
 286static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
 287{
 288        __btrfs_release_delayed_node(node, 0);
 289}
 290
 291static struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
 292                                        struct btrfs_delayed_root *delayed_root)
 293{
 294        struct list_head *p;
 295        struct btrfs_delayed_node *node = NULL;
 296
 297        spin_lock(&delayed_root->lock);
 298        if (list_empty(&delayed_root->prepare_list))
 299                goto out;
 300
 301        p = delayed_root->prepare_list.next;
 302        list_del_init(p);
 303        node = list_entry(p, struct btrfs_delayed_node, p_list);
 304        refcount_inc(&node->refs);
 305out:
 306        spin_unlock(&delayed_root->lock);
 307
 308        return node;
 309}
 310
 311static inline void btrfs_release_prepared_delayed_node(
 312                                        struct btrfs_delayed_node *node)
 313{
 314        __btrfs_release_delayed_node(node, 1);
 315}
 316
 317static struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
 318{
 319        struct btrfs_delayed_item *item;
 320        item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
 321        if (item) {
 322                item->data_len = data_len;
 323                item->ins_or_del = 0;
 324                item->bytes_reserved = 0;
 325                item->delayed_node = NULL;
 326                refcount_set(&item->refs, 1);
 327        }
 328        return item;
 329}
 330
 331/*
 332 * __btrfs_lookup_delayed_item - look up the delayed item by key
 333 * @delayed_node: pointer to the delayed node
 334 * @key:          the key to look up
 335 * @prev:         used to store the prev item if the right item isn't found
 336 * @next:         used to store the next item if the right item isn't found
 337 *
 338 * Note: if we don't find the right item, we will return the prev item and
 339 * the next item.
 340 */
 341static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
 342                                struct rb_root *root,
 343                                struct btrfs_key *key,
 344                                struct btrfs_delayed_item **prev,
 345                                struct btrfs_delayed_item **next)
 346{
 347        struct rb_node *node, *prev_node = NULL;
 348        struct btrfs_delayed_item *delayed_item = NULL;
 349        int ret = 0;
 350
 351        node = root->rb_node;
 352
 353        while (node) {
 354                delayed_item = rb_entry(node, struct btrfs_delayed_item,
 355                                        rb_node);
 356                prev_node = node;
 357                ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
 358                if (ret < 0)
 359                        node = node->rb_right;
 360                else if (ret > 0)
 361                        node = node->rb_left;
 362                else
 363                        return delayed_item;
 364        }
 365
 366        if (prev) {
 367                if (!prev_node)
 368                        *prev = NULL;
 369                else if (ret < 0)
 370                        *prev = delayed_item;
 371                else if ((node = rb_prev(prev_node)) != NULL) {
 372                        *prev = rb_entry(node, struct btrfs_delayed_item,
 373                                         rb_node);
 374                } else
 375                        *prev = NULL;
 376        }
 377
 378        if (next) {
 379                if (!prev_node)
 380                        *next = NULL;
 381                else if (ret > 0)
 382                        *next = delayed_item;
 383                else if ((node = rb_next(prev_node)) != NULL) {
 384                        *next = rb_entry(node, struct btrfs_delayed_item,
 385                                         rb_node);
 386                } else
 387                        *next = NULL;
 388        }
 389        return NULL;
 390}
 391
 392static struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
 393                                        struct btrfs_delayed_node *delayed_node,
 394                                        struct btrfs_key *key)
 395{
 396        return __btrfs_lookup_delayed_item(&delayed_node->ins_root.rb_root, key,
 397                                           NULL, NULL);
 398}
 399
 400static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
 401                                    struct btrfs_delayed_item *ins,
 402                                    int action)
 403{
 404        struct rb_node **p, *node;
 405        struct rb_node *parent_node = NULL;
 406        struct rb_root_cached *root;
 407        struct btrfs_delayed_item *item;
 408        int cmp;
 409        bool leftmost = true;
 410
 411        if (action == BTRFS_DELAYED_INSERTION_ITEM)
 412                root = &delayed_node->ins_root;
 413        else if (action == BTRFS_DELAYED_DELETION_ITEM)
 414                root = &delayed_node->del_root;
 415        else
 416                BUG();
 417        p = &root->rb_root.rb_node;
 418        node = &ins->rb_node;
 419
 420        while (*p) {
 421                parent_node = *p;
 422                item = rb_entry(parent_node, struct btrfs_delayed_item,
 423                                 rb_node);
 424
 425                cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
 426                if (cmp < 0) {
 427                        p = &(*p)->rb_right;
 428                        leftmost = false;
 429                } else if (cmp > 0) {
 430                        p = &(*p)->rb_left;
 431                } else {
 432                        return -EEXIST;
 433                }
 434        }
 435
 436        rb_link_node(node, parent_node, p);
 437        rb_insert_color_cached(node, root, leftmost);
 438        ins->delayed_node = delayed_node;
 439        ins->ins_or_del = action;
 440
 441        if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
 442            action == BTRFS_DELAYED_INSERTION_ITEM &&
 443            ins->key.offset >= delayed_node->index_cnt)
 444                        delayed_node->index_cnt = ins->key.offset + 1;
 445
 446        delayed_node->count++;
 447        atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
 448        return 0;
 449}
 450
 451static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
 452                                              struct btrfs_delayed_item *item)
 453{
 454        return __btrfs_add_delayed_item(node, item,
 455                                        BTRFS_DELAYED_INSERTION_ITEM);
 456}
 457
 458static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
 459                                             struct btrfs_delayed_item *item)
 460{
 461        return __btrfs_add_delayed_item(node, item,
 462                                        BTRFS_DELAYED_DELETION_ITEM);
 463}
 464
 465static void finish_one_item(struct btrfs_delayed_root *delayed_root)
 466{
 467        int seq = atomic_inc_return(&delayed_root->items_seq);
 468
 469        /* atomic_dec_return implies a barrier */
 470        if ((atomic_dec_return(&delayed_root->items) <
 471            BTRFS_DELAYED_BACKGROUND || seq % BTRFS_DELAYED_BATCH == 0))
 472                cond_wake_up_nomb(&delayed_root->wait);
 473}
 474
 475static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
 476{
 477        struct rb_root_cached *root;
 478        struct btrfs_delayed_root *delayed_root;
 479
 480        /* Not associated with any delayed_node */
 481        if (!delayed_item->delayed_node)
 482                return;
 483        delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
 484
 485        BUG_ON(!delayed_root);
 486        BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
 487               delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
 488
 489        if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
 490                root = &delayed_item->delayed_node->ins_root;
 491        else
 492                root = &delayed_item->delayed_node->del_root;
 493
 494        rb_erase_cached(&delayed_item->rb_node, root);
 495        delayed_item->delayed_node->count--;
 496
 497        finish_one_item(delayed_root);
 498}
 499
 500static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
 501{
 502        if (item) {
 503                __btrfs_remove_delayed_item(item);
 504                if (refcount_dec_and_test(&item->refs))
 505                        kfree(item);
 506        }
 507}
 508
 509static struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
 510                                        struct btrfs_delayed_node *delayed_node)
 511{
 512        struct rb_node *p;
 513        struct btrfs_delayed_item *item = NULL;
 514
 515        p = rb_first_cached(&delayed_node->ins_root);
 516        if (p)
 517                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 518
 519        return item;
 520}
 521
 522static struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
 523                                        struct btrfs_delayed_node *delayed_node)
 524{
 525        struct rb_node *p;
 526        struct btrfs_delayed_item *item = NULL;
 527
 528        p = rb_first_cached(&delayed_node->del_root);
 529        if (p)
 530                item = rb_entry(p, struct btrfs_delayed_item, rb_node);
 531
 532        return item;
 533}
 534
 535static struct btrfs_delayed_item *__btrfs_next_delayed_item(
 536                                                struct btrfs_delayed_item *item)
 537{
 538        struct rb_node *p;
 539        struct btrfs_delayed_item *next = NULL;
 540
 541        p = rb_next(&item->rb_node);
 542        if (p)
 543                next = rb_entry(p, struct btrfs_delayed_item, rb_node);
 544
 545        return next;
 546}
 547
 548static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
 549                                               struct btrfs_root *root,
 550                                               struct btrfs_delayed_item *item)
 551{
 552        struct btrfs_block_rsv *src_rsv;
 553        struct btrfs_block_rsv *dst_rsv;
 554        struct btrfs_fs_info *fs_info = root->fs_info;
 555        u64 num_bytes;
 556        int ret;
 557
 558        if (!trans->bytes_reserved)
 559                return 0;
 560
 561        src_rsv = trans->block_rsv;
 562        dst_rsv = &fs_info->delayed_block_rsv;
 563
 564        num_bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
 565
 566        /*
 567         * Here we migrate space rsv from transaction rsv, since have already
 568         * reserved space when starting a transaction.  So no need to reserve
 569         * qgroup space here.
 570         */
 571        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 572        if (!ret) {
 573                trace_btrfs_space_reservation(fs_info, "delayed_item",
 574                                              item->key.objectid,
 575                                              num_bytes, 1);
 576                item->bytes_reserved = num_bytes;
 577        }
 578
 579        return ret;
 580}
 581
 582static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
 583                                                struct btrfs_delayed_item *item)
 584{
 585        struct btrfs_block_rsv *rsv;
 586        struct btrfs_fs_info *fs_info = root->fs_info;
 587
 588        if (!item->bytes_reserved)
 589                return;
 590
 591        rsv = &fs_info->delayed_block_rsv;
 592        /*
 593         * Check btrfs_delayed_item_reserve_metadata() to see why we don't need
 594         * to release/reserve qgroup space.
 595         */
 596        trace_btrfs_space_reservation(fs_info, "delayed_item",
 597                                      item->key.objectid, item->bytes_reserved,
 598                                      0);
 599        btrfs_block_rsv_release(fs_info, rsv, item->bytes_reserved, NULL);
 600}
 601
 602static int btrfs_delayed_inode_reserve_metadata(
 603                                        struct btrfs_trans_handle *trans,
 604                                        struct btrfs_root *root,
 605                                        struct btrfs_inode *inode,
 606                                        struct btrfs_delayed_node *node)
 607{
 608        struct btrfs_fs_info *fs_info = root->fs_info;
 609        struct btrfs_block_rsv *src_rsv;
 610        struct btrfs_block_rsv *dst_rsv;
 611        u64 num_bytes;
 612        int ret;
 613
 614        src_rsv = trans->block_rsv;
 615        dst_rsv = &fs_info->delayed_block_rsv;
 616
 617        num_bytes = btrfs_calc_metadata_size(fs_info, 1);
 618
 619        /*
 620         * btrfs_dirty_inode will update the inode under btrfs_join_transaction
 621         * which doesn't reserve space for speed.  This is a problem since we
 622         * still need to reserve space for this update, so try to reserve the
 623         * space.
 624         *
 625         * Now if src_rsv == delalloc_block_rsv we'll let it just steal since
 626         * we always reserve enough to update the inode item.
 627         */
 628        if (!src_rsv || (!trans->bytes_reserved &&
 629                         src_rsv->type != BTRFS_BLOCK_RSV_DELALLOC)) {
 630                ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
 631                if (ret < 0)
 632                        return ret;
 633                ret = btrfs_block_rsv_add(root, dst_rsv, num_bytes,
 634                                          BTRFS_RESERVE_NO_FLUSH);
 635                /*
 636                 * Since we're under a transaction reserve_metadata_bytes could
 637                 * try to commit the transaction which will make it return
 638                 * EAGAIN to make us stop the transaction we have, so return
 639                 * ENOSPC instead so that btrfs_dirty_inode knows what to do.
 640                 */
 641                if (ret == -EAGAIN) {
 642                        ret = -ENOSPC;
 643                        btrfs_qgroup_free_meta_prealloc(root, num_bytes);
 644                }
 645                if (!ret) {
 646                        node->bytes_reserved = num_bytes;
 647                        trace_btrfs_space_reservation(fs_info,
 648                                                      "delayed_inode",
 649                                                      btrfs_ino(inode),
 650                                                      num_bytes, 1);
 651                } else {
 652                        btrfs_qgroup_free_meta_prealloc(root, fs_info->nodesize);
 653                }
 654                return ret;
 655        }
 656
 657        ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, true);
 658        if (!ret) {
 659                trace_btrfs_space_reservation(fs_info, "delayed_inode",
 660                                              btrfs_ino(inode), num_bytes, 1);
 661                node->bytes_reserved = num_bytes;
 662        }
 663
 664        return ret;
 665}
 666
 667static void btrfs_delayed_inode_release_metadata(struct btrfs_fs_info *fs_info,
 668                                                struct btrfs_delayed_node *node,
 669                                                bool qgroup_free)
 670{
 671        struct btrfs_block_rsv *rsv;
 672
 673        if (!node->bytes_reserved)
 674                return;
 675
 676        rsv = &fs_info->delayed_block_rsv;
 677        trace_btrfs_space_reservation(fs_info, "delayed_inode",
 678                                      node->inode_id, node->bytes_reserved, 0);
 679        btrfs_block_rsv_release(fs_info, rsv, node->bytes_reserved, NULL);
 680        if (qgroup_free)
 681                btrfs_qgroup_free_meta_prealloc(node->root,
 682                                node->bytes_reserved);
 683        else
 684                btrfs_qgroup_convert_reserved_meta(node->root,
 685                                node->bytes_reserved);
 686        node->bytes_reserved = 0;
 687}
 688
 689/*
 690 * This helper will insert some continuous items into the same leaf according
 691 * to the free space of the leaf.
 692 */
 693static int btrfs_batch_insert_items(struct btrfs_root *root,
 694                                    struct btrfs_path *path,
 695                                    struct btrfs_delayed_item *item)
 696{
 697        struct btrfs_delayed_item *curr, *next;
 698        int free_space;
 699        int total_data_size = 0, total_size = 0;
 700        struct extent_buffer *leaf;
 701        char *data_ptr;
 702        struct btrfs_key *keys;
 703        u32 *data_size;
 704        struct list_head head;
 705        int slot;
 706        int nitems;
 707        int i;
 708        int ret = 0;
 709
 710        BUG_ON(!path->nodes[0]);
 711
 712        leaf = path->nodes[0];
 713        free_space = btrfs_leaf_free_space(leaf);
 714        INIT_LIST_HEAD(&head);
 715
 716        next = item;
 717        nitems = 0;
 718
 719        /*
 720         * count the number of the continuous items that we can insert in batch
 721         */
 722        while (total_size + next->data_len + sizeof(struct btrfs_item) <=
 723               free_space) {
 724                total_data_size += next->data_len;
 725                total_size += next->data_len + sizeof(struct btrfs_item);
 726                list_add_tail(&next->tree_list, &head);
 727                nitems++;
 728
 729                curr = next;
 730                next = __btrfs_next_delayed_item(curr);
 731                if (!next)
 732                        break;
 733
 734                if (!btrfs_is_continuous_delayed_item(curr, next))
 735                        break;
 736        }
 737
 738        if (!nitems) {
 739                ret = 0;
 740                goto out;
 741        }
 742
 743        keys = kmalloc_array(nitems, sizeof(struct btrfs_key), GFP_NOFS);
 744        if (!keys) {
 745                ret = -ENOMEM;
 746                goto out;
 747        }
 748
 749        data_size = kmalloc_array(nitems, sizeof(u32), GFP_NOFS);
 750        if (!data_size) {
 751                ret = -ENOMEM;
 752                goto error;
 753        }
 754
 755        /* get keys of all the delayed items */
 756        i = 0;
 757        list_for_each_entry(next, &head, tree_list) {
 758                keys[i] = next->key;
 759                data_size[i] = next->data_len;
 760                i++;
 761        }
 762
 763        /* insert the keys of the items */
 764        setup_items_for_insert(root, path, keys, data_size, nitems);
 765
 766        /* insert the dir index items */
 767        slot = path->slots[0];
 768        list_for_each_entry_safe(curr, next, &head, tree_list) {
 769                data_ptr = btrfs_item_ptr(leaf, slot, char);
 770                write_extent_buffer(leaf, &curr->data,
 771                                    (unsigned long)data_ptr,
 772                                    curr->data_len);
 773                slot++;
 774
 775                btrfs_delayed_item_release_metadata(root, curr);
 776
 777                list_del(&curr->tree_list);
 778                btrfs_release_delayed_item(curr);
 779        }
 780
 781error:
 782        kfree(data_size);
 783        kfree(keys);
 784out:
 785        return ret;
 786}
 787
 788/*
 789 * This helper can just do simple insertion that needn't extend item for new
 790 * data, such as directory name index insertion, inode insertion.
 791 */
 792static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
 793                                     struct btrfs_root *root,
 794                                     struct btrfs_path *path,
 795                                     struct btrfs_delayed_item *delayed_item)
 796{
 797        struct extent_buffer *leaf;
 798        unsigned int nofs_flag;
 799        char *ptr;
 800        int ret;
 801
 802        nofs_flag = memalloc_nofs_save();
 803        ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
 804                                      delayed_item->data_len);
 805        memalloc_nofs_restore(nofs_flag);
 806        if (ret < 0 && ret != -EEXIST)
 807                return ret;
 808
 809        leaf = path->nodes[0];
 810
 811        ptr = btrfs_item_ptr(leaf, path->slots[0], char);
 812
 813        write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
 814                            delayed_item->data_len);
 815        btrfs_mark_buffer_dirty(leaf);
 816
 817        btrfs_delayed_item_release_metadata(root, delayed_item);
 818        return 0;
 819}
 820
 821/*
 822 * we insert an item first, then if there are some continuous items, we try
 823 * to insert those items into the same leaf.
 824 */
 825static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
 826                                      struct btrfs_path *path,
 827                                      struct btrfs_root *root,
 828                                      struct btrfs_delayed_node *node)
 829{
 830        struct btrfs_delayed_item *curr, *prev;
 831        int ret = 0;
 832
 833do_again:
 834        mutex_lock(&node->mutex);
 835        curr = __btrfs_first_delayed_insertion_item(node);
 836        if (!curr)
 837                goto insert_end;
 838
 839        ret = btrfs_insert_delayed_item(trans, root, path, curr);
 840        if (ret < 0) {
 841                btrfs_release_path(path);
 842                goto insert_end;
 843        }
 844
 845        prev = curr;
 846        curr = __btrfs_next_delayed_item(prev);
 847        if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
 848                /* insert the continuous items into the same leaf */
 849                path->slots[0]++;
 850                btrfs_batch_insert_items(root, path, curr);
 851        }
 852        btrfs_release_delayed_item(prev);
 853        btrfs_mark_buffer_dirty(path->nodes[0]);
 854
 855        btrfs_release_path(path);
 856        mutex_unlock(&node->mutex);
 857        goto do_again;
 858
 859insert_end:
 860        mutex_unlock(&node->mutex);
 861        return ret;
 862}
 863
 864static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
 865                                    struct btrfs_root *root,
 866                                    struct btrfs_path *path,
 867                                    struct btrfs_delayed_item *item)
 868{
 869        struct btrfs_delayed_item *curr, *next;
 870        struct extent_buffer *leaf;
 871        struct btrfs_key key;
 872        struct list_head head;
 873        int nitems, i, last_item;
 874        int ret = 0;
 875
 876        BUG_ON(!path->nodes[0]);
 877
 878        leaf = path->nodes[0];
 879
 880        i = path->slots[0];
 881        last_item = btrfs_header_nritems(leaf) - 1;
 882        if (i > last_item)
 883                return -ENOENT; /* FIXME: Is errno suitable? */
 884
 885        next = item;
 886        INIT_LIST_HEAD(&head);
 887        btrfs_item_key_to_cpu(leaf, &key, i);
 888        nitems = 0;
 889        /*
 890         * count the number of the dir index items that we can delete in batch
 891         */
 892        while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
 893                list_add_tail(&next->tree_list, &head);
 894                nitems++;
 895
 896                curr = next;
 897                next = __btrfs_next_delayed_item(curr);
 898                if (!next)
 899                        break;
 900
 901                if (!btrfs_is_continuous_delayed_item(curr, next))
 902                        break;
 903
 904                i++;
 905                if (i > last_item)
 906                        break;
 907                btrfs_item_key_to_cpu(leaf, &key, i);
 908        }
 909
 910        if (!nitems)
 911                return 0;
 912
 913        ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
 914        if (ret)
 915                goto out;
 916
 917        list_for_each_entry_safe(curr, next, &head, tree_list) {
 918                btrfs_delayed_item_release_metadata(root, curr);
 919                list_del(&curr->tree_list);
 920                btrfs_release_delayed_item(curr);
 921        }
 922
 923out:
 924        return ret;
 925}
 926
 927static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
 928                                      struct btrfs_path *path,
 929                                      struct btrfs_root *root,
 930                                      struct btrfs_delayed_node *node)
 931{
 932        struct btrfs_delayed_item *curr, *prev;
 933        unsigned int nofs_flag;
 934        int ret = 0;
 935
 936do_again:
 937        mutex_lock(&node->mutex);
 938        curr = __btrfs_first_delayed_deletion_item(node);
 939        if (!curr)
 940                goto delete_fail;
 941
 942        nofs_flag = memalloc_nofs_save();
 943        ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
 944        memalloc_nofs_restore(nofs_flag);
 945        if (ret < 0)
 946                goto delete_fail;
 947        else if (ret > 0) {
 948                /*
 949                 * can't find the item which the node points to, so this node
 950                 * is invalid, just drop it.
 951                 */
 952                prev = curr;
 953                curr = __btrfs_next_delayed_item(prev);
 954                btrfs_release_delayed_item(prev);
 955                ret = 0;
 956                btrfs_release_path(path);
 957                if (curr) {
 958                        mutex_unlock(&node->mutex);
 959                        goto do_again;
 960                } else
 961                        goto delete_fail;
 962        }
 963
 964        btrfs_batch_delete_items(trans, root, path, curr);
 965        btrfs_release_path(path);
 966        mutex_unlock(&node->mutex);
 967        goto do_again;
 968
 969delete_fail:
 970        btrfs_release_path(path);
 971        mutex_unlock(&node->mutex);
 972        return ret;
 973}
 974
 975static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
 976{
 977        struct btrfs_delayed_root *delayed_root;
 978
 979        if (delayed_node &&
 980            test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
 981                BUG_ON(!delayed_node->root);
 982                clear_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
 983                delayed_node->count--;
 984
 985                delayed_root = delayed_node->root->fs_info->delayed_root;
 986                finish_one_item(delayed_root);
 987        }
 988}
 989
 990static void btrfs_release_delayed_iref(struct btrfs_delayed_node *delayed_node)
 991{
 992        struct btrfs_delayed_root *delayed_root;
 993
 994        ASSERT(delayed_node->root);
 995        clear_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
 996        delayed_node->count--;
 997
 998        delayed_root = delayed_node->root->fs_info->delayed_root;
 999        finish_one_item(delayed_root);
1000}
1001
1002static int __btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1003                                        struct btrfs_root *root,
1004                                        struct btrfs_path *path,
1005                                        struct btrfs_delayed_node *node)
1006{
1007        struct btrfs_fs_info *fs_info = root->fs_info;
1008        struct btrfs_key key;
1009        struct btrfs_inode_item *inode_item;
1010        struct extent_buffer *leaf;
1011        unsigned int nofs_flag;
1012        int mod;
1013        int ret;
1014
1015        key.objectid = node->inode_id;
1016        key.type = BTRFS_INODE_ITEM_KEY;
1017        key.offset = 0;
1018
1019        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1020                mod = -1;
1021        else
1022                mod = 1;
1023
1024        nofs_flag = memalloc_nofs_save();
1025        ret = btrfs_lookup_inode(trans, root, path, &key, mod);
1026        memalloc_nofs_restore(nofs_flag);
1027        if (ret > 0) {
1028                btrfs_release_path(path);
1029                return -ENOENT;
1030        } else if (ret < 0) {
1031                return ret;
1032        }
1033
1034        leaf = path->nodes[0];
1035        inode_item = btrfs_item_ptr(leaf, path->slots[0],
1036                                    struct btrfs_inode_item);
1037        write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1038                            sizeof(struct btrfs_inode_item));
1039        btrfs_mark_buffer_dirty(leaf);
1040
1041        if (!test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &node->flags))
1042                goto no_iref;
1043
1044        path->slots[0]++;
1045        if (path->slots[0] >= btrfs_header_nritems(leaf))
1046                goto search;
1047again:
1048        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1049        if (key.objectid != node->inode_id)
1050                goto out;
1051
1052        if (key.type != BTRFS_INODE_REF_KEY &&
1053            key.type != BTRFS_INODE_EXTREF_KEY)
1054                goto out;
1055
1056        /*
1057         * Delayed iref deletion is for the inode who has only one link,
1058         * so there is only one iref. The case that several irefs are
1059         * in the same item doesn't exist.
1060         */
1061        btrfs_del_item(trans, root, path);
1062out:
1063        btrfs_release_delayed_iref(node);
1064no_iref:
1065        btrfs_release_path(path);
1066err_out:
1067        btrfs_delayed_inode_release_metadata(fs_info, node, (ret < 0));
1068        btrfs_release_delayed_inode(node);
1069
1070        return ret;
1071
1072search:
1073        btrfs_release_path(path);
1074
1075        key.type = BTRFS_INODE_EXTREF_KEY;
1076        key.offset = -1;
1077
1078        nofs_flag = memalloc_nofs_save();
1079        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1080        memalloc_nofs_restore(nofs_flag);
1081        if (ret < 0)
1082                goto err_out;
1083        ASSERT(ret);
1084
1085        ret = 0;
1086        leaf = path->nodes[0];
1087        path->slots[0]--;
1088        goto again;
1089}
1090
1091static inline int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
1092                                             struct btrfs_root *root,
1093                                             struct btrfs_path *path,
1094                                             struct btrfs_delayed_node *node)
1095{
1096        int ret;
1097
1098        mutex_lock(&node->mutex);
1099        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &node->flags)) {
1100                mutex_unlock(&node->mutex);
1101                return 0;
1102        }
1103
1104        ret = __btrfs_update_delayed_inode(trans, root, path, node);
1105        mutex_unlock(&node->mutex);
1106        return ret;
1107}
1108
1109static inline int
1110__btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1111                                   struct btrfs_path *path,
1112                                   struct btrfs_delayed_node *node)
1113{
1114        int ret;
1115
1116        ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1117        if (ret)
1118                return ret;
1119
1120        ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1121        if (ret)
1122                return ret;
1123
1124        ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1125        return ret;
1126}
1127
1128/*
1129 * Called when committing the transaction.
1130 * Returns 0 on success.
1131 * Returns < 0 on error and returns with an aborted transaction with any
1132 * outstanding delayed items cleaned up.
1133 */
1134static int __btrfs_run_delayed_items(struct btrfs_trans_handle *trans, int nr)
1135{
1136        struct btrfs_fs_info *fs_info = trans->fs_info;
1137        struct btrfs_delayed_root *delayed_root;
1138        struct btrfs_delayed_node *curr_node, *prev_node;
1139        struct btrfs_path *path;
1140        struct btrfs_block_rsv *block_rsv;
1141        int ret = 0;
1142        bool count = (nr > 0);
1143
1144        if (TRANS_ABORTED(trans))
1145                return -EIO;
1146
1147        path = btrfs_alloc_path();
1148        if (!path)
1149                return -ENOMEM;
1150
1151        block_rsv = trans->block_rsv;
1152        trans->block_rsv = &fs_info->delayed_block_rsv;
1153
1154        delayed_root = fs_info->delayed_root;
1155
1156        curr_node = btrfs_first_delayed_node(delayed_root);
1157        while (curr_node && (!count || (count && nr--))) {
1158                ret = __btrfs_commit_inode_delayed_items(trans, path,
1159                                                         curr_node);
1160                if (ret) {
1161                        btrfs_release_delayed_node(curr_node);
1162                        curr_node = NULL;
1163                        btrfs_abort_transaction(trans, ret);
1164                        break;
1165                }
1166
1167                prev_node = curr_node;
1168                curr_node = btrfs_next_delayed_node(curr_node);
1169                btrfs_release_delayed_node(prev_node);
1170        }
1171
1172        if (curr_node)
1173                btrfs_release_delayed_node(curr_node);
1174        btrfs_free_path(path);
1175        trans->block_rsv = block_rsv;
1176
1177        return ret;
1178}
1179
1180int btrfs_run_delayed_items(struct btrfs_trans_handle *trans)
1181{
1182        return __btrfs_run_delayed_items(trans, -1);
1183}
1184
1185int btrfs_run_delayed_items_nr(struct btrfs_trans_handle *trans, int nr)
1186{
1187        return __btrfs_run_delayed_items(trans, nr);
1188}
1189
1190int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1191                                     struct btrfs_inode *inode)
1192{
1193        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1194        struct btrfs_path *path;
1195        struct btrfs_block_rsv *block_rsv;
1196        int ret;
1197
1198        if (!delayed_node)
1199                return 0;
1200
1201        mutex_lock(&delayed_node->mutex);
1202        if (!delayed_node->count) {
1203                mutex_unlock(&delayed_node->mutex);
1204                btrfs_release_delayed_node(delayed_node);
1205                return 0;
1206        }
1207        mutex_unlock(&delayed_node->mutex);
1208
1209        path = btrfs_alloc_path();
1210        if (!path) {
1211                btrfs_release_delayed_node(delayed_node);
1212                return -ENOMEM;
1213        }
1214
1215        block_rsv = trans->block_rsv;
1216        trans->block_rsv = &delayed_node->root->fs_info->delayed_block_rsv;
1217
1218        ret = __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1219
1220        btrfs_release_delayed_node(delayed_node);
1221        btrfs_free_path(path);
1222        trans->block_rsv = block_rsv;
1223
1224        return ret;
1225}
1226
1227int btrfs_commit_inode_delayed_inode(struct btrfs_inode *inode)
1228{
1229        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1230        struct btrfs_trans_handle *trans;
1231        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1232        struct btrfs_path *path;
1233        struct btrfs_block_rsv *block_rsv;
1234        int ret;
1235
1236        if (!delayed_node)
1237                return 0;
1238
1239        mutex_lock(&delayed_node->mutex);
1240        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1241                mutex_unlock(&delayed_node->mutex);
1242                btrfs_release_delayed_node(delayed_node);
1243                return 0;
1244        }
1245        mutex_unlock(&delayed_node->mutex);
1246
1247        trans = btrfs_join_transaction(delayed_node->root);
1248        if (IS_ERR(trans)) {
1249                ret = PTR_ERR(trans);
1250                goto out;
1251        }
1252
1253        path = btrfs_alloc_path();
1254        if (!path) {
1255                ret = -ENOMEM;
1256                goto trans_out;
1257        }
1258
1259        block_rsv = trans->block_rsv;
1260        trans->block_rsv = &fs_info->delayed_block_rsv;
1261
1262        mutex_lock(&delayed_node->mutex);
1263        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags))
1264                ret = __btrfs_update_delayed_inode(trans, delayed_node->root,
1265                                                   path, delayed_node);
1266        else
1267                ret = 0;
1268        mutex_unlock(&delayed_node->mutex);
1269
1270        btrfs_free_path(path);
1271        trans->block_rsv = block_rsv;
1272trans_out:
1273        btrfs_end_transaction(trans);
1274        btrfs_btree_balance_dirty(fs_info);
1275out:
1276        btrfs_release_delayed_node(delayed_node);
1277
1278        return ret;
1279}
1280
1281void btrfs_remove_delayed_node(struct btrfs_inode *inode)
1282{
1283        struct btrfs_delayed_node *delayed_node;
1284
1285        delayed_node = READ_ONCE(inode->delayed_node);
1286        if (!delayed_node)
1287                return;
1288
1289        inode->delayed_node = NULL;
1290        btrfs_release_delayed_node(delayed_node);
1291}
1292
1293struct btrfs_async_delayed_work {
1294        struct btrfs_delayed_root *delayed_root;
1295        int nr;
1296        struct btrfs_work work;
1297};
1298
1299static void btrfs_async_run_delayed_root(struct btrfs_work *work)
1300{
1301        struct btrfs_async_delayed_work *async_work;
1302        struct btrfs_delayed_root *delayed_root;
1303        struct btrfs_trans_handle *trans;
1304        struct btrfs_path *path;
1305        struct btrfs_delayed_node *delayed_node = NULL;
1306        struct btrfs_root *root;
1307        struct btrfs_block_rsv *block_rsv;
1308        int total_done = 0;
1309
1310        async_work = container_of(work, struct btrfs_async_delayed_work, work);
1311        delayed_root = async_work->delayed_root;
1312
1313        path = btrfs_alloc_path();
1314        if (!path)
1315                goto out;
1316
1317        do {
1318                if (atomic_read(&delayed_root->items) <
1319                    BTRFS_DELAYED_BACKGROUND / 2)
1320                        break;
1321
1322                delayed_node = btrfs_first_prepared_delayed_node(delayed_root);
1323                if (!delayed_node)
1324                        break;
1325
1326                root = delayed_node->root;
1327
1328                trans = btrfs_join_transaction(root);
1329                if (IS_ERR(trans)) {
1330                        btrfs_release_path(path);
1331                        btrfs_release_prepared_delayed_node(delayed_node);
1332                        total_done++;
1333                        continue;
1334                }
1335
1336                block_rsv = trans->block_rsv;
1337                trans->block_rsv = &root->fs_info->delayed_block_rsv;
1338
1339                __btrfs_commit_inode_delayed_items(trans, path, delayed_node);
1340
1341                trans->block_rsv = block_rsv;
1342                btrfs_end_transaction(trans);
1343                btrfs_btree_balance_dirty_nodelay(root->fs_info);
1344
1345                btrfs_release_path(path);
1346                btrfs_release_prepared_delayed_node(delayed_node);
1347                total_done++;
1348
1349        } while ((async_work->nr == 0 && total_done < BTRFS_DELAYED_WRITEBACK)
1350                 || total_done < async_work->nr);
1351
1352        btrfs_free_path(path);
1353out:
1354        wake_up(&delayed_root->wait);
1355        kfree(async_work);
1356}
1357
1358
1359static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1360                                     struct btrfs_fs_info *fs_info, int nr)
1361{
1362        struct btrfs_async_delayed_work *async_work;
1363
1364        async_work = kmalloc(sizeof(*async_work), GFP_NOFS);
1365        if (!async_work)
1366                return -ENOMEM;
1367
1368        async_work->delayed_root = delayed_root;
1369        btrfs_init_work(&async_work->work, btrfs_async_run_delayed_root, NULL,
1370                        NULL);
1371        async_work->nr = nr;
1372
1373        btrfs_queue_work(fs_info->delayed_workers, &async_work->work);
1374        return 0;
1375}
1376
1377void btrfs_assert_delayed_root_empty(struct btrfs_fs_info *fs_info)
1378{
1379        WARN_ON(btrfs_first_delayed_node(fs_info->delayed_root));
1380}
1381
1382static int could_end_wait(struct btrfs_delayed_root *delayed_root, int seq)
1383{
1384        int val = atomic_read(&delayed_root->items_seq);
1385
1386        if (val < seq || val >= seq + BTRFS_DELAYED_BATCH)
1387                return 1;
1388
1389        if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1390                return 1;
1391
1392        return 0;
1393}
1394
1395void btrfs_balance_delayed_items(struct btrfs_fs_info *fs_info)
1396{
1397        struct btrfs_delayed_root *delayed_root = fs_info->delayed_root;
1398
1399        if ((atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND) ||
1400                btrfs_workqueue_normal_congested(fs_info->delayed_workers))
1401                return;
1402
1403        if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1404                int seq;
1405                int ret;
1406
1407                seq = atomic_read(&delayed_root->items_seq);
1408
1409                ret = btrfs_wq_run_delayed_node(delayed_root, fs_info, 0);
1410                if (ret)
1411                        return;
1412
1413                wait_event_interruptible(delayed_root->wait,
1414                                         could_end_wait(delayed_root, seq));
1415                return;
1416        }
1417
1418        btrfs_wq_run_delayed_node(delayed_root, fs_info, BTRFS_DELAYED_BATCH);
1419}
1420
1421/* Will return 0 or -ENOMEM */
1422int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1423                                   const char *name, int name_len,
1424                                   struct btrfs_inode *dir,
1425                                   struct btrfs_disk_key *disk_key, u8 type,
1426                                   u64 index)
1427{
1428        struct btrfs_delayed_node *delayed_node;
1429        struct btrfs_delayed_item *delayed_item;
1430        struct btrfs_dir_item *dir_item;
1431        int ret;
1432
1433        delayed_node = btrfs_get_or_create_delayed_node(dir);
1434        if (IS_ERR(delayed_node))
1435                return PTR_ERR(delayed_node);
1436
1437        delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1438        if (!delayed_item) {
1439                ret = -ENOMEM;
1440                goto release_node;
1441        }
1442
1443        delayed_item->key.objectid = btrfs_ino(dir);
1444        delayed_item->key.type = BTRFS_DIR_INDEX_KEY;
1445        delayed_item->key.offset = index;
1446
1447        dir_item = (struct btrfs_dir_item *)delayed_item->data;
1448        dir_item->location = *disk_key;
1449        btrfs_set_stack_dir_transid(dir_item, trans->transid);
1450        btrfs_set_stack_dir_data_len(dir_item, 0);
1451        btrfs_set_stack_dir_name_len(dir_item, name_len);
1452        btrfs_set_stack_dir_type(dir_item, type);
1453        memcpy((char *)(dir_item + 1), name, name_len);
1454
1455        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, delayed_item);
1456        /*
1457         * we have reserved enough space when we start a new transaction,
1458         * so reserving metadata failure is impossible
1459         */
1460        BUG_ON(ret);
1461
1462        mutex_lock(&delayed_node->mutex);
1463        ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1464        if (unlikely(ret)) {
1465                btrfs_err(trans->fs_info,
1466                          "err add delayed dir index item(name: %.*s) into the insertion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1467                          name_len, name, delayed_node->root->root_key.objectid,
1468                          delayed_node->inode_id, ret);
1469                BUG();
1470        }
1471        mutex_unlock(&delayed_node->mutex);
1472
1473release_node:
1474        btrfs_release_delayed_node(delayed_node);
1475        return ret;
1476}
1477
1478static int btrfs_delete_delayed_insertion_item(struct btrfs_fs_info *fs_info,
1479                                               struct btrfs_delayed_node *node,
1480                                               struct btrfs_key *key)
1481{
1482        struct btrfs_delayed_item *item;
1483
1484        mutex_lock(&node->mutex);
1485        item = __btrfs_lookup_delayed_insertion_item(node, key);
1486        if (!item) {
1487                mutex_unlock(&node->mutex);
1488                return 1;
1489        }
1490
1491        btrfs_delayed_item_release_metadata(node->root, item);
1492        btrfs_release_delayed_item(item);
1493        mutex_unlock(&node->mutex);
1494        return 0;
1495}
1496
1497int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1498                                   struct btrfs_inode *dir, u64 index)
1499{
1500        struct btrfs_delayed_node *node;
1501        struct btrfs_delayed_item *item;
1502        struct btrfs_key item_key;
1503        int ret;
1504
1505        node = btrfs_get_or_create_delayed_node(dir);
1506        if (IS_ERR(node))
1507                return PTR_ERR(node);
1508
1509        item_key.objectid = btrfs_ino(dir);
1510        item_key.type = BTRFS_DIR_INDEX_KEY;
1511        item_key.offset = index;
1512
1513        ret = btrfs_delete_delayed_insertion_item(trans->fs_info, node,
1514                                                  &item_key);
1515        if (!ret)
1516                goto end;
1517
1518        item = btrfs_alloc_delayed_item(0);
1519        if (!item) {
1520                ret = -ENOMEM;
1521                goto end;
1522        }
1523
1524        item->key = item_key;
1525
1526        ret = btrfs_delayed_item_reserve_metadata(trans, dir->root, item);
1527        /*
1528         * we have reserved enough space when we start a new transaction,
1529         * so reserving metadata failure is impossible.
1530         */
1531        if (ret < 0) {
1532                btrfs_err(trans->fs_info,
1533"metadata reservation failed for delayed dir item deltiona, should have been reserved");
1534                btrfs_release_delayed_item(item);
1535                goto end;
1536        }
1537
1538        mutex_lock(&node->mutex);
1539        ret = __btrfs_add_delayed_deletion_item(node, item);
1540        if (unlikely(ret)) {
1541                btrfs_err(trans->fs_info,
1542                          "err add delayed dir index item(index: %llu) into the deletion tree of the delayed node(root id: %llu, inode id: %llu, errno: %d)",
1543                          index, node->root->root_key.objectid,
1544                          node->inode_id, ret);
1545                btrfs_delayed_item_release_metadata(dir->root, item);
1546                btrfs_release_delayed_item(item);
1547        }
1548        mutex_unlock(&node->mutex);
1549end:
1550        btrfs_release_delayed_node(node);
1551        return ret;
1552}
1553
1554int btrfs_inode_delayed_dir_index_count(struct btrfs_inode *inode)
1555{
1556        struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1557
1558        if (!delayed_node)
1559                return -ENOENT;
1560
1561        /*
1562         * Since we have held i_mutex of this directory, it is impossible that
1563         * a new directory index is added into the delayed node and index_cnt
1564         * is updated now. So we needn't lock the delayed node.
1565         */
1566        if (!delayed_node->index_cnt) {
1567                btrfs_release_delayed_node(delayed_node);
1568                return -EINVAL;
1569        }
1570
1571        inode->index_cnt = delayed_node->index_cnt;
1572        btrfs_release_delayed_node(delayed_node);
1573        return 0;
1574}
1575
1576bool btrfs_readdir_get_delayed_items(struct inode *inode,
1577                                     struct list_head *ins_list,
1578                                     struct list_head *del_list)
1579{
1580        struct btrfs_delayed_node *delayed_node;
1581        struct btrfs_delayed_item *item;
1582
1583        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1584        if (!delayed_node)
1585                return false;
1586
1587        /*
1588         * We can only do one readdir with delayed items at a time because of
1589         * item->readdir_list.
1590         */
1591        inode_unlock_shared(inode);
1592        inode_lock(inode);
1593
1594        mutex_lock(&delayed_node->mutex);
1595        item = __btrfs_first_delayed_insertion_item(delayed_node);
1596        while (item) {
1597                refcount_inc(&item->refs);
1598                list_add_tail(&item->readdir_list, ins_list);
1599                item = __btrfs_next_delayed_item(item);
1600        }
1601
1602        item = __btrfs_first_delayed_deletion_item(delayed_node);
1603        while (item) {
1604                refcount_inc(&item->refs);
1605                list_add_tail(&item->readdir_list, del_list);
1606                item = __btrfs_next_delayed_item(item);
1607        }
1608        mutex_unlock(&delayed_node->mutex);
1609        /*
1610         * This delayed node is still cached in the btrfs inode, so refs
1611         * must be > 1 now, and we needn't check it is going to be freed
1612         * or not.
1613         *
1614         * Besides that, this function is used to read dir, we do not
1615         * insert/delete delayed items in this period. So we also needn't
1616         * requeue or dequeue this delayed node.
1617         */
1618        refcount_dec(&delayed_node->refs);
1619
1620        return true;
1621}
1622
1623void btrfs_readdir_put_delayed_items(struct inode *inode,
1624                                     struct list_head *ins_list,
1625                                     struct list_head *del_list)
1626{
1627        struct btrfs_delayed_item *curr, *next;
1628
1629        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1630                list_del(&curr->readdir_list);
1631                if (refcount_dec_and_test(&curr->refs))
1632                        kfree(curr);
1633        }
1634
1635        list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1636                list_del(&curr->readdir_list);
1637                if (refcount_dec_and_test(&curr->refs))
1638                        kfree(curr);
1639        }
1640
1641        /*
1642         * The VFS is going to do up_read(), so we need to downgrade back to a
1643         * read lock.
1644         */
1645        downgrade_write(&inode->i_rwsem);
1646}
1647
1648int btrfs_should_delete_dir_index(struct list_head *del_list,
1649                                  u64 index)
1650{
1651        struct btrfs_delayed_item *curr;
1652        int ret = 0;
1653
1654        list_for_each_entry(curr, del_list, readdir_list) {
1655                if (curr->key.offset > index)
1656                        break;
1657                if (curr->key.offset == index) {
1658                        ret = 1;
1659                        break;
1660                }
1661        }
1662        return ret;
1663}
1664
1665/*
1666 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1667 *
1668 */
1669int btrfs_readdir_delayed_dir_index(struct dir_context *ctx,
1670                                    struct list_head *ins_list)
1671{
1672        struct btrfs_dir_item *di;
1673        struct btrfs_delayed_item *curr, *next;
1674        struct btrfs_key location;
1675        char *name;
1676        int name_len;
1677        int over = 0;
1678        unsigned char d_type;
1679
1680        if (list_empty(ins_list))
1681                return 0;
1682
1683        /*
1684         * Changing the data of the delayed item is impossible. So
1685         * we needn't lock them. And we have held i_mutex of the
1686         * directory, nobody can delete any directory indexes now.
1687         */
1688        list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1689                list_del(&curr->readdir_list);
1690
1691                if (curr->key.offset < ctx->pos) {
1692                        if (refcount_dec_and_test(&curr->refs))
1693                                kfree(curr);
1694                        continue;
1695                }
1696
1697                ctx->pos = curr->key.offset;
1698
1699                di = (struct btrfs_dir_item *)curr->data;
1700                name = (char *)(di + 1);
1701                name_len = btrfs_stack_dir_name_len(di);
1702
1703                d_type = fs_ftype_to_dtype(di->type);
1704                btrfs_disk_key_to_cpu(&location, &di->location);
1705
1706                over = !dir_emit(ctx, name, name_len,
1707                               location.objectid, d_type);
1708
1709                if (refcount_dec_and_test(&curr->refs))
1710                        kfree(curr);
1711
1712                if (over)
1713                        return 1;
1714                ctx->pos++;
1715        }
1716        return 0;
1717}
1718
1719static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1720                                  struct btrfs_inode_item *inode_item,
1721                                  struct inode *inode)
1722{
1723        btrfs_set_stack_inode_uid(inode_item, i_uid_read(inode));
1724        btrfs_set_stack_inode_gid(inode_item, i_gid_read(inode));
1725        btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1726        btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1727        btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1728        btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1729        btrfs_set_stack_inode_generation(inode_item,
1730                                         BTRFS_I(inode)->generation);
1731        btrfs_set_stack_inode_sequence(inode_item,
1732                                       inode_peek_iversion(inode));
1733        btrfs_set_stack_inode_transid(inode_item, trans->transid);
1734        btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1735        btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1736        btrfs_set_stack_inode_block_group(inode_item, 0);
1737
1738        btrfs_set_stack_timespec_sec(&inode_item->atime,
1739                                     inode->i_atime.tv_sec);
1740        btrfs_set_stack_timespec_nsec(&inode_item->atime,
1741                                      inode->i_atime.tv_nsec);
1742
1743        btrfs_set_stack_timespec_sec(&inode_item->mtime,
1744                                     inode->i_mtime.tv_sec);
1745        btrfs_set_stack_timespec_nsec(&inode_item->mtime,
1746                                      inode->i_mtime.tv_nsec);
1747
1748        btrfs_set_stack_timespec_sec(&inode_item->ctime,
1749                                     inode->i_ctime.tv_sec);
1750        btrfs_set_stack_timespec_nsec(&inode_item->ctime,
1751                                      inode->i_ctime.tv_nsec);
1752
1753        btrfs_set_stack_timespec_sec(&inode_item->otime,
1754                                     BTRFS_I(inode)->i_otime.tv_sec);
1755        btrfs_set_stack_timespec_nsec(&inode_item->otime,
1756                                     BTRFS_I(inode)->i_otime.tv_nsec);
1757}
1758
1759int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1760{
1761        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1762        struct btrfs_delayed_node *delayed_node;
1763        struct btrfs_inode_item *inode_item;
1764
1765        delayed_node = btrfs_get_delayed_node(BTRFS_I(inode));
1766        if (!delayed_node)
1767                return -ENOENT;
1768
1769        mutex_lock(&delayed_node->mutex);
1770        if (!test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1771                mutex_unlock(&delayed_node->mutex);
1772                btrfs_release_delayed_node(delayed_node);
1773                return -ENOENT;
1774        }
1775
1776        inode_item = &delayed_node->inode_item;
1777
1778        i_uid_write(inode, btrfs_stack_inode_uid(inode_item));
1779        i_gid_write(inode, btrfs_stack_inode_gid(inode_item));
1780        btrfs_i_size_write(BTRFS_I(inode), btrfs_stack_inode_size(inode_item));
1781        btrfs_inode_set_file_extent_range(BTRFS_I(inode), 0,
1782                        round_up(i_size_read(inode), fs_info->sectorsize));
1783        inode->i_mode = btrfs_stack_inode_mode(inode_item);
1784        set_nlink(inode, btrfs_stack_inode_nlink(inode_item));
1785        inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1786        BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1787        BTRFS_I(inode)->last_trans = btrfs_stack_inode_transid(inode_item);
1788
1789        inode_set_iversion_queried(inode,
1790                                   btrfs_stack_inode_sequence(inode_item));
1791        inode->i_rdev = 0;
1792        *rdev = btrfs_stack_inode_rdev(inode_item);
1793        BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1794
1795        inode->i_atime.tv_sec = btrfs_stack_timespec_sec(&inode_item->atime);
1796        inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->atime);
1797
1798        inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(&inode_item->mtime);
1799        inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->mtime);
1800
1801        inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(&inode_item->ctime);
1802        inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(&inode_item->ctime);
1803
1804        BTRFS_I(inode)->i_otime.tv_sec =
1805                btrfs_stack_timespec_sec(&inode_item->otime);
1806        BTRFS_I(inode)->i_otime.tv_nsec =
1807                btrfs_stack_timespec_nsec(&inode_item->otime);
1808
1809        inode->i_generation = BTRFS_I(inode)->generation;
1810        BTRFS_I(inode)->index_cnt = (u64)-1;
1811
1812        mutex_unlock(&delayed_node->mutex);
1813        btrfs_release_delayed_node(delayed_node);
1814        return 0;
1815}
1816
1817int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1818                               struct btrfs_root *root,
1819                               struct btrfs_inode *inode)
1820{
1821        struct btrfs_delayed_node *delayed_node;
1822        int ret = 0;
1823
1824        delayed_node = btrfs_get_or_create_delayed_node(inode);
1825        if (IS_ERR(delayed_node))
1826                return PTR_ERR(delayed_node);
1827
1828        mutex_lock(&delayed_node->mutex);
1829        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1830                fill_stack_inode_item(trans, &delayed_node->inode_item,
1831                                      &inode->vfs_inode);
1832                goto release_node;
1833        }
1834
1835        ret = btrfs_delayed_inode_reserve_metadata(trans, root, inode,
1836                                                   delayed_node);
1837        if (ret)
1838                goto release_node;
1839
1840        fill_stack_inode_item(trans, &delayed_node->inode_item, &inode->vfs_inode);
1841        set_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags);
1842        delayed_node->count++;
1843        atomic_inc(&root->fs_info->delayed_root->items);
1844release_node:
1845        mutex_unlock(&delayed_node->mutex);
1846        btrfs_release_delayed_node(delayed_node);
1847        return ret;
1848}
1849
1850int btrfs_delayed_delete_inode_ref(struct btrfs_inode *inode)
1851{
1852        struct btrfs_fs_info *fs_info = inode->root->fs_info;
1853        struct btrfs_delayed_node *delayed_node;
1854
1855        /*
1856         * we don't do delayed inode updates during log recovery because it
1857         * leads to enospc problems.  This means we also can't do
1858         * delayed inode refs
1859         */
1860        if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
1861                return -EAGAIN;
1862
1863        delayed_node = btrfs_get_or_create_delayed_node(inode);
1864        if (IS_ERR(delayed_node))
1865                return PTR_ERR(delayed_node);
1866
1867        /*
1868         * We don't reserve space for inode ref deletion is because:
1869         * - We ONLY do async inode ref deletion for the inode who has only
1870         *   one link(i_nlink == 1), it means there is only one inode ref.
1871         *   And in most case, the inode ref and the inode item are in the
1872         *   same leaf, and we will deal with them at the same time.
1873         *   Since we are sure we will reserve the space for the inode item,
1874         *   it is unnecessary to reserve space for inode ref deletion.
1875         * - If the inode ref and the inode item are not in the same leaf,
1876         *   We also needn't worry about enospc problem, because we reserve
1877         *   much more space for the inode update than it needs.
1878         * - At the worst, we can steal some space from the global reservation.
1879         *   It is very rare.
1880         */
1881        mutex_lock(&delayed_node->mutex);
1882        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1883                goto release_node;
1884
1885        set_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags);
1886        delayed_node->count++;
1887        atomic_inc(&fs_info->delayed_root->items);
1888release_node:
1889        mutex_unlock(&delayed_node->mutex);
1890        btrfs_release_delayed_node(delayed_node);
1891        return 0;
1892}
1893
1894static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1895{
1896        struct btrfs_root *root = delayed_node->root;
1897        struct btrfs_fs_info *fs_info = root->fs_info;
1898        struct btrfs_delayed_item *curr_item, *prev_item;
1899
1900        mutex_lock(&delayed_node->mutex);
1901        curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1902        while (curr_item) {
1903                btrfs_delayed_item_release_metadata(root, curr_item);
1904                prev_item = curr_item;
1905                curr_item = __btrfs_next_delayed_item(prev_item);
1906                btrfs_release_delayed_item(prev_item);
1907        }
1908
1909        curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1910        while (curr_item) {
1911                btrfs_delayed_item_release_metadata(root, curr_item);
1912                prev_item = curr_item;
1913                curr_item = __btrfs_next_delayed_item(prev_item);
1914                btrfs_release_delayed_item(prev_item);
1915        }
1916
1917        if (test_bit(BTRFS_DELAYED_NODE_DEL_IREF, &delayed_node->flags))
1918                btrfs_release_delayed_iref(delayed_node);
1919
1920        if (test_bit(BTRFS_DELAYED_NODE_INODE_DIRTY, &delayed_node->flags)) {
1921                btrfs_delayed_inode_release_metadata(fs_info, delayed_node, false);
1922                btrfs_release_delayed_inode(delayed_node);
1923        }
1924        mutex_unlock(&delayed_node->mutex);
1925}
1926
1927void btrfs_kill_delayed_inode_items(struct btrfs_inode *inode)
1928{
1929        struct btrfs_delayed_node *delayed_node;
1930
1931        delayed_node = btrfs_get_delayed_node(inode);
1932        if (!delayed_node)
1933                return;
1934
1935        __btrfs_kill_delayed_node(delayed_node);
1936        btrfs_release_delayed_node(delayed_node);
1937}
1938
1939void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1940{
1941        u64 inode_id = 0;
1942        struct btrfs_delayed_node *delayed_nodes[8];
1943        int i, n;
1944
1945        while (1) {
1946                spin_lock(&root->inode_lock);
1947                n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1948                                           (void **)delayed_nodes, inode_id,
1949                                           ARRAY_SIZE(delayed_nodes));
1950                if (!n) {
1951                        spin_unlock(&root->inode_lock);
1952                        break;
1953                }
1954
1955                inode_id = delayed_nodes[n - 1]->inode_id + 1;
1956                for (i = 0; i < n; i++) {
1957                        /*
1958                         * Don't increase refs in case the node is dead and
1959                         * about to be removed from the tree in the loop below
1960                         */
1961                        if (!refcount_inc_not_zero(&delayed_nodes[i]->refs))
1962                                delayed_nodes[i] = NULL;
1963                }
1964                spin_unlock(&root->inode_lock);
1965
1966                for (i = 0; i < n; i++) {
1967                        if (!delayed_nodes[i])
1968                                continue;
1969                        __btrfs_kill_delayed_node(delayed_nodes[i]);
1970                        btrfs_release_delayed_node(delayed_nodes[i]);
1971                }
1972        }
1973}
1974
1975void btrfs_destroy_delayed_inodes(struct btrfs_fs_info *fs_info)
1976{
1977        struct btrfs_delayed_node *curr_node, *prev_node;
1978
1979        curr_node = btrfs_first_delayed_node(fs_info->delayed_root);
1980        while (curr_node) {
1981                __btrfs_kill_delayed_node(curr_node);
1982
1983                prev_node = curr_node;
1984                curr_node = btrfs_next_delayed_node(curr_node);
1985                btrfs_release_delayed_node(prev_node);
1986        }
1987}
1988
1989